1
|
Shim AR, Frederick J, Pujadas EM, Kuo T, Ye IC, Pritchard JA, Dunton CL, Gonzalez PC, Acosta N, Jain S, Anthony NM, Almassalha LM, Szleifer I, Backman V. Formamide denaturation of double-stranded DNA for fluorescence in situ hybridization (FISH) distorts nanoscale chromatin structure. PLoS One 2024; 19:e0301000. [PMID: 38805476 PMCID: PMC11132451 DOI: 10.1371/journal.pone.0301000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 03/10/2024] [Indexed: 05/30/2024] Open
Abstract
As imaging techniques rapidly evolve to probe nanoscale genome organization at higher resolution, it is critical to consider how the reagents and procedures involved in sample preparation affect chromatin at the relevant length scales. Here, we investigate the effects of fluorescent labeling of DNA sequences within chromatin using the gold standard technique of three-dimensional fluorescence in situ hybridization (3D FISH). The chemical reagents involved in the 3D FISH protocol, specifically formamide, cause significant alterations to the sub-200 nm (sub-Mbp) chromatin structure. Alternatively, two labeling methods that do not rely on formamide denaturation, resolution after single-strand exonuclease resection (RASER)-FISH and clustered regularly interspaced short palindromic repeats (CRISPR)-Sirius, had minimal impact on the three-dimensional organization of chromatin. We present a polymer physics-based analysis of these protocols with guidelines for their interpretation when assessing chromatin structure using currently available techniques.
Collapse
Affiliation(s)
- Anne R. Shim
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, United States of America
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, Illinois, United States of America
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois, United States of America
| | - Jane Frederick
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, United States of America
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, Illinois, United States of America
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois, United States of America
| | - Emily M. Pujadas
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, United States of America
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, Illinois, United States of America
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois, United States of America
| | - Tiffany Kuo
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, United States of America
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, Illinois, United States of America
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois, United States of America
| | - I. Chae Ye
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, United States of America
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, Illinois, United States of America
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois, United States of America
| | - Joshua A. Pritchard
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, United States of America
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, Illinois, United States of America
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois, United States of America
| | - Cody L. Dunton
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, United States of America
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, Illinois, United States of America
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois, United States of America
| | - Paola Carrillo Gonzalez
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, United States of America
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, Illinois, United States of America
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois, United States of America
| | - Nicolas Acosta
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, United States of America
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, Illinois, United States of America
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois, United States of America
| | - Surbhi Jain
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, United States of America
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, Illinois, United States of America
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois, United States of America
| | - Nicholas M. Anthony
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, United States of America
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, Illinois, United States of America
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois, United States of America
| | - Luay M. Almassalha
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, United States of America
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, Illinois, United States of America
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois, United States of America
- Department of Gastroenterology and Hepatology, Northwestern Memorial Hospital, Chicago, Illinois, United States of America
| | - Igal Szleifer
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, United States of America
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, Illinois, United States of America
- Department of Chemistry, Northwestern University, Evanston, Illinois, United States of America
| | - Vadim Backman
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, United States of America
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, Illinois, United States of America
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois, United States of America
| |
Collapse
|
2
|
Kolbeck P, Dass M, Martynenko IV, van Dijk-Moes RJA, Brouwer KJH, van Blaaderen A, Vanderlinden W, Liedl T, Lipfert J. DNA Origami Fiducial for Accurate 3D Atomic Force Microscopy Imaging. NANO LETTERS 2023; 23:1236-1243. [PMID: 36745573 PMCID: PMC9951250 DOI: 10.1021/acs.nanolett.2c04299] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/25/2022] [Indexed: 06/01/2023]
Abstract
Atomic force microscopy (AFM) is a powerful technique for imaging molecules, macromolecular complexes, and nanoparticles with nanometer resolution. However, AFM images are distorted by the shape of the tip used. These distortions can be corrected if the tip shape can be determined by scanning a sample with features sharper than the tip and higher than the object of interest. Here we present a 3D DNA origami structure as fiducial for tip reconstruction and image correction. Our fiducial is stable under a broad range of conditions and has sharp steps at different heights that enable reliable tip reconstruction from as few as ten fiducials. The DNA origami is readily codeposited with biological and nonbiological samples, achieves higher precision for the tip apex than polycrystalline samples, and dramatically improves the accuracy of the lateral dimensions determined from the images. Our fiducial thus enables accurate and precise AFM imaging for a broad range of applications.
Collapse
Affiliation(s)
- Pauline
J. Kolbeck
- Department
of Physics and Center for NanoScience, LMU
Munich, Amalienstrasse 54, 80799Munich, Germany
- Department
of Physics and Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CCUtrecht, The Netherlands
| | - Mihir Dass
- Department
of Physics and Center for NanoScience, LMU
Munich, Amalienstrasse 54, 80799Munich, Germany
| | - Irina V. Martynenko
- Department
of Physics and Center for NanoScience, LMU
Munich, Amalienstrasse 54, 80799Munich, Germany
| | - Relinde J. A. van Dijk-Moes
- Department
of Physics and Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CCUtrecht, The Netherlands
| | - Kelly J. H. Brouwer
- Department
of Physics and Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CCUtrecht, The Netherlands
| | - Alfons van Blaaderen
- Department
of Physics and Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CCUtrecht, The Netherlands
| | - Willem Vanderlinden
- Department
of Physics and Center for NanoScience, LMU
Munich, Amalienstrasse 54, 80799Munich, Germany
- Department
of Physics and Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CCUtrecht, The Netherlands
| | - Tim Liedl
- Department
of Physics and Center for NanoScience, LMU
Munich, Amalienstrasse 54, 80799Munich, Germany
| | - Jan Lipfert
- Department
of Physics and Center for NanoScience, LMU
Munich, Amalienstrasse 54, 80799Munich, Germany
- Department
of Physics and Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CCUtrecht, The Netherlands
| |
Collapse
|
4
|
Kang H, Yoon YG, Thirumalai D, Hyeon C. Confinement-Induced Glassy Dynamics in a Model for Chromosome Organization. PHYSICAL REVIEW LETTERS 2015; 115:198102. [PMID: 26588418 DOI: 10.1103/physrevlett.115.198102] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Indexed: 06/05/2023]
Abstract
Recent experiments showing scaling of the intrachromosomal contact probability, P(s)∼s(-1) with the genomic distance s, are interpreted to mean a self-similar fractal-like chromosome organization. However, scaling of P(s) varies across organisms, requiring an explanation. We illustrate dynamical arrest in a highly confined space as a discriminating marker for genome organization, by modeling chromosomes inside a nucleus as a homopolymer confined to a sphere of varying sizes. Brownian dynamics simulations show that the chain dynamics slows down as the polymer volume fraction (ϕ) inside the confinement approaches a critical value ϕ(c). The universal value of ϕ(c)(∞)≈0.44 for a sufficiently long polymer (N≫1) allows us to discuss genome dynamics using ϕ as the sole parameter. Our study shows that the onset of glassy dynamics is the reason for the segregated chromosome organization in humans (N≈3×10(9), ϕ≳ϕ(c)(∞)), whereas chromosomes of budding yeast (N≈10(8), ϕ<ϕ(c)(∞)) are equilibrated with no clear signature of such organization.
Collapse
Affiliation(s)
- Hongsuk Kang
- Institute for Physical Sciences and Technology, University of Maryland, College Park, Maryland 20742, USA
| | - Young-Gui Yoon
- Department of Physics, Chung-Ang University, Seoul 156-756, Korea
| | - D Thirumalai
- Institute for Physical Sciences and Technology, University of Maryland, College Park, Maryland 20742, USA
| | | |
Collapse
|
6
|
Matsumura H, Kusaka N, Nakamura T, Tanaka N, Sagegami K, Uegaki K, Inoue T, Mukai Y. Crystal structure of the N-terminal domain of the yeast general corepressor Tup1p and its functional implications. J Biol Chem 2012; 287:26528-38. [PMID: 22707714 DOI: 10.1074/jbc.m112.369652] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The yeast Cyc8p-Tup1p protein complex is a general transcriptional corepressor of genes involved in many different physiological processes. Herein, we present the crystal structure of the Tup1p N-terminal domain (residues 1-92), essential for Tup1p self-assembly and interaction with Cyc8p. This domain tetramerizes to form a novel antiparallel four-helix bundle. Coiled coil interactions near the helical ends hold each dimer together, whereas interdimeric association involves only two sets of two residues located toward the chain centers. A mutagenesis study confirmed that the nonpolar residues responsible for the association of the protomers as dimers are also required for transcriptional repression. An additional structural study demonstrated that the domain containing an Leu(62) → Arg mutation that had been shown not to bind Cyc8p exhibits an altered structure, distinct from the wild type. This altered structure explains why the mutant cannot bind Cyc8p. The data presented herein highlight the importance of the architecture of the Tup1p N-terminal domain for self-association.
Collapse
Affiliation(s)
- Hiroyoshi Matsumura
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | | | | | | | | | | | | | | |
Collapse
|