1
|
Groopman E, Mohan S, Waddell A, Wilke M, Fernandez R, Weaver M, Chen H, Liu H, Bali D, Baudet H, Clarke L, Hung C, Mao R, Pinto E Vairo F, Racacho L, Yuzyuk T, Craigen WJ, Goldstein J. Assessment of genes involved in lysosomal diseases using the ClinGen clinical validity framework. Mol Genet Metab 2024; 143:108593. [PMID: 39426251 DOI: 10.1016/j.ymgme.2024.108593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 10/07/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024]
Abstract
Lysosomal diseases (LDs) are a heterogeneous group of rare genetic disorders that result in impaired lysosomal function, leading to progressive multiorgan system dysfunction. Accurate diagnosis is paramount to initiating targeted therapies early in the disease process in addition to providing prognostic information and appropriate support for families. In recent years, genomic sequencing technologies have become the first-line approach in the diagnosis of LDs. Understanding the clinical validity of the role of a gene in a disease is critical for the development of genomic technologies, such as which genes to include on next generation sequencing panels, and the interpretation of results from exome and genome sequencing. To this aim, the ClinGen Lysosomal Diseases Gene Curation Expert Panel utilized a semi-quantitative framework incorporating genetic and experimental evidence to assess the clinical validity of the 56 LD-associated genes on the Lysosomal Disease Network's list. Here, we describe the results, and the key themes and challenges encountered.
Collapse
Affiliation(s)
| | - Shruthi Mohan
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Amber Waddell
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | | | - Meredith Weaver
- American College of Genetics and Genomics, Bethesda, MD, USA
| | - Hongjie Chen
- PreventionGenetics/Exact Sciences, Marshfield, WI, USA
| | | | | | - Heather Baudet
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lorne Clarke
- University of British Columbia, Vancouver, Canada
| | | | - Rong Mao
- ARUP, Salt Lake City, UT, USA; University of Utah, Salt Lake City, UT, USA
| | | | | | - Tatiana Yuzyuk
- ARUP, Salt Lake City, UT, USA; University of Utah, Salt Lake City, UT, USA
| | | | - Jennifer Goldstein
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
2
|
Bullert AJ, Wang H, Valenzuela AE, Neier K, Wilson RJ, Badley JR, LaSalle JM, Hu X, Lein PJ, Lehmler HJ. Interactions of Polychlorinated Biphenyls and Their Metabolites with the Brain and Liver Transcriptome of Female Mice. ACS Chem Neurosci 2024. [PMID: 39392776 DOI: 10.1021/acschemneuro.4c00367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2024] Open
Abstract
Exposure to polychlorinated biphenyls (PCBs) is linked to neurotoxic effects. This study aims to close knowledge gaps regarding the specific modes of action of PCBs in female C57BL/6J mice (>6 weeks) orally exposed for 7 weeks to a human-relevant PCB mixture (MARBLES mix) at 0, 0.1, 1, and 6 mg/kg body weight/day. PCB and hydroxylated PCB (OH-PCBs) levels were quantified in the brain, liver, and serum; RNA sequencing was performed in the striatum, prefrontal cortex, and liver, and metabolomic analyses were performed in the striatum. Profiles of PCBs but not their hydroxylated metabolites were similar in all tissues. In the prefrontal cortex, PCB exposure activated the oxidative phosphorylation respiration pathways, while suppressing the axon guidance pathway. PCB exposure significantly changed the expression of genes associated with neurodevelopmental and neurodegenerative diseases in the striatum, impacting pathways like growth hormone synthesis and dendrite development. PCBs did not affect the striatal metabolome. In contrast to the liver, which showed activation of metabolic processes following PCB exposure and the induction of cytochrome P450 enzymes, the expression of xenobiotic processing genes was not altered by PCB exposure in either brain region. Network analysis revealed complex interactions between individual PCBs (e.g., PCB28 [2,4,4'-trichlorobiphenyl]) and their hydroxylated metabolites and specific differentially expressed genes (DEGs), underscoring the need to characterize the association between specific PCBs and DEGs. These findings enhance the understanding of PCB neurotoxic mechanisms and their potential implications for human health.
Collapse
Affiliation(s)
- Amanda J Bullert
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, Iowa 52242, United States
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, Iowa 52242, United States
| | - Hui Wang
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, Iowa 52242, United States
| | - Anthony E Valenzuela
- Department of Molecular Biosciences, University of California, Davis, California 95616, United States
| | - Kari Neier
- Department of Medical Microbiology and Immunology, University of California, Davis, California 95616, United States
| | - Rebecca J Wilson
- Department of Molecular Biosciences, University of California, Davis, California 95616, United States
| | - Jessie R Badley
- Department of Molecular Biosciences, University of California, Davis, California 95616, United States
| | - Janine M LaSalle
- Department of Medical Microbiology and Immunology, University of California, Davis, California 95616, United States
| | - Xin Hu
- Gangarosa Department of Environmental Health, Emory University, Atlanta, Georgia 30329, United States
| | - Pamela J Lein
- Department of Molecular Biosciences, University of California, Davis, California 95616, United States
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, Iowa 52242, United States
- Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
3
|
Fatima A, Abuhijleh SA, Fatah A, Mohsin MM, Kar SS, Dube R, George BT, Kuruba MGB. Infantile Neuroaxonal Dystrophy: Case Report and Review of Literature. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1322. [PMID: 39202603 PMCID: PMC11356075 DOI: 10.3390/medicina60081322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/05/2024] [Accepted: 08/13/2024] [Indexed: 09/03/2024]
Abstract
Infantile neuroaxonal dystrophy (INAD) is a rare neurodegenerative disorder affecting 1:1,000,000 children. It results from pathogenic variants in the PLA2G6 gene located on chromosome 22q13.1. The onset of symptoms usually occurs between 6 and 18 months, causing developmental regression leading to debilitating symptoms such as muscle weakness, dementia, and loss of basic skills. Eventually, it progresses to life-threatening symptoms, including breathing difficulties, which limit the life expectancy to 5-10 years. While potential genetic therapies for treatment are being developed, they are yet to be approved for use, and management remains essentially supportive. This case report is about a nine-year-old Pakistani girl with INAD. She presented with recurrent chest infections, developmental regression, loss of speech, paralysis, hypertension, and eventually breathing difficulties. Brain magnetic resonance imaging and genetic testing confirmed the diagnosis. This case posed diagnostic challenges in view of its overlapping clinical presentation. Through this report, we aim to raise awareness about this condition among practitioners, outline the importance of genetic counseling in susceptible couples, and suggest potential areas of further research.
Collapse
Affiliation(s)
- Alian Fatima
- Department of Pediatrics, Saqr Hospital, Ras Al-Khaimah P.O. Box 5450, United Arab Emirates; (A.F.); (S.A.A.); (A.F.); (M.M.M.)
| | - Shahd A. Abuhijleh
- Department of Pediatrics, Saqr Hospital, Ras Al-Khaimah P.O. Box 5450, United Arab Emirates; (A.F.); (S.A.A.); (A.F.); (M.M.M.)
| | - Abdul Fatah
- Department of Pediatrics, Saqr Hospital, Ras Al-Khaimah P.O. Box 5450, United Arab Emirates; (A.F.); (S.A.A.); (A.F.); (M.M.M.)
| | - Mariam M. Mohsin
- Department of Pediatrics, Saqr Hospital, Ras Al-Khaimah P.O. Box 5450, United Arab Emirates; (A.F.); (S.A.A.); (A.F.); (M.M.M.)
| | - Subhranshu Sekhar Kar
- Department of Pediatrics, RAK College of Medical Sciences, RAKMHSU, Ras Al-Khaimah P.O. Box 11172, United Arab Emirates
| | - Rajani Dube
- Department of Obstetrics and Gynecology, RAK College of Medical Sciences, RAKMHSU, Ras Al-Khaimah P.O. Box 11172, United Arab Emirates;
| | - Biji Thomas George
- Department of General Surgery, RAK College of Medical Sciences, RAKMHSU, Ras Al-Khaimah P.O. Box 11172, United Arab Emirates;
| | - Manjunatha Goud Bellary Kuruba
- Department of Biochemistry, RAK College of Medical Sciences, RAKMHSU, Ras Al-Khaimah P.O. Box 11172, United Arab Emirates;
| |
Collapse
|
4
|
Orlov IE, Laidus TA, Tumakova AV, Yanus GA, Iyevleva AG, Sokolenko AP, Bizin IV, Imyanitov EN, Suspitsin EN. Identification of recurrent pathogenic alleles using exome sequencing data: Proof-of-concept study of Russian subjects. Eur J Med Genet 2022; 65:104426. [PMID: 35026467 DOI: 10.1016/j.ejmg.2022.104426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 11/03/2021] [Accepted: 01/08/2022] [Indexed: 11/03/2022]
Abstract
Whole exome sequencing (WES) is a powerful tool for the cataloguing of population-specific genetic diseases. Within this proof-of-concept study we evaluated whether analysis of a small number of individual exomes is capable of identifying recurrent pathogenic alleles. We considered 106 exomes of subjects of Russian origin and revealed 13 genetic variants, which occurred more than twice and fulfilled the criteria for pathogenicity. All these alleles turned out to be indeed recurrent, as revealed by the analysis of 1045 healthy Russian donors. Eight of these variants (NAGA c.973G > A, ACADM c.985 A > C, MPO c.2031-2 A > C, SLC3A1 c.1400 T > C, LRP2 c.6160G > A, BCHE c.293 A > G, MPO c.752 T > C, FCN3 c.349delC) are non-Russian-specific, as their high prevalence was previously demonstrated in other European populations. The remaining five disease-associated alleles appear to be characteristic for subjects of Russian origin and include CLCN1 c.2680C > T (myotonia congenita), DHCR7 c.453G > A (Smith-Lemli-Opitz syndrome), NUP93 c.1162C > T (steroid-resistant nephrotic syndrome, type 12), SLC26A2 c.1957T > A (multiple epiphyseal dysplasia) and EIF3F c.694 T > G (mental retardation). These recessive disease conditions may be of particular relevance for the Russian Federation and other countries with significant Slavic population.
Collapse
Affiliation(s)
- Igor E Orlov
- St.-Petersburg Pediatric Medical University, St.-Petersburg, 194100, Russia.
| | - Tatiana A Laidus
- N.N. Petrov Institute of Oncology, St.-Petersburg, 197758, Russia
| | | | - Grigoriy A Yanus
- St.-Petersburg Pediatric Medical University, St.-Petersburg, 194100, Russia; N.N. Petrov Institute of Oncology, St.-Petersburg, 197758, Russia
| | - Aglaya G Iyevleva
- St.-Petersburg Pediatric Medical University, St.-Petersburg, 194100, Russia; N.N. Petrov Institute of Oncology, St.-Petersburg, 197758, Russia
| | - Anna P Sokolenko
- St.-Petersburg Pediatric Medical University, St.-Petersburg, 194100, Russia; N.N. Petrov Institute of Oncology, St.-Petersburg, 197758, Russia
| | - Ilya V Bizin
- N.N. Petrov Institute of Oncology, St.-Petersburg, 197758, Russia
| | - Evgeny N Imyanitov
- St.-Petersburg Pediatric Medical University, St.-Petersburg, 194100, Russia; N.N. Petrov Institute of Oncology, St.-Petersburg, 197758, Russia; I.I. Mechnikov North-Western Medical University, St.-Petersburg, 191015, Russia
| | - Evgeny N Suspitsin
- St.-Petersburg Pediatric Medical University, St.-Petersburg, 194100, Russia; N.N. Petrov Institute of Oncology, St.-Petersburg, 197758, Russia
| |
Collapse
|
5
|
Schistosoma mansoni α-N-acetylgalactosaminidase (SmNAGAL) regulates coordinated parasite movement and egg production. PLoS Pathog 2022; 18:e1009828. [PMID: 35025955 PMCID: PMC8791529 DOI: 10.1371/journal.ppat.1009828] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 01/26/2022] [Accepted: 12/13/2021] [Indexed: 12/24/2022] Open
Abstract
α-galactosidase (α-GAL) and α-N-acetylgalactosaminidase (α-NAGAL) are two glycosyl hydrolases responsible for maintaining cellular homeostasis by regulating glycan substrates on proteins and lipids. Mutations in the human genes encoding either enzyme lead to neurological and neuromuscular impairments seen in both Fabry- and Schindler/Kanzaki- diseases. Here, we investigate whether the parasitic blood fluke Schistosoma mansoni, responsible for the neglected tropical disease schistosomiasis, also contains functionally important α-GAL and α-NAGAL proteins. As infection, parasite maturation and host interactions are all governed by carefully-regulated glycosylation processes, inhibiting S. mansoni's α-GAL and α-NAGAL activities could lead to the development of novel chemotherapeutics. Sequence and phylogenetic analyses of putative α-GAL/α-NAGAL protein types showed Smp_089290 to be the only S. mansoni protein to contain the functional amino acid residues necessary for α-GAL/α-NAGAL substrate cleavage. Both α-GAL and α-NAGAL enzymatic activities were higher in females compared to males (p<0.05; α-NAGAL > α-GAL), which was consistent with smp_089290's female biased expression. Spatial localisation of smp_089290 revealed accumulation in parenchymal cells, neuronal cells, and the vitellaria and mature vitellocytes of the adult schistosome. siRNA-mediated knockdown (>90%) of smp_089290 in adult worms significantly inhibited α-NAGAL activity when compared to control worms (siLuc treated males, p<0.01; siLuc treated females, p<0.05). No significant reductions in α-GAL activities were observed in the same extracts. Despite this, decreases in α-NAGAL activities correlated with a significant inhibition in adult worm motility as well as in egg production. Programmed CRISPR/Cas9 editing of smp_089290 in adult worms confirmed the egg reduction phenotype. Based on these results, Smp_089290 was determined to act predominantly as an α-NAGAL (hereafter termed SmNAGAL) in schistosome parasites where it participates in coordinating movement and oviposition processes. Further characterisation of SmNAGAL and other functionally important glycosyl hydrolases may lead to the development of a novel anthelmintic class of compounds.
Collapse
|
6
|
Mohamed FE, Al Sorkhy M, Ghattas MA, Al-Zaabi N, Al-Shamsi A, Almansoori TM, Al-Gazali L, Al-Dirbashi OY, Al-Jasmi F, Ali BR. A Novel Homozygous Missense Variant in the NAGA Gene with Extreme Intrafamilial Phenotypic Heterogeneity. J Mol Neurosci 2019; 70:45-55. [PMID: 31468281 DOI: 10.1007/s12031-019-01398-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 08/14/2019] [Indexed: 02/05/2023]
Abstract
Schindler disease is a rare autosomal recessive lysosomal storage disorder caused by a deficiency in alpha-N-acetylgalactosaminidase (α-NAGA) activity due to defects in the NAGA gene. Accumulation of the enzyme's substrates results in clinically heterogeneous symptoms ranging from asymptomatic individuals to individuals with severe neurological manifestations. Here, a 5-year-old Emirati male born to consanguineous parents presented with congenital microcephaly and severe neurological manifestations. Whole genome sequencing revealed a homozygous missense variant (c.838C>A; p.L280I) in the NAGA gene. The allele is a reported SNP in the ExAC database with a 0.0007497 allele frequency. The proband's asymptomatic sister and cousin carry the same genotype in a homozygous state as revealed from the family screening. Due to the extreme intrafamilial heterogeneity of the disease as seen in previously reported cases, we performed further analyses to establish the pathogenicity of this variant. Both the proband and his sister showed abnormal urine oligosaccharide patterns, which is consistent with the diagnosis of Schindler disease. The α-NAGA activity was significantly reduced in the proband and his sister with 5.9% and 12.1% of the mean normal activity, respectively. Despite the activity loss, p.L280I α-NAGA processing and trafficking were not affected. However, protein molecular dynamic simulation analysis revealed that this amino acid substitution is likely to affect the enzyme's natural dynamics and hinders its ability to bind to the active site. Functional analysis confirmed the pathogenicity of the identified missense variant and the diagnosis of Schindler disease. Extreme intrafamilial clinical heterogeneity of the disease necessitates further studies for proper genetic counseling and management.
Collapse
Affiliation(s)
- Fedah E Mohamed
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box: 17666, Al Ain, United Arab Emirates
| | - Mohammad Al Sorkhy
- College of Pharmacy, Al Ain University of Science and Technology, Al Ain, United Arab Emirates
| | - Mohammad A Ghattas
- College of Pharmacy, Al Ain University of Science and Technology, Al Ain, United Arab Emirates
| | - Nuha Al-Zaabi
- Department of Paediatrics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.,Department of Paediatrics, Tawam Hospital, Al Ain, United Arab Emirates
| | - Aisha Al-Shamsi
- Department of Paediatrics, Tawam Hospital, Al Ain, United Arab Emirates
| | - Taleb M Almansoori
- Department of Radiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Lihadh Al-Gazali
- Department of Paediatrics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Osama Y Al-Dirbashi
- Department of Paediatrics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Fatma Al-Jasmi
- Department of Paediatrics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates. .,Department of Paediatrics, Tawam Hospital, Al Ain, United Arab Emirates.
| | - Bassam R Ali
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box: 17666, Al Ain, United Arab Emirates.
| |
Collapse
|
7
|
Targeted next-generation sequencing analysis in couples at increased risk for autosomal recessive disorders. Orphanet J Rare Dis 2018; 13:23. [PMID: 29373990 PMCID: PMC5787287 DOI: 10.1186/s13023-018-0763-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 01/08/2018] [Indexed: 12/21/2022] Open
Abstract
Background Many of the genetic childhood disorders leading to death in the pre- or neonatal period or during early childhood follow autosomal recessive modes of inheritance and bear specific challenges for genetic counseling and prenatal diagnostics. Parents are carriers but clinically unaffected, and diseases are rare but have recurrence risks of 25% in the same family. Often, affected children (or fetuses) die before a genetic diagnosis can be established, post-mortem analysis and phenotypic descriptions are insufficient and DNA from affected fetuses or children is not available for later analysis. A genetic diagnosis showing biallelic causative mutations is, however, the requirement for targeted carrier testing in parents and prenatal and preimplantation genetic diagnosis in further pregnancies. Methods We undertook targeted next-generation sequencing (NGS) for carrier screening of autosomal recessive lethal disorders in 8 consanguineous and 5 non-consanguineous couples with one or more affected children. We searched for heterozygous variants (non-synonymous coding or splice variants) in parents’ DNA, using a set of 430 genes known to be causative for rare autosomal recessive diseases with poor prognosis, and then filtering for variants present in genes overlapping in both partners. Putative pathogenic variants were tested for cosegregation in affected fetuses or children where material was available. Results The diagnosis for the premature death in children was established in 5 of the 13 couples. Out of the 8 couples in which no causative diagnosis could be established 4 consented to undergo further analysis, in two of those a potentially causative variant in a novel candidate gene was identified. Conclusions For the families in whom causative variants could be identified, these may now be used for prenatal and preimplantation genetic diagnostics. Our data show that NGS based gene panel sequencing of selected genes involved in lethal autosomal recessive disorders is an effective tool for carrier screening in parents and for the identification of recessive gene defects and offers the possibility of prenatal and preimplantation genetic diagnosis in further pregnancies in families that have experienced deaths in early childhood and /or multiple abortions. Electronic supplementary material The online version of this article (10.1186/s13023-018-0763-0) contains supplementary material, which is available to authorized users.
Collapse
|
8
|
Abstract
Lysosomes are cytoplasmic organelles that contain a variety of different hydrolases. A genetic deficiency in the enzymatic activity of one of these hydrolases will lead to the accumulation of the material meant for lysosomal degradation. Examples include glycogen in the case of Pompe disease, glycosaminoglycans in the case of the mucopolysaccharidoses, glycoproteins in the cases of the oligosaccharidoses, and sphingolipids in the cases of Niemann-Pick disease types A and B, Gaucher disease, Tay-Sachs disease, Krabbe disease, and metachromatic leukodystrophy. Sometimes, the lysosomal storage can be caused not by the enzymatic deficiency of one of the hydrolases, but by the deficiency of an activator protein, as occurs in the AB variant of GM2 gangliosidosis. Still other times, the accumulated lysosomal material results from failed egress of a small molecule as a consequence of a deficient transporter, as in cystinosis or Salla disease. In the last couple of decades, enzyme replacement therapy has become available for a number of lysosomal storage diseases. Examples include imiglucerase, taliglucerase and velaglucerase for Gaucher disease, laronidase for Hurler disease, idursulfase for Hunter disease, elosulfase for Morquio disease, galsulfase for Maroteaux-Lamy disease, alglucosidase alfa for Pompe disease, and agalsidase alfa and beta for Fabry disease. In addition, substrate reduction therapy has been approved for certain disorders, such as eliglustat for Gaucher disease. The advent of treatment options for some of these disorders has led to newborn screening pilot studies, and ultimately to the addition of Pompe disease and Hurler disease to the Recommended Uniform Screening Panel (RUSP) in 2015 and 2016, respectively.
Collapse
Affiliation(s)
- Carlos R. Ferreira
- Division of Genetics and Metabolism, Children’s National Health System, Washington, DC, USA
- George Washington University School of Medicine & Health Sciences, Washington, DC, USA
- Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - William A. Gahl
- Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
9
|
Exploration of Structural and Functional Variations Owing to Point Mutations in α-NAGA. Interdiscip Sci 2016; 10:81-92. [PMID: 27138754 DOI: 10.1007/s12539-016-0173-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 04/07/2016] [Accepted: 04/13/2016] [Indexed: 10/21/2022]
Abstract
Schindler disease is a lysosomal storage disorder caused due to deficiency or defective activity of alpha-N-acetylgalactosaminidase (α-NAGA). Mutations in gene encoding α-NAGA cause wide range of diseases, characterized with mild to severe clinical features. Molecular effects of these mutations are yet to be explored in detail. Therefore, this study was focused on four missense mutations of α-NAGA namely, S160C, E325K, R329Q and R329W. Native and mutant structures of α-NAGA were analysed to determine geometrical deviations such as the contours of root mean square deviation, root mean square fluctuation, percentage of residues in allowed regions of Ramachandran plot and solvent accessible surface area, using conformational sampling technique. Additionally, global energy-minimized structures of native and mutants were further analysed to compute their intra-molecular interactions, hydrogen bond dilution and distribution of secondary structure. In addition, docking studies were also performed to determine variations in binding energies between native and mutants. The deleterious effects of mutants were evident due to variations in their active site residues pertaining to spatial conformation and flexibility, comparatively. Hence, variations exhibited by mutants, namely S160C, E325K, R329Q and R329W to that of native, consequently, lead to the detrimental effects causing Schindler disease. This study computationally explains the underlying reasons for the pathogenesis of the disease, thereby aiding future researchers in drug development and disease management.
Collapse
|
10
|
Sarbu M, Munteanu CVA, Dehelean L, Petrescu AJ, Peter-Katalinic J, Zamfir AD. Identification and structural characterization of novel O- and N-glycoforms in the urine of a Schindler disease patient by Orbitrap mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2015; 50:1044-1056. [PMID: 28338252 DOI: 10.1002/jms.3616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 05/05/2015] [Accepted: 05/15/2015] [Indexed: 06/06/2023]
Abstract
Schindler disease is an inherited metabolic disorder caused by the deficient activity of α-N-acetylgalactosaminidase enzyme. An accurate diagnosis requires, besides clinical examination, complex and costly biochemical and molecular genetic tests. In the last years, mass spectrometry (MS) based on nanofluidics and high-resolution instruments has become a successful alternative for disease diagnosis based on the investigation of O-glycopeptides in patient urine. A complex mixture of glycoforms extracted from the urine of a 3-year-old patient was investigated by Orbitrap MS equipped with Nanospray Flex Ion Source in the negative ion mode. For structural characterization of several molecular species, collision-induced dissociation MS2 -MS3 was carried out using collision energy values within 20-60 eV range. By our approach, 39 novel species associated to this condition were identified, among which O-glycopeptides, free O-glycans and one structure corresponding to an N-glycan never characterized in the context of Schindler disease. The experiments conducted at a resolution of 60 000 allowed the discrimination and identification of a total number of 69 different species with an average mass accuracy of 9.87 ppm, an in-run reproducibility of almost 100%, an experiment-to-experiment and day-to-day reproducibility of about 95%. This study brings contributions in the diagnosis of Schindler disease through the elucidation of potential biomarker species in urine. Our multistage MS results completed with 39 new glycoforms the inventory of potential biomarker structures associated to Schindler disease. For the first time, an N-glycan was identified and structurally characterized in Schindler patient urine, which opens new research directions in the field. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Mirela Sarbu
- West University of Timisoara, Timisoara, Romania
- Aurel Vlaicu University of Arad, Arad, Romania
| | - Cristian V A Munteanu
- Department of Bioinformatics and Structural Biochemistry, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Liana Dehelean
- Psychiatry Discipline, Department of Neuroscience, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| | - Andrei J Petrescu
- Department of Bioinformatics and Structural Biochemistry, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Jasna Peter-Katalinic
- Westfälische Wilhelms University of Münster, Münster, Germany
- University of Rijeka, Rijeka, Croatia
| | - Alina D Zamfir
- Aurel Vlaicu University of Arad, Arad, Romania
- National Institute for Research and Development in Electrochemistry and Condensed Matter, Timisoara, Romania
| |
Collapse
|
11
|
Sarbu M, Robu A, Peter-Katalinić J, Zamfir AD. Automated chip-nanoelectrospray mass spectrometry for glycourinomics in Schindler disease type I. Carbohydr Res 2014; 398:90-100. [DOI: 10.1016/j.carres.2014.08.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 08/19/2014] [Accepted: 08/21/2014] [Indexed: 12/16/2022]
|
12
|
Abstract
Schindler/Kanzaki disease is an inherited metabolic disease with no current treatment options. This neurologic disease results from a defect in the lysosomal α-N-acetylgalactosaminidase (α-NAGAL) enzyme. In this report, we show evidence that the iminosugar DGJNAc can inhibit, stabilize, and chaperone human α-NAGAL both in vitro and in vivo. We demonstrate that a related iminosugar DGJ (currently in phase III clinical trials for another metabolic disorder, Fabry disease) can also chaperone human α-NAGAL in Schindler/Kanzaki disease. The 1.4- and 1.5-Å crystal structures of human α-NAGAL complexes reveal the different binding modes of iminosugars compared with glycosides. We show how differences in two functional groups result in >9 kcal/mol of additional binding energy and explain the molecular interactions responsible for the unexpectedly high affinity of the pharmacological chaperones. These results open two avenues for treatment of Schindler/Kanzaki disease and elucidate the atomic basis for pharmacological chaperoning in the entire family of lysosomal storage diseases.
Collapse
|
13
|
Carpenter S, Soares H, Brandão O, Souto Moura C, Castro L, Rodrigues E, Cunha AL, Bartosch C. A novel type of familial proximal axonal dystrophy: three cases and a review of the axonal dystrophies. Eur J Paediatr Neurol 2012; 16:292-300. [PMID: 21925911 DOI: 10.1016/j.ejpn.2011.08.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 08/24/2011] [Accepted: 08/28/2011] [Indexed: 01/09/2023]
Abstract
Three related infants of Roma ancestry, two of them siblings, showed hypotonia, predominantly axial, from birth, difficulty swallowing, myoclonic seizures, and respiratory difficulty. Dysmorphic features, principally micrognathia were present. EEGs showed focal epileptiform abnormalities. All three died in their 5th month from respiratory insufficiency complicated by pneumonia. Autopsy showed small brains without malformation. Microscopy revealed numerous axonal spheroids involving particularly the brain stem and spinal cord, with especial prominence in the middle cerebellar peduncle, the anterior part of the thalamic reticular nuclei, and the anterior horns and columns of the spinal cord. Spheroids that appeared to be on axons of lower motor neurons were especially large. No spheroids were seen in peripheral nerves; electron microscopy did not show spheroids in skin. By electron microscopy spheroids contained neurofilaments, sparse mitochondria, and electron dense granules. The material did not allow identification of microtubules. Closely packed vesicles excluded neurofilamanets from the center of many spheroids, especially in the middle cerebellar peduncle. Sprouting of axons from the surface of many spheroids was seen. This disease is distinct from the well described type of infantile neuroaxonal dystrophy (Seitelberger's disease) in view of the distribution of spheroids, presence of spheroids on proximal rather than distal parts of axons, sparing of the peripheral nerves, lack of staining for synuclein, presence of sprouting, and lack of membranous profiles in the spheroids. A review of reported types of axonal dystrophy has not shown identical cases.
Collapse
Affiliation(s)
- Stirling Carpenter
- Department of Anatomic Pathology, Hospital São Joâo, Alameda Professor Hernani Monteiro, Porto 4200, Portugal.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Fyfe JC, Al-Tamimi RA, Castellani RJ, Rosenstein D, Goldowitz D, Henthorn PS. Inherited neuroaxonal dystrophy in dogs causing lethal, fetal-onset motor system dysfunction and cerebellar hypoplasia. J Comp Neurol 2010; 518:3771-84. [PMID: 20653033 DOI: 10.1002/cne.22423] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Neuroaxonal dystrophy in brainstem, spinal cord tracts, and spinal nerves accompanied by cerebellar hypoplasia was observed in a colony of laboratory dogs. Fetal akinesia was documented by ultrasonographic examination. At birth, affected puppies exhibited stereotypical positioning of limbs, scoliosis, arthrogryposis, pulmonary hypoplasia, and respiratory failure. Regional hypoplasia in the central nervous system was apparent grossly, most strikingly as underdeveloped cerebellum and spinal cord. Histopathologic abnormalities included swollen axons and spheroids in brainstem and spinal cord tracts; reduced cerebellar foliation, patchy loss of Purkinje cells, multifocal thinning of the external granular cell layer, and loss of neurons in the deep cerebellar nuclei; spheroids and loss of myelinated axons in spinal roots and peripheral nerves; increased myocyte apoptosis in skeletal muscle; and fibrofatty connective tissue proliferation around joints. Breeding studies demonstrated that the canine disorder is a fully penetrant, simple autosomal recessive trait. The disorder demonstrated a type and distribution of lesions homologous to that of human infantile neuroaxonal dystrophy (INAD), most commonly caused by mutations of phospholipase A2 group VI gene (PLA2G6), but alleles of informative markers flanking the canine PLA2G6 locus did not associate with the canine disorder. Thus, fetal-onset neuroaxonal dystrophy in dogs, a species with well-developed genome mapping resources, provides a unique opportunity for additional disease gene discovery and understanding of this pathology.
Collapse
Affiliation(s)
- John C Fyfe
- Laboratory of Comparative Medical Genetics, Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, Michigan 48824, USA.
| | | | | | | | | | | |
Collapse
|
15
|
Hanhart J, Vinker S, Nemet A, Levartovsky S, Kaiserman I. Prevalence of Epilepsy among Cataract Patients. Curr Eye Res 2010; 35:487-91. [PMID: 20465442 DOI: 10.3109/02713681003664915] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE To evaluate the prevalence of epilepsy among patients undergoing cataract surgery. DESIGN A retrospective observational case control study. METHODS We calculated the prevalence of epilepsy among all the patients older than 50 years who underwent cataract surgery (years 2000-2007, n = 12,984) in a district of the largest health maintenance organization in Israel (the Central District of Clalit Health Services) and among 25,968 age and gender matched controls. The database was screened for epilepsy by integrating the clinical and ancillary work-up as well as the drug regimen. The use of anti-epileptic drugs (AEDs) was evaluated among the cataract patients and the controls. The main outcome measure was the prevalence of epilepsy and antiepileptic medical treatment among patients undergoing cataract surgery versus controls. RESULTS No difference was found in demographics among the groups including age, gender, marriage status, socioeconomic class and living place between the study and control groups (except for patients origin). Epilepsy was found to be significantly more prevalent in patients undergoing cataract surgery. The odds ratio (OR) was 1.3 (95% confidence interval (CI): 1.1-1.6): 1.4 in men (95% CI: 1.1-1.9) and 1.2 in women (95% CI: 1.0-1.6). AEDs, particularly clonazepam (OR = 1.5, 95% CI: 1.1-2.1) and carbamazepine (OR = 1.4, 95% CI: 1.05-1.8), were also used more by cataract patients. Multivariate logistic regression analysis revealed a significant association between cataract surgery and epilepsy (OR 1.26, p < 0.001) as well as diabetes (OR 1.38, p < 0.001), arterial hypertension (OR 1.26, p < 0.001), smoking (OR 1.22, p < 0.001), hyperlipidemia (OR 1.12, p < 0.001), and Ashkenazi origin (OR 0.85, p < 0.001). CONCLUSIONS Epilepsy is associated with the presence of cataract. Various hypotheses may explain this finding, including a cataractogenic role of AEDs.
Collapse
Affiliation(s)
- Joel Hanhart
- Department of Ophthalmology, Shaare Zedek Medical Center, Jerusalem, Israel
| | | | | | | | | |
Collapse
|
16
|
Clark NE, Garman SC. The 1.9 a structure of human alpha-N-acetylgalactosaminidase: The molecular basis of Schindler and Kanzaki diseases. J Mol Biol 2009; 393:435-47. [PMID: 19683538 PMCID: PMC2771859 DOI: 10.1016/j.jmb.2009.08.021] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Revised: 07/30/2009] [Accepted: 08/04/2009] [Indexed: 01/07/2023]
Abstract
alpha-N-acetylgalactosaminidase (alpha-NAGAL; E.C. 3.2.1.49) is a lysosomal exoglycosidase that cleaves terminal alpha-N-acetylgalactosamine residues from glycopeptides and glycolipids. In humans, a deficiency of alpha-NAGAL activity results in the lysosomal storage disorders Schindler disease and Kanzaki disease. To better understand the molecular defects in the diseases, we determined the crystal structure of human alpha-NAGAL after expressing wild-type and glycosylation-deficient glycoproteins in recombinant insect cell expression systems. We measured the enzymatic parameters of our purified wild-type and mutant enzymes, establishing their enzymatic equivalence. To investigate the binding specificity and catalytic mechanism of the human alpha-NAGAL enzyme, we determined three crystallographic complexes with different catalytic products bound in the active site of the enzyme. To better understand how individual defects in the alpha-NAGAL glycoprotein lead to Schindler disease, we analyzed the effect of disease-causing mutations on the three-dimensional structure.
Collapse
Affiliation(s)
- Nathaniel E Clark
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, 01003, USA
| | | |
Collapse
|
17
|
|
18
|
Khateeb S, Flusser H, Ofir R, Shelef I, Narkis G, Vardi G, Shorer Z, Levy R, Galil A, Elbedour K, Birk OS. PLA2G6 mutation underlies infantile neuroaxonal dystrophy. Am J Hum Genet 2006; 79:942-8. [PMID: 17033970 PMCID: PMC1698558 DOI: 10.1086/508572] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2006] [Accepted: 08/16/2006] [Indexed: 11/03/2022] Open
Abstract
Infantile neuroaxonal dystrophy (INAD) is an autosomal recessive progressive neurodegenerative disease that presents within the first 2 years of life and culminates in death by age 10 years. Affected individuals from two unrelated Bedouin Israeli kindreds were studied. Brain imaging demonstrated diffuse cerebellar atrophy and abnormal iron deposition in the medial and lateral globus pallidum. Progressive white-matter disease and reduction of the N-acetyl aspartate : chromium ratio were evident on magnetic resonance spectroscopy, suggesting loss of myelination. The clinical and radiological diagnosis of INAD was verified by sural nerve biopsy. The disease gene was mapped to a 1.17-Mb locus on chromosome 22q13.1 (LOD score 4.7 at recombination fraction 0 for SNP rs139897), and an underlying mutation common to both affected families was identified in PLA2G6, the gene encoding phospholipase A2 group VI (cytosolic, calcium-independent). These findings highlight a role of phospholipase in neurodegenerative disorders.
Collapse
Affiliation(s)
- Shareef Khateeb
- Morris Kahn Laboratory of Human Genetics, National Institute for Biotechnology in the Negev and Faculty of Health Sciences, Ben-Gurion University, Israel
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Sakuraba H, Matsuzawa F, Aikawa SI, Doi H, Kotani M, Nakada H, Fukushige T, Kanzaki T. Structural and immunocytochemical studies on alpha-N-acetylgalactosaminidase deficiency (Schindler/Kanzaki disease). J Hum Genet 2003; 49:1-8. [PMID: 14685826 DOI: 10.1007/s10038-003-0098-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2003] [Accepted: 09/30/2003] [Indexed: 11/26/2022]
Abstract
Alpha-N-acetylgalactosaminidase (alpha-NAGA) deficiency (Schindler/Kanzaki disease) is a clinically and pathologically heterogeneous genetic disease with a wide spectrum including an early onset neuroaxonal dystrophy (Schindler disease) and late onset angiokeratoma corporis diffusum (Kanzaki disease). In alpha-NAGA deficiency, there are discrepancies between the genotype and phenotype, and also between urinary excretion products (sialyl glycoconjugates) and a theoretical accumulated material (Tn-antigen; Gal NAcalpha1-O-Ser/Thr) resulting from a defect in alpha-NAGA. As for the former issue, previously reported genetic, biochemical and pathological data raise the question whether or not E325K mutation found in Schindler disease patients really leads to the severe phenotype of alpha-NAGA deficiency. The latter issue leads to the question of whether alpha-NAGA deficiency is associated with the basic pathogenesis of this disease. To clarify the pathogenesis of this disease, we performed structural and immunocytochemical studies. The structure of human alpha-NAGA deduced on homology modeling is composed of two domains, domain I, including the active site, and domain II. R329W/Q, identified in patients with Kanzaki disease have been deduced to cause drastic changes at the interface between domains I and II. The structural change caused by E325K found in patients with Schindler disease is localized on the N-terminal side of the tenth beta-strand in domain II and is smaller than those caused by R329W/Q. Immunocytochemical analysis revealed that the main lysosomal accumulated material in cultured fibroblasts from patients with Kanzaki disease is Tn-antigen. These data suggest that a prototype of alpha-NAGA deficiency in Kanzaki disease and factors other than the defect of alpha-NAGA may contribute to severe neurological disorders, and Kanzaki disease is thought to be caused by a single enzyme deficiency.
Collapse
Affiliation(s)
- Hitoshi Sakuraba
- Department of Clinical Genetics, The Tokyo Metropolitan Institute of Medical Science, Tokyo Metropolitan Organization for Medical Research, 3-18-22 Honkomagome, Bunkyo-ku, Tokyo 113-8613, Japan.
| | - Fumiko Matsuzawa
- Celestar Lexico-Sciences, MTG D-17, 1-3, Nakase, Mihama-ku, Chiba 261-8501, Japan
| | - Sei-Ichi Aikawa
- Celestar Lexico-Sciences, MTG D-17, 1-3, Nakase, Mihama-ku, Chiba 261-8501, Japan
| | - Hirofumi Doi
- Celestar Lexico-Sciences, MTG D-17, 1-3, Nakase, Mihama-ku, Chiba 261-8501, Japan
| | - Masaharu Kotani
- Department of Clinical Genetics, The Tokyo Metropolitan Institute of Medical Science, Tokyo Metropolitan Organization for Medical Research, 3-18-22 Honkomagome, Bunkyo-ku, Tokyo 113-8613, Japan
| | - Hiroshi Nakada
- Department of Biotechnology, Faculty of Engineering, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-ku, Kyoto 603-8555, Japan
| | - Tomoko Fukushige
- Department of Dermatology, Faculty of Medicine, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8520, Japan
| | - Tamotsu Kanzaki
- Department of Dermatology, Faculty of Medicine, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8520, Japan
| |
Collapse
|
20
|
Asfaw B, Ledvinová J, Dobrovolńy R, Bakker HD, Desnick RJ, van Diggelen OP, de Jong JGN, Kanzaki T, Chabas A, Maire I, Conzelmann E, Schindler D. Defects in degradation of blood group A and B glycosphingolipids in Schindler and Fabry diseases. J Lipid Res 2002; 43:1096-104. [PMID: 12091494 DOI: 10.1194/jlr.m100423-jlr200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Skin fibroblast cultures from patients with inherited lysosomal enzymopathies, alpha-N-acetylgalactosaminidase (alpha-NAGA) and alpha-galactosidase A deficiencies (Schindler and Fabry disease, respectively), and from normal controls were used to study in situ degradation of blood group A and B glycosphingolipids. Glycosphingolipids A-6-2 (GalNAc (alpha 1-->3)[Fuc alpha 1-->2]Gal(beta1-->4)GlcNAc(beta 1-->3)Gal(beta 1--> 4)Glc (beta 1-->1')Cer, IV(2)-alpha-fucosyl-IV(3)-alpha-N-acetylgalactosaminylneolactotetraosylceramide), B-6-2 (Gal(alpha 1-->3)[Fuc alpha 1--> 2] Gal (beta 1-->4)GlcNAc(beta 1-->3)Gal(beta 1-->4)Glc(beta 1-->1')Cer, IV(2)- alpha-fucosyl-IV(3)-alpha-galactosylneolactotetraosylceramide), and globoside (GalNAc(beta 1-->3)Gal(alpha 1-->4)Gal(beta 1-->4)Glc(beta 1-->1') Cer, globotetraosylceramide) were tritium labeled in their ceramide moiety and used as natural substrates. The degradation rate of glycolipid A-6-2 was very low in fibroblasts of all the alpha-NAGA-deficient patients (less than 7% of controls), despite very heterogeneous clinical pictures, ruling out different residual enzyme activities as an explanation for the clinical heterogeneity. Strongly elevated urinary excretion of blood group A glycolipids was detected in one patient with blood group A, secretor status (five times higher than upper limit of controls), in support of the notion that blood group A-active glycolipids may contribute as storage compounds in blood group A patients. When glycolipid B-6-2 was fed to alpha-galactosidase A-deficient cells, the degradation rate was surprisingly high (50% of controls), while that of globotriaosylceramide was reduced to less than 15% of control average, presumably reflecting differences in the lysosomal enzymology of polar glycolipids versus less-polar ones. Relatively high-degree degradation of substrates with alpha-D-Galactosyl moieties hints at a possible contribution of other enzymes.
Collapse
Affiliation(s)
- Befekadu Asfaw
- Institute of Inherited Metabolic Disorders, First Faculty of Medicine, Charles University, 128 08 Prague, Czech Republic.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Garman SC, Hannick L, Zhu A, Garboczi DN. The 1.9 A structure of alpha-N-acetylgalactosaminidase: molecular basis of glycosidase deficiency diseases. Structure 2002; 10:425-34. [PMID: 12005440 DOI: 10.1016/s0969-2126(02)00726-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In the lysosome, glycosidases degrade glycolipids, glycoproteins, and oligosaccharides. Mutations in glycosidases cause disorders characterized by the deposition of undegraded carbohydrates. Schindler and Fabry diseases are caused by the incomplete degradation of carbohydrates with terminal alpha-N-acetylgalactosamine and alpha-galactose, respectively. Here we present the X-ray structure of alpha-N-acetylgalactosaminidase (alpha-NAGAL), the glycosidase that removes alpha-N-acetylgalactosamine, and the structure with bound ligand. The active site residues of alpha-NAGAL are conserved in the closely related enzyme a-galactosidase A (alpha-GAL). The structure demonstrates the catalytic mechanisms of both enzymes and reveals the structural basis of mutations causing Schindler and Fabry diseases. As alpha-NAGAL and alpha-GAL produce type O "universal donor" blood from type A and type B blood, the alpha-NAGAL structure will aid in the engineering of improved enzymes for blood conversion.
Collapse
Affiliation(s)
- Scott C Garman
- Structural Biology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852, USA.
| | | | | | | |
Collapse
|