1
|
Zhang X, Hou H, Jiang M, Zhang X. Aberrant circulating tumor DNA methylation and exosomal microRNA biomarkers for early detection of colorectal cancer. Mol Biol Rep 2023; 50:2743-2750. [PMID: 36583782 DOI: 10.1007/s11033-022-08194-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 12/06/2022] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Colorectal cancer (CRC) became the third most commonly diagnosed malignancy and the second leading cause of cancer death in 2020. However, the rates of early screening and early diagnosis for CRC remain unsatisfactory. Thus, it is essential to explore the initiating factors of CRC and strategies for its early diagnosis. Research progress in liquid biopsy has led to the finding that circulating tumor-derived DNA (ctDNA) and exosomes play vital roles in early detection of CRC. THE APPLICATIONS OF LIQUID BIOPSY FOR EARLY DETECTION OF COLORECTAL CANCER: Moreover, the increased understanding of epigenetics has highlighted the role of ctDNA methylation in CRC carcinogenesis, and the detection of aberrant ctDNA methylation markers is a feasible strategy for diagnosis of early-stage CRC. Among exosomal markers, microRNAs (miRNAs) are abundant and are the most researched. Upregulated or downregulated expression of exosome-derived miRNAs can indicate the occurrence of early-stage CRC. FUTURE PERSPECTIVE The current research progress on aberrant ctDNA methylation and tumor exosomal miRNA biomarkers in early detection of CRC is summarized in this review, and the advantages and shortcomings of the methods are discussed.
Collapse
Affiliation(s)
- Xuchen Zhang
- Precision Medicine Center of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China.,Qingdao Cancer Institute, Qingdao University, Qingdao, China
| | - Helei Hou
- Precision Medicine Center of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China.,Qingdao Cancer Institute, Qingdao University, Qingdao, China
| | - Man Jiang
- Precision Medicine Center of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China.,Qingdao Cancer Institute, Qingdao University, Qingdao, China
| | - Xiaochun Zhang
- Precision Medicine Center of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China. .,Qingdao Cancer Institute, Qingdao University, Qingdao, China.
| |
Collapse
|
2
|
Luo HY, Shen HY, Perkins RS, Wang YX. Adenosine Kinase on Deoxyribonucleic Acid Methylation: Adenosine Receptor-Independent Pathway in Cancer Therapy. Front Pharmacol 2022; 13:908882. [PMID: 35721189 PMCID: PMC9200284 DOI: 10.3389/fphar.2022.908882] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/16/2022] [Indexed: 11/24/2022] Open
Abstract
Methylation is an important mechanism contributing to cancer pathology. Methylation of tumor suppressor genes and oncogenes has been closely associated with tumor occurrence and development. New insights regarding the potential role of the adenosine receptor-independent pathway in the epigenetic modulation of DNA methylation offer the possibility of new interventional strategies for cancer therapy. Targeting DNA methylation of cancer-related genes is a promising therapeutic strategy; drugs like 5-Aza-2′-deoxycytidine (5-AZA-CdR, decitabine) effectively reverse DNA methylation and cancer cell growth. However, current anti-methylation (or methylation modifiers) are associated with severe side effects; thus, there is an urgent need for safer and more specific inhibitors of DNA methylation (or DNA methylation modifiers). The adenosine signaling pathway is reported to be involved in cancer pathology and participates in the development of tumors by altering DNA methylation. Most recently, an adenosine metabolic clearance enzyme, adenosine kinase (ADK), has been shown to influence methylation on tumor suppressor genes and tumor development and progression. This review article focuses on recent updates on ADK and its two isoforms, and its actions in adenosine receptor-independent pathways, including methylation modification and epigenetic changes in cancer pathology.
Collapse
Affiliation(s)
- Hao-Yun Luo
- Chongqing Medical University, Chongqing, China.,Department of Gastrointestinal and Anorectal Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Hai-Ying Shen
- Department of Neuroscience, Legacy Research Institute, Portland, OR, United States.,Integrative Physiology and Neuroscience, Washington State University, Vancouver, WA, United States
| | - R Serene Perkins
- Legacy Tumor Bank, Legacy Research Institute, Portland, OR, United States.,Mid-Columbia Medical Center, The Dalles, OR, United States
| | - Ya-Xu Wang
- Chongqing Medical University, Chongqing, China.,Department of Gastrointestinal and Anorectal Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| |
Collapse
|
3
|
Elzamly S, Chavali S, Tonk V, Tonk S, Gaur S, Tarango D, Torabi A. Acute myeloid leukemia with KMT2A-SEPT5 translocation: A case report and review of the literature. SAGE Open Med Case Rep 2018; 6:2050313X17750334. [PMID: 29326822 PMCID: PMC5758965 DOI: 10.1177/2050313x17750334] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 11/22/2017] [Indexed: 01/11/2023] Open
Abstract
Chromosomal rearrangement involving the KMT2A gene is one of the most common genetic alteration in acute myeloid leukemia. A total of 135 different KMT2A rearrangements have been identified, where 94 translocation partner genes are now characterized at the molecular level. Of these 94 translocation partner genes, 35 translocation partner genes occur recurrently, but only 9 specific gene fusions account for more than 90% of cases. Translocation of KMT2A with SEPT5 gene at 22q11.2 is rare, with few reported cases in the literature. In this report, we are presenting a case of KMT2A-SEPT5 fusion in de novo acute myeloid leukemia with t(11;22)(q23;q11.2) with a review of the literature.
Collapse
Affiliation(s)
- Shaimaa Elzamly
- Pathology Department, Faculty of Medicine, Benha University, Benha, Egypt
| | - Santosh Chavali
- Department of Pediatrics, Texas Tech University Health Science Center, Lubbock, TX, USA
| | - Vijay Tonk
- Department of Pediatrics, Texas Tech University Health Science Center, Lubbock, TX, USA
| | - Sahil Tonk
- Department of Pediatrics, Texas Tech University Health Science Center, Lubbock, TX, USA
| | - Sumit Gaur
- Department of Internal Medicine, Texas Tech University Health Science Center, El Paso, TX, USA
| | - Darlene Tarango
- Department of Pathology, Texas Tech University Health Science Center, El Paso, TX, USA
| | - Alireza Torabi
- Department of Pathology, Texas Tech University Health Science Center, El Paso, TX, USA
| |
Collapse
|
4
|
Angelis D, Spiliotis ET. Septin Mutations in Human Cancers. Front Cell Dev Biol 2016; 4:122. [PMID: 27882315 PMCID: PMC5101219 DOI: 10.3389/fcell.2016.00122] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 10/17/2016] [Indexed: 12/22/2022] Open
Abstract
Septins are GTP-binding proteins that are evolutionarily and structurally related to the RAS oncogenes. Septin expression levels are altered in many cancers and new advances point to how abnormal septin expression may contribute to the progression of cancer. In contrast to the RAS GTPases, which are frequently mutated and actively promote tumorigenesis, little is known about the occurrence and role of septin mutations in human cancers. Here, we review septin missense mutations that are currently in the Catalog of Somatic Mutations in Cancer (COSMIC) database. The majority of septin mutations occur in tumors of the large intestine, skin, endometrium and stomach. Over 25% of the annotated mutations in SEPT2, SEPT4, and SEPT9 belong to large intestine tumors. From all septins, SEPT9 and SEPT14 exhibit the highest mutation frequencies in skin, stomach and large intestine cancers. While septin mutations occur with frequencies lower than 3%, recurring mutations in several invariant and highly conserved amino acids are found across different septin paralogs and tumor types. Interestingly, a significant number of these mutations occur in the GTP-binding pocket and septin dimerization interfaces. Future studies may determine how these somatic mutations affect septin structure and function, whether they contribute to the progression of specific cancers and if they could serve as tumor-specific biomarkers.
Collapse
|
5
|
Abstract
SEPT9 gene methylation has been implicated as a biomarker for colorectal cancer (CRC) for more than 10 years and has been used clinically for more than 6 years. Studies have proven it to be an accurate, reliable, fast, and convenient method for CRC. In this chapter, we will first provide the background on the role of septin9 protein and the theoretical basis of the SEPT9 gene methylation assay. We will then focus on the performance of SEPT9 gene methylation assay for CRC early detection and screening by analyzing the data obtained in clinical trials and comparing its performance with other methods or markers. Finally, we will discuss the future applications of the assay in monitoring cancer recurrence, evaluating surgery, chemotherapy, and predicting long-term survival. We hope this chapter can provide a full overview of the theoretical basis, development, validation, and clinical applications of the SEPT9 assay for both basic science researchers and clinical practitioners.
Collapse
Affiliation(s)
- Lele Song
- Department of Radiotherapy, The Chinese PLA 309 Hospital, Beijing, PR China; BioChain (Beijing) Science and Technology, Inc., Economic and Technological Development Area, Beijing, PR China.
| | - Yuemin Li
- Department of Radiotherapy, The Chinese PLA 309 Hospital, Beijing, PR China.
| |
Collapse
|
6
|
Li Y, Song L, Gong Y, He B. Detection of colorectal cancer by DNA methylation biomarker SEPT9: past, present and future. Biomark Med 2015; 8:755-69. [PMID: 25123042 DOI: 10.2217/bmm.14.8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Colorectal cancer has become the third most common cancer in the world. Early diagnosis and treatment can significantly reduce colorectal cancer mortality. The current routinely used fecal-based screening methods do not provide satisfactory sensitivity. Although colonoscopy provides macroscopic diagnosis, the compliance is low due to its inconvenience and complications. Hence, the development of new screening methods is needed urgently. Peripheral blood SEPT9 gene methylation assay has become a potential option with promising future for early detection and screening of colorectal cancer. It is shown to be convenient, reliable with good compliance by several clinical trials. This article will review the theoretical foundation and development of the assay, focusing on its clinical trials, comparing it with other screening methods and discussing its future applications.
Collapse
Affiliation(s)
- Yuemin Li
- The Chinese PLA 309 Hospital (General Hospital of the PLA General Staff Headquarters), No. 17, HeiShanHu Road, HaiDian District, Beijing 100091, PR China
| | | | | | | |
Collapse
|
7
|
Dolat L, Hu Q, Spiliotis ET. Septin functions in organ system physiology and pathology. Biol Chem 2014; 395:123-41. [PMID: 24114910 DOI: 10.1515/hsz-2013-0233] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 10/08/2013] [Indexed: 02/07/2023]
Abstract
Human septins comprise a family of 13 genes that encode for >30 protein isoforms with ubiquitous and tissue-specific expressions. Septins are GTP-binding proteins that assemble into higher-order oligomers and filamentous polymers, which associate with cell membranes and the cytoskeleton. In the last decade, much progress has been made in understanding the biochemical properties and cell biological functions of septins. In parallel, a growing number of studies show that septins play important roles for the development and physiology of specific tissues and organs. Here, we review the expression and function of septins in the cardiovascular, immune, nervous, urinary, digestive, respiratory, endocrine, reproductive, and integumentary organ systems. Furthermore, we discuss how the tissue-specific functions of septins relate to the pathology of human diseases that arise from aberrations in septin expression.
Collapse
|
8
|
Bongiovanni L, Pirozzi F, Guidi F, Orsini M, Chiurazzi P, Bassi PF, Racioppi M. Bradeion (SEPT4) as a urinary marker of transitional cell bladder cancer: a real-time polymerase chain reaction study of gene expression. J Urol 2012; 187:2223-7. [PMID: 22503047 DOI: 10.1016/j.juro.2012.01.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2011] [Indexed: 12/29/2022]
Abstract
PURPOSE We evaluated whether Bradeion/SEPT4 gene expression could be used as a potential urinary marker to diagnose bladder transitional cell carcinoma. MATERIALS AND METHODS From 2005 to 2007 we collected urine samples from 58 individuals, 17 healthy controls and 41 patients in whom bladder tumors were previously diagnosed by cystoscopy. Urine was collected from all patients before transurethral resection of bladder tumor. We performed real-time reverse transcriptase-polymerase chain reaction to evaluate Bradeion/SEPT4 transcript levels using urine sample mRNA. Statistical analysis was done with the Mann-Whitney test and ROC curves. RESULTS Pathological examination of bladder tumor specimens revealed transitional cell bladder cancer. According to the 2002 TNM classification stage was Ta in 11 patients, T1 in 18 and T2/T3 in 12. All patients had G2 or G3 tumors according to the 1973 WHO grade classification. Relative quantification analysis of Bradeion transcript showed significantly increased levels compared to controls, namely 21.85 times higher in Ta stage tumors, 7.21 times higher in T1 tumors and 4.36 times higher in grade T2/T3 tumors. We compared each tumor stage group with the control group using the Mann-Whitney test to verify the statistical significance of observed differences. The ROC curve built on the change in threshold cycle revealed that with this method we attained 92.68% sensitivity and 64.71% specificity (AUC 0.798, p=0.0001). CONCLUSIONS Bradeion/SEPT4 transcript levels are significantly increased in patients with transitional cell bladder cancer compared to healthy controls. Our preliminary study supports the possible usefulness of Bradeion as a urinary marker of urothelial disease.
Collapse
Affiliation(s)
- Luca Bongiovanni
- Department of Urology, Catholic University of the Sacred Heart, Policlinico Agostino Gemelli, Rome, Italy.
| | | | | | | | | | | | | |
Collapse
|
9
|
Liu M, Shen S, Chen F, Yu W, Yu L. Linking the septin expression with carcinogenesis. Mol Biol Rep 2010; 37:3601-8. [PMID: 20195767 DOI: 10.1007/s11033-010-0009-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2010] [Accepted: 02/15/2010] [Indexed: 12/30/2022]
Abstract
The septin is a conserved GTP binding protein family which is involved in multiple cellular processes. Many evidences have indicated that some septins were abnormally expressed in certain kinds of tumors and the altered expressions were related to the process of carcinogenesis. To better understand the relationship between septins and cancer, we compared the expression of 14 human septin family members in 35 kinds of tumor types with their normal counterparts using the publicly available ONCOMINE microarray database. We found altered expression of most septin members in many kinds of tumors. Significantly, SEPT2, SEPT8, SEPT9, SEPT11 were consistently up-regulated, and SEPT4, SEPT10 were down-regulated in most cancer types investigated. Furthermore, the abnormal expressions were also in accordance with the tumor malignancies or prognosis of corresponding cancer patients. These findings have contributed to the view that septins may belong to a kind of cancer critical genes. More septins might act as potential oncogenes or tumor suppressor genes in cancer development.
Collapse
Affiliation(s)
- Ming Liu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, 220 Handan Road, Shanghai, 200433, People's Republic of China
| | | | | | | | | |
Collapse
|
10
|
Peterson EA, Petty EM. Conquering the complex world of human septins: implications for health and disease. Clin Genet 2010; 77:511-24. [PMID: 20236126 DOI: 10.1111/j.1399-0004.2010.01392.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Septins are highly conserved filamentous proteins first characterized in budding yeast and subsequently identified in must eukaryotes. Septins can bind and hydrolyze GTP, which is intrinsically related to their formation of septin hexamers and functional protein interactions. The human septin family is composed of 14 loci, SEPT1-SEPT14, which encode dozens of different septin proteins. Their central GTPase and polybasic domain regions are highly conserved but they diverge in their N-terminus and/or C-terminus. The mechanism by which the different isoforms are generated is not yet well understood, but one can hypothesize that the use of different promoters and/or alternative splicing could give rise to these variants. Septins perform diverse cellular functions according to tissue expression and their interacting partners. Functions identified to date include cell division, chromosome segregation, protein scaffolding, cellular polarity, motility, membrane dynamics, vesicle trafficking, exocytosis, apoptosis, and DNA damage response. Their expression is tightly regulated to maintain proper filament assembly and normal cellular functions. Alterations of these proteins, by mutation or expression changes, have been associated with a variety of cancers and neurological diseases. The association of septins with cancer results from alterations of expression in solid tumors or translocations in leukemias [mixed lineage leukemia (MLL)]. Expression changes in septins have also been associated with neurological conditions such as Alzheimer's and Parkinson's disease, as well as retinopathies, hepatitis C, spermatogenesis and Listeria infection. Pathogenic mutations of SEPT9 were identified in the autosomal dominant neurological disorder hereditary neuralgic amyotrophy (HNA). Human septin research over the past decade has established their importance in cell biology and human disease. Further functional characterization of septins is crucial to our understanding of their possible diagnostic, prognostic, and therapeutic applications.
Collapse
Affiliation(s)
- E A Peterson
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
| | | |
Collapse
|
11
|
Mukherjee SP, Davoren M, Byrne HJ. In vitro mammalian cytotoxicological study of PAMAM dendrimers – Towards quantitative structure activity relationships. Toxicol In Vitro 2010; 24:169-77. [DOI: 10.1016/j.tiv.2009.09.014] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Revised: 09/15/2009] [Accepted: 09/17/2009] [Indexed: 01/01/2023]
|
12
|
[Research progresses on septin family]. YI CHUAN = HEREDITAS 2008; 30:1097-107. [PMID: 18779165 DOI: 10.3724/sp.j.1005.2008.01097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The septins are a family of proteins that are broadly distributed in almost all of eukaryotes except plants. septin was first identified in yeast as a protein that played a role in cytokinesis. With the recent advances in the field, the functions of these proteins become diverse in many organisms. In particular, the number of known mammalian septin family members has increased dramatically. They are now known to have many cellular roles such as cytokinesis, polarity determination, vesicle trafficking and membrane dynamics. Recently, more and more data suggest that some septin family members participate in the pathogenesis of different diseases including neoplasia, neurodegeneration and infections. These make the research of septins a hallmark in cell biology and pathology. In this review, we will summarize the major research progresses about septins in their classification, structure, biological function and the relationship with human diseases.
Collapse
|
13
|
Garcia W, Rodrigues NC, de Oliveira Neto M, de Araújo APU, Polikarpov I, Tanaka M, Tanaka T, Garratt RC. The stability and aggregation properties of the GTPase domain from human SEPT4. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2008; 1784:1720-7. [PMID: 18617022 DOI: 10.1016/j.bbapap.2008.06.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 03/21/2008] [Revised: 06/05/2008] [Accepted: 06/07/2008] [Indexed: 10/22/2022]
Abstract
The septins are a family of conserved proteins involved in cytokinesis and cortical organization. An increasing amount of data implicates different septins in diverse pathological conditions including neurodegenerative disorders, neoplasia and infections. Human SEPT4 is a member of this family and its tissue-specific ectopic expression profile in colorectal and urologic cancer makes it a useful diagnostic biomarker. Thermal unfolding of the GTPase domain of SEPT4 (SEPT4-G) revealed an unfolding intermediate which rapidly aggregates into amyloid-like fibers under physiological conditions. In this study, we examined the effects of protein concentration, pH and metals ions on the aggregation process of recombinant SEPT4-G using a series of biophysical techniques, which were also employed to study chemical unfolding and stability. Divalent metal ions caused significant acceleration to the rate of SEPT4-G aggregation. Urea induced unfolding was shown to proceed via the formation of a partially unfolded intermediate state which unfolds further at higher urea concentrations. The intermediate is a compact dimer which is unable to bind GTP. At 1 M urea concentration, the intermediate state was plagued by irreversible aggregation at temperatures above 30 degrees C. However, higher urea concentration resulted in a marked decay of the aggregation, indicating that the partially folded structures may be necessary for the formation of these aggregates. The results presented here are consistent with the recently determined crystal structure of human septins and shed light on the aggregation properties of SEPT4 pertinent to its involvement in neurodegenerative disease.
Collapse
Affiliation(s)
- Wanius Garcia
- Centro de Biotecnologia Molecular e Estrutural (CBME), Instituto de Física de São Carlos (IFSC), Universidade de São Paulo (USP), Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Lin CW, Tu PF, Hsiao NW, Chang CY, Wan L, Lin YT, Chang HW. Identification of a novel septin 4 protein binding to human herpesvirus 8 kaposin A protein using a phage display cDNA library. J Virol Methods 2007; 143:65-72. [PMID: 17383018 DOI: 10.1016/j.jviromet.2007.02.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2006] [Revised: 02/16/2007] [Accepted: 02/19/2007] [Indexed: 01/04/2023]
Abstract
Human herpesvirus 8 (HHV-8) is associated with the development of Kaposi's sarcoma and several other human malignancies. Kaposin A protein of HHV-8 has been demonstrated as inducing tumorigenic transformation, being responsible for nuclear receptor coactivators in the transforming activity. In this study, a kaposin A-interacting septin 4 variant that contained the unique GDR at the N-terminus and AAALE at the C-terminus was identified using affinity selection of a phage display library. Co-immunoprecipitation and confocal imaging revealed in vitro binding specificity and in vivo co-localization of HHV-8 kaposin A protein to the septin 4 variant. The kaposin A-interacting septin 4 variant induced cell rounding up, activated caspase-3, and up-regulated transcriptional factor NF-kappaB. By contrast, kaposin A protein showed an antagonistic effect on the biological functions of the septin 4 variant. Therefore, the interaction of kaposin A protein and the septin 4 variant was suggested as playing a possible role in the development of HHV-8-associated malignancies. This study provides insights into the mechanism of the kaposin A protein pathology, in which the interactions of kaposin A protein with cellular proteins might allow alteration of fundamental cellular processes.
Collapse
Affiliation(s)
- Cheng-Wen Lin
- Department of Medical Laboratory Science and Biotechnology, China Medical University, No. 91, Hsueh-Shih Road, Taichung 404, Taiwan.
| | | | | | | | | | | | | |
Collapse
|
15
|
Bläser S, Röseler S, Rempp H, Bartsch I, Bauer H, Lieber M, Lessmann E, Weingarten L, Busse A, Huber M, Zieger B. Human endothelial cell septins: SEPT11 is an interaction partner of SEPT5. J Pathol 2006; 210:103-10. [PMID: 16767699 DOI: 10.1002/path.2013] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The septin SEPT11 is a novel member of the highly conserved septin family. Septins are cytoskeletal GTPases, which form heteropolymeric complexes. They are involved in cytokinesis and other cellular processes, such as vesicle trafficking and exocytosis. SEPT11 has strong homology to SEPT8. Previously, we identified the interaction of SEPT5 and SEPT8. Using the yeast two-hybrid system, we now demonstrate that SEPT11 partners with SEPT5. The molecular interaction of SEPT11 with SEPT5 was verified by coprecipitation of SEPT5 and SEPT11 from lysates of the human T-cell leukaemia cell line JURKAT and by fluorescence resonance energy transfer. The interaction between SEPT5 and SEPT11 requires the GTP-binding domain and the C-terminal extension. Western analysis in various mouse and human tissues revealed that expression of SEPT11 is restricted to the same tissues as those expressing SEPT5, suggesting that SEPT11 and SEPT5 are components of a cell-specific septin complex. SEPT5, which is expressed in human umbilical vein endothelial cells (HUVECs), has been reported to play an important role in exocytosis. We now report that HUVECs also express SEPT11. Given the interactivity between SEPT5 and SEPT11 as shown above and their coexpression in HUVECs, it may be that a complex formed by these two proteins is involved in the exocytosis mechanism in HUVECs.
Collapse
Affiliation(s)
- S Bläser
- Department of Paediatrics and Adolescent Medicine, University Hospital Freiburg, Mathildenstrasse 1, D-79106 Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Hillebrand S, Garcia W, Delmar Cantú M, de Araújo APU, Tanaka M, Tanaka T, Garratt RC, Carrilho E. In vitro monitoring of GTPase activity and enzyme kinetics studies using capillary electrophoresis. Anal Bioanal Chem 2005; 383:92-7. [PMID: 16041603 DOI: 10.1007/s00216-005-3375-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2005] [Revised: 05/21/2005] [Accepted: 06/01/2005] [Indexed: 11/25/2022]
Abstract
A capillary electrophoresis (CE)-based method for the in vitro detection and monitoring of nucleotide-triphosphatase activity is described. This robust and reproducible method was used to investigate GTPase activity of a recombinant protein construct containing the catalytic domain of Human SEPT4/Bradeion beta (GST-rDGTPase). This example application demonstrates that the CE technique can replace classical radioactive methods for GTPase activity assays and may be used as a routine analytical tool. Enzyme kinetics of GST-rDGTPase was studied and yielded the following kinetic parameters: v(max) = 1.7 microM min(-1) +/- 0.1, Km = 1.0 mM +/- 0.3, and apKcat = 9 x 10(-3) s(-1). In addition the effect of co-factors such as Mg2+ and Mn2+ on the catalytic activity was investigated. The described analytical method was also shown to be useful to analyze diphosphated and triphosphated forms of other nucleotides.
Collapse
Affiliation(s)
- Sandro Hillebrand
- Centro de Biotecnologia Molecular e Estrutural, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, SP, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Septins are an evolutionarily conserved family of genes that encode a P loop-based GTP-binding domain flanked by a polybasic domain and (usually) a coiled-coil region. They have roles in cytokinesis, vesicle trafficking, polarity determination, and can form membrane diffusion barriers, as well as in microtubule and actin dynamics. Septins can form hetero-oligomeric complexes and possibly function as dynamic protein scaffolds. Recently, it has been shown that there are at least 13 human septin genes that exhibit extensive alternate splicing. There are complex patterns of human septin gene expression and recently it has been found that alterations in septin expression are seen in human diseases including neoplasia. This review summarises the essential properties of septins and outlines the accumulating evidence for their involvement in human neoplasia. Septins may belong to the class of cancer critical genes where alteration in expression profile (including alterations in the spectrum of transcripts expressed) may underpin their role in neoplasia as opposed to specific mutational events.
Collapse
Affiliation(s)
- S E H Russell
- Centre for Cancer Research & Cell Biology, Queen's University Belfast, University Floor, Tower Block, Belfast City Hospital, Belfast BT9 7AB, UK
| | - P A Hall
- Centre for Cancer Research & Cell Biology, Queen's University Belfast, University Floor, Tower Block, Belfast City Hospital, Belfast BT9 7AB, UK
- Centre for Cancer Research & Cell Biology, Queen's University Belfast, University Floor, Tower Block, Belfast City Hospital, Belfast BT9 7AB, UK. E-mail:
| |
Collapse
|
18
|
Hall PA, Jung K, Hillan KJ, Russell SEH. Expression profiling the human septin gene family. J Pathol 2005; 206:269-78. [PMID: 15915442 DOI: 10.1002/path.1789] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The septins are an evolutionarily conserved family of GTP-binding proteins involved in diverse processes including vesicle trafficking, apoptosis, remodelling of the cytoskeleton, infection, neurodegeneration, and neoplasia. The present paper reports a comprehensive study of septin gene expression by DNA microarray methods in 10 360 samples of normal, diseased, and tumour tissues. A novel septin, SEPT13, has been identified and is shown to be related to SEPT7. It is shown that SEPT13 and the other known human septins are expressed in all tissue types but some show high expression in lymphoid (SEPT1, 6, 9, and 12) or brain tissues (SEPT2, 3, 4, 5, 7, 8, and 11). For a given septin, some isoforms are highly expressed in the brain and others are not. For example, SEPT8_v2 and v1, 1* and 3 are highly expressed in the brain and cluster with SEPT2, 3, 4, 5, 7, and 11. However, a probe set specific for SEPT8_v1 with low brain expression clusters away from this set. Similarly, SEPT4 has lymphoid and non-lymphoid forms; SEPT2 has lymphoid and central nervous system (CNS) forms; and SEPT6 and SEPT9 are elevated in lymphoid tissues but both have forms that cluster away from the lymphoid forms. Perturbation of septin expression was widespread in disease and tumours of the various tissues examined, particularly for conditions of the CNS, where alterations in all 13 septin genes were identified. This analysis provides a comprehensive catalogue of the septin family in health and disease. It is a key step in understanding the role of septins in physiological and pathological states and provides insight into the complexity of septin biology.
Collapse
Affiliation(s)
- Peter A Hall
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, University Floor, Tower Block, Belfast City Hospital, Belfast BT9 7AB, UK.
| | | | | | | |
Collapse
|
19
|
Ying-Tao Z, Yi-Ping G, Lu-Sheng S, Yi-Li W. Proteomic analysis of differentially expressed proteins between metastatic and non-metastatic human colorectal carcinoma cell lines. Eur J Gastroenterol Hepatol 2005; 17:725-32. [PMID: 15947549 DOI: 10.1097/00042737-200507000-00006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVES To explore the expressions of metastasis-related proteins between metastatic LS174T and non-metastatic SW480 human colorectal carcinoma cell lines. METHODS Two-dimensional gel electrophoresis (2-DE) was applied to separate the total proteins of cells. The silver-stained gels were analysed by 2-DE software Image Master 2D Elite. Selected differential protein spots were identified with peptide mass fingerprinting based on matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and database searching. RESULTS The protein endothelial cell growth factor 1 (platelet-derived), rhotekin protein (RTKN), septin 1, cyclin-dependent kinase 1, sialic acid binding Ig-like lectin 11, tyrosinase-related protein-2, translin-like protein, and DNA directed RNA polymerase II polypeptide J-related gene isoform 2 appeared in metastatic but were not detected in non-metastatic cell lines, whereas integrin-linked kinase-associated protein phosphatase 2C isoform 2, MHC class I promoter binding protein, protein phosphatase 2A regulatory subunit B' (PR 53), carboxypeptidase A5, paired box transcription factor, zinc finger protein 79, and apolipoprotein B-48 were detected in non-metastatic but were absent in metastatic cell lines. In addition, cyclin fold protein 1 variant A and pre-B-cell leukemia transcription factor 1 were lowly expressed in the non-metastatic cell line and were significantly upregulated in the metastatic cell line. These identified proteins were involved in cell growth, motility, invasion, adhesion, apoptosis and tumour immunity, which is associated with distinct aspects of tumour metastasis. CONCLUSIONS These data are valuable for the identification of differentially expressed proteins involved in human colorectal carcinoma carcinogenesis and metastasis.
Collapse
Affiliation(s)
- Zhang Ying-Tao
- The Key Laboratory of Biomedical Information Engineering of the Education Ministry, Institute for Cancer Research, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710061, P.R. China
| | | | | | | |
Collapse
|
20
|
Ihara M, Kinoshita A, Yamada S, Tanaka H, Tanigaki A, Kitano A, Goto M, Okubo K, Nishiyama H, Ogawa O, Takahashi C, Itohara S, Nishimune Y, Noda M, Kinoshita M. Cortical organization by the septin cytoskeleton is essential for structural and mechanical integrity of mammalian spermatozoa. Dev Cell 2005; 8:343-52. [PMID: 15737930 DOI: 10.1016/j.devcel.2004.12.005] [Citation(s) in RCA: 213] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2004] [Revised: 09/24/2004] [Accepted: 10/14/2004] [Indexed: 12/30/2022]
Abstract
Septins are polymerizing GTP binding proteins required for cortical organization during cytokinesis and other cellular processes. A mammalian septin gene Sept4 is expressed mainly in postmitotic neural cells and postmeiotic male germ cells. In mouse and human spermatozoa, SEPT4 and other septins are found in the annulus, a cortical ring which separates the middle and principal pieces. Sept4-/- male mice are sterile due to defective morphology and motility of the sperm flagellum. In Sept4 null spermatozoa, the annulus is replaced by a fragile segment lacking cortical material, beneath which kinesin-mediated intraflagellar transport stalls. The sterility is rescued by injection of sperm into oocytes, demonstrating that each Sept4 null spermatozoon carries an intact haploid genome. The annulus/septin ring is also disorganized in spermatozoa from a subset of human patients with asthenospermia syndrome. Thus, cortical organization based on circular assembly of the septin cytoskeleton is essential for the structural and mechanical integrity of mammalian spermatozoa.
Collapse
Affiliation(s)
- Masafumi Ihara
- Biochemistry and Cell Biology Unit, HMRO, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Septins are an evolutionarily conserved group of GTP-binding and filament-forming proteins that belong to the large superclass of P-loop GTPases. While originally discovered in yeast as cell division cycle mutants with cytokinesis defects, they are now known to have diverse cellular roles which include polarity determination, cytoskeletal reorganization, membrane dynamics, vesicle trafficking, and exocytosis. Septin proteins form homo- and hetero-oligomeric polymers which can assemble into higher-order filaments. They are also known to interact with components of the cytoskeleton, ie actin and tubulin. The precise role of GTP binding is not clear but a current model suggests that it is associated with conformational changes which alter binding to other proteins. There are at least 12 human septin genes, and although information on expression patterns is limited, most undergo complex alternative splicing with some degree of tissue specificity. Nevertheless, an increasing body of data implicates the septin family in the pathogenesis of diverse disease states including neoplasia, neurodegenerative conditions, and infections. Here the known biochemical properties of mammalian septins are reviewed in the light of the data from yeast and other model organisms. The data implicating septins in human disease are considered and a model linking these data is proposed. It is posited that septins can act as regulatable scaffolds where the stoichiometry of septin associations, modifications, GTP status, and the interactions with other proteins allow the regulation of key cellular processes including polarity determination. Derangements of such septin scaffolds thus explain the role of septins in disease states.
Collapse
Affiliation(s)
- Peter A Hall
- Centre for Cancer Research & Cell Biology, Queens University Belfast, U Floor, Belfast City Hospital, Belfast BT9 7AB, UK
| | | |
Collapse
|
22
|
Ciafrè SA, Niola F, Wannenes F, Farace MG. An anti-VEGF ribozyme embedded within the adenoviral VAI sequence inhibits glioblastoma cell angiogenic potential in vitro. J Vasc Res 2004; 41:220-8. [PMID: 15084786 DOI: 10.1159/000077777] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2003] [Accepted: 03/01/2004] [Indexed: 12/20/2022] Open
Abstract
Vascular endothelial growth factor (VEGF) plays an important role in tumor angiogenesis, where it functions as one of the major angiogenic factors sustaining growth and draining catabolites. In this study, we developed an anti-VEGF ribozyme targeted to the 5' part of human VEGF mRNA. We endowed this ribozyme with an additional feature expected to improve its activity in vivo, by cloning it into a VAI transcriptional cassette. VAI is originally part of the adenovirus genome, and is characterized by high transcription rates, good stability due to its strong secondary structure and cytoplasmic localization. Transfection of U87 human glioblastoma cells with plasmid vectors encoding for this ribozyme resulted in a strong (-56%) reduction of VEGF secreted in the extracellular medium, indicating a good biological activity of the ribozyme. Moreover, this reduction in VEGF secretion had the important functional consequence of drastically diminishing the formation of tube-like structures of human umbilical vascular endothelial cells in a Matrigel in vitro angiogenesis assay. In conclusion, our VAI-embedded anti-VEGF ribozyme is a good inhibitor of angiogenesis in vitro, in a glioblastoma cell context. Thus, it may represent a useful tool for future applications in vivo, for antiangiogenic gene therapy of glioblastoma and of highly vascularized tumors.
Collapse
Affiliation(s)
- Silvia Anna Ciafrè
- Department of Experimental Medicine and Biochemical Sciences, University of Rome Tor Vergata, Rome, Italy.
| | | | | | | |
Collapse
|
23
|
Kong XJ, Song YH, Lin JS, Huang HJ, Wang NX, Liu NZ, Li B, Jin YX. Maxizyme-mediated specific inhibition on mutant-type p53 in vitro. World J Gastroenterol 2003; 9:1571-5. [PMID: 12854166 PMCID: PMC4615507 DOI: 10.3748/wjg.v9.i7.1571] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To evaluate the specific inhibition of maxizyme directing against mutant-type p53 gene (mtp53) at codon 249 in exon 7 (AGG→AGT) in vitro.
METHODS: Two different monomers of anti-mtp53 maxizyme (maxizyme right MzR, maxizyme left MzL) and control mutant maxizyme (G5→A5) were designed by computer and cloned into vector pBSKU6 (pBSKU6MzR, pBSKU6MzL). After being sequenced, the restrictive endonuclease site in pBSKU6MzR was changed by PCR and then U6MzR was inserted into pBSKU6MzL, the recombinant vector was named pU6Mz and pU6asMz (mutant maxizyme). Mtp53 and wild-type p53 (wtp53) gene fragments were cloned into pGEM-T vector under the T7 promoter control. The 32p-labeled mtp53 transcript was the target mRNA. Cold maxizyme transcripts were incubated with 32p-labeled target RNA in vitro and radioautographed after denaturing polyacrylamide gel electrophoresis.
RESULTS: In cell-free systems, pU6Mz showed a specific cleavage activity against target mRNA at 37 °C and 25 mM MgCL2. The cleavage efficiency of pU6Mz was 42%, while pU6asMz had no inhibitory effect. Wtp53 was not cleaved by pU6Mz either.
CONCLUSION: pU6Mz had a specific catalytic activity against mtp53 in cell-free system. These lay a good fundation for studying the effects of anti-mtp53 maxizyme in HCC cell lines. The results suggest that maxizyme may be a promising alternative approach for treating hepatocellular carcinoma containing mtp53.
Collapse
Affiliation(s)
- Xin-Juan Kong
- Institute of Liver Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Puerta-Fernández E, Romero-López C, Barroso-delJesus A, Berzal-Herranz A. Ribozymes: recent advances in the development of RNA tools. FEMS Microbiol Rev 2003; 27:75-97. [PMID: 12697343 DOI: 10.1016/s0168-6445(03)00020-2] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The discovery 20 years ago that some RNA molecules, called ribozymes, are able to catalyze chemical reactions was a breakthrough in biology. Over the last two decades numerous natural RNA motifs endowed with catalytic activity have been described. They all fit within a few well-defined types that respond to a specific RNA structure. The prototype catalytic domain of each one has been engineered to generate trans-acting ribozymes that catalyze the site-specific cleavage of other RNA molecules. On the 20th anniversary of ribozyme discovery we briefly summarize the main features of the different natural catalytic RNAs. We also describe progress towards developing strategies to ensure an efficient ribozyme-based technology, dedicating special attention to the ones aimed to achieve a new generation of therapeutic agents.
Collapse
Affiliation(s)
- Elena Puerta-Fernández
- Instituto de Parasitología y Biomedicina López-Neyra, CSIC, Ventanilla 11, 18001 Granada, Spain
| | | | | | | |
Collapse
|