1
|
Feng Y, Liu G, Li H, Cheng L. The landscape of cell lineage tracing. SCIENCE CHINA. LIFE SCIENCES 2025:10.1007/s11427-024-2751-6. [PMID: 40035969 DOI: 10.1007/s11427-024-2751-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/30/2024] [Indexed: 03/06/2025]
Abstract
Cell fate changes play a crucial role in the processes of natural development, disease progression, and the efficacy of therapeutic interventions. The definition of the various types of cell fate changes, including cell expansion, differentiation, transdifferentiation, dedifferentiation, reprogramming, and state transitions, represents a complex and evolving field of research known as cell lineage tracing. This review will systematically introduce the research history and progress in this field, which can be broadly divided into two parts: prospective tracing and retrospective tracing. The initial section encompasses an array of methodologies pertaining to isotope labeling, transient fluorescent tracers, non-fluorescent transient tracers, non-fluorescent genetic markers, fluorescent protein, genetic marker delivery, genetic recombination, exogenous DNA barcodes, CRISPR-Cas9 mediated DNA barcodes, and base editor-mediated DNA barcodes. The second part of the review covers genetic mosaicism, genomic DNA alteration, TCR/BCR, DNA methylation, and mitochondrial DNA mutation. In the final section, we will address the principal challenges and prospective avenues of enquiry in the field of cell lineage tracing, with a particular focus on the sequencing techniques and mathematical models pertinent to single-cell genetic lineage tracing, and the value of pursuing a more comprehensive investigation at both the spatial and temporal levels in the study of cell lineage tracing.
Collapse
Affiliation(s)
- Ye Feng
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Tongji University School of Medicine, Shanghai, 201619, China.
| | - Guang Liu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200023, China.
| | - Haiqing Li
- Department of Cardiac Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Lin Cheng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
2
|
Day IL, Tamboline M, Lipshutz GS, Xu S. Recent developments in translational imaging of in vivo gene therapy outcomes. Mol Ther 2024:S1525-0016(24)00849-9. [PMID: 39741403 DOI: 10.1016/j.ymthe.2024.12.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/18/2024] [Accepted: 12/27/2024] [Indexed: 01/03/2025] Open
Abstract
Gene therapy achieves therapeutic benefits by delivering genetic materials, packaged within a delivery vehicle, to target cells with defective genes. This approach has shown promise in treating various conditions, including cancer, metabolic disorders, and tissue-degenerative diseases. Over the past 5 years, molecular imaging has increasingly supported gene therapy development in both preclinical and clinical studies. High-quality images from positron emission tomography (PET), single-photon emission computed tomography (SPECT), magnetic resonance imaging (MRI), and computed tomography (CT) enable quantitative and reliable monitoring of gene therapy. Most reported studies have applied imaging biomarkers to non-invasively evaluate the outcomes of gene therapy. This review aims to inform researchers in molecular imaging and gene therapy about the integration of these two disciplines. We highlight recent developments in using imaging biomarkers to monitor the outcome of in vivo gene therapy, where the therapeutic delivery vehicle is administered systemically. In addition, we discuss prospects for further incorporating imaging biomarkers to support the development and application of gene therapy.
Collapse
Affiliation(s)
- Isabel L Day
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Crump Institute for Molecular Imaging, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Mikayla Tamboline
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Crump Institute for Molecular Imaging, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Gerald S Lipshutz
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Intellectual and Developmental Disabilities Research Center, University of California, Los Angeles, Los Angeles, CA 90095, USA; Semel Institute for Neuroscience, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Shili Xu
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Crump Institute for Molecular Imaging, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
3
|
Banerjee P, Roy S, Chakraborty S. Recent advancement of imaging strategies of the lymphatic system: Answer to the decades old questions. Microcirculation 2022; 29:e12780. [PMID: 35972391 DOI: 10.1111/micc.12780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 07/22/2022] [Accepted: 08/10/2022] [Indexed: 12/30/2022]
Abstract
The role of the lymphatic system in maintaining tissue homeostasis and a number of different pathophysiological conditions has been well established. The complex and delicate structure of the lymphatics along with the limitations of conventional imaging techniques make lymphatic imaging particularly difficult. Thus, in-depth high-resolution imaging of lymphatic system is key to understanding the progression of lymphatic diseases and cancer metastases and would greatly benefit clinical decisions. In recent years, the advancement of imaging technologies and development of new tracers suitable for clinical applications has enabled imaging of the lymphatic system in both clinical and pre-clinical settings. In this current review, we have highlighted the advantages and disadvantages of different modern techniques such as near infra-red spectroscopy (NIRS), positron emission tomography (PET), computed tomography (CT), magnetic resonance imaging (MRI) and fluorescence optical imaging, that has significantly impacted research in this field and has led to in-depth insights into progression of pathological states. This review also highlights the use of current imaging technologies, and tracers specific for immune cell markers to identify and track the immune cells in the lymphatic system that would help understand disease progression and remission in immune therapy regimen.
Collapse
Affiliation(s)
- Priyanka Banerjee
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas, USA
| | - Sukanya Roy
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas, USA
| | - Sanjukta Chakraborty
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas, USA
| |
Collapse
|
4
|
Fuchigami T, Haywood T, Gowrishankar G, Anders D, Namavari M, Wardak M, Gambhir SS. Synthesis and Characterization of 9-(4-[ 18F]Fluoro-3-(hydroxymethyl)butyl)-2-(phenylthio)-6-oxopurine as a Novel PET Agent for Mutant Herpes Simplex Virus Type 1 Thymidine Kinase Reporter Gene Imaging. Mol Imaging Biol 2021; 22:1151-1160. [PMID: 32691392 DOI: 10.1007/s11307-020-01517-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE [18F]FHBG has been used as a positron emission tomography (PET) imaging tracer for the monitoring of herpes simplex virus type 1 thymidine kinase (HSV1-tk), a reporter gene for cell and gene therapy in humans. However, this tracer shows inadequate blood-brain barrier (BBB) penetration and, therefore, would be limited for accurate quantification of reporter gene expression in the brain. Here, we report the synthesis and evaluation of 9-(4-[18F]fluoro-3-(hydroxymethyl)butyl)-2(phenylthio)-6-oxopurine ([18F]FHBT) as a new PET tracer for imaging reporter gene expression of HSV1-tk and its mutant HSV1-sr39tk, with the aim of improved BBB penetration. PROCEDURES [18F]FHBT was prepared by using a tosylate precursor and [18F]KF. The cellular uptake of [18F]FHBT was performed in HSV1-sr39tk-positive (+) or HSV1-sr39tk-negative (-) MDA-MB-231 breast cancer cells. The specificity of [18F]FHBT to assess HSV1-sr39tk expression was evaluated by in vitro blocking studies using 1 mM of ganciclovir (GCV). Penetration of [18F]FHBT and [18F]FHBG across the BBB was assessed by dynamic PET imaging studies in normal mice. RESULTS The tosylate precursor reacted with [18F]KF using Kryptofix2.2.2 followed by deprotection to give [18F]FHBT in 10 % radiochemical yield (decay-corrected). The uptake of [18F]FHBT in HSV1-sr39tk (+) cells was significantly higher than that of HSV1-sr39tk (-) cells. In the presence of GCV (1 mM), the uptake of [18F]FHBT was significantly decreased, indicating that [18F]FHBT serves as a selective substrate of HSV1-sr39TK. PET images and time-activity curves of [18F]FHBT in the brain regions showed similar initial brain uptakes (~ 12.75 min) as [18F]FHBG (P > 0.855). Slower washout of [18F]FHBT was observed at the later time points (17.75 - 57.75 min, P > 0.207). CONCLUSIONS Although [18F]FHBT showed no statistically significant improvement of BBB permeability compared with [18F]FHBG, we have demonstrated that the 2-(phenylthio)-6-oxopurine backbone can serve as a novel scaffold for developing HSV1-tk/HSV1-sr39tk reporter gene imaging agents for additional research in the future.
Collapse
Affiliation(s)
- Takeshi Fuchigami
- Department of Hygienic Chemistry, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan.,Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, 318 Campus Drive, Room E150A, Stanford, CA, 94305, USA
| | - Tom Haywood
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, 318 Campus Drive, Room E150A, Stanford, CA, 94305, USA
| | - Gayatri Gowrishankar
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, 318 Campus Drive, Room E150A, Stanford, CA, 94305, USA
| | - David Anders
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, 318 Campus Drive, Room E150A, Stanford, CA, 94305, USA
| | - Mohammad Namavari
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, 318 Campus Drive, Room E150A, Stanford, CA, 94305, USA
| | - Mirwais Wardak
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, 318 Campus Drive, Room E150A, Stanford, CA, 94305, USA
| | - Sanjiv Sam Gambhir
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, 318 Campus Drive, Room E150A, Stanford, CA, 94305, USA. .,Department of Bioengineering and Materials Science & Engineering, Bio-X Program, Stanford University, 318 Campus Dr., Room E150 Stanford, Stanford, CA, 94305, USA.
| |
Collapse
|
5
|
Jacobs AH, Schelhaas S, Viel T, Waerzeggers Y, Winkeler A, Zinnhardt B, Gelovani J. Imaging of Gene and Cell-Based Therapies: Basis and Clinical Trials. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00060-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
6
|
Molecular Imaging of Gene Therapy. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00064-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
7
|
Liu SH, Hong Y, Markowiak S, Sanchez R, Creeden J, Nemunaitis J, Kalinoski A, Willey J, Erhardt P, Lee J, van Dam M, Brunicardi FC. BIRC5 is a target for molecular imaging and detection of human pancreatic cancer. Cancer Lett 2019; 457:10-19. [PMID: 31059751 DOI: 10.1016/j.canlet.2019.04.036] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/25/2019] [Accepted: 04/29/2019] [Indexed: 12/12/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a major cause of cancer mortality with a dismal overall survival rate and an urgent need for detection of minute tumors. Current diagnostic modalities have high sensitivity and specificity for larger tumors, but not for minute PDAC. In this study, we test the feasibility of a precision diagnostic platform for detecting and localizing minute human PDAC in mice. This platform includes: 1) defining BIRC5 as an early PDAC-upregulated gene and utilizing an enhanced BIRC5 super-promoter to drive expression of dual Gaussia luciferase (GLuc) and sr39 thymidine kinase (sr39TK) reporter genes exponentially and specifically in PDAC; 2) utilizing a genetically-engineered AAV2RGD to ensure targeted delivery of GLuc and sr39TK specifically to PDAC; 3) using serologic GLuc and sr39TK microPET/CT imaging to detect and localize minute human PDAC in mice. The study demonstrates feasibility of a precision diagnostic platform using an integrated technology through a multiple-stage amplification strategy of dual reporter genes to enhance the specificity and sensitivity of detection and localization of minute PDAC tumors and currently undetectable disease.
Collapse
Affiliation(s)
- Shi-He Liu
- Department of Surgery, University of Toledo College of Medicine and Life Sciences, Toledo, OH, 43614, USA; Department of Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, 43614, USA
| | - Yeahwa Hong
- Department of Surgery, University of Toledo College of Medicine and Life Sciences, Toledo, OH, 43614, USA
| | - Stephen Markowiak
- Department of Surgery, University of Toledo College of Medicine and Life Sciences, Toledo, OH, 43614, USA
| | - Robbi Sanchez
- Department of Surgery, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Justin Creeden
- Department of Surgery, University of Toledo College of Medicine and Life Sciences, Toledo, OH, 43614, USA; Department of Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, 43614, USA
| | - John Nemunaitis
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH, 43614, USA
| | - Andrea Kalinoski
- Department of Surgery, University of Toledo College of Medicine and Life Sciences, Toledo, OH, 43614, USA
| | - James Willey
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH, 43614, USA
| | - Paul Erhardt
- Department of Pharmacology-Medicinal/Biological Chemistry, University of Toledo College of Medicine and Life Sciences, Toledo, OH, 43614, USA
| | - Jason Lee
- Crump Institute for Molecular Imaging, University of California Los Angeles, Los Angeles, CA, 90095, USA; Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, 90095, USA; Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Michael van Dam
- Crump Institute for Molecular Imaging, University of California Los Angeles, Los Angeles, CA, 90095, USA; Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, 90095, USA; Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - F Charles Brunicardi
- Department of Surgery, University of Toledo College of Medicine and Life Sciences, Toledo, OH, 43614, USA; Department of Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, 43614, USA.
| |
Collapse
|
8
|
Heidari P, Kunawudhi A, Martinez-Quintanilla J, Szretter A, Shah K, Mahmood U. Somatostatin receptor type 2 as a radiotheranostic PET reporter gene for oncologic interventions. Theranostics 2018; 8:3380-3391. [PMID: 29930736 PMCID: PMC6010996 DOI: 10.7150/thno.24017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 04/08/2018] [Indexed: 01/01/2023] Open
Abstract
Reporter gene systems can serve as therapy targets. However, the therapeutic use of reporters has been limited by the challenges of transgene delivery to a majority of cancer cells. This study specifically assesses the efficacy of targeting human somatostatin receptor subtype 2 (hSSTR2) with peptide receptor radionuclide therapy (PRRT) when a small subpopulation of cells bears the transgene. Methods: The hSSTR2 transgene was delivered to A549 and Panc-1tumors using the lentiviral vector, LV-hSSTR2-IRES-GFP or murine mesenchymal stem cells (mMSC)s using a retroviral vector. SSTR2 expression was assessed using Western blot and correlated to GFP fluorescence and 68Ga-DOTATOC uptake. Wild type (WT), transduced (TD), and mixed population A549 or Panc-1 xenografts were implanted in nude mice. Separate groups with A549WT and Panc-1WT tumors received intratumoral injection of SSTR2-expressing mMSCs. Tumor-bearing mice were treated with 90Y-DOTATOC or saline and evaluated with 68Ga-DOTATOC PET before and after treatment. Results: Cell studies showed a strong correlation between 68Ga-DOTATOC uptake and SSTR2 expression in A549 (p < 0.004) and Panc-1 cells (p < 0.01). 68Ga-DOTATOC PET SUVmean was 8- and 5-fold higher in TD compared to WT A549 and Panc-1 tumors, respectively (p < 0.001). After 90Y-DOTATOC treatment, 100% TD and mixed population TD xenografts showed growth cessation while the WT xenografts did not. A549WT and Panc-1WT tumors with SSTR2-expressing mMSCs treated with 90Y-DOTATOC showed significantly lower tumor volumes compared to controls (p < 0.05). 68Ga-DOTATOC PET SUVmean of treated TD tumors monotonically declined and was significantly lower than that of non-treated xenografts. Conclusions: We showed that SSTR2 delivery to a small population of cells in tumor in conjunction with PRRT is effective in tumor growth cessation. The availability of various transgene delivery methods for hSSTR2 and radiotherpaeutic somatostatin analogs highlights the direct translational potential of this paradigm in the treatment of various cancers.
Collapse
|
9
|
Radiological evaluation of response to immunotherapy in brain tumors: Where are we now and where are we going? Crit Rev Oncol Hematol 2018; 126:135-144. [PMID: 29759556 DOI: 10.1016/j.critrevonc.2018.03.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 02/14/2018] [Accepted: 03/29/2018] [Indexed: 11/21/2022] Open
|
10
|
Keu KV, Witney TH, Yaghoubi S, Rosenberg J, Kurien A, Magnusson R, Williams J, Habte F, Wagner JR, Forman S, Brown C, Allen-Auerbach M, Czernin J, Tang W, Jensen MC, Badie B, Gambhir SS. Reporter gene imaging of targeted T cell immunotherapy in recurrent glioma. Sci Transl Med 2018; 9. [PMID: 28100832 DOI: 10.1126/scitranslmed.aag2196] [Citation(s) in RCA: 249] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 11/14/2016] [Indexed: 12/12/2022]
Abstract
High-grade gliomas are aggressive cancers that often become rapidly fatal. Immunotherapy using CD8+ cytotoxic T lymphocytes (CTLs), engineered to express both herpes simplex virus type 1 thymidine kinase (HSV1-TK) and interleukin-13 (IL-13) zetakine chimeric antigen receptor (CAR), is a treatment strategy with considerable potential. To optimize this and related immunotherapies, it would be helpful to monitor CTL viability and trafficking to glioma cells. We show that noninvasive positron emission tomography (PET) imaging with 9-[4-[18F]fluoro-3-(hydroxymethyl)butyl]guanine ([18F]FHBG) can track HSV1-tk reporter gene expression present in CAR-engineered CTLs. [18F]FHBG imaging was safe and enabled the longitudinal imaging of T cells stably transfected with a PET reporter gene in patients. Further optimization of this imaging approach for monitoring in vivo cell trafficking should greatly benefit various cell-based therapies for cancer.
Collapse
Affiliation(s)
- Khun Visith Keu
- Department of Radiology, Molecular Imaging Program, Stanford University, Palo Alto, CA, 94305, United States.,Division of Nuclear Medicine, Hôpital de la Cité-de-la-Santé de Laval, QC, H7M 3L9, Canada
| | - Timothy H Witney
- Department of Radiology, Molecular Imaging Program, Stanford University, Palo Alto, CA, 94305, United States.,Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, WC1E 6DD, UK
| | - Shahriar Yaghoubi
- Department of Radiology, Molecular Imaging Program, Stanford University, Palo Alto, CA, 94305, United States
| | - Jarrett Rosenberg
- Department of Radiology, Molecular Imaging Program, Stanford University, Palo Alto, CA, 94305, United States
| | - Anita Kurien
- Neurosurgery, City of Hope, Duarte, CA, 91010, United States
| | | | - John Williams
- Molecular & Medical Pharmacology, UCLA, Los Angeles, CA, 90095, United States
| | - Frezghi Habte
- Department of Radiology, Molecular Imaging Program, Stanford University, Palo Alto, CA, 94305, United States
| | - Jamie R Wagner
- Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, 91010, United States
| | - Stephen Forman
- Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, 91010, United States
| | - Christine Brown
- Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, 91010, United States
| | | | - Johannes Czernin
- Molecular & Medical Pharmacology, UCLA, Los Angeles, CA, 90095, United States
| | - Winson Tang
- Sangamo BioSciences Inc, Richmond, CA 94804, United States
| | - Michael C Jensen
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington, 98145, United States
| | - Behnam Badie
- Neurosurgery, City of Hope, Duarte, CA, 91010, United States
| | - Sanjiv S Gambhir
- Department of Radiology, Molecular Imaging Program, Stanford University, Palo Alto, CA, 94305, United States.,Department of Bioengineering, Department of Materials Science & Engineering, Bio-X, Stanford University, Palo Alto, CA, 94305, United States
| |
Collapse
|
11
|
Liu J, Barrio JR, Satyamurthy N. Efficient synthesis of 9-(4-[18F]fluoro-3-hydroxymethylbutyl)guanine ([18F]FHBG) and 9-[(3-[18F]fluoro-1-hydroxy-2-propoxy)methyl]guanine ([18F]FHPG). J Fluor Chem 2017. [DOI: 10.1016/j.jfluchem.2017.08.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Menezes ME, Das SK, Minn I, Emdad L, Wang XY, Sarkar D, Pomper MG, Fisher PB. Detecting Tumor Metastases: The Road to Therapy Starts Here. Adv Cancer Res 2016; 132:1-44. [PMID: 27613128 DOI: 10.1016/bs.acr.2016.07.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Metastasis is the complex process by which primary tumor cells migrate and establish secondary tumors in an adjacent or distant location in the body. Early detection of metastatic disease and effective therapeutic options for targeting these detected metastases remain impediments to effectively treating patients with advanced cancers. If metastatic lesions are identified early, patients might maximally benefit from effective early therapeutic interventions. Further, monitoring patients whose primary tumors are effectively treated for potential metastatic disease onset is also highly valuable. Finally, patients with metastatic disease can be monitored for efficacy of specific therapeutic interventions through effective metastatic detection techniques. Thus, being able to detect and visualize metastatic lesions is key and provides potential to greatly improve overall patient outcomes. In order to achieve these objectives, researchers have endeavored to mechanistically define the steps involved in the metastatic process as well as ways to effectively detect metastatic progression. We presently overview various preclinical and clinical in vitro and in vivo assays developed to more efficiently detect tumor metastases, which provides the foundation for developing more effective therapies for this invariably fatal component of the cancerous process.
Collapse
Affiliation(s)
- M E Menezes
- Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - S K Das
- Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - I Minn
- The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - L Emdad
- Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - X-Y Wang
- Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - D Sarkar
- Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - M G Pomper
- The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - P B Fisher
- Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| |
Collapse
|
13
|
Sanganeria P, Chandra S, Bahadur D, Khanna A. Effect of HSA coated iron oxide labeling on human umbilical cord derived mesenchymal stem cells. NANOTECHNOLOGY 2015; 26:125103. [PMID: 25744689 DOI: 10.1088/0957-4484/26/12/125103] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Human umbilical cord derived mesenchymal stem cells (hUC-MSCs) are known for self-renewal and differentiation into cells of various lineages like bone, cartilage and fat. They have been used in biomedical applications to treat degenerative disorders. However, to exploit the therapeutic potential of stem cells, there is a requirement of sensitive non-invasive imaging techniques which will offer the ability to track transplanted cells, bio-distribution, proliferation and differentiation. In this study, we have analyzed the efficacy of human serum albumin coated iron oxide nanoparticles (HSA-IONPs) on the differentiation of hUC-MSCs. The colloidal stability of the HSA-IONPs was tested over a long period of time (≥20 months) and the optimized concentration of HSA-IONPs for labeling the stem cells was 60 μg ml(-1). Detailed in vitro assays have been performed to ascertain the effect of the nanoparticles (NPs) on stem cells. Lactate dehydrogenase (LDH) assay showed minimum release of LDH depicting the least disruptions in cellular membrane. At the same time, mitochondrial impairment of the cells was also not observed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Flow cytometry analysis revealed lesser generation of reactive oxygen species in HSA-IONPs labeled hUC-MSCs in comparison to bare and commercial IONPs. Transmission electron microscopy showed endocytic engulfment of the NPs by the hUC-MSCs. During the process, the gross morphologies of the actin cytoskeleton were found to be intact as shown by immunofluorescence microscopy. Also, the engulfment of the HSA-IONPs did not show any detrimental effect on the differentiation potential of the stem cells into adipocytes, osteocytes and chondrocytes, thereby confirming that the inherent properties of stem cells were maintained.
Collapse
Affiliation(s)
- Purva Sanganeria
- Department of Biological Sciences, School of Science, NMIMS University, Vile Parle (West), Mumbai 400056, India
| | | | | | | |
Collapse
|
14
|
Penet MF, Chen Z, Li C, Winnard PT, Bhujwalla ZM. Prodrug enzymes and their applications in image-guided therapy of cancer: tracking prodrug enzymes to minimize collateral damage. Drug Deliv Transl Res 2015; 2:22-30. [PMID: 23646292 DOI: 10.1007/s13346-011-0052-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Many cytotoxic therapies are available to kill cancer cells. Unfortunately, these also inflict significant damage on normal cells. Identifying highly effective cancer treatments that have minimal or no side effects continues to be a major challenge. One of the strategies to minimize damage to normal tissue is to deliver an activating enzyme that localizes only in the tumor and converts a nontoxic prodrug to a cytotoxic agent locally in the tumor. Such strategies have been previously tested but with limited success due in large part to the uncertainty in the delivery and distribution of the enzyme. Imaging the delivery of the enzyme to optimize timing of the prodrug administration to achieve image-guided prodrug therapy would be of immense benefit for this strategy. Here, we have reviewed advances in the incorporation of image guidance in the applications of prodrug enzymes in cancer treatment. These advances demonstrate the feasibility of using clinically translatable imaging in these prodrug enzyme strategies.
Collapse
Affiliation(s)
- Marie-France Penet
- JHU ICMIC Program, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | |
Collapse
|
15
|
Park JH, Kim KI, Lee KC, Lee YJ, Lee TS, Chung WS, Lim SM, Kang JH. Assessment of α-fetoprotein targeted HSV1-tk expression in hepatocellular carcinoma with in vivo imaging. Cancer Biother Radiopharm 2014; 30:8-15. [PMID: 25545853 DOI: 10.1089/cbr.2014.1716] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Tumor-specific enhancer/promoter is applicable for targeting gene expression in tumors and helpful for tumor-targeting imaging and therapy. We aimed to acquire α-fetoprotein (AFP)-producing hepatocellular carcinoma (HCC) specific images using adenovirus containing HSV1-tk gene controlled by AFP enhancer/promoter and evaluate in vivo ganciclovir (GCV)-medicated therapeutic effects on AFP-targeted HSV1-tk expression with (18)F-FDG positron emission tomography (PET). Recombinant adenovirus expressing HSV1-tk under AFP enhancer/promoter was produced (AdAFP-TK) and the expression levels were evaluated by RT-PCR and (125)I-IVDU uptake. GCV-mediated HSV1-tk cytotoxicity was determined by MTT assay. After the mixture of AdAFP-fLuc and AdAFP-TK was administrated, bioluminescent images (BLIs) and (18)F-FHBG PET images were obtained in tumor-bearing mice. In vivo therapeutic effects of AdAFP-TK and GCV in the HuH-7 xenograft model were monitored by (18)F-FDG PET. When infected with AdAFP-TK, cell viability in HuH-7 was reduced, but those in HT-29 and SK-Hep-1 were not significantly decreased at any GCV concentration less than 100 μM. AFP-targeted fLuc and HSV1-tk expression were clearly visualized by BLI and (18)F-FHBG PET images in AFP-producing HCC, respectively. In vivo GCV-mediated tumor growth inhibition by AFP-targeted HSV1-tk expression was monitored by (18)F-FDG PET. Recombinant AdAFP-TK could be applied for AFP-targeted HCC gene therapy and imaging in AFP-producing HCC.
Collapse
Affiliation(s)
- Ju Hui Park
- 1 Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences , Seoul, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Liu Z, Li Z. Molecular imaging in tracking tumor-specific cytotoxic T lymphocytes (CTLs). Am J Cancer Res 2014; 4:990-1001. [PMID: 25157278 PMCID: PMC4142291 DOI: 10.7150/thno.9268] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 06/30/2014] [Indexed: 01/15/2023] Open
Abstract
Despite the remarkable progress of adoptive T cell therapy in cancer treatment, there remains an urgent need for the noninvasive tracking of the transfused T cells in patients to determine their biodistribution, viability, and functionality. With emerging molecular imaging technologies and cell-labeling methods, noninvasive in vivo cell tracking is experiencing impressive progress toward revealing the mechanisms and functions of these cells in real time in preclinical and clinical studies. Such cell tracking methods have an important role in developing effective T cell therapeutic strategies and steering decision-making process in clinical trials. On the other hand, they could provide crucial information to accelerate the regulatory approval process on the T cell therapy. In this review, we revisit the advances in tracking the tumor-specific CTLs, highlighting the latest development in human studies and the key challenges.
Collapse
|
17
|
Xing L, Sun X, Deng X, Kotedia K, Zanzonico PB, Ackerstaff E, Koutcher JA, Ling CC, Li GC. A triple suicide gene strategy that improves therapeutic effects and incorporates multimodality molecular imaging for monitoring gene functions. Cancer Gene Ther 2013; 20:358-65. [PMID: 23722591 PMCID: PMC3696018 DOI: 10.1038/cgt.2013.28] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Gene-directed enzyme prodrug therapy (GDEPT), or suicide gene therapy, has shown promise in clinical trials. In this preclinical study using stable cell lines and xenograft tumor models, we show that a triple-suicide-gene GDEPT approach produce enhanced therapeutic efficacy over previous methods. Importantly, all the three genes (thymidine kinase, cytosine deaminase and uracil phosphoribosyltransferase) function simultaneously as effectors for GDEPT and markers for multimodality molecular imaging (MMI), using positron emission tomography, magnetic resonance spectroscopy and optical (fluorescent and bioluminescent) techniques. It was demonstrated that MMI can evaluate the distribution and function/activity of the triple suicide gene. The concomitant expression of these genes significantly enhances prodrug cytotoxicity and radiosensitivity in vitro and in vivo.
Collapse
Affiliation(s)
- L Xing
- Department of Radiation Oncology, Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Jinan, China
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Zhang H, Cantorias MV, Pillarsetty N, Burnazi EM, Cai S, Lewis JS. An improved strategy for the synthesis of [¹⁸F]-labeled arabinofuranosyl nucleosides. Nucl Med Biol 2012; 39:1182-8. [PMID: 22819195 PMCID: PMC3517724 DOI: 10.1016/j.nucmedbio.2012.06.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 05/14/2012] [Accepted: 06/07/2012] [Indexed: 02/07/2023]
Abstract
The expression of the herpes simplex virus type-1 thymidine kinase (HSV1-tk) gene can be imaged efficaciously using a variety of 2'-[(18)F]fluoro-2'-deoxy-1-b-D-arabinofuranosyl-uracil derivatives [[(18)F]-FXAU, X=I(iodo), E(ethyl), and M(methyl)]. However, the application of these derivatives in clinical and translational studies has been impeded by their complicated and long syntheses (3-5h). To remedy these issues, in the study at hand we have investigated whether microwave or combined catalysts could facilitate the coupling reaction between sugar and nucleobase and, further, have probed the feasibility of establishing a novel approach for [(18)F]-FXAU synthesis. We have demonstrated that the rate of the trimethylsilyl trifluoromethanesulfonate (TMSOTf)-catalyzed coupling reaction between the 2-deoxy-sugar and uracil derivatives at 90 °C can be significantly accelerated by microwave-driven heating or by the addition of Lewis acid catalyst (SnCl(4)). Further, we have observed that the stability of the α- and β-anomers of [(18)F]-FXAU derivatives differs during the hydrolysis step. Using the microwave-driven heating approach, overall decay-corrected radiochemical yields of 19%-27% were achieved for [(18)F]-FXAU in 120min at a specific activity of >22MBq/nmol (595Ci/mmol). Ultimately, we believe that these high yielding syntheses of [(18)F]-FIAU, [(18)F]-FMAU and [(18)F]-FEAU will facilitate routine production for clinical applications.
Collapse
Affiliation(s)
- Hanwen Zhang
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Melchor V. Cantorias
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | | | - Eva M. Burnazi
- Cyclotron-Radiochemistry Core, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Shangde Cai
- Cyclotron-Radiochemistry Core, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Jason S. Lewis
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
- Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
- Cyclotron-Radiochemistry Core, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
19
|
Ardiani A, Johnson AJ, Ruan H, Sanchez-Bonilla M, Serve K, Black ME. Enzymes to die for: exploiting nucleotide metabolizing enzymes for cancer gene therapy. Curr Gene Ther 2012; 12:77-91. [PMID: 22384805 DOI: 10.2174/156652312800099571] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Revised: 01/26/2012] [Accepted: 01/27/2012] [Indexed: 11/22/2022]
Abstract
Suicide gene therapy is an attractive strategy to selectively destroy cancer cells while minimizing unnecessary toxicity to normal cells. Since this idea was first introduced more than two decades ago, numerous studies have been conducted and significant developments have been made to further its application for mainstream cancer therapy. Major limitations of the suicide gene therapy strategy that have hindered its clinical application include inefficient directed delivery to cancer cells and the poor prodrug activation capacity of suicide enzymes. This review is focused on efforts that have been and are currently being pursued to improve the activity of individual suicide enzymes towards their respective prodrugs with particular attention to the application of nucleotide metabolizing enzymes in suicide cancer gene therapy. A number of protein engineering strategies have been employed and our discussion here will center on the use of mutagenesis approaches to create and evaluate nucleotide metabolizing enzymes with enhanced prodrug activation capacity and increased thermostability. Several of these studies have yielded clinically important enzyme variants that are relevant for cancer gene therapy applications because their utilization can serve to maximize cancer cell killing while minimizing the prodrug dose, thereby limiting undesirable side effects.
Collapse
Affiliation(s)
- Andressa Ardiani
- School of Molecular Biosciences, Washington State University, Pullman, 99164-7520, USA
| | | | | | | | | | | |
Collapse
|
20
|
Suicide gene therapy in cancer: where do we stand now? Cancer Lett 2012; 324:160-70. [PMID: 22634584 DOI: 10.1016/j.canlet.2012.05.023] [Citation(s) in RCA: 153] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 04/11/2012] [Accepted: 05/21/2012] [Indexed: 12/21/2022]
Abstract
Suicide gene therapy is based on the introduction into tumor cells of a viral or a bacterial gene, which allows the conversion of a non-toxic compound into a lethal drug. Although suicide gene therapy has been successfully used in a large number of in vitro and in vivo studies, its application to cancer patients has not reached the desirable clinical significance. However, recent reports on pre-clinical cancer models demonstrate the huge potential of this strategy when used in combination with new therapeutic approaches. In this review, we summarize the different suicide gene systems and gene delivery vectors addressed to cancer, with particular emphasis on recently developed systems and associated bystander effects. In addition, we review the different strategies that have been used in combination with suicide gene therapy and provide some insights into the future directions of this approach, particularly towards cancer stem cell eradication.
Collapse
|
21
|
Lee SW, Lee SH, Biswal S. Magnetic resonance reporter gene imaging. Theranostics 2012; 2:403-12. [PMID: 22539936 PMCID: PMC3337732 DOI: 10.7150/thno.3634] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 03/09/2012] [Indexed: 11/05/2022] Open
Abstract
Molecular imaging has undergone an explosive advancement in recent years, due to the tremendous research efforts made to understand and visualize biological processes. Molecular imaging by definition assesses cellular and molecular processes in living subjects, with the targets of following metabolic, genomic, and proteomic events. Furthermore, reporter gene imaging plays a central role in this field. Many different approaches have been used to visualize genetic events in living subjects, such as, optical, radionuclide, and magnetic resonance imaging. Compared with the other techniques, magnetic resonance (MR)-based reporter gene imaging has not occupied center stage, despite its superior three-dimensional depictions of anatomical details. In this article, the authors review the principles and applications of various types of MR reporter gene imaging technologies and discuss their advantages and disadvantages.
Collapse
|
22
|
Niu G, Chen X. Molecular imaging with activatable reporter systems. Am J Cancer Res 2012; 2:413-23. [PMID: 22539937 PMCID: PMC3337733 DOI: 10.7150/thno.3940] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2011] [Accepted: 02/08/2012] [Indexed: 12/28/2022] Open
Abstract
Molecular imaging is a newly emerged multiple disciplinary field that aims to visualize, characterize and quantitatively measure biological processes at cellular and molecular levels in humans and other living systems. A reporter gene is a piece of DNA encoding reporter protein, which presents as a readily measurable phenotype that can be distinguished easily from the background of endogenous protein. After being transferred into cells of organ systems (transgenes), the reporter gene can be utilized to visualize transcriptional and posttranscriptional regulation of gene expression, protein-protein interactions, or trafficking of proteins or cells in living subjects. Herein, we review previous classification of reporter genes and regroup the reporter gene based imaging as basic, inducible and activatable, based on the regulation of reporter gene transcription and post-translational modification of reporter proteins. We then focus on activatable reporters, in which the signal can be activated at the posttranslational level for visualizing protein-protein interactions, protein phosphorylation or tertiary structure changes. The applications of several types of activatable reporters will also be summarized. We conclude that activatable reporter imaging can benefit both basic biomedical research and drug development.
Collapse
|
23
|
Yaghoubi SS, Campbell DO, Radu CG, Czernin J. Positron emission tomography reporter genes and reporter probes: gene and cell therapy applications. Am J Cancer Res 2012; 2:374-91. [PMID: 22509201 PMCID: PMC3326723 DOI: 10.7150/thno.3677] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 02/09/2012] [Indexed: 12/22/2022] Open
Abstract
Positron emission tomography (PET) imaging reporter genes (IRGs) and PET reporter probes (PRPs) are amongst the most valuable tools for gene and cell therapy. PET IRGs/PRPs can be used to non-invasively monitor all aspects of the kinetics of therapeutic transgenes and cells in all types of living mammals. This technology is generalizable and can allow long-term kinetics monitoring. In gene therapy, PET IRGs/PRPs can be used for whole-body imaging of therapeutic transgene expression, monitoring variations in the magnitude of transgene expression over time. In cell or cellular gene therapy, PET IRGs/PRPs can be used for whole-body monitoring of therapeutic cell locations, quantity at all locations, survival and proliferation over time and also possibly changes in characteristics or function over time. In this review, we have classified PET IRGs/PRPs into two groups based on the source from which they were derived: human or non-human. This classification addresses the important concern of potential immunogenicity in humans, which is important for expansion of PET IRG imaging in clinical trials. We have then discussed the application of this technology in gene/cell therapy and described its use in these fields, including a summary of using PET IRGs/PRPs in gene and cell therapy clinical trials. This review concludes with a discussion of the future direction of PET IRGs/PRPs and recommends cell and gene therapists collaborate with molecular imaging experts early in their investigations to choose a PET IRG/PRP system suitable for progression into clinical trials.
Collapse
|
24
|
Müller U, Martić M, Kraljević TG, Krištafor S, Ross TL, Ranadheera C, Müller A, Born M, Krämer SD, Raić-Malić S, Ametamey SM. Synthesis and evaluation of a C-6 alkylated pyrimidine derivative for the in vivo imaging of HSV1-TK gene expression. Nucl Med Biol 2012; 39:235-46. [PMID: 21958846 DOI: 10.1016/j.nucmedbio.2011.07.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 06/22/2011] [Accepted: 07/12/2011] [Indexed: 11/30/2022]
Affiliation(s)
- Ursina Müller
- Institute of Pharmaceutical Sciences, ETH Zurich, 8093 Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Varma NRS, Janic B, Iskander ASM, Shankar A, Bhuiyan MPI, Soltanian-Zadeh H, Jiang Q, Barton K, Ali MM, Arbab AS. Endothelial progenitor cells (EPCs) as gene carrier system for rat model of human glioma. PLoS One 2012; 7:e30310. [PMID: 22276177 PMCID: PMC3262815 DOI: 10.1371/journal.pone.0030310] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 12/13/2011] [Indexed: 12/12/2022] Open
Abstract
Background Due to their unique property to migrate to pathological lesions, stem cells are used as a delivery vehicle for therapeutic genes to tumors, especially for glioma. It is critically important to track the movement, localization, engraftment efficiency and functional capability or expression of transgenes of selected cell populations following transplantation. The purposes of this study were to investigate whether 1) intravenously administered, genetically transformed cord blood derived EPCs can carry human sodium iodide symporter (hNIS) to the sites of tumors in rat orthotopic model of human glioma and express transgene products, and 2) whether accumulation of these administered EPCs can be tracked by different in vivo imaging modalities. Methods and Results Collected EPCs were cultured and transduced to carry hNIS. Cellular viability, differential capacity and Tc-99m uptake were determined. Five to ten million EPCs were intravenously administered and Tc-99-SPECT images were acquired on day 8, to determine the accumulation of EPCs and expression of transgenes (increase activity of Tc-99m) in the tumors. Immunohistochemistry was performed to determine endothelial cell markers and hNIS positive cells in the tumors. Transduced EPCs were also magnetically labeled and accumulation of cells was confirmed by MRI and histochemistry. SPECT analysis showed increased activity of Tc-99m in the tumors that received transduced EPCs, indicative of the expression of transgene (hNIS). Activity of Tc-99m in the tumors was also dependent on the number of administered transduced EPCs. MRI showed the accumulation of magnetically labeled EPCs. Immunohistochemical analysis showed iron and hNIS positive and, human CD31 and vWF positive cells in the tumors. Conclusion EPC was able to carry and express hNIS in glioma following IV administration. SPECT detected migration of EPCs and expression of the hNIS gene. EPCs can be used as gene carrier/delivery system for glioma therapy as well as imaging probes.
Collapse
Affiliation(s)
- Nadimpalli Ravi S. Varma
- Cellular and Molecular Imaging Laboratory, Department of Radiology, Henry Ford Hospital, Detroit, Michigan, United States of America
| | - Branislava Janic
- Cellular and Molecular Imaging Laboratory, Department of Radiology, Henry Ford Hospital, Detroit, Michigan, United States of America
| | - A. S. M. Iskander
- Cellular and Molecular Imaging Laboratory, Department of Radiology, Henry Ford Hospital, Detroit, Michigan, United States of America
| | - Adarsh Shankar
- Cellular and Molecular Imaging Laboratory, Department of Radiology, Henry Ford Hospital, Detroit, Michigan, United States of America
| | - Mohammed P. I. Bhuiyan
- Cellular and Molecular Imaging Laboratory, Department of Radiology, Henry Ford Hospital, Detroit, Michigan, United States of America
| | - Hamid Soltanian-Zadeh
- Cellular and Molecular Imaging Laboratory, Department of Radiology, Henry Ford Hospital, Detroit, Michigan, United States of America
| | - Quan Jiang
- Cellular and Molecular Imaging Laboratory, Department of Radiology, Henry Ford Hospital, Detroit, Michigan, United States of America
| | - Kenneth Barton
- Cellular and Molecular Imaging Laboratory, Department of Radiology, Henry Ford Hospital, Detroit, Michigan, United States of America
| | - Meser M. Ali
- Cellular and Molecular Imaging Laboratory, Department of Radiology, Henry Ford Hospital, Detroit, Michigan, United States of America
| | - Ali S. Arbab
- Cellular and Molecular Imaging Laboratory, Department of Radiology, Henry Ford Hospital, Detroit, Michigan, United States of America
- * E-mail:
| |
Collapse
|
26
|
Antitumor activity from antigen-specific CD8 T cells generated in vivo from genetically engineered human hematopoietic stem cells. Proc Natl Acad Sci U S A 2011; 108:E1408-16. [PMID: 22123951 DOI: 10.1073/pnas.1115050108] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The goal of cancer immunotherapy is the generation of an effective, stable, and self-renewing antitumor T-cell population. One such approach involves the use of high-affinity cancer-specific T-cell receptors in gene-therapy protocols. Here, we present the generation of functional tumor-specific human T cells in vivo from genetically modified human hematopoietic stem cells (hHSC) using a human/mouse chimera model. Transduced hHSC expressing an HLA-A*0201-restricted melanoma-specific T-cell receptor were introduced into humanized mice, resulting in the generation of a sizeable melanoma-specific naïve CD8(+) T-cell population. Following tumor challenge, these transgenic CD8(+) T cells, in the absence of additional manipulation, limited and cleared human melanoma tumors in vivo. Furthermore, the genetically enhanced T cells underwent proper thymic selection, because we did not observe any responses against non-HLA-matched tumors, and no killing of any kind occurred in the absence of a human thymus. Finally, the transduced hHSC established long-term bone marrow engraftment. These studies present a potential therapeutic approach and an important tool to understand better and to optimize the human immune response to melanoma and, potentially, to other types of cancer.
Collapse
|
27
|
Rueger MA, Ameli M, Li H, Winkeler A, Rueckriem B, Vollmar S, Galldiks N, Hesselmann V, Fraefel C, Wienhard K, Heiss WD, Jacobs AH. [18F]FLT PET for non-invasive monitoring of early response to gene therapy in experimental gliomas. Mol Imaging Biol 2011; 13:547-557. [PMID: 20563754 DOI: 10.1007/s11307-010-0361-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The purpose of this study was to investigate the potential of 3'-deoxy-3'-[¹⁸F]fluorothymidine ([¹⁸F]FLT) positron emission tomography (PET) to detect early treatment responses in gliomas. Human glioma cells were stably transduced with genes yielding therapeutic activity, sorted for different levels of exogenous gene expression, and implanted subcutaneously into nude mice. Multimodality imaging during prodrug therapy included (a) magnetic resonance imaging, (b) PET with 9-(4-[¹⁸F]fluoro-3-hydroxymethylbutyl)guanine assessing exogenous gene expression, and (c) repeat [¹⁸F]FLT PET assessing antiproliferative therapeutic response. All stably transduced gliomas responded to therapy with significant reduction in tumor volume and [¹⁸F]FLT accumulation within 3 days after initiation of therapy. The change in [¹⁸F]FLT uptake before and after treatment correlated to volumetrically calculated growth rates. Therapeutic efficacy as monitored by [¹⁸F]FLT PET correlated to levels of therapeutic gene expression measured in vivo. Thus, [¹⁸F]FLT PET assesses early antiproliferative effects, making it a promising radiotracer for the development of novel treatments for glioma.
Collapse
Affiliation(s)
- Maria A Rueger
- Laboratory for Gene Therapy and Molecular Imaging, Max Planck-Institute for Neurological Research, Gleuelerstr. 50, 50931, Cologne, Germany.,Center for Molecular Medicine (CMMC), Cologne, Germany.,Departments of Neurology, University Hospital Cologne, Cologne, Germany
| | - Mitra Ameli
- Laboratory for Gene Therapy and Molecular Imaging, Max Planck-Institute for Neurological Research, Gleuelerstr. 50, 50931, Cologne, Germany.,Departments of Neurology, University Hospital Cologne, Cologne, Germany
| | - Hongfeng Li
- Laboratory for Gene Therapy and Molecular Imaging, Max Planck-Institute for Neurological Research, Gleuelerstr. 50, 50931, Cologne, Germany
| | - Alexandra Winkeler
- Laboratory for Gene Therapy and Molecular Imaging, Max Planck-Institute for Neurological Research, Gleuelerstr. 50, 50931, Cologne, Germany.,Center for Molecular Medicine (CMMC), Cologne, Germany
| | | | - Stefan Vollmar
- Laboratory for Gene Therapy and Molecular Imaging, Max Planck-Institute for Neurological Research, Gleuelerstr. 50, 50931, Cologne, Germany
| | - Norbert Galldiks
- Laboratory for Gene Therapy and Molecular Imaging, Max Planck-Institute for Neurological Research, Gleuelerstr. 50, 50931, Cologne, Germany
| | - Volker Hesselmann
- Department of Radiology, University Hospital Cologne, Cologne, Germany
| | - Cornel Fraefel
- Laboratory for Gene Therapy and Molecular Imaging, Max Planck-Institute for Neurological Research, Gleuelerstr. 50, 50931, Cologne, Germany
| | - Klaus Wienhard
- Laboratory for Gene Therapy and Molecular Imaging, Max Planck-Institute for Neurological Research, Gleuelerstr. 50, 50931, Cologne, Germany
| | - Wolf-Dieter Heiss
- Laboratory for Gene Therapy and Molecular Imaging, Max Planck-Institute for Neurological Research, Gleuelerstr. 50, 50931, Cologne, Germany
| | - Andreas H Jacobs
- Laboratory for Gene Therapy and Molecular Imaging, Max Planck-Institute for Neurological Research, Gleuelerstr. 50, 50931, Cologne, Germany. .,Center for Molecular Medicine (CMMC), Cologne, Germany. .,European Institute for Molecular Imaging (EIMI), University of Münster, Münster, Germany.
| |
Collapse
|
28
|
Amano S, Gu C, Koizumi S, Tokuyama T, Namba H. Tumoricidal bystander effect in the suicide gene therapy using mesenchymal stem cells does not injure normal brain tissues. Cancer Lett 2011; 306:99-105. [PMID: 21450400 DOI: 10.1016/j.canlet.2011.02.037] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Revised: 02/22/2011] [Accepted: 02/23/2011] [Indexed: 01/13/2023]
Abstract
In our previous rat study, an established intracranial C6 glioma was successfully treated using intratumoral injection of mesenchymal stem cells transduced with the herpes simplex virus-thymidine kinase gene (MSCtk) and systemic administration of ganciclovir (GCV). In the present study, effect of the "bystander effect" associated with the MSCtk/GCV strategy on the background normal brain tissues was examined in both in vitro and in vivo conditions. Rat MSCtk and C6 glioma cells were mixed and seeded on the rat primary neuron and glia co-culture in the medium containing GCV to generate the bystander effect and the numbers of background cells were counted on day 0, 2 and 7. Though the number of MSCtk and C6 cells decreased rapidly due to the bystander effect, most of the neurons and glias survived on day 7. Next, rats were intracranially injected with the MSCtk and C6 cells and then intraperitoneally administered with GCV for 7days. No remarkable histological abnormality including apoptosis was observed in the background brain tissues near the injection site. The present study has demonstrated that the tumoricidal bystander effect does not injure the background normal brain tissue significantly and that the suicide gene therapies are sufficiently safe.
Collapse
Affiliation(s)
- Shinji Amano
- Department of Neurosurgery, Hamamatsu University School of Medicine, Handayama, Higashi-ku, Japan
| | | | | | | | | |
Collapse
|
29
|
Likar Y, Zurita J, Dobrenkov K, Shenker L, Cai S, Neschadim A, Medin JA, Sadelain M, Hricak H, Ponomarev V. A new pyrimidine-specific reporter gene: a mutated human deoxycytidine kinase suitable for PET during treatment with acycloguanosine-based cytotoxic drugs. J Nucl Med 2010; 51:1395-403. [PMID: 20810757 PMCID: PMC4405132 DOI: 10.2967/jnumed.109.074344] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED In this article, we describe a series of new human-derived reporter genes based on human deoxycytidine kinase (dCK) suitable for clinical PET. METHODS Native dCK and its mutant reporter genes were tested in vitro and in vivo for their phosphorylation of pyrimidine- and acycloguanosine-based radiotracers including 2'-deoxy-2'-fluoroarabinofuranosylcytosine, 2'-fluoro-2'-deoxyarabinofuranosyl-5-ethyluracil (FEAU), penciclovir, and 9-[4-fluoro-3-(hydroxymethyl)butyl]guanine (FHBG) and clinically applied antiviral and anticancer drugs. RESULTS Cells transduced with dCK mutant reporter genes showed high in vitro and in vivo uptake of pyrimidine-based radiopharmaceuticals ((18)F-FEAU) comparable to that of herpes simplex virus type-1 thymidine kinase (HSV1-tk)-transduced cells. These mutants did not phosphorylate acycloguanosine-based radiotracers ((18)F-FHBG) or antiviral drugs (ganciclovir). Furthermore, the mutants displayed suicidal activation of clinically used pyrimidine-based prodrugs (cytarabine, gemcitabine). CONCLUSION The mutants of human dCK can be used as pyrimidine-specific PET reporter genes for imaging with (18)F-FEAU during treatment with acycloguanosine-based antiviral drugs. Additionally, the prosuicidal activity of these reporters with pyrimidine-based analogs will allow for the safe elimination of transduced cells.
Collapse
Affiliation(s)
- Yury Likar
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Juan Zurita
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Konstantin Dobrenkov
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Larissa Shenker
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Shangde Cai
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Anton Neschadim
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Jeffrey A. Medin
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Ontario Cancer Institute, University Health Network, Toronto, Ontario, Canada
| | - Michel Sadelain
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Hedvig Hricak
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Vladimir Ponomarev
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, New York
| |
Collapse
|
30
|
Kinetic phases of distribution and tumor targeting by T cell receptor engineered lymphocytes inducing robust antitumor responses. Proc Natl Acad Sci U S A 2010; 107:14286-91. [PMID: 20624956 DOI: 10.1073/pnas.1008300107] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A key issue in advancing the use of adoptive cell transfer (ACT) of T cell receptor (TCR) engineered lymphocytes for cancer therapy is demonstrating how TCR transgenic cells repopulate lymphopenic hosts and target tumors in an antigen-specific fashion. ACT of splenocytes from fully immunocompetent HLA-A2.1/K(b) mice transduced with a chimeric murine/human TCR specific for tyrosinase, together with lymphodepletion conditioning, dendritic cell (DC)-based vaccination, and high-dose interleukin-2 (IL-2), had profound antitumor activity against large established MHC- and antigen-matched tumors. Genetic labeling with bioluminescence imaging (BLI) and positron emitting tomography (PET) reporter genes allowed visualization of the distribution and antigen-specific tumor homing of TCR transgenic T cells, with trafficking correlated with antitumor efficacy. After an initial brief stage of systemic distribution, TCR-redirected and genetically labeled T cells demonstrated an early pattern of specific distribution to antigen-matched tumors and locoregional lymph nodes, followed by a more promiscuous distribution 1 wk later with additional accumulation in antigen-mismatched tumors. This approach of TCR engineering and molecular imaging reporter gene labeling is directly translatable to humans and provides useful information on how to clinically develop this mode of therapy.
Collapse
|
31
|
Ibrahimi A, Velde GV, Reumers V, Toelen J, Thiry I, Vandeputte C, Vets S, Deroose C, Bormans G, Baekelandt V, Debyser Z, Gijsbers R. Highly Efficient Multicistronic Lentiviral Vectors with Peptide 2A Sequences. Hum Gene Ther 2009; 20:845-60. [DOI: 10.1089/hum.2008.188] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Abdelilah Ibrahimi
- Molecular Medicine, Katholieke Universiteit Leuven, B-3000 Leuven, Flanders, Belgium
- Molecular Small Animal Imaging Center, Katholieke Universiteit Leuven, B-3000 Leuven, Flanders, Belgium
| | - Greetje Vande Velde
- Molecular Medicine, Katholieke Universiteit Leuven, B-3000 Leuven, Flanders, Belgium
- Molecular Small Animal Imaging Center, Katholieke Universiteit Leuven, B-3000 Leuven, Flanders, Belgium
| | - Veerle Reumers
- Molecular Medicine, Katholieke Universiteit Leuven, B-3000 Leuven, Flanders, Belgium
- Molecular Small Animal Imaging Center, Katholieke Universiteit Leuven, B-3000 Leuven, Flanders, Belgium
| | - Jaan Toelen
- Molecular Medicine, Katholieke Universiteit Leuven, B-3000 Leuven, Flanders, Belgium
| | - Irina Thiry
- Molecular Medicine, Katholieke Universiteit Leuven, B-3000 Leuven, Flanders, Belgium
- Molecular Small Animal Imaging Center, Katholieke Universiteit Leuven, B-3000 Leuven, Flanders, Belgium
| | - Caroline Vandeputte
- Molecular Medicine, Katholieke Universiteit Leuven, B-3000 Leuven, Flanders, Belgium
- Molecular Small Animal Imaging Center, Katholieke Universiteit Leuven, B-3000 Leuven, Flanders, Belgium
- Nuclear Medicine, Katholieke Universiteit Leuven, B-3000 Leuven, Flanders, Belgium
| | - Sofie Vets
- Molecular Medicine, Katholieke Universiteit Leuven, B-3000 Leuven, Flanders, Belgium
| | - Christophe Deroose
- Molecular Medicine, Katholieke Universiteit Leuven, B-3000 Leuven, Flanders, Belgium
- Molecular Small Animal Imaging Center, Katholieke Universiteit Leuven, B-3000 Leuven, Flanders, Belgium
- Nuclear Medicine, Katholieke Universiteit Leuven, B-3000 Leuven, Flanders, Belgium
- Present address: Department of Nuclear Medicine, University Hospitals Leuven, B-3000 Leuven, Flanders, Belgium
| | - Guy Bormans
- Molecular Small Animal Imaging Center, Katholieke Universiteit Leuven, B-3000 Leuven, Flanders, Belgium
- Radiopharmacy, Katholieke Universiteit Leuven, B-3000 Leuven, Flanders, Belgium
| | - Veerle Baekelandt
- Molecular Medicine, Katholieke Universiteit Leuven, B-3000 Leuven, Flanders, Belgium
- Molecular Small Animal Imaging Center, Katholieke Universiteit Leuven, B-3000 Leuven, Flanders, Belgium
| | - Zeger Debyser
- Molecular Medicine, Katholieke Universiteit Leuven, B-3000 Leuven, Flanders, Belgium
- Molecular Small Animal Imaging Center, Katholieke Universiteit Leuven, B-3000 Leuven, Flanders, Belgium
- Interdisciplinary Research Center, Katholieke Universiteit Leuven Campus Kortrijk, B-8500 Kortrijk, Flanders, Belgium
| | - Rik Gijsbers
- Molecular Medicine, Katholieke Universiteit Leuven, B-3000 Leuven, Flanders, Belgium
| |
Collapse
|
32
|
Johnson M, Karanikolas BDW, Priceman SJ, Powell R, Black ME, Wu HM, Czernin J, Huang SC, Wu L. Titration of variant HSV1-tk gene expression to determine the sensitivity of 18F-FHBG PET imaging in a prostate tumor. J Nucl Med 2009; 50:757-64. [PMID: 19372484 DOI: 10.2967/jnumed.108.058438] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
UNLABELLED Because of its high selectivity and specificity for the imaging reporter probe 9-(4-(18)F-fluoro-3-[hydroxymethyl]butyl)guanine ((18)F-FHBG), the herpes simplex virus type 1 thymidine kinase (HSV1-tk) variant sr39tk is actively being studied as a PET reporter gene. We recently demonstrated the capability of using a prostate-specific transcriptional amplification PET reporter vector, AdTSTA-sr39tk, to target prostate cancer lymph node metastasis. However, one area that warrants further study is the examination of the sensitivity of PET by determining the minimum percentage of cells expressing the sr39tk transgene needed for detection. Addressing this question could determine the sensitivity of vector-mediated sr39tk PET in cancer-targeting strategies. METHODS DU-145, PC-3, and CWR22Rv.1 prostate cancer cell lines (a total of 1 x 10(6) cells) were studied, of which 7%, 10%, 25%, 50%, or 70% were transduced with the lentiviral vector constitutively expressing HSV1-sr39tk-IRES-enhanced green fluorescent protein (EGFP). Cells were subcutaneously implanted into the left shoulder of severe combined immunodeficient mice and evaluated. Tumor cells comparably transduced with an EGFP control vector were implanted on the right shoulder. Mice were imaged using PET with (18)F-FHBG at 8, 15, and 22 d after tumor implant. On day 23, tumors were isolated and analyzed for sr39tk transgene expression by quantitative reverse-transcriptase polymerase chain reaction (RT-PCR), Western blotting, immunohistochemistry, and flow cytometry for EGFP expression. RESULTS Results showed a linear relationship between the level of sr39tk expression and the quantity of tracer accrual in DU-145, with the minimal value for PET detection at 10%. The magnitude of tracer retention in sr39tk-expressing cells was amplified over time as the tumor grew. Protein levels in the stepwise titration increased with the percentage of sr39tk-transduced cells. CONCLUSION The stepwise titration of prostate cancer cells transduced with the lenti-CMV-sr39tk-IRES-EGFP determined the minimum number of sr39tk-expressing tumor cells necessary to be detected by PET using the (18)F-FHBG reporter probe. Furthermore, PET signal correlated well with traditional methods of protein evaluation such as flow cytometry, quantitative RT-PCR, Western blotting, and immunohistochemistry. Unlike the traditional methods, however, the use of PET is noninvasive and will be more advantageous in clinical situations.
Collapse
Affiliation(s)
- Mai Johnson
- Department of Molecular, Cellular and Integrative Physiology, UCLA, Los Angeles, CA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Kraitchman DL, Bulte JWM. In vivo imaging of stem cells and Beta cells using direct cell labeling and reporter gene methods. Arterioscler Thromb Vasc Biol 2009; 29:1025-30. [PMID: 19359666 DOI: 10.1161/atvbaha.108.165571] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cellular transplantation therapy offers a means to stimulate cardiovascular repair either by direct (graft-induced) or indirect (host-induced) tissue regeneration or angiogenesis. Typically, autologous or donor cells of specific subpopulations are expanded exogenously before administration to enrich the cells most likely to participate in tissue repair. In animal models of cardiovascular disease, the fate of these exogenous cells can be determined using histopathology. Recently, methods to label cells with contrast agents or transduce cells with reporter genes to produce imaging beacons has enabled the serial and dynamic assessment of the survival, fate, and engraftment of these cells with noninvasive imaging. Although cell tracking methods for cardiovascular applications have been most studied in stem or progenitor cells, research in tracking of whole islet transplants and particularly insulin producing beta cells has implications to the cardiovascular community attributable to the vascular changes associated with diabetes mellitus. In this review article, we will explore some of the state-of-the art methods for stem, progenitor, and beta cell tracking.
Collapse
Affiliation(s)
- Dara L Kraitchman
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Baltimore, MD, USA.
| | | |
Collapse
|
34
|
Waerzeggers Y, Monfared P, Viel T, Winkeler A, Voges J, Jacobs AH. Methods to monitor gene therapy with molecular imaging. Methods 2009; 48:146-60. [PMID: 19318125 DOI: 10.1016/j.ymeth.2009.03.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Accepted: 03/11/2009] [Indexed: 01/08/2023] Open
Abstract
Recent progress in scientific and clinical research has made gene therapy a promising option for efficient and targeted treatment of several inherited and acquired disorders. One of the most critical issues for ensuring success of gene-based therapies is the development of technologies for non-invasive monitoring of the distribution and kinetics of vector-mediated gene expression. In recent years many molecular imaging techniques for safe, repeated and high-resolution in vivo imaging of gene expression have been developed and successfully used in animals and humans. In this review molecular imaging techniques for monitoring of gene therapy are described and specific use of these methods in the different steps of a gene therapy protocol from gene delivery to assessment of therapy response is illustrated. Linking molecular imaging (MI) to gene therapy will eventually help to improve the efficacy and safety of current gene therapy protocols for human application and support future individualized patient treatment.
Collapse
Affiliation(s)
- Yannic Waerzeggers
- Laboratory for Gene Therapy and Molecular Imaging, Max Planck Institute for Neurological Research and Faculty of Medicine, University of Cologne, Gleuelerstrasse 50, Cologne 50931, Germany
| | | | | | | | | | | |
Collapse
|
35
|
Arbab AS, Janic B, Haller J, Pawelczyk E, Liu W, Frank JA. In Vivo Cellular Imaging for Translational Medical Research. Curr Med Imaging 2009; 5:19-38. [PMID: 19768136 DOI: 10.2174/157340509787354697] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Personalized treatment using stem, modified or genetically engineered, cells is becoming a reality in the field of medicine, in which allogenic or autologous cells can be used for treatment and possibly for early diagnosis of diseases. Hematopoietic, stromal and organ specific stem cells are under evaluation for cell-based therapies for cardiac, neurological, autoimmune and other disorders. Cytotoxic or genetically altered T-cells are under clinical trial for the treatment of hematopoietic or other malignant diseases. Before using stem cells in clinical trials, translational research in experimental animal models are essential, with a critical emphasis on developing noninvasive methods for tracking the temporal and spatial homing of these cells to target tissues. Moreover, it is necessary to determine the transplanted cell's engraftment efficiency and functional capability. Various in vivo imaging modalities are in use to track the movement and incorporation of administered cells. Tagging cells with reporter genes, fluorescent dyes or different contrast agents transforms them into cellular probes or imaging agents. Recent reports have shown that magnetically labeled cells can be used as cellular magnetic resonance imaging (MRI) probes, demonstrating the cell trafficking to target tissues. In this review, we will discuss the methods to transform cells into probes for in vivo imaging, along with their advantages and disadvantages as well as the future clinical applicability of cellular imaging method and corresponding imaging modality.
Collapse
Affiliation(s)
- Ali S Arbab
- Cellular and Molecular Imaging Laboratory, Department of Radiology, Henry Ford Hospital, Detroit, MI
| | | | | | | | | | | |
Collapse
|
36
|
Molecular Imaging of Gene Expression and Cell Trafficking. Mol Imaging 2009. [DOI: 10.1007/978-3-540-76735-0_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
37
|
Abstract
The ability to measure biochemical and molecular processes underlies progress in breast cancer biology and treatment. These assays have traditionally been performed by analysis of cell culture or tissue samples. More recently, functional and molecular imaging has allowed the in vivo assay of biochemistry and molecular biology, which is highly complementary to tissue-based assays. This review briefly describes different imaging modalities used in molecular imaging and then reviews applications of molecular imaging to breast cancer, with a focus on translational work. It includes sections describing work in functional and physiological tumor imaging, imaging gene product expression, imaging the tumor microenvironment, reporter gene imaging, and cell labeling. Work in both animal models and human is discussed with an eye towards studies that have relevance to breast cancer treatment in patients.
Collapse
Affiliation(s)
- David A Mankoff
- Seattle Cancer Care Alliance and University of Washington, Radiology, Seattle, WA 98109, USA.
| |
Collapse
|
38
|
Abstract
Hematopoietic, stromal and organ-specific stem cells are under evaluation for therapeutic efficacy in cell-based therapies of cardiac, neurological and other disorders. It is critically important to track the location of directly transplanted or infused cells that can serve as gene carrier/delivery vehicles for the treatment of disease processes and be able to noninvasively monitor the temporal and spatial homing of these cells to target tissues. Moreover, it is also necessary to determine their engraftment efficiency and functional capability following transplantation. There are various in vivo imaging modalities used to track the movement and incorporation of administered cells. Tagging stem cells with different contrast agents can make these cells probes for different imaging modalities. Recent reports have shown that stem cells labeled with iron oxides can be used as cellular MRI probes demonstrating the cell trafficking to target tissues. In this review, we will discuss the status and future prospect of stem cell tracking by cellular MRI for cell-based therapy.
Collapse
Affiliation(s)
- Ali S Arbab
- Henry Ford Hospital, Cellular & Molecular Imaging Laboratory,Department of Radiology, 1 Ford Place, 2F Detroit, MI 48202, USA.
| | | |
Collapse
|
39
|
Efficient purification and metabolite analysis of radiotracers using high-performance liquid chromatography and on-line solid-phase extraction. J Chromatogr A 2008; 1189:323-31. [DOI: 10.1016/j.chroma.2007.10.084] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2007] [Revised: 10/21/2007] [Accepted: 10/26/2007] [Indexed: 11/19/2022]
|
40
|
Lin M, Lubag A, McGuire MJ, Seliounine SY, Tsyganov EN, Antich PP, Sherry AD, Brown KC, Sun X. Advances in molecular imaging of pancreatic beta cells. FRONTIERS IN BIOSCIENCE : A JOURNAL AND VIRTUAL LIBRARY 2008; 13:4558-75. [PMID: 18508529 PMCID: PMC2790725 DOI: 10.2741/3023] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The development of non-invasive imaging methods for early diagnosis of beta cell associated metabolic diseases, including type 1 and type 2 diabetes (T1D and T2D), has recently drawn interest from the molecular imaging community and clinical investigators. Due to the challenges imposed by the location of the pancreas, the sparsely dispersed beta cell population within the pancreas, and the poor understanding of the pathogenesis of the diseases, clinical diagnosis of beta cell abnormalities is still limited. Current diagnostic methods are invasive, often inaccurate, and usually performed post-onset of the disease. Advances in imaging techniques for probing beta cell mass and function are needed to address this critical health care problem. A variety of imaging techniques have been tested for the assessment of pancreatic beta cell islets. Here we discuss current advances in magnetic resonance imaging (MRI), bioluminescence imaging (BLI), and nuclear imaging for the study of beta cell diseases. Spurred by early successes in nuclear imaging techniques for beta cells, especially positron emission tomography (PET), the need for beta cell specific ligands has expanded. Progress for obtaining such ligands is presented. We report our preliminary efforts of developing such a peptidic ligand for PET imaging of pancreatic beta cells.
Collapse
Affiliation(s)
- Mai Lin
- Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75390, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Miletic H, Fischer YH, Giroglou T, Rueger MA, Winkeler A, Li H, Himmelreich U, Stenzel W, Jacobs AH, von Laer D. Normal brain cells contribute to the bystander effect in suicide gene therapy of malignant glioma. Clin Cancer Res 2008; 13:6761-8. [PMID: 18006778 DOI: 10.1158/1078-0432.ccr-07-1240] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Lentiviral vectors pseudotyped with glycoproteins of the lymphocytic choriomeningitis virus (LCMV-GP) are promising candidates for gene therapy of malignant glioma, as they specifically and efficiently transduce glioma cells in vitro and in vivo. Here, we evaluated the therapeutic efficacy of LCMV-GP and vesicular stomatitis virus glycoprotein (VSV-G) pseudotyped vectors. EXPERIMENTAL DESIGN Therapeutic efficacy was tested for unmodified (9L) and DsRed-modified (9LDsRed) gliomas using the suicide gene thymidine kinase of the herpes simplex virus type 1 (HSV-1-tk). Positron emission tomography (PET) and magnetic resonance imaging were done to analyze transduction of tumors and monitor therapeutic outcome. RESULTS LCMV-GP pseudotypes mediated a successful eradication of 9LDsRed tumors with 100% of long-term survivors. Before initiation of ganciclovir treatment, a strong HSV-1-tk expression within the tumor was detected by noninvasive PET using the tracer 9-[4-[(18)F]fluoro-3-(hydroxymethyl)butyl]guanine. Therapeutic outcome was successfully monitored by magnetic resonance imaging and PET imaging and correlated with the histopathologic data. In the 9L model, LCMV-GP and VSV-G pseudotyped lentiviral vectors displayed similar therapeutic efficacy. Further studies revealed that normal brain cells transduced with VSV-G pseudotypes were not eliminated by ganciclovir treatment and contributed significantly to the bystander killing of tumor cells. CONCLUSIONS Suicide gene transfer using pseudotyped lentiviral vectors was very effective in the treatment of rat glioma and therefore is an attractive therapeutic strategy also in human glioblastoma especially in conjunction with an imaging-guided approach. In addition, high selectivity of gene transfer to tumor cells may not always be desirable for therapeutic genes that exert a clear bystander effect.
Collapse
Affiliation(s)
- Hrvoje Miletic
- Department of Biomedicine, University of Bergen, Jonas Liesvei 91, Bergen, Norway.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Non-invasive in-vivo molecular genetic imaging developed over the past decade and predominantly utilises radiotracer (PET, gamma camera, autoradiography), magnetic resonance and optical imaging technology. Molecular genetic imaging has its roots in both molecular biology and cell biology. The convergence of these disciplines and imaging modalities has provided the opportunity to address new research questions, including oncogenesis, tumour maintenance and progression, as well as responses to molecular-targeted therapy. Three different imaging strategies are described: (1) "bio-marker" or "surrogate" imaging; (2) "direct" imaging of specific molecules and pathway activity; (3) "indirect" reporter gene imaging. Examples of each imaging strategy are presented and discussed. Several applications of PET- and optical-based reporter imaging are demonstrated, including signal transduction pathway monitoring, oncogenesis in genetic mouse models, endogenous molecular genetic/biological processes and the response to therapy in animal models of human disease. Molecular imaging studies will compliment established ex-vivo molecular-biological assays that require tissue sampling by providing a spatial and a temporal dimension to our understanding of disease development and progression, as well as response to treatment. Although molecular imaging studies are currently being performed primarily in experimental animals, we optimistically expect they will be translated to human subjects with cancer and other diseases in the near future.
Collapse
Affiliation(s)
- Inna Serganova
- Department of Neurology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA
| | | | | | | |
Collapse
|
43
|
Abstract
Multimodality molecular imaging continues to rapidly expand and is impacting many areas of biomedical research as well as patient management. Reporter-gene assays have emerged as a very general strategy for indirectly monitoring various intracellular events. Furthermore, reporter genes are being used to monitor gene/cell therapies, including the location(s), time variation, and magnitude of gene expression. This chapter reviews reporter gene technology and its major pre-clinical and clinical applications to date. The future appears quite promising for the continued expansion of the use of reporter genes in many evolving biomedically related arenas.
Collapse
Affiliation(s)
- Jung-Joon Min
- Department of Nuclear Medicine, Chonnam National University Medical School, 160 Ilsimri, Hwasun, Jeonnam 519-809, Republic of Korea.
| | | |
Collapse
|
44
|
Rueger MA, Winkeler A, Thomas AV, Kracht LW, Jacobs AH. Molecular imaging-guided gene therapy of gliomas. Handb Exp Pharmacol 2008:341-359. [PMID: 18626610 DOI: 10.1007/978-3-540-77496-9_15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Gene therapy of patients with glioblastoma using viral and non-viral vectors, which are applied by direct injection or convection-enhanced delivery (CED), appear to be satisfactorily safe. Up to date, only single patients show a significant therapeutic benefit as deduced from single long-term survivors. Non-invasive imaging by PET for the identification of viable target tissue and for assessment of transduction efficiency shall help to identify patients which might benefit from gene therapy, while non-invasive follow-up on treatment responses allows early and dynamic adaptations of treatment options. Therefore, molecular imaging has a critical impact on the development of standardised gene therapy protocols and on efficient and safe vector applications in humans.
Collapse
Affiliation(s)
- Maria A Rueger
- Laboratory for Gene Therapy and Molecular Imaging, Max-Planck Institute for Neurological Research, Germany
| | | | | | | | | |
Collapse
|
45
|
Leiker M, Suzuki G, Iyer VS, Canty JM, Lee T. Assessment of a nuclear affinity labeling method for tracking implanted mesenchymal stem cells. Cell Transplant 2008; 17:911-22. [PMID: 19069634 PMCID: PMC2856331 DOI: 10.3727/096368908786576444] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Therapeutic implantation of mesenchymal stem cells (MSCs) is entering the realm of clinical trials for several human diseases, and yet much remains uncertain regarding their dynamic distribution and cell fate after in vivo application. Discrepancies in the literature can be attributed in part to the use of different cell labeling/tracking methods and cell administration protocols. To identify a stem cell detection method suitable for myocardial implantation in a large animal model, we experimented on three different MSC labeling methods: adenovirus-mediated expression of enhanced green fluorescence protein (EGFP) and beta-galactosidase (LacZ), and nuclear staining with DAPI. Intramuscular and intracoronary administrations of labeled porcine MSCs identified the nuclear affinity dye to be a reliable stem cell tracking marker. Stem cell identification is facilitated by an optimized live cell labeling condition generating bright blue fluorescence sharply confined to the nucleus. DAPI-labeled MSCs retained full viability, ceased proliferation, and exhibited an increased differentiation potential. The labeled MSCs remained fully active in expressing key growth factor and cytokine genes, and notably exhibited enhanced expression of the chemokine receptor CXCR4 and its ligand SDF1, indicating their competency in response to tissue injury. Histological analysis revealed that approximately half a million MSCs or approximately 2% of the administered MSCs remained localized in the normal pig heart 2 weeks after coronary infusion. That the vast majority of these identified MSCs were interstitial indicated the ability of MSCs to migrate across the coronary endothelium. No evidence was obtained indicating MSC differentiation to cardiomyocyte.
Collapse
Affiliation(s)
- Merced Leiker
- Center for Research in Cardiovascular Medicine, University at Buffalo, Buffalo, NY, USA
| | | | | | | | | |
Collapse
|
46
|
Pantaleo MA, Nannini M, Maleddu A, Fanti S, Ambrosini V, Nanni C, Boschi S, Biasco G. Conventional and novel PET tracers for imaging in oncology in the era of molecular therapy. Cancer Treat Rev 2007; 34:103-21. [PMID: 18055120 DOI: 10.1016/j.ctrv.2007.10.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Revised: 10/03/2007] [Accepted: 10/06/2007] [Indexed: 01/18/2023]
Abstract
In the last ten years, the development of several novel targeted drugs and the refinement of state of the art technologies such as the genomics and proteomics and their introduction to clinical practice have revolutionized the management of patients affected by cancer. However, everyday practice points out several clinical questions: the difficulty of response assessment to new drugs especially using standard RECIST criteria that do not provide information on biological, vascular or metabolic variations; the inadequate selection of patients who are likely to benefit from a targeted therapy excluding those with breast cancer and gastrointestinal stromal tumours; the need to know the global biological background of diseases especially in metastatic setting using repeatable non-invasive procedures. Molecular imaging could provide information on in vivo distribution of biological markers in response to targeted therapy and could improve the selection of patients before therapies. The aim of this review is to analyze the current role of conventional and innovative positron emission tomography (PET) radiotracers in clinical practice and to explore the promising perspectives of molecular imaging in cancer research.
Collapse
Affiliation(s)
- M A Pantaleo
- Institute of Hematology and Medical Oncology L. & A. Seragnoli, Sant'Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Yaghoubi SS, Gambhir SS. PET imaging of herpes simplex virus type 1 thymidine kinase (HSV1-tk) or mutant HSV1-sr39tk reporter gene expression in mice and humans using [18F]FHBG. Nat Protoc 2007; 1:3069-75. [PMID: 17406570 DOI: 10.1038/nprot.2006.459] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The herpes simplex virus type 1 thymidine kinase (HSV1-tk) positron emission tomography (PET) reporter gene (PRG) or its mutant HSV1-sr39tk are used to investigate intracellular molecular events in cultured cells and to image intracellular molecular events and cell trafficking in living subjects. The expression of these PRGs can be imaged using 18F- or 124I-radiolabeled acycloguanosine or pyrimidine analog PET reporter probes (PRPs). This protocol describes the procedures for imaging HSV1-tk or HSV1-sr39tk PRG expression in living subjects with the acycloguanosine analog 9-4-[18F]fluoro-3-(hydroxymethyl)butyl]guanine ([18F]FHBG). [18F]FHBG is a high-affinity substrate for the HSV1-sr39TK enzyme with relatively low affinity for mammalian TK enzymes, resulting in improved detection sensitivity. Furthermore, [18F]FHBG is approved by the US Food and Drug Administration as an investigational new imaging agent and has been shown to detect HSV1-tk transgene expression in the liver tumors of patients. MicroPET imaging of each small animal can be completed in approximately 1.5 h, and each patient imaging session takes approximately 3 h.
Collapse
Affiliation(s)
- Shahriar S Yaghoubi
- Bio-X Program, Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Clark Center, 318 Campus Drive, E150, Stanford, CA 94305-5427, USA
| | | |
Collapse
|
48
|
Yaghoubi SS, Gambhir SS. Measuring herpes simplex virus thymidine kinase reporter gene expression in vitro. Nat Protoc 2007; 1:2137-42. [PMID: 17487205 DOI: 10.1038/nprot.2006.334] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The herpes simplex 1 virus thymidine kinase (HSV1-tk) positron emission tomography (PET) reporter gene (PRG) or its mutant HSV1-sr39tk are used to investigate intracellular molecular events in cultured cells and for imaging intracellular molecular events and cell trafficking in living subjects. Two in vitro methods are available to assay gene expression of HSV1-tk or HSV1-sr39tk in cells or tissues. One method determines the level of HSV1-TK or HSV1-sr39TK enzyme activity in cell or tissue lysates by measuring the amount of the radiolabeled substrates that have been phosphorylated by these enzymes in a fixed amount of cell lysate protein after a fixed incubation time. The other method, called the 'cell-uptake assay', takes into account the natural uptake and efflux characteristics of the radiolabeled substrate by specific cells, in addition to the level of HSV1-TK or HSV1-sr39TK activity. Both of these assays can be used to validate molecular models in cultured cells, prior to studying them in living research subjects. Each of these assays can be completed in one day.
Collapse
Affiliation(s)
- Shahriar S Yaghoubi
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Clark Center, 318 Campus Drive, E150, Stanford, CA 94305-5427, USA
| | | |
Collapse
|
49
|
Siddiqui F, Barton KN, Stricker HJ, Steyn PF, Larue SM, Karvelis KC, Sparks RB, Kim JH, Brown SL, Freytag SO. Design considerations for incorporating sodium iodide symporter reporter gene imaging into prostate cancer gene therapy trials. Hum Gene Ther 2007; 18:312-22. [PMID: 17408358 DOI: 10.1089/hum.2006.131] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This study was done to aid in the design of a phase I gene therapy trial in patients with prostate cancer. We determined the dosimetric characteristics of our reporter gene system when coupled with intravenous administration of radioactive sodium pertechnetate (Na(99m) TcO(4)) and determined the feasibility of using human sodium iodide symporter (hNIS) as a reporter gene to study the dynamics of adenoviral transgene expression in a large animal tumor. A replication-competent Ad5-yCD/mutTK(SR39) rep-hNIS adenovirus was injected into the prostate gland of dogs for dosimetry purposes, and into a canine soft tissue sarcoma (STS) for imaging purposes. After resection of the prostate, the amount of (99m)TcO(4)() sequestered in the prostate was determined, the radiation dose absorbed by the prostate and nontarget critical organs was calculated, and hNIS reporter gene expression was imaged in the STS by single-photon emission computed tomography (SPECT). On the basis of the findings from 25 dogs, the amount of (99m)TcO (4)() sequestered in the prostate ranged from 13 to 276 muCi. Using the highest value observed, absorbed radiation dose to critical organs was calculated and found to be below U.S. Food and Drug Administration limits for diagnostic imaging. Also, (99m)TcO (4)() uptake was readily detected by SPECT and found to persist in vivo for at least 4 days. On the basis of our dosimetry calculations, up to five imaging procedures can be safely performed in humans after intraprostatic injection of the Ad5-yCD/mutTK(SR39)rep-hNIS adenovirus and the hNIS reporter gene system can be used to study the dynamics of adenoviral gene therapy vectors in large animal tumors.
Collapse
Affiliation(s)
- Farzan Siddiqui
- Department of Radiation Oncology, Henry Ford Health System, Detroit, MI 48202
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Miletic H, Fischer Y, Litwak S, Giroglou T, Waerzeggers Y, Winkeler A, Li H, Himmelreich U, Lange C, Stenzel W, Deckert M, Neumann H, Jacobs AH, von Laer D. Bystander killing of malignant glioma by bone marrow-derived tumor-infiltrating progenitor cells expressing a suicide gene. Mol Ther 2007; 15:1373-81. [PMID: 17457322 DOI: 10.1038/sj.mt.6300155] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Adult stem cells are promising cellular vehicles for therapy of malignant gliomas as they have the ability to migrate into these tumors and even track infiltrating tumor cells. However, their clinical use is limited by a low passaging capacity that impedes large-scale production. In the present study, a bone marrow-derived, highly proliferative subpopulation of mesenchymal stem cells (MSCs)-here termed bone marrow-derived tumor-infiltrating cells (BM-TICs)-was genetically modified for the treatment of malignant glioma. Upon injection into the tumor or the vicinity of the tumor, BM-TICs infiltrated solid parts as well as the border of rat 9L glioma. After intra-tumoral injection, BM-TICs expressing the thymidine kinase of herpes simplex virus (HSV-tk) and enhanced green fluorescent protein (BM-TIC-tk-GFP) were detected by non-invasive positron emission tomography (PET) using the tracer 9-[4-[(18)F]fluoro-3-hydroxymethyl)butyl]guanine ([(18)F]FHBG). A therapeutic effect was demonstrated in vitro and in vivo by BM-TICs expressing HSV-tk through bystander-mediated glioma cell killing. Therapeutic efficacy was monitored by PET as well as by magnetic resonance imaging (MRI) and strongly correlated with histological analysis. In conclusion, BM-TICs expressing a suicide gene were highly effective in the treatment of malignant glioma in a rat model and therefore hold great potential for the therapy of malignant brain tumors in humans.
Collapse
Affiliation(s)
- Hrvoje Miletic
- Abteilung für Neuropathologie, Universität zu Köln, Köln, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|