1
|
You J, Guo Y, Dong Z. Polypeptides-Based Nanocarriers in Tumor Therapy. Pharmaceutics 2024; 16:1192. [PMID: 39339228 PMCID: PMC11435007 DOI: 10.3390/pharmaceutics16091192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/07/2024] [Accepted: 09/08/2024] [Indexed: 09/30/2024] Open
Abstract
Cancer remains a worldwide problem, and new treatment strategies are being actively developed. Peptides have the characteristics of good biocompatibility, strong targeting, functional diversity, modifiability, membrane permeable ability, and low immunogenicity, and they have been widely used to construct targeted drug delivery systems (DDSs). In addition, peptides, as endogenous substances, have a high affinity, which can not only regulate immune cells but also work synergistically with drugs to kill tumor cells, demonstrating significant potential for application. In this review, the latest progress of polypeptides-based nanocarriers in tumor therapy has been outlined, focusing on their applications in killing tumor cells and regulating immune cells. Additionally, peptides as carriers were found to primarily provide a transport function, which was also a subject of interest to us. At the end of the paper, the shortcomings in the construction of peptide nano-delivery system have been summarized, and possible solutions are proposed therein. The application of peptides provides a promising outlook for cancer treatment, and we hope this article can provide in-depth insights into possible future avenues of exploration.
Collapse
Affiliation(s)
- Juhua You
- School of Pharmacy, Heilongjiang University of Chinese Medicine, No. 24, Heping Road, Xiangfang District, Harbin 150040, China
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Yifei Guo
- School of Pharmacy, Heilongjiang University of Chinese Medicine, No. 24, Heping Road, Xiangfang District, Harbin 150040, China
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Zhengqi Dong
- School of Pharmacy, Heilongjiang University of Chinese Medicine, No. 24, Heping Road, Xiangfang District, Harbin 150040, China
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| |
Collapse
|
2
|
Yi X, Hussain I, Zhang P, Xiao C. Nuclear-Targeting Peptides for Cancer Therapy. Chembiochem 2024:e202400596. [PMID: 39215136 DOI: 10.1002/cbic.202400596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/19/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
Nucleus is the central regulator of cells that controls cell proliferation, metabolism, and cell cycle, and is considered the most important organelle in cells. The precision medicine that can achieve nuclear targeting has achieved good therapeutic effects in anti-tumor therapy. However, the presence of biological barriers such as cell membranes and nuclear membranes in cells limit the delivery of therapeutic agents to the nucleus. Therefore, developing effective nuclear-targeting drug delivery strategies is particularly important. Nuclear-targeting peptides are a class of functional peptides that can penetrate cell membranes and target the nucleus. They mainly recognize and bind to the nuclear transport molecules (such as Importin-α/β) and transport the therapeutic agents to the nucleus through nuclear pore complexes (NPC). This review summarizes the most recent developments of strategies for anti-tumor therapy utilizing nuclear-targeting peptides, which will ultimately contribute to the development of more effective nuclear-targeting strategies to achieve better anti-tumor outcomes.
Collapse
Affiliation(s)
- Xuan Yi
- Key Laboratory of Polymer Ecomaterials, Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P.R. China
| | - Irshad Hussain
- Department of Chemistry and Chemical Engineering, SBA School of Science & Engineering, Lahore University of Management Sciences (LUMS). DHA, Lahore, 54792, Pakistan
| | - Peng Zhang
- Key Laboratory of Polymer Ecomaterials, Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P.R. China
| | - Chunsheng Xiao
- Key Laboratory of Polymer Ecomaterials, Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P.R. China
| |
Collapse
|
3
|
Zhang Z, Zhang X, Zheng Q, Zhang J, Zhang M, Wang XD. A non-residue surface modification strategy for active-targeting fluorescent silica nanoparticles to cellular organelles. Mikrochim Acta 2024; 191:181. [PMID: 38446252 DOI: 10.1007/s00604-024-06239-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/25/2024] [Indexed: 03/07/2024]
Abstract
Silica nanoparticles (SiNPs) with a chemically modified surface typically have a complicated chemical composition, which can significantly differ from their intended design. In this study, we systematically studied the effects of two surface modification methods on active-targeting of intracellular organelles of SiNPs: (1) the widely used step-by-step approach, which involves modifying SiNPs in two steps, i.e., the outer surface of SiNPs was firstly modified with amino groups and then these amino groups were linked with targeting groups, and (2) a newly developed one-step approach in which the ligand-silane complex is initially synthesized, followed by chemically immobilizing the complex on the surface of SiNPs. In the one-step approach, the molar ratio of reactants was precisely tuned so that there are no reactive groups left on the outer surface of SiNPs. Two essential organelles, mitochondria and the nucleus, were selected to compare the targeting performances of SiNPs synthesized via these two approaches. By characterizing physicochemical properties, including structural properties, the number of amino groups, surface charge, polydispersity, and cell colocalization, we demonstrated that SiNPs synthesized via the one-step approach with no residual linkage groups on their surface showed significantly improved mitochondria- and nucleus-targeting performances. This precise control of surface properties allows for optimized biological behavior and active-targeting efficiency of SiNPs. We anticipate that such simple and efficient synthetic strategies will enable the synthesis of effective SiNPs for active-targeting organelles in various biological applications.
Collapse
Affiliation(s)
- Zeyu Zhang
- Department of Chemistry and Human Phenome Institute, Fudan University, 200433, Shanghai, People's Republic of China
| | - Xiaoai Zhang
- Department of Chemistry and Human Phenome Institute, Fudan University, 200433, Shanghai, People's Republic of China
| | - Qiaowen Zheng
- College of Chemistry, Chemical Engineering and Environment, Fujian Province Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou, 363000, China
| | - Junying Zhang
- College of Chemistry, Chemical Engineering and Environment, Fujian Province Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou, 363000, China
| | - Maosheng Zhang
- College of Chemistry, Chemical Engineering and Environment, Fujian Province Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou, 363000, China.
| | - Xu-Dong Wang
- Department of Chemistry and Human Phenome Institute, Fudan University, 200433, Shanghai, People's Republic of China.
| |
Collapse
|
4
|
Yang Y, Zhang Y, Yang J, Zhang M, Tian T, Jiang Y, Liu X, Xue G, Li X, Zhang X, Li S, Huang X, Li Z, Guo Y, Zhao L, Bao H, Zhou Z, Song J, Yang G, Xuan L, Shan H, Zhang Z, Lu Y, Yang B, Pan Z. Interdependent Nuclear Co-Trafficking of ASPP1 and p53 Aggravates Cardiac Ischemia/Reperfusion Injury. Circ Res 2023; 132:208-222. [PMID: 36656967 PMCID: PMC9855749 DOI: 10.1161/circresaha.122.321153] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE ASPP1 (apoptosis stimulating of p53 protein 1) is critical in regulating cell apoptosis as a cofactor of p53 to promote its transcriptional activity in the nucleus. However, whether cytoplasmic ASPP1 affects p53 nuclear trafficking and its role in cardiac diseases remains unknown. This study aims to explore the mechanism by which ASPP1 modulates p53 nuclear trafficking and the subsequent contribution to cardiac ischemia/reperfusion (I/R) injury. METHODS AND RESULTS The immunofluorescent staining showed that under normal condition ASPP1 and p53 colocalized in the cytoplasm of neonatal mouse ventricular cardiomyocytes, while they were both upregulated and translocated to the nuclei upon hypoxia/reoxygenation treatment. The nuclear translocation of ASPP1 and p53 was interdependent, as knockdown of either ASPP1 or p53 attenuated nuclear translocation of the other one. Inhibition of importin-β1 resulted in the cytoplasmic sequestration of both p53 and ASPP1 in neonatal mouse ventricular cardiomyocytes with hypoxia/reoxygenation stimulation. Overexpression of ASPP1 potentiated, whereas knockdown of ASPP1 inhibited the expression of Bax (Bcl2-associated X), PUMA (p53 upregulated modulator of apoptosis), and Noxa, direct apoptosis-associated targets of p53. ASPP1 was also increased in the I/R myocardium. Cardiomyocyte-specific transgenic overexpression of ASPP1 aggravated I/R injury as indicated by increased infarct size and impaired cardiac function. Conversely, knockout of ASPP1 mitigated cardiac I/R injury. The same qualitative data were observed in neonatal mouse ventricular cardiomyocytes exposed to hypoxia/reoxygenation injury. Furthermore, inhibition of p53 significantly blunted the proapoptotic activity and detrimental effects of ASPP1 both in vitro and in vivo. CONCLUSIONS Binding of ASPP1 to p53 triggers their nuclear cotranslocation via importin-β1 that eventually exacerbates cardiac I/R injury. The findings imply that interfering the expression of ASPP1 or the interaction between ASPP1 and p53 to block their nuclear trafficking represents an important therapeutic strategy for cardiac I/R injury.
Collapse
Affiliation(s)
- Ying Yang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Heilongjiang, China (Y.Y., Y.Z., J.Y., M.Z., T.T., Y.J., X.L., G.X., X.L., X.Z., S.L., X.H., Z.L., Y.G., L.Z., H.B., Z. Zhou, J.S., G.Y., L.X., H.S., Y.L., B.Y., Z.P.).,Department of Cardiology, Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, China (Y.Y.)
| | - Yang Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Heilongjiang, China (Y.Y., Y.Z., J.Y., M.Z., T.T., Y.J., X.L., G.X., X.L., X.Z., S.L., X.H., Z.L., Y.G., L.Z., H.B., Z. Zhou, J.S., G.Y., L.X., H.S., Y.L., B.Y., Z.P.)
| | - Jiqin Yang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Heilongjiang, China (Y.Y., Y.Z., J.Y., M.Z., T.T., Y.J., X.L., G.X., X.L., X.Z., S.L., X.H., Z.L., Y.G., L.Z., H.B., Z. Zhou, J.S., G.Y., L.X., H.S., Y.L., B.Y., Z.P.)
| | - Manman Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Heilongjiang, China (Y.Y., Y.Z., J.Y., M.Z., T.T., Y.J., X.L., G.X., X.L., X.Z., S.L., X.H., Z.L., Y.G., L.Z., H.B., Z. Zhou, J.S., G.Y., L.X., H.S., Y.L., B.Y., Z.P.)
| | - Tao Tian
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Heilongjiang, China (Y.Y., Y.Z., J.Y., M.Z., T.T., Y.J., X.L., G.X., X.L., X.Z., S.L., X.H., Z.L., Y.G., L.Z., H.B., Z. Zhou, J.S., G.Y., L.X., H.S., Y.L., B.Y., Z.P.)
| | - Yuan Jiang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Heilongjiang, China (Y.Y., Y.Z., J.Y., M.Z., T.T., Y.J., X.L., G.X., X.L., X.Z., S.L., X.H., Z.L., Y.G., L.Z., H.B., Z. Zhou, J.S., G.Y., L.X., H.S., Y.L., B.Y., Z.P.).,Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China (Y.J.)
| | - Xuening Liu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Heilongjiang, China (Y.Y., Y.Z., J.Y., M.Z., T.T., Y.J., X.L., G.X., X.L., X.Z., S.L., X.H., Z.L., Y.G., L.Z., H.B., Z. Zhou, J.S., G.Y., L.X., H.S., Y.L., B.Y., Z.P.)
| | - Genlong Xue
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Heilongjiang, China (Y.Y., Y.Z., J.Y., M.Z., T.T., Y.J., X.L., G.X., X.L., X.Z., S.L., X.H., Z.L., Y.G., L.Z., H.B., Z. Zhou, J.S., G.Y., L.X., H.S., Y.L., B.Y., Z.P.)
| | - Xingda Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Heilongjiang, China (Y.Y., Y.Z., J.Y., M.Z., T.T., Y.J., X.L., G.X., X.L., X.Z., S.L., X.H., Z.L., Y.G., L.Z., H.B., Z. Zhou, J.S., G.Y., L.X., H.S., Y.L., B.Y., Z.P.)
| | - Xiaofang Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Heilongjiang, China (Y.Y., Y.Z., J.Y., M.Z., T.T., Y.J., X.L., G.X., X.L., X.Z., S.L., X.H., Z.L., Y.G., L.Z., H.B., Z. Zhou, J.S., G.Y., L.X., H.S., Y.L., B.Y., Z.P.)
| | - Shangxuan Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Heilongjiang, China (Y.Y., Y.Z., J.Y., M.Z., T.T., Y.J., X.L., G.X., X.L., X.Z., S.L., X.H., Z.L., Y.G., L.Z., H.B., Z. Zhou, J.S., G.Y., L.X., H.S., Y.L., B.Y., Z.P.)
| | - Xiang Huang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Heilongjiang, China (Y.Y., Y.Z., J.Y., M.Z., T.T., Y.J., X.L., G.X., X.L., X.Z., S.L., X.H., Z.L., Y.G., L.Z., H.B., Z. Zhou, J.S., G.Y., L.X., H.S., Y.L., B.Y., Z.P.)
| | - Zheng Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Heilongjiang, China (Y.Y., Y.Z., J.Y., M.Z., T.T., Y.J., X.L., G.X., X.L., X.Z., S.L., X.H., Z.L., Y.G., L.Z., H.B., Z. Zhou, J.S., G.Y., L.X., H.S., Y.L., B.Y., Z.P.)
| | - Yang Guo
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Heilongjiang, China (Y.Y., Y.Z., J.Y., M.Z., T.T., Y.J., X.L., G.X., X.L., X.Z., S.L., X.H., Z.L., Y.G., L.Z., H.B., Z. Zhou, J.S., G.Y., L.X., H.S., Y.L., B.Y., Z.P.)
| | - Lexin Zhao
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Heilongjiang, China (Y.Y., Y.Z., J.Y., M.Z., T.T., Y.J., X.L., G.X., X.L., X.Z., S.L., X.H., Z.L., Y.G., L.Z., H.B., Z. Zhou, J.S., G.Y., L.X., H.S., Y.L., B.Y., Z.P.)
| | - Hairong Bao
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Heilongjiang, China (Y.Y., Y.Z., J.Y., M.Z., T.T., Y.J., X.L., G.X., X.L., X.Z., S.L., X.H., Z.L., Y.G., L.Z., H.B., Z. Zhou, J.S., G.Y., L.X., H.S., Y.L., B.Y., Z.P.)
| | - Zhiwen Zhou
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Heilongjiang, China (Y.Y., Y.Z., J.Y., M.Z., T.T., Y.J., X.L., G.X., X.L., X.Z., S.L., X.H., Z.L., Y.G., L.Z., H.B., Z. Zhou, J.S., G.Y., L.X., H.S., Y.L., B.Y., Z.P.)
| | - Jiahui Song
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Heilongjiang, China (Y.Y., Y.Z., J.Y., M.Z., T.T., Y.J., X.L., G.X., X.L., X.Z., S.L., X.H., Z.L., Y.G., L.Z., H.B., Z. Zhou, J.S., G.Y., L.X., H.S., Y.L., B.Y., Z.P.)
| | - Guohui Yang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Heilongjiang, China (Y.Y., Y.Z., J.Y., M.Z., T.T., Y.J., X.L., G.X., X.L., X.Z., S.L., X.H., Z.L., Y.G., L.Z., H.B., Z. Zhou, J.S., G.Y., L.X., H.S., Y.L., B.Y., Z.P.)
| | - Lina Xuan
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Heilongjiang, China (Y.Y., Y.Z., J.Y., M.Z., T.T., Y.J., X.L., G.X., X.L., X.Z., S.L., X.H., Z.L., Y.G., L.Z., H.B., Z. Zhou, J.S., G.Y., L.X., H.S., Y.L., B.Y., Z.P.)
| | - Hongli Shan
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Heilongjiang, China (Y.Y., Y.Z., J.Y., M.Z., T.T., Y.J., X.L., G.X., X.L., X.Z., S.L., X.H., Z.L., Y.G., L.Z., H.B., Z. Zhou, J.S., G.Y., L.X., H.S., Y.L., B.Y., Z.P.).,Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, China (H.S.)
| | - Zhiren Zhang
- NHC Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China (Z. Zhang, Z.P.)
| | - Yanjie Lu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Heilongjiang, China (Y.Y., Y.Z., J.Y., M.Z., T.T., Y.J., X.L., G.X., X.L., X.Z., S.L., X.H., Z.L., Y.G., L.Z., H.B., Z. Zhou, J.S., G.Y., L.X., H.S., Y.L., B.Y., Z.P.)
| | - Baofeng Yang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Heilongjiang, China (Y.Y., Y.Z., J.Y., M.Z., T.T., Y.J., X.L., G.X., X.L., X.Z., S.L., X.H., Z.L., Y.G., L.Z., H.B., Z. Zhou, J.S., G.Y., L.X., H.S., Y.L., B.Y., Z.P.)
| | - Zhenwei Pan
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Heilongjiang, China (Y.Y., Y.Z., J.Y., M.Z., T.T., Y.J., X.L., G.X., X.L., X.Z., S.L., X.H., Z.L., Y.G., L.Z., H.B., Z. Zhou, J.S., G.Y., L.X., H.S., Y.L., B.Y., Z.P.).,Research Unit of Noninfectious Chronic Diseases in Frigid Zone, Chinese Academy of Medical Sciences, 2019 Research Unit 070, Harbin, Heilongjiang, China (Z.P.).,NHC Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China (Z. Zhang, Z.P.)
| |
Collapse
|
5
|
Varzandeh M, Labbaf S, Varshosaz J, Laurent S. An overview of the intracellular localization of high-Z nanoradiosensitizers. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 175:14-30. [PMID: 36029849 DOI: 10.1016/j.pbiomolbio.2022.08.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 07/17/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
Radiation therapy (RT) is a method commonly used for cancer treatment worldwide. Commonly, RT utilizes two routes for combating cancers: 1) high-energy radiation to generate toxic reactive oxygen species (ROS) (through the dissociation of water molecules) for damaging the deoxyribonucleic acid (DNA) inside the nucleus 2) direct degradation of the DNA. However, cancer cells have mechanisms to survive under intense RT, which can considerably decrease its therapeutic efficacy. Excessive radiation energy damages healthy tissues, and hence, low doses are applied for cancer treatment. Additionally, different radiosensitizers were used to sensitize cancer cells towards RT through individual mechanisms. Following this route, nanoparticle-based radiosensitizers (herein called nanoradiosensitizers) have recently gained attention owing to their ability to produce massive electrons which leads to the production of a huge amount of ROS. The success of the nanoradiosensitizer effect is closely correlated to its interaction with cells and its localization within the cells. In other words, tumor treatment is affected from the chain of events which is started from cell-nanoparticle interaction followed by the nanoparticles direction and homing inside the cell. Therefore, passive or active targeting of the nanoradiosensitizers in the subcellular level and the cell-nano interaction would determine the efficacy of the radiation therapy. The importance of the nanoradiosensitizer's targeting is increased while the organelles beyond nucleus are recently recognized as the mediators of the cancer cell death or resistance under RT. In this review, the principals of cell-nanomaterial interactions and which dominate nanoradiosensitizer efficiency in cancer therapy, are thoroughly discussed.
Collapse
Affiliation(s)
- Mohammad Varzandeh
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | - Sheyda Labbaf
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | - Jaleh Varshosaz
- Novel Drug Delivery Systems Research Center and Department of Pharmaceutics, School of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Sophie Laurent
- Laboratory of NMR and Molecular Imaging, Department of General, Organic Chemistry and Biomedical, University of Mons, Mons, Belgium.
| |
Collapse
|
6
|
Fan J, Li Q, Chen L, Du J, Xue W, Yu S, Su X, Yang Y. Research Progress in the Synthesis of Targeting Organelle Carbon Dots and Their Applications in Cancer Diagnosis and Treatment. J Biomed Nanotechnol 2021; 17:1891-1916. [PMID: 34706792 DOI: 10.1166/jbn.2021.3167] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
With increasing knowledge about diseases at the histological, cytological to sub-organelle level, targeting organelle therapy has gradually been envisioned as an approach to overcome the shortcomings of poor specificity and multiple toxic side effects on tissues and cell-level treatments using the currently available therapy. Organelle carbon dots (CDs) are a class of functionalized CDs that can target organelles. CDs can be prepared by a "synchronous in situ synthesis method" and "asynchronous modification method." The superior optical properties and good biocompatibility of CDs can be preserved, and they can be used as targeting particles to carry drugs into cells while reducing leakage during transport. Given the excellent organelle fluorescence imaging properties, targeting organelle CDs can be used to monitor the physiological metabolism of organelles and progression of human diseases, which will provide advanced understanding and accurate diagnosis and targeted treatment of cancers. This study reviews the methods used for preparation of targeting organelle CDs, mechanisms of accurate diagnosis and targeted treatment of cancer, as well as their application in the area of cancer diagnosis and treatment research. Finally, the current difficulties and prospects for targeting organelle CDs are prospected.
Collapse
Affiliation(s)
- Jiangbo Fan
- Shanxi Medical University, Taiyuan 030001, China
| | - Qiang Li
- Interventional Treatment Department, Second Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Lin Chen
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Jinglei Du
- Interventional Treatment Department, Second Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Wenqiang Xue
- Shanxi Medical University, Taiyuan 030001, China
| | - Shiping Yu
- Shanxi Medical University, Taiyuan 030001, China
| | - Xiuqin Su
- Shanxi Medical University, Taiyuan 030001, China
| | - Yongzhen Yang
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| |
Collapse
|
7
|
Chen W, Pan W, Wang J, Cheng L, Wang J, Song L, Hu Y, Ma X. Emerging two-dimensional monoelemental materials (Xenes): Fabrication, modification, and applications thereof in the field of bioimaging as nanocarriers. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 14:e1750. [PMID: 34414669 DOI: 10.1002/wnan.1750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 06/05/2021] [Accepted: 06/29/2021] [Indexed: 12/20/2022]
Abstract
In recent years, more and more research enthusiasm has been devoted to the development of emerging two-dimensional (2D) monoelement materials (Xenes) and explored potential applications in various fields, especially biomedicine and bioimaging. The inspiring results attribute to their excellent physicochemical properties, including adjustable band gap, surface electronic layout characteristics, and so on, making it easier for surface modification in order to meet designated needs. As a popular interdisciplinary research frontier, a variety of methods for fabricating 2D Xenes have recently been adopted for pre-preparing future practical bioimaging applications, which implies that these materials will have broad clinical application prospects in the future. In this review, we will concentrate on the family of 2D Xenes and summarize their fabrication and modification methods firstly. Then, their applications in bioimaging as nanocarriers will be described according to the Periodic Table of Elements. In addition, current challenges and prospects for further clinical applications will be under discussion and use black phosphorus as a typical example. At last, general conclusion will be made that it is worth expecting that 2D Xenes will play a key role in the next generation of oncologic bioimaging in the future. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Toxicology and Regulatory Issues in Nanomedicine > Toxicology of Nanomaterials Toxicology and Regulatory Issues in Nanomedicine > Regulatory and Policy Issues in Nanomedicine.
Collapse
Affiliation(s)
- Weijian Chen
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui, China
| | - Wanwan Pan
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui, China
| | - Jingwen Wang
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui, China
| | - Liang Cheng
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui, China
| | - Jing Wang
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui, China
| | - Lei Song
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui, China
| | - Yuan Hu
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui, China
| | - Xiaopeng Ma
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui, China.,Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
8
|
de la Fuente IF, Sawant SS, Tolentino MQ, Corrigan PM, Rouge JL. Viral Mimicry as a Design Template for Nucleic Acid Nanocarriers. Front Chem 2021; 9:613209. [PMID: 33777893 PMCID: PMC7987652 DOI: 10.3389/fchem.2021.613209] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/06/2021] [Indexed: 12/11/2022] Open
Abstract
Therapeutic nucleic acids hold immense potential in combating undruggable, gene-based diseases owing to their high programmability and relative ease of synthesis. While the delivery of this class of therapeutics has successfully entered the clinical setting, extrahepatic targeting, endosomal escape efficiency, and subcellular localization. On the other hand, viruses serve as natural carriers of nucleic acids and have acquired a plethora of structures and mechanisms that confer remarkable transfection efficiency. Thus, understanding the structure and mechanism of viruses can guide the design of synthetic nucleic acid vectors. This review revisits relevant structural and mechanistic features of viruses as design considerations for efficient nucleic acid delivery systems. This article explores how viral ligand display and a metastable structure are central to the molecular mechanisms of attachment, entry, and viral genome release. For comparison, accounted for are details on the design and intracellular fate of existing nucleic acid carriers and nanostructures that share similar and essential features to viruses. The review, thus, highlights unifying themes of viruses and nucleic acid delivery systems such as genome protection, target specificity, and controlled release. Sophisticated viral mechanisms that are yet to be exploited in oligonucleotide delivery are also identified as they could further the development of next-generation nonviral nucleic acid vectors.
Collapse
Affiliation(s)
| | | | | | | | - Jessica L. Rouge
- Department of Chemistry, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
9
|
Shaikhqasem A, Schmitt K, Valerius O, Ficner R. Crystal structure of human CRM1, covalently modified by 2-mercaptoethanol on Cys528, in complex with RanGTP. Acta Crystallogr F Struct Biol Commun 2021; 77:70-78. [PMID: 33682791 PMCID: PMC7938638 DOI: 10.1107/s2053230x2100203x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 02/21/2021] [Indexed: 11/23/2022] Open
Abstract
CRM1 is a nuclear export receptor that has been intensively targeted over the last decade for the development of antitumor and antiviral drugs. Structural analysis of several inhibitor compounds bound to CRM1 revealed that their mechanism of action relies on the covalent modification of a critical cysteine residue (Cys528 in the human receptor) located in the nuclear export signal-binding cleft. This study presents the crystal structure of human CRM1, covalently modified by 2-mercaptoethanol on Cys528, in complex with RanGTP at 2.58 Å resolution. The results demonstrate that buffer components can interfere with the characterization of cysteine-dependent inhibitor compounds.
Collapse
Affiliation(s)
- Alaa Shaikhqasem
- Department for Molecular Structural Biology, Georg-August-Universität Göttingen, Justus-von-Liebig Weg 11, 37077 Göttingen, Germany
| | - Kerstin Schmitt
- Department of Molecular Microbiology and Genetics, Georg-August-Universität Göttingen, Grisebachstrasse 8, 37077 Göttingen, Germany
| | - Oliver Valerius
- Department of Molecular Microbiology and Genetics, Georg-August-Universität Göttingen, Grisebachstrasse 8, 37077 Göttingen, Germany
| | - Ralf Ficner
- Department for Molecular Structural Biology, Georg-August-Universität Göttingen, Justus-von-Liebig Weg 11, 37077 Göttingen, Germany
| |
Collapse
|
10
|
Shaikhqasem A, Dickmanns A, Neumann P, Ficner R. Characterization of Inhibition Reveals Distinctive Properties for Human and Saccharomyces cerevisiae CRM1. J Med Chem 2020; 63:7545-7558. [PMID: 32585100 DOI: 10.1021/acs.jmedchem.0c00143] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The receptor CRM1 is responsible for the nuclear export of many tumor-suppressor proteins and viral ribonucleoproteins. This renders CRM1 an interesting target for therapeutic intervention in diverse cancer types and viral diseases. Structural studies of Saccharomyces cerevisiae CRM1 (ScCRM1) complexes with inhibitors defined the molecular basis for CRM1 inhibition. Nevertheless, no structural information is available for inhibitors bound to human CRM1 (HsCRM1). Here, we present the structure of the natural inhibitor Leptomycin B bound to the HsCRM1-RanGTP complex. Despite high sequence conservation and structural similarity in the NES-binding cleft region, ScCRM1 exhibits 16-fold lower binding affinity than HsCRM1 toward PKI-NES and significant differences in affinities toward potential CRM1 inhibitors. In contrast to HsCRM1, competition assays revealed that a human adapted mutant ScCRM1-T539C does not bind all inhibitors tested. Taken together, our data indicate the importance of using HsCRM1 for molecular analysis and development of novel antitumor and antiviral drugs.
Collapse
Affiliation(s)
- Alaa Shaikhqasem
- Department of Molecular Structural Biology, Institute of Microbiology and Genetics, GZMB, Georg-August-University Göttingen, 37077 Göttingen, Germany
| | - Achim Dickmanns
- Department of Molecular Structural Biology, Institute of Microbiology and Genetics, GZMB, Georg-August-University Göttingen, 37077 Göttingen, Germany
| | - Piotr Neumann
- Department of Molecular Structural Biology, Institute of Microbiology and Genetics, GZMB, Georg-August-University Göttingen, 37077 Göttingen, Germany
| | - Ralf Ficner
- Department of Molecular Structural Biology, Institute of Microbiology and Genetics, GZMB, Georg-August-University Göttingen, 37077 Göttingen, Germany
| |
Collapse
|
11
|
Liu Z, Qiu K, Liao X, Rees TW, Chen Y, Zhao Z, Ji L, Chao H. Nucleus-targeting ultrasmall ruthenium(iv) oxide nanoparticles for photoacoustic imaging and low-temperature photothermal therapy in the NIR-II window. Chem Commun (Camb) 2020; 56:3019-3022. [PMID: 32048647 DOI: 10.1039/c9cc09728g] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Nucleus-targeting NPs based on RuO2 (RuO2NPs) were developed by controlling the size and the surface charge of nanoparticles (NPs). This study not only demonstrates a facile approach for the fabrication of ultrasmall CS-RuO2NPs with good biocompatibility and excellent photothermal properties but also their unique potential for the nucleus-targeted low-temperature PTT.
Collapse
Affiliation(s)
- Zhou Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China.
| | - Kangqiang Qiu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China.
| | - Xinxing Liao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China.
| | - Thomas W Rees
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China.
| | - Yu Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China.
| | - Zizhuo Zhao
- Department of Ultrasound, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510275, P. R. China.
| | - Liangnian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China.
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China. and MOE Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 400201, P. R. China
| |
Collapse
|
12
|
Burdine RD, Preston CC, Leonard RJ, Bradley TA, Faustino RS. Nucleoporins in cardiovascular disease. J Mol Cell Cardiol 2020; 141:43-52. [PMID: 32209327 DOI: 10.1016/j.yjmcc.2020.02.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/19/2020] [Accepted: 02/25/2020] [Indexed: 01/01/2023]
Abstract
Cardiovascular disease is a pressing health problem with significant global health, societal, and financial burdens. Understanding the molecular basis of polygenic cardiac pathology is thus essential to devising novel approaches for management and treatment. Recent identification of uncharacterized regulatory functions for a class of nuclear envelope proteins called nucleoporins offers the opportunity to understand novel putative mechanisms of cardiac disease development and progression. Consistent reports of nucleoporin deregulation associated with ischemic and dilated cardiomyopathies, arrhythmias and valvular disorders suggests that nucleoporin impairment may be a significant but understudied variable in cardiopathologic disorders. This review discusses and converges existing literature regarding nuclear pore complex proteins and their association with cardiac pathologies, and proposes a role for nucleoporins as facilitators of cardiac disease.
Collapse
Affiliation(s)
- Ryan D Burdine
- Genetics and Genomics Group, Sanford Research, 2301 E. 60(th) Street N., Sioux Falls, SD 57104, United States of America; School of Health Sciences, University of South Dakota, 414 E Clark St, Vermillion, SD 57069, United States of America
| | - Claudia C Preston
- Genetics and Genomics Group, Sanford Research, 2301 E. 60(th) Street N., Sioux Falls, SD 57104, United States of America
| | - Riley J Leonard
- Genetics and Genomics Group, Sanford Research, 2301 E. 60(th) Street N., Sioux Falls, SD 57104, United States of America
| | - Tyler A Bradley
- Genetics and Genomics Group, Sanford Research, 2301 E. 60(th) Street N., Sioux Falls, SD 57104, United States of America
| | - Randolph S Faustino
- Genetics and Genomics Group, Sanford Research, 2301 E. 60(th) Street N., Sioux Falls, SD 57104, United States of America; Department of Pediatrics, Sanford School of Medicine of the University of South Dakota, 1400 W. 22(nd) Street, Sioux Falls, SD 57105, United States of America.
| |
Collapse
|
13
|
Ye J, Zhong L, Xiong L, Li J, Yu L, Dan W, Yuan Z, Yao J, Zhong P, Liu J, Liu D, Liu B. Nuclear import of NLS- RARα is mediated by importin α/β. Cell Signal 2020; 69:109567. [PMID: 32036017 DOI: 10.1016/j.cellsig.2020.109567] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 02/01/2020] [Accepted: 02/05/2020] [Indexed: 12/15/2022]
Abstract
The promyelocytic leukemia-retinoic acid receptor α (PML/RARα) is hypothesized to play a vital role in the pathogenesis of acute promyelocytic leukemia (APL). A previous study has demonstrated that PML/RARα is cleaved by neutrophil elastase (NE) in early myeloid cells, which leads to an increase in the nuclear localization signal (NLS) in RARα and in the incidence of APL. In this study, we explored the effects of NLS-RARα on acute myeloid leukemia (AML) cells and studied the mechanism of its localization. LV-NLS-RARα recombinant lentivirus and negative control LV-NC lentivirus were transfected into HL-60 cells and U937 cells while mutant NLS-RARα were transfected into U937 cells, and all groups were treated with 1α, 25-dihydroxyvitamin D3(1,25D3). The results showed that NLS-RARα was located mainly in the nucleus while mutant NLS-RARα was located in the cytoplasm. Overexpression of NLS-RARα downregulated the expression of CD11b, CD11c, CD14, and three forms of CEBPβ compared to the overexpression of NC and mutant NLS-RARα. It was speculated that the abnormal localization of NLS-RARα was mediated via importin-α/β in the pathogenesis of APL. By producing point mutations in the two NLSs in NLS-RARα, we showed that the nuclear import of NLS-RARα was mainly dependent on the NLS of the RARα portion. Subsequently, we found that importin-α1 (KPNA2)/importin-β1 (KPNB1) participates in the nuclear transport of NLS-RARα. Taken together, abnormal localization of NLS-RARα blocks the differentiation of APL cells, and nuclear localization of NLS-RARα depends on NLS of the RARα portion and is mediated via binding with importin-α/β.
Collapse
Affiliation(s)
- Jiao Ye
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing 402160, China; Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Liang Zhong
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Ling Xiong
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing 402160, China
| | - Jian Li
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Lihua Yu
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing 402160, China
| | - Wenran Dan
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing 402160, China
| | - Zhen Yuan
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Juanjuan Yao
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing 402160, China
| | - Pengqiang Zhong
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing 402160, China
| | - Junmei Liu
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing 402160, China
| | - Dongdong Liu
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Beizhong Liu
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing 402160, China; Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
14
|
Zhou J, Shao Z, Liu J, Duan Q, Wang X, Li J, Yang H. From Endocytosis to Nonendocytosis: The Emerging Era of Gene Delivery. ACS APPLIED BIO MATERIALS 2020; 3:2686-2701. [DOI: 10.1021/acsabm.9b01131] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Jie Zhou
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, People’s Republic of China
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
| | - Zhentao Shao
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
| | - Jia Liu
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
| | - Qiao Duan
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
| | - Xiang Wang
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
| | - Juan Li
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, People’s Republic of China
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, People’s Republic of China
| |
Collapse
|
15
|
Ren X, Yi Z, Sun Z, Ma X, Chen G, Chen Z, Li X. Natural polysaccharide-incorporated hydroxyapatite as size-changeable, nuclear-targeted nanocarrier for efficient cancer therapy. Biomater Sci 2020; 8:5390-5401. [DOI: 10.1039/d0bm01320j] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
Nuclear-targeted, size-changeable polysaccharide hybrid hydroxyapatite nanoparticles were prepared for the delivery of doxorubicin for cancer therapy, showing low toxicity to healthy tissue cells but strong killing effect on tumor cells.
Collapse
Affiliation(s)
- Xiaoxiang Ren
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
- Department of Biomedical Engineering
| | - Zeng Yi
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Zhe Sun
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Xiaomin Ma
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Guangcan Chen
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | | | - Xudong Li
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| |
Collapse
|
16
|
|
17
|
Abstract
Pancreatic cancer is an aggressive and intractable malignancy with high mortality. This is due in part to a high resistance to chemotherapeutics and radiation treatment conferred by diverse regulatory mechanisms. Among these, constituents of the nuclear envelope play a significant role in regulating oncogenesis and pancreatic tumor biology, and this review focuses on three specific components and their roles in cancer. The LINC complex is a nuclear envelope component formed by proteins with SUN and KASH domains that interact in the periplasmic space of the nuclear envelope. These interactions functionally and structurally couple the cytoskeleton to chromatin and facilitates gene regulation informed by cytoplasmic activity. Furthermore, cancer cell invasiveness is impacted by LINC complex biology. The nuclear lamina is adjacent to the inner nuclear membrane of the nuclear envelope and can actively regulate chromatin in addition to providing structural integrity to the nucleus. A disrupted lamina can impart biophysical compromise to nuclear structure and function, as well as form dysfunctional micronuclei that may lead to genomic instability and chromothripsis. In close relationship to the nuclear lamina is the nuclear pore complex, a large megadalton structure that spans both outer and inner membranes of the nuclear envelope. The nuclear pore complex mediates bidirectional nucleocytoplasmic transport and is comprised of specialized proteins called nucleoporins that are overexpressed in many cancers and are diagnostic markers for oncogenesis. Furthermore, recent demonstration of gene regulatory functions for discrete nucleoporins independent of their nuclear trafficking function suggests that these proteins may contribute more to malignant phenotypes beyond serving as biomarkers. The nuclear envelope is thus a complex, intricate regulator of cell signaling, with roles in pancreatic tumorigenesis and general oncogenic transformation.
Collapse
Affiliation(s)
| | - Randolph S. Faustino
- Genetics and Genomics, Sanford Research, Sioux Falls, SD 57104, USA
- Department of Pediatrics, Sanford School of Medicine of the University of South Dakota, Sioux Falls, SD 57105, USA
| |
Collapse
|
18
|
Pan L, Shi J. Chemical Design of Nuclear-Targeting Mesoporous Silica Nanoparticles for Intra-nuclear Drug Delivery. CHINESE J CHEM 2018. [DOI: 10.1002/cjoc.201800032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Limin Pan
- Shanghai Institute of Ceramics; Chinese Academy of Sciences; Shanghai 200050 China
| | - Jianlin Shi
- Shanghai Institute of Ceramics; Chinese Academy of Sciences; Shanghai 200050 China
| |
Collapse
|
19
|
Vuorinen EM, Rajala NK, Ihalainen TO, Kallioniemi A. Depletion of nuclear import protein karyopherin alpha 7 (KPNA7) induces mitotic defects and deformation of nuclei in cancer cells. BMC Cancer 2018; 18:325. [PMID: 29580221 PMCID: PMC5870926 DOI: 10.1186/s12885-018-4261-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 03/20/2018] [Indexed: 01/08/2023] Open
Abstract
Background Nucleocytoplasmic transport is a tightly regulated process carried out by specific transport machinery, the defects of which may lead to a number of diseases including cancer. Karyopherin alpha 7 (KPNA7), the newest member of the karyopherin alpha nuclear importer family, is expressed at a high level during embryogenesis, reduced to very low or absent levels in most adult tissues but re-expressed in cancer cells. Methods We used siRNA-based knock-down of KPNA7 in cancer cell lines, followed by functional assays (proliferation and cell cycle) and immunofluorescent stainings to determine the role of KPNA7 in regulation of cancer cell growth, proper mitosis and nuclear morphology. Results In the present study, we show that the silencing of KPNA7 results in a dramatic reduction in pancreatic and breast cancer cell growth, irrespective of the endogenous KPNA7 expression level. This growth inhibition is accompanied by a decrease in the fraction of S-phase cells as well as aberrant number of centrosomes and severe distortion of the mitotic spindles. In addition, KPNA7 depletion leads to reorganization of lamin A/C and B1, the main nuclear lamina proteins, and drastic alterations in nuclear morphology with lobulated and elongated nuclei. Conclusions Taken together, our data provide new important evidence on the contribution of KPNA7 to the regulation of cancer cell growth and the maintenance of nuclear envelope environment, and thus deepens our understanding on the impact of nuclear transfer proteins in cancer pathogenesis. Electronic supplementary material The online version of this article (10.1186/s12885-018-4261-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elisa M Vuorinen
- BioMediTech Institute and Faculty of Medicine and Life Sciences, University of Tampere, PL 100, 33014, Tampere, Finland
| | - Nina K Rajala
- BioMediTech Institute and Faculty of Medicine and Life Sciences, University of Tampere, PL 100, 33014, Tampere, Finland
| | - Teemu O Ihalainen
- BioMediTech Institute and Faculty of Medicine and Life Sciences, University of Tampere, PL 100, 33014, Tampere, Finland.,BioMediTech Institute and Faculty of Biomedical Sciences and Engineering, Tampere University of Technology, University of Tampere, PL 100, 33014, Tampere, Finland.,Tampere Imaging Facility, BioMediTech Institute and Faculty of Medicine and Life Sciences, University of Tampere, PL 100, 33014, Tampere, Finland
| | - Anne Kallioniemi
- BioMediTech Institute and Faculty of Medicine and Life Sciences, University of Tampere, PL 100, 33014, Tampere, Finland. .,Fimlab Laboratories, Biokatu 4, 33520, Tampere, Finland.
| |
Collapse
|
20
|
Haskell GT, Jensen BC, Samsa LA, Marchuk D, Huang W, Skrzynia C, Tilley C, Seifert BA, Rivera-Muñoz EA, Koller B, Wilhelmsen KC, Liu J, Alhosaini H, Weck KE, Evans JP, Berg JS. Whole Exome Sequencing Identifies Truncating Variants in Nuclear Envelope Genes in Patients With Cardiovascular Disease. ACTA ACUST UNITED AC 2018; 10:CIRCGENETICS.116.001443. [PMID: 28611029 DOI: 10.1161/circgenetics.116.001443] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 03/20/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND The genetic variation underlying many heritable forms of cardiovascular disease is incompletely understood, even in patients with strong family history or early age at onset. METHODS AND RESULTS We used whole exome sequencing to detect pathogenic variants in 55 patients with suspected monogenic forms of cardiovascular disease. Diagnostic analysis of established disease genes identified pathogenic variants in 21.8% of cases and variants of uncertain significance in 34.5% of cases. Three patients harbored heterozygous nonsense or splice-site variants in the nucleoporin genes NUP37, NUP43, and NUP188, which have not been implicated previously in cardiac disease. We also identified a heterozygous splice site variant in the nuclear envelope gene SYNE1 in a child with severe dilated cardiomyopathy that underwent transplant, as well as in his affected father. To confirm a cardiovascular role for these candidate genes in vivo, we used morpholinos to reduce SYNE1, NUP37, and NUP43 gene expression in zebrafish. Morphant embryos displayed cardiac abnormalities, including pericardial edema and heart failure. Furthermore, lymphoblasts from the patient carrying a SYNE1 splice-site variant displayed changes in nuclear morphology and protein localization that are consistent with disruption of the nuclear envelope. CONCLUSIONS These data expand the repertoire of pathogenic variants associated with cardiovascular disease and validate the diagnostic and research use of whole exome sequencing. We identify NUP37, NUP43, and NUP188 as novel candidate genes for cardiovascular disease, and suggest that dysfunction of the nuclear envelope may be an under-recognized component of inherited cardiac disease in some cases.
Collapse
Affiliation(s)
- Gloria T Haskell
- From the Department of Pathology, Duke University, Durham, NC (G.T.H.); Division of Cardiology (B.C.J.), McAllister Heart Institute (B.C.J., L.A.S., W.H., J.L.), Department of Cell and Molecular Physiology (L.A.S., W.H., J.L.), Department of Genetics (D.M., C.S., C.T., B.A.S., E.A.R.-M., B.K., K.C.W., K.E.W., J.P.E., J.S.B.), Department of Pathology and Laboratory Medicine (J.L., K.E.W.), UNC School of Medicine, Chapel Hill; Renaissance Computing Institute, Chapel Hill, NC (K.C.W.); and ECU Heart Institute, Brody School of Medicine, Greenville, NC (H.A.).
| | - Brian C Jensen
- From the Department of Pathology, Duke University, Durham, NC (G.T.H.); Division of Cardiology (B.C.J.), McAllister Heart Institute (B.C.J., L.A.S., W.H., J.L.), Department of Cell and Molecular Physiology (L.A.S., W.H., J.L.), Department of Genetics (D.M., C.S., C.T., B.A.S., E.A.R.-M., B.K., K.C.W., K.E.W., J.P.E., J.S.B.), Department of Pathology and Laboratory Medicine (J.L., K.E.W.), UNC School of Medicine, Chapel Hill; Renaissance Computing Institute, Chapel Hill, NC (K.C.W.); and ECU Heart Institute, Brody School of Medicine, Greenville, NC (H.A.)
| | - Leigh Ann Samsa
- From the Department of Pathology, Duke University, Durham, NC (G.T.H.); Division of Cardiology (B.C.J.), McAllister Heart Institute (B.C.J., L.A.S., W.H., J.L.), Department of Cell and Molecular Physiology (L.A.S., W.H., J.L.), Department of Genetics (D.M., C.S., C.T., B.A.S., E.A.R.-M., B.K., K.C.W., K.E.W., J.P.E., J.S.B.), Department of Pathology and Laboratory Medicine (J.L., K.E.W.), UNC School of Medicine, Chapel Hill; Renaissance Computing Institute, Chapel Hill, NC (K.C.W.); and ECU Heart Institute, Brody School of Medicine, Greenville, NC (H.A.)
| | - Daniel Marchuk
- From the Department of Pathology, Duke University, Durham, NC (G.T.H.); Division of Cardiology (B.C.J.), McAllister Heart Institute (B.C.J., L.A.S., W.H., J.L.), Department of Cell and Molecular Physiology (L.A.S., W.H., J.L.), Department of Genetics (D.M., C.S., C.T., B.A.S., E.A.R.-M., B.K., K.C.W., K.E.W., J.P.E., J.S.B.), Department of Pathology and Laboratory Medicine (J.L., K.E.W.), UNC School of Medicine, Chapel Hill; Renaissance Computing Institute, Chapel Hill, NC (K.C.W.); and ECU Heart Institute, Brody School of Medicine, Greenville, NC (H.A.)
| | - Wei Huang
- From the Department of Pathology, Duke University, Durham, NC (G.T.H.); Division of Cardiology (B.C.J.), McAllister Heart Institute (B.C.J., L.A.S., W.H., J.L.), Department of Cell and Molecular Physiology (L.A.S., W.H., J.L.), Department of Genetics (D.M., C.S., C.T., B.A.S., E.A.R.-M., B.K., K.C.W., K.E.W., J.P.E., J.S.B.), Department of Pathology and Laboratory Medicine (J.L., K.E.W.), UNC School of Medicine, Chapel Hill; Renaissance Computing Institute, Chapel Hill, NC (K.C.W.); and ECU Heart Institute, Brody School of Medicine, Greenville, NC (H.A.)
| | - Cecile Skrzynia
- From the Department of Pathology, Duke University, Durham, NC (G.T.H.); Division of Cardiology (B.C.J.), McAllister Heart Institute (B.C.J., L.A.S., W.H., J.L.), Department of Cell and Molecular Physiology (L.A.S., W.H., J.L.), Department of Genetics (D.M., C.S., C.T., B.A.S., E.A.R.-M., B.K., K.C.W., K.E.W., J.P.E., J.S.B.), Department of Pathology and Laboratory Medicine (J.L., K.E.W.), UNC School of Medicine, Chapel Hill; Renaissance Computing Institute, Chapel Hill, NC (K.C.W.); and ECU Heart Institute, Brody School of Medicine, Greenville, NC (H.A.)
| | - Christian Tilley
- From the Department of Pathology, Duke University, Durham, NC (G.T.H.); Division of Cardiology (B.C.J.), McAllister Heart Institute (B.C.J., L.A.S., W.H., J.L.), Department of Cell and Molecular Physiology (L.A.S., W.H., J.L.), Department of Genetics (D.M., C.S., C.T., B.A.S., E.A.R.-M., B.K., K.C.W., K.E.W., J.P.E., J.S.B.), Department of Pathology and Laboratory Medicine (J.L., K.E.W.), UNC School of Medicine, Chapel Hill; Renaissance Computing Institute, Chapel Hill, NC (K.C.W.); and ECU Heart Institute, Brody School of Medicine, Greenville, NC (H.A.)
| | - Bryce A Seifert
- From the Department of Pathology, Duke University, Durham, NC (G.T.H.); Division of Cardiology (B.C.J.), McAllister Heart Institute (B.C.J., L.A.S., W.H., J.L.), Department of Cell and Molecular Physiology (L.A.S., W.H., J.L.), Department of Genetics (D.M., C.S., C.T., B.A.S., E.A.R.-M., B.K., K.C.W., K.E.W., J.P.E., J.S.B.), Department of Pathology and Laboratory Medicine (J.L., K.E.W.), UNC School of Medicine, Chapel Hill; Renaissance Computing Institute, Chapel Hill, NC (K.C.W.); and ECU Heart Institute, Brody School of Medicine, Greenville, NC (H.A.)
| | - Edgar A Rivera-Muñoz
- From the Department of Pathology, Duke University, Durham, NC (G.T.H.); Division of Cardiology (B.C.J.), McAllister Heart Institute (B.C.J., L.A.S., W.H., J.L.), Department of Cell and Molecular Physiology (L.A.S., W.H., J.L.), Department of Genetics (D.M., C.S., C.T., B.A.S., E.A.R.-M., B.K., K.C.W., K.E.W., J.P.E., J.S.B.), Department of Pathology and Laboratory Medicine (J.L., K.E.W.), UNC School of Medicine, Chapel Hill; Renaissance Computing Institute, Chapel Hill, NC (K.C.W.); and ECU Heart Institute, Brody School of Medicine, Greenville, NC (H.A.)
| | - Beverly Koller
- From the Department of Pathology, Duke University, Durham, NC (G.T.H.); Division of Cardiology (B.C.J.), McAllister Heart Institute (B.C.J., L.A.S., W.H., J.L.), Department of Cell and Molecular Physiology (L.A.S., W.H., J.L.), Department of Genetics (D.M., C.S., C.T., B.A.S., E.A.R.-M., B.K., K.C.W., K.E.W., J.P.E., J.S.B.), Department of Pathology and Laboratory Medicine (J.L., K.E.W.), UNC School of Medicine, Chapel Hill; Renaissance Computing Institute, Chapel Hill, NC (K.C.W.); and ECU Heart Institute, Brody School of Medicine, Greenville, NC (H.A.)
| | - Kirk C Wilhelmsen
- From the Department of Pathology, Duke University, Durham, NC (G.T.H.); Division of Cardiology (B.C.J.), McAllister Heart Institute (B.C.J., L.A.S., W.H., J.L.), Department of Cell and Molecular Physiology (L.A.S., W.H., J.L.), Department of Genetics (D.M., C.S., C.T., B.A.S., E.A.R.-M., B.K., K.C.W., K.E.W., J.P.E., J.S.B.), Department of Pathology and Laboratory Medicine (J.L., K.E.W.), UNC School of Medicine, Chapel Hill; Renaissance Computing Institute, Chapel Hill, NC (K.C.W.); and ECU Heart Institute, Brody School of Medicine, Greenville, NC (H.A.)
| | - Jiandong Liu
- From the Department of Pathology, Duke University, Durham, NC (G.T.H.); Division of Cardiology (B.C.J.), McAllister Heart Institute (B.C.J., L.A.S., W.H., J.L.), Department of Cell and Molecular Physiology (L.A.S., W.H., J.L.), Department of Genetics (D.M., C.S., C.T., B.A.S., E.A.R.-M., B.K., K.C.W., K.E.W., J.P.E., J.S.B.), Department of Pathology and Laboratory Medicine (J.L., K.E.W.), UNC School of Medicine, Chapel Hill; Renaissance Computing Institute, Chapel Hill, NC (K.C.W.); and ECU Heart Institute, Brody School of Medicine, Greenville, NC (H.A.)
| | - Hassan Alhosaini
- From the Department of Pathology, Duke University, Durham, NC (G.T.H.); Division of Cardiology (B.C.J.), McAllister Heart Institute (B.C.J., L.A.S., W.H., J.L.), Department of Cell and Molecular Physiology (L.A.S., W.H., J.L.), Department of Genetics (D.M., C.S., C.T., B.A.S., E.A.R.-M., B.K., K.C.W., K.E.W., J.P.E., J.S.B.), Department of Pathology and Laboratory Medicine (J.L., K.E.W.), UNC School of Medicine, Chapel Hill; Renaissance Computing Institute, Chapel Hill, NC (K.C.W.); and ECU Heart Institute, Brody School of Medicine, Greenville, NC (H.A.)
| | - Karen E Weck
- From the Department of Pathology, Duke University, Durham, NC (G.T.H.); Division of Cardiology (B.C.J.), McAllister Heart Institute (B.C.J., L.A.S., W.H., J.L.), Department of Cell and Molecular Physiology (L.A.S., W.H., J.L.), Department of Genetics (D.M., C.S., C.T., B.A.S., E.A.R.-M., B.K., K.C.W., K.E.W., J.P.E., J.S.B.), Department of Pathology and Laboratory Medicine (J.L., K.E.W.), UNC School of Medicine, Chapel Hill; Renaissance Computing Institute, Chapel Hill, NC (K.C.W.); and ECU Heart Institute, Brody School of Medicine, Greenville, NC (H.A.)
| | - James P Evans
- From the Department of Pathology, Duke University, Durham, NC (G.T.H.); Division of Cardiology (B.C.J.), McAllister Heart Institute (B.C.J., L.A.S., W.H., J.L.), Department of Cell and Molecular Physiology (L.A.S., W.H., J.L.), Department of Genetics (D.M., C.S., C.T., B.A.S., E.A.R.-M., B.K., K.C.W., K.E.W., J.P.E., J.S.B.), Department of Pathology and Laboratory Medicine (J.L., K.E.W.), UNC School of Medicine, Chapel Hill; Renaissance Computing Institute, Chapel Hill, NC (K.C.W.); and ECU Heart Institute, Brody School of Medicine, Greenville, NC (H.A.)
| | - Jonathan S Berg
- From the Department of Pathology, Duke University, Durham, NC (G.T.H.); Division of Cardiology (B.C.J.), McAllister Heart Institute (B.C.J., L.A.S., W.H., J.L.), Department of Cell and Molecular Physiology (L.A.S., W.H., J.L.), Department of Genetics (D.M., C.S., C.T., B.A.S., E.A.R.-M., B.K., K.C.W., K.E.W., J.P.E., J.S.B.), Department of Pathology and Laboratory Medicine (J.L., K.E.W.), UNC School of Medicine, Chapel Hill; Renaissance Computing Institute, Chapel Hill, NC (K.C.W.); and ECU Heart Institute, Brody School of Medicine, Greenville, NC (H.A.)
| |
Collapse
|
21
|
Pan L, Liu J, Shi J. Cancer cell nucleus-targeting nanocomposites for advanced tumor therapeutics. Chem Soc Rev 2018; 47:6930-6946. [DOI: 10.1039/c8cs00081f] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent advances in the chemical design and synthesis of nuclear-targeted nanotherapeutics for combating tumors are summarized and highlighted.
Collapse
Affiliation(s)
- Limin Pan
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- China
| | - Jianan Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- China
| | - Jianlin Shi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- China
| |
Collapse
|
22
|
Bekeschus S, Wende K, Hefny MM, Rödder K, Jablonowski H, Schmidt A, Woedtke TV, Weltmann KD, Benedikt J. Oxygen atoms are critical in rendering THP-1 leukaemia cells susceptible to cold physical plasma-induced apoptosis. Sci Rep 2017; 7:2791. [PMID: 28584285 PMCID: PMC5459849 DOI: 10.1038/s41598-017-03131-y] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 04/25/2017] [Indexed: 12/12/2022] Open
Abstract
Cold physical plasma has been suggested as a powerful new tool in oncology. However, some cancer cells such as THP-1 leukaemia cells have been shown to be resistant towards plasma-induced cell death, thereby serving as a good model for optimizing plasmas in order to foster pro-apoptotic anticancer effects. A helium/oxygen radio frequency driven atmospheric plasma profoundly induced apoptosis in THP-1 cells whereas helium, humidified helium, and humidified helium/oxygen plasmas were inefficient. Hydrogen peroxide – previously shown as central plasma-derived agent – did not participate in the killing reaction but our results suggest hypochlorous acid to be responsible for the effect observed. Proteomic analysis of THP-1 cells exposed to He/O2 plasma emphasized a prominent growth retardation, cell stress, apoptosis, and a pro-immunogenic profile. Altogether, a plasma setting that inactivates previously unresponsive leukaemia cells is presented. Crucial reactive species in the plasma and liquid environment were identified and discussed, deciphering the complexity of plasma from the gas phase into the liquid down to the cellular response mechanism. These results may help tailoring plasmas for clinical applications such as oxidation-insensitive types of cancer.
Collapse
Affiliation(s)
- Sander Bekeschus
- Leibniz-Institute for Plasma Science and Technology (INP Greifswald) ZIK plasmatis, Greifswald, Germany.
| | - Kristian Wende
- Leibniz-Institute for Plasma Science and Technology (INP Greifswald) ZIK plasmatis, Greifswald, Germany
| | - Mohamed Mokhtar Hefny
- Coupled Plasma-Solid State Systems, Faculty of Physics and Astronomy, Ruhr University Bochum, Bochum, Germany.,Basic Science Department, Faculty of Engineering and Technology, Future University in Egypt, Cairo, Egypt
| | - Katrin Rödder
- Leibniz-Institute for Plasma Science and Technology (INP Greifswald) ZIK plasmatis, Greifswald, Germany
| | - Helena Jablonowski
- Leibniz-Institute for Plasma Science and Technology (INP Greifswald) ZIK plasmatis, Greifswald, Germany
| | - Anke Schmidt
- Leibniz-Institute for Plasma Science and Technology (INP Greifswald) ZIK plasmatis, Greifswald, Germany
| | - Thomas von Woedtke
- Leibniz-Institute for Plasma Science and Technology (INP Greifswald) ZIK plasmatis, Greifswald, Germany.,Institute for Hygiene and Environmental Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Klaus-Dieter Weltmann
- Leibniz-Institute for Plasma Science and Technology (INP Greifswald) ZIK plasmatis, Greifswald, Germany
| | - Jan Benedikt
- Coupled Plasma-Solid State Systems, Faculty of Physics and Astronomy, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
23
|
Lopez-Denman AJ, Mackenzie JM. The IMPORTance of the Nucleus during Flavivirus Replication. Viruses 2017; 9:v9010014. [PMID: 28106839 PMCID: PMC5294983 DOI: 10.3390/v9010014] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 01/10/2017] [Accepted: 01/12/2017] [Indexed: 12/24/2022] Open
Abstract
Flaviviruses are a large group of arboviruses of significant medical concern worldwide. With outbreaks a common occurrence, the need for efficient viral control is required more than ever. It is well understood that flaviviruses modulate the composition and structure of membranes in the cytoplasm that are crucial for efficient replication and evading immune detection. As the flavivirus genome consists of positive sense RNA, replication can occur wholly within the cytoplasm. What is becoming more evident is that some viral proteins also have the ability to translocate to the nucleus, with potential roles in replication and immune system perturbation. In this review, we discuss the current understanding of flavivirus nuclear localisation, and the function it has during flavivirus infection. We also describe-while closely related-the functional differences between similar viral proteins in their nuclear translocation.
Collapse
Affiliation(s)
- Adam J Lopez-Denman
- Department of Microbiology & Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Victoria 3010, Australia.
- Department of Physiology, Anatomy & Microbiology, La Trobe University, Melbourne 3086, Australia.
| | - Jason M Mackenzie
- Department of Microbiology & Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Victoria 3010, Australia.
| |
Collapse
|
24
|
Vuorinen EM, Rajala NK, Rauhala HE, Nurminen AT, Hytönen VP, Kallioniemi A. Search for KPNA7 cargo proteins in human cells reveals MVP and ZNF414 as novel regulators of cancer cell growth. Biochim Biophys Acta Mol Basis Dis 2016; 1863:211-219. [PMID: 27664836 DOI: 10.1016/j.bbadis.2016.09.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 08/26/2016] [Accepted: 09/20/2016] [Indexed: 12/20/2022]
Abstract
Karyopherin alpha 7 (KPNA7) belongs to a family of nuclear import proteins that recognize and bind nuclear localization signals (NLSs) in proteins to be transported to the nucleus. Previously we found that KPNA7 is overexpressed in a subset of pancreatic cancer cell lines and acts as a critical regulator of growth in these cells. This characteristic of KPNA7 is likely to be mediated by its cargo proteins that are still mainly unknown. Here, we used protein affinity chromatography in Hs700T and MIA PaCa-2 pancreatic cancer cell lines and identified 377 putative KPNA7 cargo proteins, most of which were known or predicted to localize to the nucleus. The interaction was confirmed for two of the candidates, MVP and ZNF414, using co-immunoprecipitation, and their transport to the nucleus was hindered by siRNA based KPNA7 silencing. Most importantly, silencing of MVP and ZNF414 resulted in marked reduction in Hs700T cell growth. In conclusion, these data uncover two previously unknown human KPNA7 cargo proteins with distinct roles as novel regulators of pancreatic cancer cell growth, thus deepening our understanding on the contribution of nuclear transport in cancer pathogenesis.
Collapse
Affiliation(s)
- Elisa M Vuorinen
- University of Tampere, BioMediTech, PL 100, 33014 TAMPEREEN YLIOPISTO, Tampere, Finland; Fimlab laboratories, Biokatu 4, 33520 Tampere, Finland.
| | - Nina K Rajala
- University of Tampere, BioMediTech, PL 100, 33014 TAMPEREEN YLIOPISTO, Tampere, Finland; Fimlab laboratories, Biokatu 4, 33520 Tampere, Finland.
| | - Hanna E Rauhala
- University of Tampere, BioMediTech, PL 100, 33014 TAMPEREEN YLIOPISTO, Tampere, Finland.
| | - Anssi T Nurminen
- University of Tampere, BioMediTech, PL 100, 33014 TAMPEREEN YLIOPISTO, Tampere, Finland; Fimlab laboratories, Biokatu 4, 33520 Tampere, Finland.
| | - Vesa P Hytönen
- University of Tampere, BioMediTech, PL 100, 33014 TAMPEREEN YLIOPISTO, Tampere, Finland; Fimlab laboratories, Biokatu 4, 33520 Tampere, Finland.
| | - Anne Kallioniemi
- University of Tampere, BioMediTech, PL 100, 33014 TAMPEREEN YLIOPISTO, Tampere, Finland; Fimlab laboratories, Biokatu 4, 33520 Tampere, Finland.
| |
Collapse
|
25
|
Ma X, Gong N, Zhong L, Sun J, Liang XJ. Future of nanotherapeutics: Targeting the cellular sub-organelles. Biomaterials 2016; 97:10-21. [DOI: 10.1016/j.biomaterials.2016.04.026] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 04/02/2016] [Accepted: 04/20/2016] [Indexed: 11/25/2022]
|
26
|
Faustino RS, Behfar A, Groenendyk J, Wyles SP, Niederlander N, Reyes S, Puceat M, Michalak M, Terzic A, Perez-Terzic C. Calreticulin secures calcium-dependent nuclear pore competency required for cardiogenesis. J Mol Cell Cardiol 2016; 92:63-74. [PMID: 26826378 DOI: 10.1016/j.yjmcc.2016.01.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 01/20/2016] [Accepted: 01/26/2016] [Indexed: 12/24/2022]
Abstract
Calreticulin deficiency causes myocardial developmental defects that culminate in an embryonic lethal phenotype. Recent studies have linked loss of this calcium binding chaperone to failure in myofibrillogenesis through an as yet undefined mechanism. The purpose of the present study was to identify cellular processes corrupted by calreticulin deficiency that precipitate dysregulation of cardiac myofibrillogenesis related to acquisition of cardiac phenotype. In an embryonic stem cell knockout model, calreticulin deficit (crt(-/-)) compromised nucleocytoplasmic transport of nuclear localization signal-dependent and independent pathways, disrupting nuclear import of the cardiac transcription factor MEF2C. The expression of nucleoporins and associated nuclear transport proteins in derived crt(-/-) cardiomyocytes revealed an abnormal nuclear pore complex (NPC) configuration. Altered protein content in crt(-/-) cells resulted in remodeled NPC architecture that caused decreased pore diameter and diminished probability of central channel occupancy versus wild type counterparts. Ionophore treatment of impaired calcium handling in crt(-/-) cells corrected nuclear pore microarchitecture and rescued nuclear import resulting in normalized myofibrillogenesis. Thus, calreticulin deficiency alters nuclear pore function and structure, impeding myofibrillogenesis in nascent cardiomyocytes through a calcium dependent mechanism. This essential role of calreticulin in nucleocytoplasmic communication competency ties its regulatory action with proficiency of cardiac myofibrillogenesis essential for proper cardiac development.
Collapse
Affiliation(s)
- Randolph S Faustino
- Center for Regenerative Medicine, Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, USA
| | - Atta Behfar
- Center for Regenerative Medicine, Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, USA
| | - Jody Groenendyk
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Saranya P Wyles
- Center for Regenerative Medicine, Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, USA
| | - Nicolas Niederlander
- Center for Regenerative Medicine, Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, USA
| | - Santiago Reyes
- Center for Regenerative Medicine, Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, USA
| | | | - Marek Michalak
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Andre Terzic
- Center for Regenerative Medicine, Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, USA
| | - Carmen Perez-Terzic
- Center for Regenerative Medicine, Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, USA; Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN, USA; Rehabilitation Research Center, Rochester, MN, USA.
| |
Collapse
|
27
|
Dickmanns A, Monecke T, Ficner R. Structural Basis of Targeting the Exportin CRM1 in Cancer. Cells 2015; 4:538-68. [PMID: 26402707 PMCID: PMC4588050 DOI: 10.3390/cells4030538] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 09/07/2015] [Accepted: 09/11/2015] [Indexed: 12/19/2022] Open
Abstract
Recent studies have demonstrated the interference of nucleocytoplasmic trafficking with the establishment and maintenance of various cancers. Nucleocytoplasmic transport is highly regulated and coordinated, involving different nuclear transport factors or receptors, importins and exportins, that mediate cargo transport from the cytoplasm into the nucleus or the other way round, respectively. The exportin CRM1 (Chromosome region maintenance 1) exports a plethora of different protein cargoes and ribonucleoprotein complexes. Structural and biochemical analyses have enabled the deduction of individual steps of the CRM1 transport cycle. In addition, CRM1 turned out to be a valid target for anticancer drugs as it exports numerous proto-oncoproteins and tumor suppressors. Clearly, detailed understanding of the flexibility, regulatory features and cooperative binding properties of CRM1 for Ran and cargo is a prerequisite for the design of highly effective drugs. The first compound found to inhibit CRM1-dependent nuclear export was the natural drug Leptomycin B (LMB), which blocks export by competitively interacting with a highly conserved cleft on CRM1 required for nuclear export signal recognition. Clinical studies revealed serious side effects of LMB, leading to a search for alternative natural and synthetic drugs and hence a multitude of novel therapeutics. The present review examines recent progress in understanding the binding mode of natural and synthetic compounds and their inhibitory effects.
Collapse
Affiliation(s)
- Achim Dickmanns
- Abteilung für Molekulare Strukturbiologie, Institut für Mikrobiologie und Genetik, GZMB, Georg-August-Universität Göttingen, Justus-von-Liebig-Weg 11, Göttingen 37077, Germany.
| | - Thomas Monecke
- Abteilung für Molekulare Strukturbiologie, Institut für Mikrobiologie und Genetik, GZMB, Georg-August-Universität Göttingen, Justus-von-Liebig-Weg 11, Göttingen 37077, Germany.
| | - Ralf Ficner
- Abteilung für Molekulare Strukturbiologie, Institut für Mikrobiologie und Genetik, GZMB, Georg-August-Universität Göttingen, Justus-von-Liebig-Weg 11, Göttingen 37077, Germany.
| |
Collapse
|
28
|
Abstract
The intracellular location and regulation of proteins within each cell is critically important and is typically deregulated in disease especially cancer. The clinical hypothesis for inhibiting the nucleo-cytoplasmic transport is based on the dependence of certain key proteins within malignant cells. This includes a host of well-characterized tumor suppressor and oncoproteins that require specific localization for their function. This aberrant localization of tumour suppressors and oncoproteins results in their their respective inactivation or over-activation. This incorrect localization occurs actively via the nuclear pore complex that spans the nuclear envelope and is mediated by transport receptors. Accordingly, given the significant need for novel, specific disease treatments, the nuclear envelope and the nuclear transport machinery have emerged as a rational therapeutic target in oncology to restore physiological nucleus/cytoplasmic homeostasis. Recent evidence suggests that this approach might be of substantial therapeutic use. This review summarizes the mechanisms of nucleo-cytoplasmic transport, its role in cancer biology and the therapeutic potential of targeting this critical cellular process.
Collapse
Affiliation(s)
- Richard Hill
- Regenerative Medicine Program, Departamento de Ciências Biomédicas e Medicina, Universidade do Algarve, Portugal
| | | | | | | |
Collapse
|
29
|
KPNA7, a nuclear transport receptor, promotes malignant properties of pancreatic cancer cells in vitro. Exp Cell Res 2014; 322:159-67. [DOI: 10.1016/j.yexcr.2013.11.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 11/14/2013] [Accepted: 11/16/2013] [Indexed: 12/26/2022]
|
30
|
Niu M, Wu S, Mao L, Yang Y. CRM1 is a cellular target of curcumin: new insights for the myriad of biological effects of an ancient spice. Traffic 2013; 14:1042-52. [PMID: 23829533 DOI: 10.1111/tra.12090] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 07/03/2013] [Accepted: 07/06/2013] [Indexed: 12/27/2022]
Abstract
Curcumin is the major constituent of turmeric plant, an ancient spice widely used in Indian cuisine and traditional herbal medicine. Recently, the potential medical use of curcumin as anti-cancer and anti-inflammatory agent has set off an upsurge in research into the mechanism for its broad biological effects. We showed that CRM1, an important nuclear exportin, is a cellular target of curcumin by serious experimental and theoretical investigation. Using a nuclear export functional assay, we observed a clear and rapid shift of cargo proteins from a cytoplasmic localization to the nucleus when treated with curcumin or its structural analogue dibenzylideneacetone (DBA). We demonstrated that curcumin could specifically target the conserved Cys(528) of CRM1 through mass spectrometric analysis and in vivo experiments. Furthermore, computational modeling has revealed that curcumin could be correctly docked into the hydrophobic pocket of CRM1 judged from shape complementarity and putative molecular interactions. The Michael acceptor moiety on curcumin is within the appropriate distance to enable Michael reaction with Cys residue of CRM1. More importantly, we showed that nuclear retention of FOXO1 could be observed in the presence of Leptomycin B (LMB) or curcumin whereas in cells expressing the CRM1-Cys(528) mutant, only a cytoplasmic localization was observed. The inhibition of nuclear traffic by curcumin may account for its myriad of biological effects, particularly for its therapeutic properties in cancer and inflammatory diseases. Our findings may have important implications for further clinical investigation of curcumin.
Collapse
Affiliation(s)
- Mingshan Niu
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, P.R. China
| | | | | | | |
Collapse
|
31
|
Abstract
Nuclear-targeted therapy has received increasing attention as a potential strategy to improve the therapeutic efficacy of treating cancer. The main challenges include targeting, drug-delivery efficiency and release of anticancer agents to the cancer cell nucleus. Nanoparticles as nanocarriers have started to address some of these issues. However, a lack of understanding in how nanoconstructs interact with the nucleus has precluded detailed studies. In this article, we highlight a nanoconstruct composed of gold (Au) nanostars loaded with nucleolin-specific aptamers. This nanoconstruct induced major changes in the nuclear phenotype through nuclear envelope (NE) invaginations. Femtosecond, light-triggered release of the aptamers from the surface of the Au nanostars further increased the number of NE deformations. Cancer cells with more NE folding showed increased apoptosis as well as decreased cell viability. The author's of this article have revealed that correlation between drug-induced changes in nuclear phenotypes and increased therapeutic efficacy can provide new insight into nuclear-targeted cancer therapy.
Collapse
|
32
|
Zanella F, Dos Santos NR, Link W. Moving to the core: spatiotemporal analysis of Forkhead box O (FOXO) and nuclear factor-κB (NF-κB) nuclear translocation. Traffic 2013; 14:247-58. [PMID: 23231504 DOI: 10.1111/tra.12034] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 12/06/2012] [Accepted: 12/10/2012] [Indexed: 12/23/2022]
Abstract
Nuclear translocation of proteins is an essential aspect of normal cell function, and defects in this process have been detected in many disease-associated conditions. The detection and quantification of nuclear translocation was significantly boosted by the association of robotized microscopy with automated image analysis, a technology designated as high-content screening. Image-based high-content screening and analysis provides the means to systematically observe cellular translocation events in time and space in response to chemical or genetic perturbation at large scale. This approach yields powerful insights into the regulation of complex signaling networks independently of preconceived notions of mechanistic relationships. In this review, we briefly overview the different mechanisms involved in nucleocytoplasmic protein trafficking. In addition, we discuss high-content approaches used to interrogate the mechanistic and spatiotemporal dynamics of cellular signaling events using Forkhead box O (FOXO) proteins and the nuclear factor-κB (NF-κB) as important and clinically relevant examples.
Collapse
Affiliation(s)
- Fabian Zanella
- School of Medicine, Cardiology Division, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0613, USA
| | | | | |
Collapse
|
33
|
Chahine MN, Dibrov E, Blackwood DP, Pierce GN. Oxidized LDL enhances stretch-induced smooth muscle cell proliferation through alterations in nuclear protein import. Can J Physiol Pharmacol 2012; 90:1559-68. [DOI: 10.1139/y2012-141] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Mechanical stress contributes to hypertension and atherosclerosis partly through the stimulation of vascular smooth muscle cell (VSMC) proliferation. Oxidized low density lipoprotein (oxLDL) is another important atherogenic factor that can increase VSMC proliferation. The purpose of this study was to investigate whether oxLDL could further enhance the proliferative action of mechanical stretch on VSMC, and to determine the mechanism responsible for this interaction. Because nuclear protein import is critical in regulating gene expression, transcription, and cell proliferation, its involvement in the mitogenic effects of oxLDL and mechanical stress was studied. OxLDL enhanced the proliferative effects of mechanical stretch on its own in rabbit aortic VSMC, and induced increases in the expression of HSP60 in an additive manner. Adenoviral-mediated overexpression of HSP60 induced increases in cell proliferation compared with uninfected VSMC. Mechanical stretch and oxLDL stimulated the rate of nuclear protein import in VSMC and increased the expression of nucleoporins. These effects were sensitive to inhibition of the MAPK pathway. We conclude that oxLDL and mechanical stretch have a synergistic effect on VSMC proliferation. This synergistic effect is induced through a stimulation of nuclear protein import via HSP60 and an activation of the MAPK pathway.
Collapse
Affiliation(s)
- Mirna N. Chahine
- Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, Department of Physiology, Faculties of Medicine and Pharmacy, University of Manitoba, Winnipeg, MB R2H 2A6, Canada
| | - Elena Dibrov
- Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, Department of Physiology, Faculties of Medicine and Pharmacy, University of Manitoba, Winnipeg, MB R2H 2A6, Canada
| | - David P. Blackwood
- Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, Department of Physiology, Faculties of Medicine and Pharmacy, University of Manitoba, Winnipeg, MB R2H 2A6, Canada
| | - Grant N. Pierce
- Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, Department of Physiology, Faculties of Medicine and Pharmacy, University of Manitoba, Winnipeg, MB R2H 2A6, Canada
| |
Collapse
|
34
|
Xu D, Grishin NV, Chook YM. NESdb: a database of NES-containing CRM1 cargoes. Mol Biol Cell 2012; 23:3673-6. [PMID: 22833564 PMCID: PMC3442414 DOI: 10.1091/mbc.e12-01-0045] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 05/16/2012] [Accepted: 07/16/2012] [Indexed: 12/27/2022] Open
Abstract
The leucine-rich nuclear export signal (NES) is the only known class of targeting signal that directs macromolecules out of the cell nucleus. NESs are short stretches of 8-15 amino acids with regularly spaced hydrophobic residues that bind the export karyopherin CRM1. NES-containing proteins are involved in numerous cellular and disease processes. We compiled a database named NESdb that contains 221 NES-containing CRM1 cargoes that were manually curated from the published literature. Each NESdb entry is annotated with information about sequence and structure of both the NES and the cargo protein, as well as information about experimental evidence of NES-mapping and CRM1-mediated nuclear export. NESdb will be updated regularly and will serve as an important resource for nuclear export signals. NESdb is freely available to nonprofit organizations at http://prodata.swmed.edu/LRNes.
Collapse
Affiliation(s)
- Darui Xu
- Department of Pharmacology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390
| | - Nick V. Grishin
- Howard Hughes Medical Institute and Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390
| | - Yuh Min Chook
- Department of Pharmacology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390
| |
Collapse
|
35
|
Abstract
Exchange of macromolecules between the nucleus and cytoplasm is a key regulatory event in the expression of a cell's genome. This exchange requires a dedicated transport system: (1) nuclear pore complexes (NPCs), embedded in the nuclear envelope and composed of proteins termed nucleoporins (or "Nups"), and (2) nuclear transport factors that recognize the cargoes to be transported and ferry them across the NPCs. This transport is regulated at multiple levels, and the NPC itself also plays a key regulatory role in gene expression by influencing nuclear architecture and acting as a point of control for various nuclear processes. Here we summarize how the yeast Saccharomyces has been used extensively as a model system to understand the fundamental and highly conserved features of this transport system, revealing the structure and function of the NPC; the NPC's role in the regulation of gene expression; and the interactions of transport factors with their cargoes, regulatory factors, and specific nucleoporins.
Collapse
|
36
|
Regulation of Leukemic Cell Differentiation through the Vitamin D Receptor at the Levels of Intracellular Signal Transduction, Gene Transcription, and Protein Trafficking and Stability. LEUKEMIA RESEARCH AND TREATMENT 2012; 2012:713243. [PMID: 23213549 PMCID: PMC3505923 DOI: 10.1155/2012/713243] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 02/29/2012] [Indexed: 01/03/2023]
Abstract
1α,25-Dihydroxyvitamin D3 (1,25(OH)2D) exerts its biological activities through vitamin D receptor (VDR), which is a member of the superfamily of steroid receptors, that act as ligand-dependent transcription factors. Ligated VDR in complex with retinoid X receptor (RXR) binds to regulatory regions of 1,25(OH)2D-target genes. 1,25(OH)2D is able to induce differentiation of leukemic blasts towards macrophage-like cells. Many different acute myeloid leukemia (AML) cell lines respond to 1,25(OH)2D by increasing CD14 cell surface receptor, some additionally upregulate CD11b and CD11c integrins. In untreated AML cells VDR protein is present in cytosol at a very low level, even though its mRNA is continuously expressed. Ligation of VDR causes protein stabilization and translocation to the cell nuclei, where it regulates transcription of target genes. Several important groups of genes are regulated by 1,25(OH)2D in HL60 cells. These genes include differentiation-related genes involved in macrophage function, as well as a gene regulating degradation of 1,25(OH)2D, namely CYP24A1. We summarize here the data which demonstrate that though some cellular responses to 1,25(OH)2D in AML cells are transcription-dependent, there are many others which depend on intracellular signal transduction, protein trafficking and stabilization. The final effect of 1,25(OH)2D action in leukemic cells requires all these acting together.
Collapse
|
37
|
Fielhaber JA, Tan J, Joung KB, Attias O, Huegel S, Bader M, Roux PP, Kristof AS. Regulation of karyopherin α1 and nuclear import by mammalian target of rapamycin. J Biol Chem 2012; 287:14325-35. [PMID: 22399302 DOI: 10.1074/jbc.m111.246785] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Under conditions of reduced mitogen or nutritional substrate levels, the serine/threonine kinase target of rapamycin can augment the nuclear content of distinct transcription factors and promote the induction of stress response genes. In its latent (i.e., unphosphorylated) form, the transcription factor STAT1 regulates a subset of genes involved in immune modulation and apoptosis. Based on previous work indicating a functional relationship between mammalian target of rapamycin (mTOR) and the nuclear content of latent STAT1, we investigated the mechanism by which mTOR controls STAT1 nuclear import. By fluorescence confocal microscopy, inactivation of mTOR with rapamycin promoted the nuclear translocation of unphosphorylated STAT1, but not that of a STAT1 mutant incapable of binding its nuclear import adaptor karyopherin-α1 (KPNA1). By immunoprecipitation, KPNA1 was physically associated with mTOR and STAT1 in a complex that translocated to the nucleus in response to rapamycin. Although mTOR is not a kinase for KPNA1, the mTOR-associated phosphatase protein phosphatase 2A catalytic interacted directly with KPNA1 and regulated nuclear import of the mTOR-KPNA1 complex. KPNA1, or its interaction with STAT1, was required for the nuclear import of latent STAT1, transcriptional induction of the STAT1 gene, and caspase-3 activation under conditions of reduced mTOR activity (i.e. rapamycin, glucose starvation, serum withdrawal). Therefore, at low mitogen or nutrient levels, mTOR and protein phosphatase 2A catalytically control the constitutive nuclear import of latent STAT1 by KPNA1, which are key modulators of STAT1 expression and apoptosis.
Collapse
Affiliation(s)
- Jill A Fielhaber
- Critical Care Division and Meakins-Christie Laboratories, Faculty of Medicine, McGill University, Montreal, Quebec H3A 1A1, Canada
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
The eukaryotic cell is organized into membrane-covered compartments that are characterized by specific sets of proteins and biochemically distinct cellular processes. The appropriate subcellular localization of proteins is crucial because it provides the physiological context for their function. In this Commentary, we give a brief overview of the different mechanisms that are involved in protein trafficking and describe how aberrant localization of proteins contributes to the pathogenesis of many human diseases, such as metabolic, cardiovascular and neurodegenerative diseases, as well as cancer. Accordingly, modifying the disease-related subcellular mislocalization of proteins might be an attractive means of therapeutic intervention. In particular, cellular processes that link protein folding and cell signaling, as well as nuclear import and export, to the subcellular localization of proteins have been proposed as targets for therapeutic intervention. We discuss the concepts involved in the therapeutic restoration of disrupted physiological protein localization and therapeutic mislocalization as a strategy to inactivate disease-causing proteins.
Collapse
Affiliation(s)
- Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | | |
Collapse
|
39
|
Sekiguchi S, Niikura K, Matsuo Y, Yoshimura SH, Ijiro K. Nuclear transport facilitated by the interaction between nuclear pores and carbohydrates. RSC Adv 2012. [DOI: 10.1039/c1ra00616a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
40
|
Jamali T, Jamali Y, Mehrbod M, Mofrad MRK. Nuclear pore complex: biochemistry and biophysics of nucleocytoplasmic transport in health and disease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2011; 287:233-86. [PMID: 21414590 DOI: 10.1016/b978-0-12-386043-9.00006-2] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Nuclear pore complexes (NPCs) are the gateways connecting the nucleoplasm and cytoplasm. This structures are composed of over 30 different proteins and 60-125 MDa of mass depending on type of species. NPCs are bilateral pathways that selectively control the passage of macromolecules into and out of the nucleus. Molecules smaller than 40 kDa diffuse through the NPC passively while larger molecules require facilitated transport provided by their attachment to karyopherins. Kinetic studies have shown that approximately 1000 translocations occur per second per NPC. Maintaining its high selectivity while allowing for rapid translocation makes the NPC an efficient chemical nanomachine. In this review, we approach the NPC function via a structural viewpoint. Putting together different pieces of this puzzle, this chapter confers an overall insight into what molecular processes are engaged in import/export of active cargos across the NPC and how different transporters regulate nucleocytoplasmic transport. In the end, the correlation of several diseases and disorders with the NPC structural defects and dysfunctions is discussed.
Collapse
Affiliation(s)
- T Jamali
- Department of Bioengineering, University of California, Berkeley, California, USA
| | | | | | | |
Collapse
|
41
|
Waldman SA, Terzic A. Clinical and translational sciences: at the intersection of molecular and individualized medicine. Clin Transl Sci 2010; 1:6-8. [PMID: 20443812 DOI: 10.1111/j.1752-8062.2008.00019.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Affiliation(s)
- Scott A Waldman
- Department of Pharmacology and Experimental Therapeutics, Division of Clinical Pharmacology, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
| | | |
Collapse
|
42
|
Krebs J, Mueller-Roeber B, Ruzicic S. A novel bipartite nuclear localization signal with an atypically long linker in DOF transcription factors. JOURNAL OF PLANT PHYSIOLOGY 2010; 167:583-6. [PMID: 20116130 DOI: 10.1016/j.jplph.2009.11.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Revised: 11/28/2009] [Accepted: 11/29/2009] [Indexed: 05/08/2023]
Abstract
Large molecules require a nuclear localization signal (NLS) for translocation into the nucleus. Classical NLSs are rich in basic amino acids and they represent three groups, based on their structural features: SV40 T-antigen-type, yeast mating factor Matalpha-2-type, and bipartite NLSs. DNA-binding-with-one-finger (DOF) transcription factors play important roles in plants, and although their nuclear localization has been demonstrated in several cases, public protein localization prediction tools fail to detect NLS motifs in these proteins. Here, we demonstrate that an atypical bipartite NLS with a 17 amino acid long linker between its flanking basic regions directs Arabidopsis thaliana DOF proteins to the cell nucleus. The novel bipartite NLS is highly conserved in plant DOF transcription factors, including the single DOF protein in the green alga Chlamydomonas reinhardtii.
Collapse
Affiliation(s)
- Jonas Krebs
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Strasse 24-25, Haus 20, 14476 Potsdam-Golm, Germany.
| | | | | |
Collapse
|
43
|
Chahine MN, Pierce GN. Therapeutic Targeting of Nuclear Protein Import in Pathological Cell Conditions. Pharmacol Rev 2009; 61:358-72. [DOI: 10.1124/pr.108.000620] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
44
|
Mehmood R, Yasuhara N, Oe S, Nagai M, Yoneda Y. Synergistic nuclear import of NeuroD1 and its partner transcription factor, E47, via heterodimerization. Exp Cell Res 2009; 315:1639-52. [PMID: 19272376 DOI: 10.1016/j.yexcr.2009.02.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Revised: 02/13/2009] [Accepted: 02/21/2009] [Indexed: 10/21/2022]
Abstract
The transition from undifferentiated pluripotent cells to terminally differentiated neurons is coordinated by a repertoire of transcription factors. NeuroD1 is a type II basic helix loop helix (bHLH) transcription factor that plays critical roles in neuronal differentiation and maintenance in the central nervous system. Its dimerization with E47, a type I bHLH transcription factor, leads to the transcriptional regulation of target genes. Mounting evidence suggests that regulating the localization of transcription factors contributes to the regulation of their activity during development as defects in their localization underlie a variety of developmental disorders. In this study, we attempted to understand the nuclear import mannerisms of NeuroD1 and E47. We found that the nuclear import of NeuroD1 and E47 is energy-dependent and involves the Ran-mediated pathway. Herein, we demonstrate that NeuroD1 and E47 can dimerize inside the cytoplasm before their nuclear import. Moreover, this dimerization promotes nuclear import as the nuclear accumulation of NeuroD1 was enhanced in the presence of E47 in an in vitro nuclear import assay, and NLS-deficient NeuroD1 was successfully imported into the nucleus upon E47 overexpression. NeuroD1 also had a similar effect on the nuclear accumulation of NLS-deficient E47. These findings suggest a novel role for dimerization that may promote, at least partially, the nuclear import of transcription factors allowing them to function efficiently in the nucleus.
Collapse
Affiliation(s)
- Rashid Mehmood
- Department of Frontier Biosciences, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | | | | | | | | |
Collapse
|
45
|
Thys W, Busschots K, McNeely M, Voet A, Christ F, Debyser Z. LEDGF/p75 and transportin-SR2 are cellular cofactors of HIV integrase and novel targets for antiviral therapy. ACTA ACUST UNITED AC 2009. [DOI: 10.2217/17584310.3.2.171] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The HIV replication cycle is an elaborate interplay between the viral machinery and cellular proteins. In this review we propose that protein–protein interactions between cellular proteins and HIV integrase are new targets for future antiviral therapy. We focus on the early steps of HIV replication, namely viral entry, uncoating, reverse transcription, trafficking, nuclear import and integration, and the host cell proteins involved herein. We then discuss the feasibility of developing small-molecule protein–protein interaction inhibitors as antiviral agents. Next, we review the HIV integrase cofactors described in the literature highlighting two validated cofactors, lens epithelium-derived growth factor/p75 and transportin-SR2, which are discussed in detail. Finally, a speculative viewpoint is given on small-molecule protein–protein interaction inhibitors as future HIV inhibitors.
Collapse
Affiliation(s)
- Wannes Thys
- Molecular Medicine, KU Leuven Kapucijnenvoer 33 3000 Leuven, Flanders, Belgium
| | - Katrien Busschots
- Molecular Medicine, KU Leuven Kapucijnenvoer 33 3000 Leuven, Flanders, Belgium
| | - Melissa McNeely
- Molecular Medicine, KU Leuven Kapucijnenvoer 33 3000 Leuven, Flanders, Belgium
| | - Arnout Voet
- Molecular Medicine, KU Leuven Kapucijnenvoer 33 3000 Leuven, Flanders, Belgium
| | - Frauke Christ
- Molecular Medicine, KU Leuven Kapucijnenvoer 33 3000 Leuven, Flanders, Belgium
| | - Zeger Debyser
- Molecular Medicine, KU Leuven Kapucijnenvoer 33 3000 Leuven, Flanders, Belgium
| |
Collapse
|
46
|
Chahine MN, Blackwood DP, Dibrov E, Richard MN, Pierce GN. Oxidized LDL affects smooth muscle cell growth through MAPK-mediated actions on nuclear protein import. J Mol Cell Cardiol 2009; 46:431-41. [DOI: 10.1016/j.yjmcc.2008.10.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Revised: 10/02/2008] [Accepted: 10/06/2008] [Indexed: 11/25/2022]
|
47
|
Waldman SA, Terzic A. A study of microRNAs in silico and in vivo: diagnostic and therapeutic applications in cancer. FEBS J 2009; 276:2157-64. [PMID: 19250312 DOI: 10.1111/j.1742-4658.2009.06934.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
There is emerging evidence of the production in human tumors of abnormal levels of microRNAs (miRNAs), which have been assigned oncogenic and/or tumor-suppressor functions. While some miRNAs commonly exhibit altered amounts across tumors, more often, different tumor types produce unique patterns of miRNAs, related to their tissue of origin. The role of miRNAs in tumorigenesis underscores their value as mechanism-based therapeutic targets in cancer. Similarly, unique patterns of altered levels of miRNA production provide fingerprints that may serve as molecular biomarkers for tumor diagnosis, classification, prognosis of disease-specific outcomes and prediction of therapeutic responses.
Collapse
Affiliation(s)
- Scott A Waldman
- Department of Pharmacology, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | | |
Collapse
|
48
|
Garcia JM, Gao A, He PL, Choi J, Tang W, Bruzzone R, Schwartz O, Naya H, Nan FJ, Li J, Altmeyer R, Zuo JP. High-throughput screening using pseudotyped lentiviral particles: a strategy for the identification of HIV-1 inhibitors in a cell-based assay. Antiviral Res 2008; 81:239-47. [PMID: 19118579 DOI: 10.1016/j.antiviral.2008.12.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2008] [Revised: 11/27/2008] [Accepted: 12/01/2008] [Indexed: 10/21/2022]
Abstract
Two decades after its discovery the human immunodeficiency virus (HIV) is still spreading worldwide and killing millions. There are 25 drugs formally approved for HIV currently on the market, but side effects as well as the emergence of HIV strains showing single or multiple resistances to current drug-therapy are causes for concern. Furthermore, these drugs target only 4 steps of the viral cycle, hence the urgent need for new drugs and also new targets. In order to tackle this problem, we have devised a cell-based assay using lentiviral particles to look for post-entry inhibitors of HIV-1. We report here the assay development, validation as well as confirmation of the hits using both wild-type and drug-resistant HIV-1 viruses. The screening was performed on an original library, rich in natural compounds and pure molecules from Traditional Chinese Medicine pharmacopoeia, which had never been screened for anti-HIV activity. The identified hits belong to four chemical sub-families that appear to be all non-nucleoside reverse transcriptase inhibitors (NNRTIs). Secondary tests with live viruses showed that there was good agreement with pseudotyped particles, confirming the validity of this approach for high-throughput drug screens. This assay will be a useful tool that can be easily adapted to screen for inhibitors of viral entry.
Collapse
|
49
|
Favre N, Camps M, Arod C, Chabert C, Rommel C, Pasquali C. Chemokine receptor CCR2 undergoes transportin1-dependent nuclear translocation. Proteomics 2008; 8:4560-76. [PMID: 18846510 DOI: 10.1002/pmic.200800211] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Chemokines (CCs) are small chemoattractant cytokines involved in a wide variety of biological and pathological processes. Released by cells in the milieu, and extracellular matrix and activating signalling cascades upon binding to specific G protein-coupled receptors (GPCRs), they trigger many cellular events. In various pathologies, CCs are directly responsible for excessive recruitment of leukocytes to inflammatory sites and recent studies using chemokine receptor (CCR) antagonists permitted these molecules to reach the market for medical use. While interaction of CCs with their receptors has been extensively documented, downstream GPCR signalling cascades triggered by CC are less well understood. Given the pivotal role of chemokine receptor 2 (CCR2) in monocyte recruitment, activation and differentiation and its implication in several autoimmune-inflammatory pathologies, we searched for potential new CCR2-interacting proteins by engineering a modified CCR2 that we used as bait. Herein, we show the direct interaction of CCR2 with transportin1 (TRN1), which we demonstrate is followed by CCR2 receptor internalization. Further characterization of this novel interaction revealed that TRN1-binding to CCR2 increased upon time in agonist treated cells and promotes its nuclear translocation in a TRN1-dependent manner. Finally, we provide evidence that following translocation, the receptor localizes at the outer edge of the nuclear envelope where it is finally released from TRN1.
Collapse
|
50
|
Behfar A, Faustino RS, Arrell DK, Dzeja PP, Perez-Terzic C, Terzic A. Guided stem cell cardiopoiesis: discovery and translation. J Mol Cell Cardiol 2008; 45:523-9. [PMID: 18835562 DOI: 10.1016/j.yjmcc.2008.09.122] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Revised: 08/06/2008] [Accepted: 09/08/2008] [Indexed: 01/01/2023]
Abstract
Over 1000 patients have participated worldwide in clinical trials exploring the therapeutic value of bone marrow-derived cells in ischemic heart disease. Meta-analysis evaluation of this global effort indicates that adult stem cell therapy is in general safe, but yields a rather modest level of improvement in cardiac function and structural remodeling in the setting of acute myocardial infarction or chronic heart failure. Although promising, the potential of translating adult stem cell-based therapy from bench to bedside has yet to be fully realized. Inter-trial and inter-patient variability contribute to disparity in the regenerative potential of transplanted stem cells with unpredictable efficacy on follow-up. Strategies that mimic the natural embryonic program for uniform recruitment of cardiogenic progenitors from adult sources are currently tested to secure consistent outcome. Guided cardiopoiesis has been implemented with mesenchymal stem cells obtained from bone marrow of healthy volunteers, using a cocktail of secreted proteins that recapitulate components of the endodermal secretome critical for cardiogenic induction of embryonic mesoderm. With appropriate validation of this newly derived cardiopoietic phenotype, the next generation of trials should achieve demonstrable benefit across patient populations.
Collapse
Affiliation(s)
- Atta Behfar
- Marriott Heart Disease Research Program, Division of Cardiovascular Diseases, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | | | |
Collapse
|