1
|
Ciaccio C, Redaelli S, Bentivegna A, Marelli S, Crosti F, Sala EM, Cavallari U. Unbalanced X;Autosome Translocations May Lead to Mild Phenotypes and Are Associated with Autoimmune Diseases. Cytogenet Genome Res 2020; 160:80-84. [PMID: 32018271 DOI: 10.1159/000506097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/30/2019] [Indexed: 11/19/2022] Open
Abstract
Unbalanced X;autosome translocations are a rare occurrence with a wide variability in clinical presentation in which the X chromosome unbalance is usually mitigated by a favorable X inactivation pattern. In most cases, this compensation mechanism is incomplete, and the patients show a syndromic clinical presentation. We report the case of a family with 4 women, of 3 different generations, carrying an unbalanced X;7 translocation with a derivative X;7 chromosome and showing a skewed X inactivation pattern with a preferential activation of the normal X. None of the carriers show intellectual disability, and all of them have a very mild clinical presentation mainly characterized by gynecological/hormonal issues and autoimmune disorders. We underline the necessity of family testing for a correct genetic consultation, especially in the field of prenatal diagnosis. We indeed discuss the fact that X;autosome translocations may lead to self-immunization, as skewed X chromosome inactivation has already been proved to be related to autoimmune disorders.
Collapse
|
2
|
An Evolutionarily Conserved Mesodermal Enhancer in Vertebrate Zic3. Sci Rep 2018; 8:14954. [PMID: 30297839 PMCID: PMC6175831 DOI: 10.1038/s41598-018-33235-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 09/25/2018] [Indexed: 11/08/2022] Open
Abstract
Zic3 encodes a zinc finger protein essential for the development of meso-ectodermal tissues. In mammals, Zic3 has important roles in the development of neural tube, axial skeletons, left-right body axis, and in maintaining pluripotency of ES cells. Here we characterized cis-regulatory elements required for Zic3 expression. Enhancer activities of human-chicken-conserved noncoding sequences around Zic1 and Zic3 were screened using chick whole-embryo electroporation. We identified enhancers for meso-ectodermal tissues. Among them, a mesodermal enhancer (Zic3-ME) in distant 3' flanking showed robust enhancement of reporter gene expression in the mesodermal tissue of chicken and mouse embryos, and was required for mesodermal Zic3 expression in mice. Zic3-ME minimal core region is included in the DNase hypersensitive region of ES cells, mesoderm, and neural progenitors, and was bound by T (Brachyury), Eomes, Lef1, Nanog, Oct4, and Zic2. Zic3-ME is derived from an ancestral sequence shared with a sequence encoding a mitochondrial enzyme. These results indicate that Zic3-ME is an integrated cis-regulatory element essential for the proper expression of Zic3 in vertebrates, serving as a hub for a gene regulatory network including Zic3.
Collapse
|
3
|
Mohamed AM, Zaki MS, Kamel AK, Issa MY, Mekkawy M, Safwat P, Mazen I. Unbalanced 14;X Translocation and Pattern of X Inactivation in a Female Patient with Multiple Congenital Anomalies. Cytogenet Genome Res 2018; 156:71-79. [PMID: 30273929 DOI: 10.1159/000492546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2018] [Indexed: 11/19/2022] Open
Abstract
We report on a female patient who was first evaluated at the age of 6 years with developmental delay, dysmorphic facial features, seizures, and autistic behavior. A brain CT showed complete agenesis of the corpus callosum, and EEG recorded bilateral epileptogenic foci. Karyotype analysis revealed 45,X,psu dic(14;X)(p11;p22). FISH using 14q and Xp subtelomeric probes, combined with a SHOX gene-specific probe, and centromere X and XIST gene analysis revealed ish psu dic(14;X)(D14S1420+; DXYS129-, SHOX-, DXZ1+, XIST+). Array CGH detected a 2-Mb loss at Xp22.33 and a 4.6-Mb gain at Xp22.2p22.12. The deletion contains 34 genes, of which CSF2RA and SHOX are OMIM morbid genes. The duplication also contains some OMIM morbid genes, of which CDKL5, NH5, RPS6KA3, and AP1S2 are the most important. The late replicating chromatin technique was used to detect the pattern of X inactivation in the normal X and in the translocated chromosome. The translocated X was found to be inactive in 70% of the studied blood lymphocytes with patchy extension of inactivation to chromosome 14. In conclusion, the phenotype of the patient may be partially affected by the haploinsufficiency of the genes that are known to escape X inactivation and that lie within the deleted region and by other deleted or duplicated genes on the abnormal X chromosome due to an alternative pattern of X inactivation. The phenotype of the patient was significantly aggravated and complicated by the functional monosomy of some genes on chromosome 14 due to partial spreading of inactivation and silencing of those genes. This case report indicates the importance of structural and functional studies and emphasizes the clinical importance of the follow-up of abnormal microarrays.
Collapse
|
4
|
Bellchambers HM, Ware SM. ZIC3 in Heterotaxy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1046:301-327. [PMID: 29442328 DOI: 10.1007/978-981-10-7311-3_15] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Mutation of ZIC3 causes X-linked heterotaxy, a syndrome in which the laterality of internal organs is disrupted. Analysis of model organisms and gene expression during early development suggests ZIC3-related heterotaxy occurs due to defects at the earliest stage of left-right axis formation. Although there are data to support abnormalities of the node and cilia as underlying causes, it is unclear at the molecular level why loss of ZIC3 function causes such these defects. ZIC3 has putative roles in a number of developmental signalling pathways that have distinct roles in establishing the left-right axis. This complicates the understanding of the mechanistic basis of Zic3 in early development and left-right patterning. Here we summarise our current understanding of ZIC3 function and describe the potential role ZIC3 plays in important signalling pathways and their links to heterotaxy.
Collapse
Affiliation(s)
- Helen M Bellchambers
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Stephanie M Ware
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA. .,Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
5
|
Cowan J, Tariq M, Ware SM. Genetic and functional analyses of ZIC3 variants in congenital heart disease. Hum Mutat 2014; 35:66-75. [PMID: 24123890 DOI: 10.1002/humu.22457] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 09/06/2013] [Accepted: 09/23/2013] [Indexed: 12/13/2022]
Abstract
Mutations in zinc-finger in cerebellum 3 (ZIC3) result in heterotaxy or isolated congenital heart disease (CHD). The majority of reported mutations cluster in zinc-finger domains. We previously demonstrated that many of these lead to aberrant ZIC3 subcellular trafficking. A relative paucity of N- and C-terminal mutations has, however, prevented similar analyses in these regions. Notably, an N-terminal polyalanine expansion was recently identified in a patient with VACTERL, suggesting a potentially distinct function for this domain. Here we report ZIC3 sequencing results from 440 unrelated patients with heterotaxy and CHD, the largest cohort yet examined. Variants were identified in 5.2% of sporadic male cases. This rate exceeds previous estimates of 1% and has important clinical implications for genetic testing and risk-based counseling. Eight of 11 were novel, including 5 N-terminal variants. Subsequent functional analyses included four additional reported but untested variants. Aberrant cytoplasmic localization and decreased luciferase transactivation were observed for all zinc-finger variants, but not for downstream or in-frame upstream variants, including both analyzed polyalanine expansions. Collectively, these results expand the ZIC3 mutational spectrum, support a higher than expected prevalence in sporadic cases, and suggest alternative functions for terminal mutations, highlighting a need for further study of these domains.
Collapse
|
6
|
Ware SM, Jefferies JL. New Genetic Insights into Congenital Heart Disease. JOURNAL OF CLINICAL & EXPERIMENTAL CARDIOLOGY 2012; S8:003. [PMID: 22822471 PMCID: PMC3401115 DOI: 10.4172/2155-9880.s8-003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
There has been remarkable progress in understanding the genetic basis of cardiovascular malformations. Chromosome microarray analysis has provided a new tool to understand the genetic basis of syndromic cardiovascular malformations resulting from microdeletion or microduplication of genetic material, allowing the delineation of new syndromes. Improvements in sequencing technology have led to increasingly comprehensive testing for aortopathy, cardiomyopathy, single gene syndromic disorders, and Mendelian-inherited congenital heart disease. Understanding the genetic etiology for these disorders has improved their clinical recognition and management and led to new guidelines for treatment and family-based diagnosis and surveillance. These new discoveries have also expanded our understanding of the contribution of genetic variation, susceptibility alleles, and epigenetics to isolated congenital heart disease. This review summarizes the current understanding of the genetic basis of syndromic and non-syndromic congenital heart disease and highlights new diagnostic and management recommendations.
Collapse
Affiliation(s)
- Stephanie M. Ware
- The Heart Institute, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, 240 Albert Sabin Way, MLC 7020, Cincinnati, OH 45229-3039, USA
| | - John Lynn Jefferies
- The Heart Institute, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, 240 Albert Sabin Way, MLC 7020, Cincinnati, OH 45229-3039, USA
| |
Collapse
|
7
|
D'Alessandro LCA, Casey B, Siu VM. Situs inversus totalis and a novel ZIC3 mutation in a family with X-linked heterotaxy. CONGENIT HEART DIS 2011; 8:E36-40. [PMID: 22171628 DOI: 10.1111/j.1747-0803.2011.00602.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Disorders of laterality consist of a complex set of malformations resulting from failure to establish normal asymmetry along the left-right axis, and include both heterotaxy and situs inversus totalis. Zinc fingers in cerebellum 3 (ZIC3) was the first gene to be definitively associated with heterotaxy syndromes in humans (OMIM #306955), with 13 mutations previously described in both familial and sporadic cases. We now report the clinical and molecular characterization of a five-generation family originally reported in 1974 as having X-linked dextrocardia. Longitudinal follow-up revealed that this family has X-linked heterotaxy due to a missense mutation, c.1048A>G(R350G), in the third zinc finger domain of ZIC3. The pedigree demonstrates the first reported case of situs inversus totalis associated with a ZIC3 mutation in a male and the second reported case of incomplete penetrance in an unaffected transmitting male, as well as a wide range of phenotypes of varying severity. Several affected members also exhibit renal and hindgut malformations, consistent with previously reported secondary features in ZIC3 mutations. The spectrum of features in this family emphasizes the importance of thorough molecular and imaging studies in both sporadic and familial cases of heterotaxy to ensure accurate prenatal diagnosis and recurrence risk counseling.
Collapse
Affiliation(s)
- Lisa C A D'Alessandro
- Department of Pediatrics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada.
| | | | | |
Collapse
|
8
|
Bedard JEJ, Haaning AM, Ware SM. Identification of a novel ZIC3 isoform and mutation screening in patients with heterotaxy and congenital heart disease. PLoS One 2011; 6:e23755. [PMID: 21858219 PMCID: PMC3157443 DOI: 10.1371/journal.pone.0023755] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Accepted: 07/24/2011] [Indexed: 12/24/2022] Open
Abstract
Patients with heterotaxy have characteristic cardiovascular malformations, abnormal arrangement of their visceral organs, and midline patterning defects that result from abnormal left-right patterning during embryogenesis. Loss of function of the transcription factor ZIC3 causes X-linked heterotaxy and isolated congenital heart malformations and represents one of the few known monogenic causes of congenital heart disease. The birth incidence of heterotaxy-spectrum malformations is significantly higher in males, but our previous work indicated that mutations within ZIC3 did not account for the male over-representation. Therefore, cross species comparative sequence alignment was used to identify a putative novel fourth exon, and the existence of a novel alternatively spliced transcript was confirmed by amplification from murine embryonic RNA and subsequent sequencing. This transcript, termed Zic3-B, encompasses exons 1, 2, and 4 whereas Zic3-A encompasses exons 1, 2, and 3. The resulting protein isoforms are 466 and 456 amino acid residues respectively, sharing the first 407 residues. Importantly, the last two amino acids in the fifth zinc finger DNA binding domain are altered in the Zic3-B isoform, indicating a potential functional difference that was further evaluated by expression, subcellular localization, and transactivation analyses. The temporo-spatial expression pattern of Zic3-B overlaps with Zic3-A in vivo, and both isoforms are localized to the nucleus in vitro. Both isoforms can transcriptionally activate a Gli binding site reporter, but only ZIC3-A synergistically activates upon co-transfection with Gli3, suggesting that the isoforms are functionally distinct. Screening 109 familial and sporadic male heterotaxy cases did not identify pathogenic mutations in the newly identified fourth exon and larger studies are necessary to establish the importance of the novel isoform in human disease.
Collapse
Affiliation(s)
- James E. J. Bedard
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Allison M. Haaning
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Stephanie M. Ware
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
9
|
Chung B, Shaffer LG, Keating S, Johnson J, Casey B, Chitayat D. From VACTERL-H to heterotaxy: Variable expressivity of ZIC3-related disorders. Am J Med Genet A 2011; 155A:1123-8. [DOI: 10.1002/ajmg.a.33859] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Accepted: 11/22/2010] [Indexed: 11/08/2022]
|
10
|
Sutherland MJ, Ware SM. Disorders of left-right asymmetry: Heterotaxy and situs inversus. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2009; 151C:307-17. [DOI: 10.1002/ajmg.c.30228] [Citation(s) in RCA: 178] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
11
|
Mohapatra B, Casey B, Li H, Ho-Dawson T, Smith L, Fernbach SD, Molinari L, Niesh SR, Jefferies JL, Craigen WJ, Towbin JA, Belmont JW, Ware SM. Identification and functional characterization of NODAL rare variants in heterotaxy and isolated cardiovascular malformations. Hum Mol Genet 2008; 18:861-71. [PMID: 19064609 DOI: 10.1093/hmg/ddn411] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
NODAL and its signaling pathway are known to play a key role in specification and patterning of vertebrate embryos. Mutations in several genes encoding components of the NODAL signaling pathway have previously been implicated in the pathogenesis of human left-right (LR) patterning defects. Therefore, NODAL, a member of TGF-beta superfamily of developmental regulators, is a strong candidate to be functionally involved in congenital LR axis patterning defects or heterotaxy. Here we have investigated whether variants in NODAL are present in patients with heterotaxy and/or isolated cardiovascular malformations (CVM) thought to be caused by abnormal heart tube looping. Analysis of a large cohort of cases (n = 269) affected with either classic heterotaxy or looping CVM revealed four different missense variants, one in-frame insertion/deletion and two conserved splice site variants in 14 unrelated subjects (14/269, 5.2%). Although similar with regard to other associated defects, individuals with the NODAL mutations had a significantly higher occurrence of pulmonary valve atresia (P = 0.001) compared with cases without a detectable NODAL mutation. Functional analyses demonstrate that the missense variant forms of NODAL exhibit significant impairment of signaling as measured by decreased Cripto (TDGF-1) co-receptor-mediated activation of artificial reporters. Expression of these NODAL proteins also led to reduced induction of Smad2 phosphorylation and impaired Smad2 nuclear import. Taken together, these results support a role for mutations and rare deleterious variants in NODAL as a cause for sporadic human LR patterning defects.
Collapse
Affiliation(s)
- Bhagyalaxmi Mohapatra
- Department of Pediatrics (Cardiology), Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Zhu L, Zhou G, Poole S, Belmont JW. Characterization of the interactions of human ZIC3 mutants with GLI3. Hum Mutat 2007; 29:99-105. [PMID: 17764085 DOI: 10.1002/humu.20606] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
ZIC3, a GLI superfamily transcription factor, is involved in establishing normal embryonic left-right patterning. Multiple abnormalities in the central nervous system (CNS) and axial skeleton have also been observed in mice bearing a Zic3 null allele, mice with a Zic3 overexpression allele, and the majority of patients carrying ZIC3 mutations. Previous studies indicate that ZIC3 protein can bind to the GLI consensus binding site (GLIBS) and physically interact with GLI3, a transcription factor involved in multiple aspects of neural and skeletal development. We investigated in vitro interactions of ZIC3 with GLI3 and the effect of ZIC3 mutations identified in patients with either heterotaxy or isolated cardiovascular malformations. Electrophoresis mobility shift assay (EMSA) revealed that all five intact zinc finger (ZF) domains were necessary for binding of ZIC3 to GLIBS. Inclusion of GLIBS upstream of a basal TK promoter had no effect on the activation of the promoter by ZIC3 alone, but it enhanced the synergistic activation of ZIC3 and GLI3. Wild-type (WT) ZIC3 showed specific binding to GLI3 in GST-pull-down assays. Nonsense and frameshift ZIC3 mutants lacking one or more of the zinc finger domains did not physically interact with GST-GLI3; however, two missense mutants c.1213A>G (p.K405E, fifth ZF domain), and c.649C>G (p.P217A, conserved N-terminal domain) retained binding. Luciferase reporter assays indicated that both p.P217A and p.K405E mutants also retained coactivation with GLI3 of reporter gene expression activity, while all the GLI3-nonbinding ZIC3 mutants lacked this activity. Interestingly, no CNS or skeletal abnormalities were observed in patients bearing the p.P217A or p.K405E mutations.
Collapse
Affiliation(s)
- Lirong Zhu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
13
|
Bedard JEJ, Purnell JD, Ware SM. Nuclear import and export signals are essential for proper cellular trafficking and function of ZIC3. Hum Mol Genet 2006; 16:187-98. [PMID: 17185387 DOI: 10.1093/hmg/ddl461] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Missense, frameshift and nonsense mutations in the zinc finger transcription factor ZIC3 cause heterotaxy as well as isolated congenital heart disease. Previously, we developed transactivation and subcellular localization assays to test the function of ZIC3 point mutations. Aberrant cytoplasmic localization suggested that the pathogenesis of ZIC3 mutations results, at least in part, from failure of appropriate cellular trafficking. To further investigate this hypothesis, the nucleocytoplasmic shuttling properties of ZIC3 have been examined. Subcellular localization assays designed to span the entire open-reading frame of wild-type and mutant ZIC3 proteins identified the presence of nucleocytoplasmic transport signals. ZIC3 domain mapping indicates that a relatively large region containing the zinc finger binding sites and a known GLI interacting domain is required for transport to the nucleus. Site-directed mutagenesis of critical residues within two putative nuclear localization signals (NLSs) leads to loss of nuclear localization. No further decrease was observed when both NLS sites were mutated, suggesting that mutation of either NLS site is sufficient for loss of importin-mediated nuclear localization. Additionally, we identify a cryptic CRM-1-dependent nuclear export signal (NES) within ZIC3, and identify a mutation within this region in a patient with heterotaxy. These results provide the first evidence that control of cellular trafficking of ZIC3 is critical for function and suggest a possible mechanism for transcriptional control during left-right patterning. Identification of mutations in mapped NLS or NES domains in heterotaxy patients demonstrates the functional importance of these domains in cardiac morphogenesis and allows for integration of structural analysis with developmental function.
Collapse
Affiliation(s)
- James E J Bedard
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | | | | |
Collapse
|