1
|
Abstract
BACKGROUND The LEAFY (LFY) transcription factors are present in algae and across land plants. The available expression and functional data of these genes in embryophytes suggest that LFY genes control a plethora of processes including the first zygotic cell division in bryophytes, shoot cell divisions of the gametophyte and sporophyte in ferns, cone differentiation in gymnosperms and floral meristem identity in flowering plants. However, their putative plesiomorphic role in plant reproductive transition in vascular plants remains untested. RESULTS We perform Maximum Likelihood (ML) phylogenetic analyses for the LFY gene lineage in embryophytes with expanded sampling in lycophytes and ferns. We recover the previously identified seed plant duplication that results in LEAFY and NEEDLY paralogs. In addition, we recover multiple species-specific duplications in ferns and lycophytes and large-scale duplications possibly correlated with the occurrence of whole genome duplication (WGD) events in Equisetales and Salviniales. To test putative roles in diverse ferns and lycophytes we perform LFY expression analyses in Adiantum raddianum, Equisetum giganteum and Selaginella moellendorffii. Our results show that LFY genes are active in vegetative and reproductive tissues, with higher expression in early fertile developmental stages and during sporangia differentiation. CONCLUSIONS Our data point to previously unrecognized roles of LFY genes in sporangia differentiation in lycophytes and ferns and suggests that functions linked to reproductive structure development are not exclusive to seed plant LFY homologs.
Collapse
|
2
|
Liu J, Chatham L, Aryal R, Yu Q, Ming R. Differential methylation and expression of HUA1 ortholog in three sex types of papaya. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 272:99-106. [PMID: 29807610 DOI: 10.1016/j.plantsci.2018.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/02/2018] [Accepted: 04/03/2018] [Indexed: 06/08/2023]
Abstract
Papaya is trioecious and an excellent system for studying sex determination and differentiation in plants. An ortholog of HUA1, CpHUA1, a gene controlling stamen and carpel development in Arabidopsis, was cloned and characterized in papaya. CpHUA1 consists of 12 exons with full genomic length of 19,313 bp in male AU9 and 19,312 bp in hermaphrodite SunUp, whereas the Arabidopsis HUA1 consists of 12 exons with full genomic length of 4300 bp. All the 324 SNPs between male and hermaphrodite varieties are in the 11th intron, which spans 8.5 kb. Quantitative RT-PCR revealed that CpHUA1 expression is highly elevated in carpels, suggesting that CpHUA1 may be involved in sex differentiation gene network. Southern blot analysis revealed a distinct restriction pattern in male AU9 compared to hermaphrodite Kapoho and SunUp, despite high DNA sequence identity and sharing of all but two EcoR I restriction sites in genomic CpHUA1 sequences of AU9 and SunUp. The methylation of cytosine at one restriction site in male but not in other two sex types may result in distinct restriction pattern of EcoR I in southern blot result. Bisulfite sequencing showed differential methylation of CpHUA1 among sex types, particularly the enrichment of sex-specific methylation in 9th and 11th intron. The methylation difference in cold stress induced male to hermaphrodite mutant mostly observed in the CHH context of CpHUA1, but no methylation difference detected in CHH context in other sex types, which may indicate the role of methylation in CHH context of CpHUA1 in temperature-related stress response and sex reversal.
Collapse
Affiliation(s)
- Juan Liu
- FAFU and UIUC Joint Center for Genomics and Biotechnology, Key Laboratory of Sugarcane Biology and Genetic Breeding Ministry of Agriculture, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Laura Chatham
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Rishi Aryal
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Qingyi Yu
- FAFU and UIUC Joint Center for Genomics and Biotechnology, Key Laboratory of Sugarcane Biology and Genetic Breeding Ministry of Agriculture, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China; Texas A&M AgriLife Research, Department of Plant Pathology & Microbiology, Texas A&M University System, Dallas, TX 75252, USA
| | - Ray Ming
- FAFU and UIUC Joint Center for Genomics and Biotechnology, Key Laboratory of Sugarcane Biology and Genetic Breeding Ministry of Agriculture, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China; Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
3
|
Dhakate P, Tyagi S, Singh A, Singh A. Functional characterization of a novel Brassica LEAFY homolog from Indian mustard: Expression pattern and gain-of-function studies. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 258:29-44. [PMID: 28330561 DOI: 10.1016/j.plantsci.2017.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 01/13/2017] [Accepted: 02/10/2017] [Indexed: 06/06/2023]
Abstract
LEAFY plays a central role in regulation of flowering time and floral meristem identity in plants. Unfortunately, LFY function remains uncharacterized in agronomicaly important Brassicas. Herein, we illustrate fine-mapping of expression domains of LFY in 15 cultivars of 6 Brassica species and describe gain-of-function phenotypes in Arabidopsis and Brassica. We depict early flowering and altered fatty-acid composition in transgenic seed. The cDNA encoding BjuLFY (417aa) shared only 85% identity with reported homolog of B.juncea implying distinctness. Quantitative RT-PCR based coarse expression mapping of BjuLFY in tissue samples representing 3 time points at specific days after sowing (DAS), pre-flowering (30 DAS), flowering (75 DAS) and post-flowering (110 DAS), depicted an intense pulse of BjuLFY expression restricted to primary floral buds (75 DAS) which subsided in secondary floral buds (110 DAS); expression in root samples was also recorded implying neo-functionalization. Fine-mapping of expression during flowering confirmed tightly regulated LFY expression during early stages of bud development in 15 cultivars of 6 Brassica species implying functional conservation. Ectopic expression of BjuLFY in A. thaliana and B. juncea caused floral meristem defects and precocious flowering. B. juncea transgenics (T1) over-expressing BjuLFY flowered 20days earlier produced normal flowers. GC-MS analysis of mature seed from Brassica transgenics showed an altered fatty-acid profile suggestive of seed maturation occurring at lower temperatures vis-à-vis control. Our findings implicate BjuLFY as a regulator of flowering in B. juncea and suggest its application in developing climate resilient crops.
Collapse
Affiliation(s)
- Priyanka Dhakate
- Department of Biotechnology, TERI University, 10 Institutional Area, Vasant Kunj, Delhi 110070, India
| | - Shikha Tyagi
- Department of Biotechnology, TERI University, 10 Institutional Area, Vasant Kunj, Delhi 110070, India
| | - Anupama Singh
- Department of Biotechnology, TERI University, 10 Institutional Area, Vasant Kunj, Delhi 110070, India
| | - Anandita Singh
- Department of Biotechnology, TERI University, 10 Institutional Area, Vasant Kunj, Delhi 110070, India.
| |
Collapse
|
4
|
An ortholog of LEAFY in Jatropha curcas regulates flowering time and floral organ development. Sci Rep 2016; 6:37306. [PMID: 27869146 PMCID: PMC5116762 DOI: 10.1038/srep37306] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 10/27/2016] [Indexed: 12/03/2022] Open
Abstract
Jatropha curcas seeds are an excellent biofuel feedstock, but seed yields of Jatropha are limited by its poor flowering and fruiting ability. Thus, identifying genes controlling flowering is critical for genetic improvement of seed yield. We isolated the JcLFY, a Jatropha ortholog of Arabidopsis thaliana LEAFY (LFY), and identified JcLFY function by overexpressing it in Arabidopsis and Jatropha. JcLFY is expressed in Jatropha inflorescence buds, flower buds, and carpels, with highest expression in the early developmental stage of flower buds. JcLFY overexpression induced early flowering, solitary flowers, and terminal flowers in Arabidopsis, and also rescued the delayed flowering phenotype of lfy-15, a LFY loss-of-function Arabidopsis mutant. Microarray and qPCR analysis revealed several flower identity and flower organ development genes were upregulated in JcLFY-overexpressing Arabidopsis. JcLFY overexpression in Jatropha also induced early flowering. Significant changes in inflorescence structure, floral organs, and fruit shape occurred in JcLFY co-suppressed plants in which expression of several flower identity and floral organ development genes were changed. This suggests JcLFY is involved in regulating flower identity, floral organ patterns, and fruit shape, although JcLFY function in Jatropha floral meristem determination is not as strong as that of Arabidopsis.
Collapse
|
5
|
Cloning and functional identification of the AcLFY gene in Allium cepa. Biochem Biophys Res Commun 2016; 473:1100-1105. [PMID: 27074580 DOI: 10.1016/j.bbrc.2016.04.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 04/05/2016] [Indexed: 11/21/2022]
Abstract
Onion (Allium cepa L.) is one of the important vegetable crops in the world, usually with a two-year life cycle. The bulbs form in the first year after sowing, then bolting and flowering are induced by low temperature in the following year. Previous studies have shown that LEAFY gene is an inflorescence tissue specific gene, and that it is also the ultimate collection channel of all flowering pathway. In this study, using homologous gene cloning and reverse transcription-PCR (RT-PCR), we isolated an inflorescence meristem specific LEAFY cDNA, AcLFY (JX275962), from onion. AcLFY contains a 1119 bp open reading frame, which encodes a putative protein of 372 amino acids, with ∼70% homology to the daffodils LEAFY and >50% homology to LEAFY proteins from other higher plants. Fluorescence quantitative results showed that AcLFY gene has the highest expression level in inflorescence meristem during early bolting, and is still expressed in leaves after the formation of flower organs. Overexpression of AcLFY gene in Arabidopsis thaliana induced early bolting and flowering, whereas knockdown of the endogenous LEAFY gene by RNAi caused a significant delay in bolting. In addition, transgenic plants also exhibited significant morphological changes in rosette leaves, branches, and plant height.
Collapse
|
6
|
Jang S. Functional Characterization of PhapLEAFY, a FLORICAULA/LEAFY Ortholog in Phalaenopsis aphrodite. PLANT & CELL PHYSIOLOGY 2015; 56:2234-47. [PMID: 26493518 DOI: 10.1093/pcp/pcv130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Accepted: 08/31/2015] [Indexed: 05/05/2023]
Abstract
The plant-specific transcription factor LEAFY (LFY) is considered to be a master regulator of flower development in the model plant, Arabidopsis. This protein plays a dual role in plant growth, integrating signals from the floral inductive pathways and acting as a floral meristem identity gene by activating genes for floral organ development. Although LFY occupies an important position in flower development, the functional divergence of LFY homologs has been demonstrated in several plants including monocots and gymnosperms. In particular, the functional roles of LFY genes from orchid species such as Phalaenopsis that contain unique floral morphologies with distinct expression patterns of floral organ identity genes remain elusive. Here, PhapLFY, an ortholog of Arabidopsis LFY from Phalaenopsis aphrodite subsp. formosana, a Taiwanese native monopodial orchid, was isolated and characterized through analyses of expression and protein activity. PhapLFY transcripts accumulated in the floral primordia of developing inflorescences, and the PhapLFY protein had transcriptional autoactivation activity forming as a homodimer. Furthermore, PhapLFY rescues the aberrant floral phenotypes of Arabidopsis lfy mutants. Overexpression of PhapLFY alone or together with PhapFT1, a P. aphrodite subsp. formosana homolog of Arabidopsis FLOWERING LOCUS T (FT) in rice, caused precocious heading. Consistently, a higher Chl content in the sepals and morphological changes in epidermal cells were observed in the floral organs of PhapLFY knock-down orchids generated by virus-induced gene silencing. Taken together, these results suggest that PhapLFY is functionally distinct from RICE FLORICAULA/LEAFY (RFL) but similar to Arabidopsis LFY based on phenotypes of our transgenic Arabidopsis and rice plants.
Collapse
Affiliation(s)
- Seonghoe Jang
- Biotechnology Center in Southern Taiwan (BCST), No. 59, Siraya Blvd, Xinshi Dist., Tainan 74145/Agricultural Biotechnology Research Center, Academia Sinica, No. 128, Sec. 2, Academia Road, Nankang, Taipei 11529, Taiwan Institute of Tropical Plant Science, National Cheng Kung University, No. 1 University Road, East Dist., Tainan 70101, Taiwan
| |
Collapse
|
7
|
Liu J, Franks RG, Feng CM, Liu X, Fu CX, (Jenny) Xiang QY. Characterization of the sequence and expression pattern of LFY homologues from dogwood species (Cornus) with divergent inflorescence architectures. ANNALS OF BOTANY 2013; 112:1629-41. [PMID: 24052556 PMCID: PMC3828947 DOI: 10.1093/aob/mct202] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Accepted: 07/15/2013] [Indexed: 05/21/2023]
Abstract
BACKGROUND AND AIMS LFY homologues encode transcription factors that regulate the transition from vegetative to reproductive growth in flowering plants and have been shown to control inflorescence patterning in model species. This study investigated the expression patterns of LFY homologues within the diverse inflorescence types (head-like, umbel-like and inflorescences with elongated internodes) in closely related lineages in the dogwood genus (Cornus s.l.). The study sought to determine whether LFY homologues in Cornus species are expressed during floral and inflorescence development and if the pattern of expression is consistent with a function in regulating floral development and inflorescence architectures in the genus. METHODS Total RNAs were extracted using the CTAB method and the first-strand cDNA was synthesized using the SuperScript III first-strand synthesis system kit (Invitrogen). Expression of CorLFY was investigated by RT-PCR and RNA in situ hybridization. Phylogenetic analyses were conducted using the maximum likelihood methods implemented in RAxML-HPC v7.2.8. KEY RESULTS cDNA clones of LFY homologues (designated CorLFY) were isolated from six Cornus species bearing different types of inflorescence. CorLFY cDNAs were predicted to encode proteins of approximately 375 amino acids. The detection of CorLFY expression patterns using in situ RNA hybridization demonstrated the expression of CorLFY within the inflorescence meristems, inflorescence branch meristems, floral meristems and developing floral organ primordia. PCR analyses for cDNA libraries derived from reverse transcription of total RNAs showed that CorLFY was also expressed during the late-stage development of flowers and inflorescences, as well as in bracts and developing leaves. Consistent differences in the CorLFY expression patterns were not detected among the distinct inflorescence types. CONCLUSIONS The results suggest a role for CorLFY genes during floral and inflorescence development in dogwoods. However, the failure to detect expression differences between the inflorescence types in the Cornus species analysed suggests that the evolutionary shift between major inflorescence types in the genus is not controlled by dramatic alterations in the levels of CorLFY gene transcript accumulation. However, due to spatial, temporal and quantitative limitations of the expression data, it cannot be ruled out that subtle differences in the level or location of CorLFY transcripts may underlie the different inflorescence architectures that are observed across these species. Alternatively, differences in CorLFY protein function or the expression or function of other regulators (e.g. TFL1 and UFO homologues) may support the divergent developmental trajectories.
Collapse
Affiliation(s)
- Juan Liu
- Department of Plant Biology, North Carolina State University, Raleigh, NC 27695, USA
- College of Life Sciences, Zhejiang University, Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, Hangzhou 310058, China
| | - Robert G. Franks
- Department of Genetics, North Carolina State University, Raleigh, NC 27695, USA
| | - Chun-Miao Feng
- Department of Plant Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Xiang Liu
- Department of Plant Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Cheng-Xin Fu
- College of Life Sciences, Zhejiang University, Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, Hangzhou 310058, China
| | - Qiu-Yun (Jenny) Xiang
- Department of Plant Biology, North Carolina State University, Raleigh, NC 27695, USA
- For correspondence. E-mail
| |
Collapse
|
8
|
Li J, Fan SL, Song MZ, Pang CY, Wei HL, Li W, Ma JH, Wei JH, Jing JG, Yu SX. Cloning and characterization of a FLO/LFY ortholog in Gossypium hirsutum L. PLANT CELL REPORTS 2013; 32:1675-1686. [PMID: 23893068 DOI: 10.1007/s00299-013-1479-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 07/07/2013] [Accepted: 07/09/2013] [Indexed: 06/02/2023]
Abstract
KEY MESSAGE GhLFY was cloned from G. hirsutum L. Its expression, subcellular localization, and function were analyzed, as well as the in vivo regulation of GhLFY by the MADS-box protein SOC1 (GhSOC1). ABSTRACT Flowering is a very important phase during which plants produce the organs for sexual reproduction. The FLORICAULA/LEAFY (FLO/LFY) homologs play a major role in the initiation of flowering. To understand the mechanism of the transition from the vegetative to reproductive phases in Upland cotton (Gossypium hirsutum L.), we isolated a candidate LFY gene from G. hirsutum L. (GhLFY) that showed a high degree of similarity to other plant homologs of FLO/LFY. qPCR analysis showed that GhLFY was highly expressed in the shoot apex, with substantial upregulation at the third true leaf expansion stage during floral bud differentiation. Subcellular localization studies revealed GhLFY localization in the nucleus. Ectopic expression of the GhLFY coding region in Arabidopsis resulted in early flowering. The expression of the GhLFY coding region under the control of the 35S promoter complemented the lfy-5 mutation in transgenic Arabidopsis lfy-5 mutant plants. Furthermore, a chromatin immunoprecipitation assay revealed that GhLFY may function downstream of GhSOC1 during the initiation of flowering in G. hirsutum L. GhLFY was likely to be regulated by GhSOC1, which binds to the LFY promoter in Arabidopsis. These results suggest that GhLFY is a FLO/LFY ortholog that may be involved in controlling flowering time and floral development.
Collapse
Affiliation(s)
- Jie Li
- Key Laboratory of Cotton Genetic Improvement of Ministry of Agriculture, The Cotton Research Institute, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Muñoz-Fambuena N, Mesejo C, González-Mas MC, Primo-Millo E, Agustí M, Iglesias DJ. Fruit load modulates flowering-related gene expression in buds of alternate-bearing 'Moncada' mandarin. ANNALS OF BOTANY 2012; 110:1109-18. [PMID: 22915579 PMCID: PMC3478051 DOI: 10.1093/aob/mcs190] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 07/10/2012] [Indexed: 05/07/2023]
Abstract
BACKGROUND AND AIMS Gene determination of flowering is the result of complex interactions involving both promoters and inhibitors. In this study, the expression of flowering-related genes at the meristem level in alternate-bearing citrus trees is analysed, together with the interplay between buds and leaves in the determination of flowering. METHODS First defruiting experiments were performed to manipulate blossoming intensity in 'Moncada' mandarin, Citrus clementina. Further defoliation was performed to elucidate the role leaves play in the flowering process. In both cases, the activity of flowering-related genes was investigated at the flower induction (November) and differentiation (February) stages. KEY RESULTS Study of the expression pattern of flowering-genes in buds from on (fully loaded) and off (without fruits) trees revealed that homologues of FLOWERING LOCUS T (CiFT), TWIN SISTER OF FT (TSF), APETALA1 (CsAP1) and LEAFY (CsLFY) were negatively affected by fruit load. CiFT and TSF activities showed a marked increase in buds from off trees through the study period (ten-fold in November). By contrast, expression of the homologues of the flowering inhibitors of TERMINAL FLOWER 1 (CsTFL), TERMINAL FLOWER 2 (TFL2) and FLOWERING LOCUS C (FLC) was generally lower in off trees. Regarding floral identity genes, the increase in CsAP1 expression in off trees was much greater in buds than in leaves, and significant variations in CsLFY expression (approx. 20 %) were found only in February. Defoliation experiments further revealed that the absence of leaves completely abolished blossoming and severely affected the expression of most of the flowering-related genes, particularly decreasing the activity of floral promoters and of CsAP1 at the induction stage. CONCLUSIONS These results suggest that the presence of fruit affects flowering by greatly altering gene-expression not only at the leaf but also at the meristem level. Although leaves are required for flowering to occur, their absence strongly affects the activity of floral promoters and identity genes.
Collapse
Affiliation(s)
- Natalia Muñoz-Fambuena
- Instituto Agroforestal Mediterráneo, Universidad Politécnica de Valencia, E-46022 Valencia, Spain
| | - Carlos Mesejo
- Instituto Agroforestal Mediterráneo, Universidad Politécnica de Valencia, E-46022 Valencia, Spain
| | - M. Carmen González-Mas
- Centro de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias, E-46113 Moncada, Valencia, Spain
| | - Eduardo Primo-Millo
- Centro de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias, E-46113 Moncada, Valencia, Spain
| | - Manuel Agustí
- Instituto Agroforestal Mediterráneo, Universidad Politécnica de Valencia, E-46022 Valencia, Spain
| | - Domingo J. Iglesias
- Centro de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias, E-46113 Moncada, Valencia, Spain
| |
Collapse
|
10
|
Zhu X, Li X, Chen W, Chen J, Lu W, Chen L, Fu D. Evaluation of new reference genes in papaya for accurate transcript normalization under different experimental conditions. PLoS One 2012; 7:e44405. [PMID: 22952972 PMCID: PMC3432124 DOI: 10.1371/journal.pone.0044405] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 08/02/2012] [Indexed: 12/18/2022] Open
Abstract
Real-time reverse transcription PCR (RT-qPCR) is a preferred method for rapid and accurate quantification of gene expression studies. Appropriate application of RT-qPCR requires accurate normalization though the use of reference genes. As no single reference gene is universally suitable for all experiments, thus reference gene(s) validation under different experimental conditions is crucial for RT-qPCR analysis. To date, only a few studies on reference genes have been done in other plants but none in papaya. In the present work, we selected 21 candidate reference genes, and evaluated their expression stability in 246 papaya fruit samples using three algorithms, geNorm, NormFinder and RefFinder. The samples consisted of 13 sets collected under different experimental conditions, including various tissues, different storage temperatures, different cultivars, developmental stages, postharvest ripening, modified atmosphere packaging, 1-methylcyclopropene (1-MCP) treatment, hot water treatment, biotic stress and hormone treatment. Our results demonstrated that expression stability varied greatly between reference genes and that different suitable reference gene(s) or combination of reference genes for normalization should be validated according to the experimental conditions. In general, the internal reference genes EIF (Eukaryotic initiation factor 4A), TBP1 (TATA binding protein 1) and TBP2 (TATA binding protein 2) genes had a good performance under most experimental conditions, whereas the most widely present used reference genes, ACTIN (Actin 2), 18S rRNA (18S ribosomal RNA) and GAPDH (Glyceraldehyde-3-phosphate dehydrogenase) were not suitable in many experimental conditions. In addition, two commonly used programs, geNorm and Normfinder, were proved sufficient for the validation. This work provides the first systematic analysis for the selection of superior reference genes for accurate transcript normalization in papaya under different experimental conditions.
Collapse
Affiliation(s)
- Xiaoyang Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Key Laboratory for Postharvest Science and Technology, College of Horticulture, South China Agricultural University, Guangzhou, P.R. China
| | - Xueping Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Key Laboratory for Postharvest Science and Technology, College of Horticulture, South China Agricultural University, Guangzhou, P.R. China
| | - Weixin Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Key Laboratory for Postharvest Science and Technology, College of Horticulture, South China Agricultural University, Guangzhou, P.R. China
| | - Jianye Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Key Laboratory for Postharvest Science and Technology, College of Horticulture, South China Agricultural University, Guangzhou, P.R. China
| | - Wangjin Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Key Laboratory for Postharvest Science and Technology, College of Horticulture, South China Agricultural University, Guangzhou, P.R. China
| | - Lei Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Key Laboratory for Postharvest Science and Technology, College of Horticulture, South China Agricultural University, Guangzhou, P.R. China
| | - Danwen Fu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Key Laboratory for Postharvest Science and Technology, College of Horticulture, South China Agricultural University, Guangzhou, P.R. China
| |
Collapse
|
11
|
Guo J, Yang L, Liu X, Zhang H, Qian B, Zhang D. Applicability of the chymopapain gene used as endogenous reference gene for transgenic huanong no. 1 papaya detection. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2009; 57:6502-6509. [PMID: 19722561 DOI: 10.1021/jf900656t] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The virus-resistant papaya (Carica papaya L.), Huanong no. 1, was the genetically modified (GM) fruit approved for growing in China in 2006. To implement the labeling regulation of GM papaya and its derivates, the development of papaya endogenous reference gene is very necessary for GM papaya detection. Herein, we reported one papaya specific gene, Chymopapain (CHY), as one suitable endogenous reference gene, used for GM papaya identification. Thereafter, we established the conventional and real-time quantitative PCR assays of the CHY gene. In the CHY conventional PCR assay, the limit of detection (LOD) was 25 copies of haploid papaya genome. In the CHY real-time quantitative PCR assay, both the LOD and the limit of quantification (LOQ) were as low as 12.5 copies of haploid papaya genome. Furthermore, we revealed the construct-specific sequence of Chinese GM papaya Huanong no. 1 and developed its conventional and quantitative PCR systems employing the CHY gene as endogenous reference gene. This work is useful for papaya specific identification and GM papaya detection.
Collapse
Affiliation(s)
- Jinchao Guo
- GMO Detection Laboratory, SJTU-Bor Luh Food Safety Center, School of Life Science and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | | | | | | | | | | |
Collapse
|
12
|
Yu Q, Tong E, Skelton RL, Bowers JE, Jones MR, Murray JE, Hou S, Guan P, Acob RA, Luo MC, Moore PH, Alam M, Paterson AH, Ming R. A physical map of the papaya genome with integrated genetic map and genome sequence. BMC Genomics 2009; 10:371. [PMID: 19664231 PMCID: PMC3224731 DOI: 10.1186/1471-2164-10-371] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Accepted: 08/07/2009] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Papaya is a major fruit crop in tropical and subtropical regions worldwide and has primitive sex chromosomes controlling sex determination in this trioecious species. The papaya genome was recently sequenced because of its agricultural importance, unique biological features, and successful application of transgenic papaya for resistance to papaya ringspot virus. As a part of the genome sequencing project, we constructed a BAC-based physical map using a high information-content fingerprinting approach to assist whole genome shotgun sequence assembly. RESULTS The physical map consists of 963 contigs, representing 9.4x genome equivalents, and was integrated with the genetic map and genome sequence using BAC end sequences and a sequence-tagged high-density genetic map. The estimated genome coverage of the physical map is about 95.8%, while 72.4% of the genome was aligned to the genetic map. A total of 1,181 high quality overgo (overlapping oligonucleotide) probes representing conserved sequences in Arabidopsis and genetically mapped loci in Brassica were anchored on the physical map, which provides a foundation for comparative genomics in the Brassicales. The integrated genetic and physical map aligned with the genome sequence revealed recombination hotspots as well as regions suppressed for recombination across the genome, particularly on the recently evolved sex chromosomes. Suppression of recombination spread to the adjacent region of the male specific region of the Y chromosome (MSY), and recombination rates were recovered gradually and then exceeded the genome average. Recombination hotspots were observed at about 10 Mb away on both sides of the MSY, showing 7-fold increase compared with the genome wide average, demonstrating the dynamics of recombination of the sex chromosomes. CONCLUSION A BAC-based physical map of papaya was constructed and integrated with the genetic map and genome sequence. The integrated map facilitated the draft genome assembly, and is a valuable resource for comparative genomics and map-based cloning of agronomically and economically important genes and for sex chromosome research.
Collapse
Affiliation(s)
- Qingyi Yu
- Cellular and Molecular Biology Research Unit, Hawaii Agriculture Research Center, Aiea, HI 96701, USA
| | - Eric Tong
- Cellular and Molecular Biology Research Unit, Hawaii Agriculture Research Center, Aiea, HI 96701, USA
| | - Rachel L Skelton
- Cellular and Molecular Biology Research Unit, Hawaii Agriculture Research Center, Aiea, HI 96701, USA
| | - John E Bowers
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA 30602, USA
| | - Meghan R Jones
- Cellular and Molecular Biology Research Unit, Hawaii Agriculture Research Center, Aiea, HI 96701, USA
| | - Jan E Murray
- Cellular and Molecular Biology Research Unit, Hawaii Agriculture Research Center, Aiea, HI 96701, USA
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Shaobin Hou
- Center for Advanced Studies in Genomics, Proteomics and Bioinformatics, University of Hawaii, Honolulu, HI 96822, USA
| | - Peizhu Guan
- Department of Molecular Bioscience and Bioengineering, University of Hawaii, Honolulu, HI 96822, USA
| | - Ricelle A Acob
- Department of Molecular Bioscience and Bioengineering, University of Hawaii, Honolulu, HI 96822, USA
| | - Ming-Cheng Luo
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
| | - Paul H Moore
- USDA-ARS, Pacific Basin Agricultural Research Center, Hilo, HI 96720, USA
| | - Maqsudul Alam
- Center for Advanced Studies in Genomics, Proteomics and Bioinformatics, University of Hawaii, Honolulu, HI 96822, USA
| | - Andrew H Paterson
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA 30602, USA
| | - Ray Ming
- Cellular and Molecular Biology Research Unit, Hawaii Agriculture Research Center, Aiea, HI 96701, USA
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
13
|
Ackerman CM, Yu Q, Kim S, Paull RE, Moore PH, Ming R. B-class MADS-box genes in trioecious papaya: two paleoAP3 paralogs, CpTM6-1 and CpTM6-2, and a PI ortholog CpPI. PLANTA 2008; 227:741-53. [PMID: 17985156 DOI: 10.1007/s00425-007-0653-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2007] [Accepted: 10/12/2007] [Indexed: 05/25/2023]
Abstract
In the ABC model of flower development, B function organ-identity genes act in the second and third whorls of the flower to control petal and stamen identity. The trioecious papaya has male, female, and hermaphrodite flowers and is an ideal system for testing the B-class gene expression patterns in trioecious plants. We cloned papaya B-class genes, CpTM6-1, CpTM6-2, and CpPI, using MADS box gene specific degenerate primers followed by cDNA library screening and sequencing of positive clones. While phylogenetic analyses show that CpPI is the ortholog of the Arabidopsis gene PI, the CpTM6-1 and CpTM6-2 loci are representatives of the paralogous TM6 lineage that contain paleoAP3 motifs unlike the euAP3 gene observed in Arabidopsis. These two paralogs appeared to have originated from a tandem duplication occurred approximately 13.4 million year ago (mya) (bootstrap range 13.36 +/- 2.42). In-situ hybridization and RT-PCR showed that the papaya B-class genes were highly expressed in young flowers across all floral organ primordia. As the flower organs developed, all three B-class genes were highly expressed in petals of all three-sex types and in stamens of hermaphrodite and male flowers. CpTM6-1 expressed at low levels in sepals and carpels, whereas CpTM6-2 expressed at a low level in sepals and at a high level in leaves. Our results showed that B-class gene homologs could function as predicted by the ABC model in trioecous flowers but differential expressions of CpTM6-1, and CpTM6-2, and CpPI suggested the diversification of their functions after the duplication events.
Collapse
|
14
|
Skelton RL, Yu Q, Srinivasan R, Manshardt R, Moore PH, Ming R. Tissue differential expression of lycopene β-cyclase gene in papaya. Cell Res 2006; 16:731-9. [PMID: 16801954 DOI: 10.1038/sj.cr.7310081] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Carotene pigments in flowers and fruits are distinct features related to fitness advantages such as attracting insects for pollination and birds for seed dispersal. In papaya, the flesh color of the fruit is considered a quality trait that correlates with nutritional value and is linked to shelf-life of the fruit. To elucidate the carotenoid biosynthesis pathway in papaya, we took a candidate gene approach to clone the lycopene beta-cyclase gene, LCY-B. A papaya LCY-B ortholog, cpLCY-B, was successfully identified from both cDNA and bacterial artificial chromosome (BAC) libraries and complete genomic sequence was obtained from the positive BAC including the promoter region. This cpLCY-B shared 80% amino acid identity with citrus LCY-B. However, full genomic sequences from both yellow- and red-fleshed papaya were identical. Quantitative real-time PCR (qPCR) revealed similar levels of expression at six different maturing stages of fruits for both yellow- and red-fleshed genotypes. Further expression analyses of cpLCY-B showed that its expression levels were seven- and three-fold higher in leaves and, respectively, flowers than in fruits, suggesting that cpLCY-B is down-regulated during the fruit ripening process.
Collapse
|