1
|
Kumar A, Das SK, Emdad L, Fisher PB. Applications of tissue-specific and cancer-selective gene promoters for cancer diagnosis and therapy. Adv Cancer Res 2023; 160:253-315. [PMID: 37704290 DOI: 10.1016/bs.acr.2023.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Current treatment of solid tumors with standard of care chemotherapies, radiation therapy and/or immunotherapies are often limited by severe adverse toxic effects, resulting in a narrow therapeutic index. Cancer gene therapy represents a targeted approach that in principle could significantly reduce undesirable side effects in normal tissues while significantly inhibiting tumor growth and progression. To be effective, this strategy requires a clear understanding of the molecular biology of cancer development and evolution and developing biological vectors that can serve as vehicles to target cancer cells. The advent and fine tuning of omics technologies that permit the collective and spatial recognition of genes (genomics), mRNAs (transcriptomics), proteins (proteomics), metabolites (metabolomics), epiomics (epigenomics, epitranscriptomics, and epiproteomics), and their interactomics in defined complex biological samples provide a roadmap for identifying crucial targets of relevance to the cancer paradigm. Combining these strategies with identified genetic elements that control target gene expression uncovers significant opportunities for developing guided gene-based therapeutics for cancer. The purpose of this review is to overview the current state and potential limitations in developing gene promoter-directed targeted expression of key genes and highlights their potential applications in cancer gene therapy.
Collapse
Affiliation(s)
- Amit Kumar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Swadesh K Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| |
Collapse
|
2
|
Flem-Karlsen K, Tekle C, Andersson Y, Flatmark K, Fodstad Ø, Nunes-Xavier CE. Immunoregulatory protein B7-H3 promotes growth and decreases sensitivity to therapy in metastatic melanoma cells. Pigment Cell Melanoma Res 2017; 30:467-476. [PMID: 28513992 DOI: 10.1111/pcmr.12599] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 05/09/2017] [Indexed: 12/26/2022]
Abstract
B7-H3 (CD276) belongs to the B7 family of immunoregulatory proteins and has been implicated in cancer progression and metastasis. In this study, we found that metastatic melanoma cells with knockdown expression of B7-H3 showed modest decrease in proliferation and glycolytic capacity and were more sensitive to dacarbazine (DTIC) chemotherapy and small-molecule inhibitors targeting MAP kinase (MAPK) and AKT/mTOR pathways: vemurafenib (PLX4032; BRAF inhibitor), binimetinib (MEK-162; MEK inhibitor), everolimus (RAD001; mTOR inhibitor), and triciribidine (API-2; AKT inhibitor). Similar effects were observed in melanoma cells in the presence of an inhibitory B7-H3 monoclonal antibody, while the opposite was seen in B7-H3-overexpressing cells. Further, combining B7-H3 inhibition with small-molecule inhibitors resulted in significantly increased antiproliferative effect in melanoma cells, as well as in BRAFV600E mutated cell lines derived from patient biopsies. Our findings indicate that targeting B7-H3 may be a novel alternative to improve current therapy of metastatic melanoma.
Collapse
Affiliation(s)
- Karine Flem-Karlsen
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway.,Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Christina Tekle
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway
| | - Yvonne Andersson
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway
| | - Kjersti Flatmark
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway.,Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Øystein Fodstad
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway.,Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Caroline E Nunes-Xavier
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway
| |
Collapse
|
3
|
Fofaria NM, Srivastava SK. Critical role of STAT3 in melanoma metastasis through anoikis resistance. Oncotarget 2014; 5:7051-64. [PMID: 25216522 PMCID: PMC4196183 DOI: 10.18632/oncotarget.2251] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 07/24/2014] [Indexed: 11/28/2022] Open
Abstract
Anoikis is an anchorage-independent cell death. Resistance to anoikis is one of the key features of metastatic cells. Here, we analyzed the role of STAT3 in anoikis resistance in melanoma cells leading to metastasis. When grown under anchorage-independent conditions, significant proportion of cells resisted anoikis and these resistant cells had higher rate of migration and invasion as compared to the cells grown under anchorage-dependent conditions. The anoikis resistant cells also had significantly higher expression and phosphorylation of STAT3 at Y705 than the cells that were attached to the basement membrane. STAT3 inhibitors, AG 490 and piplartine (PL) induced anoikis in a concentration-dependent manner in anoikis resistant cells. Over-expression of STAT3 or treatment with IL-6 not only increased anoikis resistance, but also protected the cancer cells from PL-induced anoikis. On the other hand, silencing STAT3 decreased the potential of cancer cells to resist anoikis and to migrate. STAT3 knock-down cells and PL treated cells did not form tumors as well as failed to metastasize in SCID-NSG mice as compared to untreated anchorage-independent cells, which formed big tumors and extensively metastasized. In summary, our results for the first time establish STAT3 as a critical player that renders anoikis resistance to melanoma cells and enhance their metastatic potential.
Collapse
Affiliation(s)
- Neel M Fofaria
- Department of Biomedical Sciences & Cancer Biology Center, Texas Tech University Health Sciences Center, Amarillo, Texas 79106, USA
| | - Sanjay K Srivastava
- Department of Biomedical Sciences & Cancer Biology Center, Texas Tech University Health Sciences Center, Amarillo, Texas 79106, USA
| |
Collapse
|
4
|
Bhang HEC, Pomper MG. Cancer imaging: Gene transcription-based imaging and therapeutic systems. Int J Biochem Cell Biol 2012; 44:684-9. [PMID: 22349219 PMCID: PMC3324783 DOI: 10.1016/j.biocel.2012.02.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2011] [Revised: 01/31/2012] [Accepted: 02/01/2012] [Indexed: 12/11/2022]
Abstract
Molecular-genetic imaging of cancer is in its infancy. Over the past decade gene reporter systems have been optimized in preclinical models and some have found their way into the clinic. The search is on to find the best combination of gene delivery vehicle and reporter imaging system that can be translated safely and quickly. The goal is to have a combination that can detect a wide variety of cancers with high sensitivity and specificity in a way that rivals the current clinical standard, positron emission tomography with [(18)F]fluorodeoxyglucose. To do so will require systemic delivery of reporter genes for the detection of micrometastases, and a nontoxic vector, whether viral or based on nanotechnology, to gain widespread acceptance by the oncology community. Merger of molecular-genetic imaging with gene therapy, a strategy that has been employed in the past, will likely be necessary for such imaging to reach widespread clinical use.
Collapse
Affiliation(s)
- Hyo-eun C Bhang
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD 21231, USA
| | | |
Collapse
|
5
|
Jiang ZK, Sato M, Wu L. Chapter five--The development of transcription-regulated adenoviral vectors with high cancer-selective imaging capabilities. Adv Cancer Res 2012; 115:115-46. [PMID: 23021244 DOI: 10.1016/b978-0-12-398342-8.00005-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
A clear benefit of molecular imaging is to enable noninvasive, repetitive monitoring of intrinsic signals within tumor cells as a means to identify the lesions as malignant or to assess the ability of treatment to perturb key pathways within the tumor cells. Due to the promising utility of molecular imaging in oncology, preclinical research to refine molecular imaging techniques in small animals is a blossoming field. We will first discuss the several imaging modalities such as fluorescent imaging, bioluminescence imaging, and positron emission tomography that are now commonly used in small animal settings. The indirect imaging approach, which can be adapted to a wide range of imaging reporter genes, is a useful platform to develop molecular imaging. In particular, reporter gene-based imaging is well suited for transcriptional-targeted imaging that can be delivered by recombinant adenoviral vectors. In this review, we will summarize transcription-regulated strategies used in adenoviral-mediated molecular imaging to visualize metastasis and monitor oncolytic therapy in preclinical models.
Collapse
Affiliation(s)
- Ziyue Karen Jiang
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, USA
| | | | | |
Collapse
|
6
|
Grotterød I, Mælandsmo GM, Boye K. Signal transduction mechanisms involved in S100A4-induced activation of the transcription factor NF-kappaB. BMC Cancer 2010; 10:241. [PMID: 20507646 PMCID: PMC2902441 DOI: 10.1186/1471-2407-10-241] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Accepted: 05/28/2010] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The metastasis-promoting protein S100A4 activates the transcription factor NF-kappaB through the classical NF-kappaB activation pathway. The upstream signal transduction mechanisms leading to increased NF-kappaB activity are, however, incompletely characterized. METHODS The human osteosarcoma cell line II-11b was stimulated with recombinant S100A4 in the presence or absence of inhibitors of common signal transduction pathways, and NF-kappaB activity was examined using a luciferase-based reporter assay and phosphorylation of IkappaBalpha. mRNA expression was analyzed by real-time RT-PCR, protein expression was examined by Western blotting and IKK activity was measured using an in vitro kinase assay. The role of upstream kinases and the cell surface receptor RAGE was investigated by overexpression of dominant negative proteins and by siRNA transfection. RESULTS The Ser/Thr kinase inhibitors H-7 and staurosporine inhibited S100A4-induced IkappaBalpha phosphorylation and subsequent NF-kappaB activation. The protein tyrosine kinase inhibitor genistein and the phospholipase C inhibitor compound 48/80 had a partial inhibitory effect on IkappaBalpha phosphorylation, whereas inhibitors of protein kinase C, G-protein coupled receptors and PI 3-kinases had no effect on the level of phosphorylation. Interestingly, S100A4 treatment induced activating phosphorylations of IKKalpha/beta, but neither H-7 nor staurosporine was able to significantly inhibit IKK activation. Dominant negative MEKK1 or NIK did not inhibit S100A4-induced NF-kappaB activity, and S100A4 stimulation did not influence AKT phosphorylation. Furthermore, diminished expression of the putative S100 protein receptor RAGE did not affect the observed phosphorylation of IkappaBalpha. CONCLUSIONS S100A4 activates NF-kappaB by inducing phosphorylation of IKKalpha/beta, leading to increased IkappaBalpha phosphorylation. The Ser/Thr kinase inhibitors H-7 and staurosporine attenuated S100A4-induced NF-kappaB activation and inhibited IKK-mediated phosphorylation of IkappaBalpha. S100A4-induced NF-kappaB activation was independent of the putative S100 protein receptor RAGE and the Ser/Thr kinases MEKK1, NIK and AKT. These findings lead to increased understanding of S100A4 signaling, which may contribute to the identification of novel targets for anti-metastatic therapy.
Collapse
Affiliation(s)
- Ida Grotterød
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, 0310 Oslo, Norway
| | - Gunhild M Mælandsmo
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, 0310 Oslo, Norway
- Department of Pharmacy, Faculty of Health Sciences, University of Tromsø, 9037 Tromsø, Norway
| | - Kjetil Boye
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, 0310 Oslo, Norway
- Department of Oncology, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, 0310 Oslo, Norway
| |
Collapse
|
7
|
Vähä-Koskela MJ, Heikkilä JE, Hinkkanen AE. Oncolytic viruses in cancer therapy. Cancer Lett 2007; 254:178-216. [PMID: 17383089 PMCID: PMC7126325 DOI: 10.1016/j.canlet.2007.02.002] [Citation(s) in RCA: 220] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2006] [Revised: 02/01/2007] [Accepted: 02/05/2007] [Indexed: 12/26/2022]
Abstract
Oncolytic virotherapy is a promising form of gene therapy for cancer, employing nature’s own agents to find and destroy malignant cells. The purpose of this review is to provide an introduction to this very topical field of research and to point out some of the current observations, insights and ideas circulating in the literature. We have strived to acknowledge as many different oncolytic viruses as possible to give a broader picture of targeting cancer using viruses. Some of the newest additions to the panel of oncolytic viruses include the avian adenovirus, foamy virus, myxoma virus, yaba-like disease virus, echovirus type 1, bovine herpesvirus 4, Saimiri virus, feline panleukopenia virus, Sendai virus and the non-human coronaviruses. Although promising, virotherapy still faces many obstacles that need to be addressed, including the emergence of virus-resistant tumor cells.
Collapse
Affiliation(s)
- Markus J.V. Vähä-Koskela
- Åbo Akademi University, Department of Biochemistry and Pharmacy and Turku Immunology Centre, Turku, Finland
- Turku Graduate School of Biomedical Sciences, Turku, Finland
- Corresponding author. Address: Åbo Akademi University, Department of Biochemistry and Pharmacy and Turku Immunology Centre, Turku, Finland. Tel.: +358 2 215 4018; fax: +358 2 215 4745.
| | - Jari E. Heikkilä
- Åbo Akademi University, Department of Biochemistry and Pharmacy and Turku Immunology Centre, Turku, Finland
| | - Ari E. Hinkkanen
- Åbo Akademi University, Department of Biochemistry and Pharmacy and Turku Immunology Centre, Turku, Finland
| |
Collapse
|
8
|
Dass CR, Choong PFM. Selective gene delivery for cancer therapy using cationic liposomes: in vivo proof of applicability. J Control Release 2006; 113:155-63. [PMID: 16764960 DOI: 10.1016/j.jconrel.2006.04.009] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2006] [Revised: 04/06/2006] [Accepted: 04/06/2006] [Indexed: 10/24/2022]
Abstract
Targeted gene therapy is essential if cancer treatment is to become a reality with this form of therapy. In the past few years, cationic liposomes, discovered 2 decades ago, and at present, the most commonly used class of transfection reagents, have been tested in various clinical trials for diseases not restricted to cancer. They have been shown to be selective for tumour vascular endothelial cells raising hopes for antiangiogenic and antivascular therapies. They are also capable of being selectively delivered to the lungs and liver when administered intravenously. These vesicles are also being targeted to the tumour in various parts of the body by using advanced liposomal systems such as antibody-antigen and ligand-receptor combinations. This review looks at the state of play in this rapidly growing field.
Collapse
Affiliation(s)
- Crispin R Dass
- Department of Orthopaedics, University of Melbourne, St. Vincent's Hospital Melbourne, P.O. Box 2900, Fitzroy 3065, Australia.
| | | |
Collapse
|