1
|
Li L, Li Q, Xiao Y, Ma J, Liu GQ. H-NS involved in positive regulation of glycerol dehydratase gene expression in Klebsiella pneumoniae 2e. Appl Environ Microbiol 2024; 90:e0007524. [PMID: 38995045 PMCID: PMC11337852 DOI: 10.1128/aem.00075-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 06/13/2024] [Indexed: 07/13/2024] Open
Abstract
Glycerol dehydratase is the key and rate-limiting enzyme in the 1,3-propanediol synthesis pathway of Klebsiella pneumoniae, which determined the producing rate and yield of 1,3-propanediol. However, the expression regulation mechanism of glycerol dehydratase gene dhaB remains poorly unknown. In this study, a histone-like nucleoid-structuring (H-NS) protein was identified and characterized as the positive transcription regulator for dhaB expression in K. pneumoniae 2e, which exhibited high tolerance against crude glycerol in our previous study. Deletion of hns gene significantly decreased the transcription level of dhaB in K. pneumoniae 2e, which led to a remarkable defect on strain growth, glycerol dehydratase activity, and 3-hydroxypropanal production during glycerol fermentation. The transcription level of dhaB was significantly up-regulated in crude glycerol relative to pure glycerol, while the inactivation of H-NS resulted in more negative effect for transcription level of dhaB in the former. Though the H-NS expression level was almost comparable in both substrates, its multimer state was reduced in crude glycerol relative to pure glycerol, suggesting that the oligomerization state of H-NS might have contributed for positive regulation of dhaB expression. Furthermore, electrophoretic mobility shift and DNase I footprinting assays showed that H-NS could directly bind to the upstream promoter region of dhaB by recognizing the AT-rich region. These findings provided new insight into the transcriptional regulation mechanism of H-NS for glycerol dehydratase expression in K. pneumoniae, which might offer new target for engineering bacteria to industrially produce 1,3-propanediol.IMPORTANCEThe biological production of 1,3-propanediol from glycerol by microbial fermentation shows great promising prospect on industrial application. Glycerol dehydratase catalyzes the penultimate step in glycerol metabolism and is regarded as one of the key and rate-limiting enzymes for 1,3-propanediol production. H-NS was reported as a pleiotropic modulator with negative effects on gene expression in most studies. Here, we reported for the first time that the expression of glycerol dehydratase gene is positively regulated by the H-NS. The results provide insight into a novel molecular mechanism of H-NS for positive regulation of glycerol dehydratase gene expression in K. pneumoniae, which holds promising potential for facilitating construction of engineering highly efficient 1,3-propanediol-producing strains.
Collapse
Affiliation(s)
- Le Li
- International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, China
- Hunan Provincial Key Laboratory of Forestry Biotechnology, Central South University of Forestry and Technology, Changsha, China
- Economic Forest Variety Creation Center, Yuelushan National Laboratory of Seed Industry, Changsha, China
| | - Qiang Li
- International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, China
- Hunan Provincial Key Laboratory of Forestry Biotechnology, Central South University of Forestry and Technology, Changsha, China
- Economic Forest Variety Creation Center, Yuelushan National Laboratory of Seed Industry, Changsha, China
| | - Yuting Xiao
- International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, China
- Hunan Provincial Key Laboratory of Forestry Biotechnology, Central South University of Forestry and Technology, Changsha, China
- Economic Forest Variety Creation Center, Yuelushan National Laboratory of Seed Industry, Changsha, China
| | - Jiangshan Ma
- International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, China
- Hunan Provincial Key Laboratory of Forestry Biotechnology, Central South University of Forestry and Technology, Changsha, China
- Economic Forest Variety Creation Center, Yuelushan National Laboratory of Seed Industry, Changsha, China
| | - Gao-Qiang Liu
- International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, China
- Hunan Provincial Key Laboratory of Forestry Biotechnology, Central South University of Forestry and Technology, Changsha, China
- Economic Forest Variety Creation Center, Yuelushan National Laboratory of Seed Industry, Changsha, China
| |
Collapse
|
2
|
Liu X, Li J, Zhang Z, He Y, Wang M, Zhao Y, Lin S, Liu T, Liao Y, Zhang N, Yuan K, Ling Y, Liu Z, Chen X, Chen Z, Chen R, Wang X, Gu B. Acetylation of xenogeneic silencer H-NS regulates biofilm development through the nitrogen homeostasis regulator in Shewanella. Nucleic Acids Res 2024; 52:2886-2903. [PMID: 38142446 PMCID: PMC11014242 DOI: 10.1093/nar/gkad1219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 12/26/2023] Open
Abstract
Adjusting intracellular metabolic pathways and adopting suitable live state such as biofilms, are crucial for bacteria to survive environmental changes. Although substantial progress has been made in understanding how the histone-like nucleoid-structuring (H-NS) protein modulates the expression of the genes involved in biofilm formation, the precise modification that the H-NS protein undergoes to alter its DNA binding activity is still largely uncharacterized. This study revealed that acetylation of H-NS at Lys19 inhibits biofilm development in Shewanella oneidensis MR-1 by downregulating the expression of glutamine synthetase, a critical enzyme in glutamine synthesis. We further found that nitrogen starvation, a likely condition in biofilm development, induces deacetylation of H-NS and the trimerization of nitrogen assimilation regulator GlnB. The acetylated H-NS strain exhibits significantly lower cellular glutamine concentration, emphasizing the requirement of H-NS deacetylation in Shewanella biofilm development. Moreover, we discovered in vivo that the activation of glutamine biosynthesis pathway and the concurrent suppression of the arginine synthesis pathway during both pellicle and attached biofilms development, further suggesting the importance of fine tune nitrogen assimilation by H-NS acetylation in Shewanella. In summary, posttranslational modification of H-NS endows Shewanella with the ability to respond to environmental needs by adjusting the intracellular metabolism pathways.
Collapse
Affiliation(s)
- Xiaoxiao Liu
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510000, China
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China
| | - Jun Li
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510000, China
| | - Zhixuan Zhang
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510000, China
- School of Medicine, South China University of Technology, Guangzhou, Guangdong 510080, China
| | - Yizhou He
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China
| | - Mingfang Wang
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510000, China
| | - Yunhu Zhao
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510000, China
| | - Shituan Lin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianlang Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiwen Liao
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510000, China
| | - Ni Zhang
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510000, China
| | - Kaixuan Yuan
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510000, China
| | - Yong Ling
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510000, China
| | - Ziyao Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaozhong Chen
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510000, China
| | - Zhe Chen
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ran Chen
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China
| | - Xiaoxue Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bing Gu
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510000, China
| |
Collapse
|
3
|
Jing Kay Lam K, Zhang Z, Saier Jr MH. Histone-like Nucleoid Structuring (H-NS) Protein Silences the beta-glucoside (bgl) Utilization Operon in Escherichia coli by Forming a DNA Loop. Comput Struct Biotechnol J 2022; 20:6287-6301. [DOI: 10.1016/j.csbj.2022.11.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/10/2022] [Accepted: 11/10/2022] [Indexed: 11/15/2022] Open
|
4
|
Cheng-Guang H, Gualerzi CO. The Ribosome as a Switchboard for Bacterial Stress Response. Front Microbiol 2021; 11:619038. [PMID: 33584583 PMCID: PMC7873864 DOI: 10.3389/fmicb.2020.619038] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/03/2020] [Indexed: 12/29/2022] Open
Abstract
As free-living organisms, bacteria are subject to continuous, numerous and occasionally drastic environmental changes to which they respond with various mechanisms which enable them to adapt to the new conditions so as to survive. Here we describe three situations in which the ribosome and its functions represent the sensor or the target of the stress and play a key role in the subsequent cellular response. The three stress conditions which are described are those ensuing upon: a) zinc starvation; b) nutritional deprivation, and c) temperature downshift.
Collapse
|
5
|
Fitzgerald S, Kary SC, Alshabib EY, MacKenzie KD, Stoebel D, Chao TC, Cameron ADS. Redefining the H-NS protein family: a diversity of specialized core and accessory forms exhibit hierarchical transcriptional network integration. Nucleic Acids Res 2020; 48:10184-10198. [PMID: 32894292 PMCID: PMC7544231 DOI: 10.1093/nar/gkaa709] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/07/2020] [Accepted: 08/23/2020] [Indexed: 12/27/2022] Open
Abstract
H-NS is a nucleoid structuring protein and global repressor of virulence and horizontally-acquired genes in bacteria. H-NS can interact with itself or with homologous proteins, but protein family diversity and regulatory network overlap remain poorly defined. Here, we present a comprehensive phylogenetic analysis that revealed deep-branching clades, dispelling the presumption that H-NS is the progenitor of varied molecular backups. Each clade is composed exclusively of either chromosome-encoded or plasmid-encoded proteins. On chromosomes, stpA and newly discovered hlpP are core genes in specific genera, whereas hfp and newly discovered hlpC are sporadically distributed. Six clades of H-NS plasmid proteins (Hpp) exhibit ancient and dedicated associations with plasmids, including three clades with fidelity for plasmid incompatibility groups H, F or X. A proliferation of H-NS homologs in Erwiniaceae includes the first observation of potentially co-dependent H-NS forms. Conversely, the observed diversification of oligomerization domains may facilitate stable co-existence of divergent homologs in a genome. Transcriptomic and proteomic analysis in Salmonella revealed regulatory crosstalk and hierarchical control of H-NS homologs. We also discovered that H-NS is both a repressor and activator of Salmonella Pathogenicity Island 1 gene expression, and both regulatory modes are restored by Sfh (HppH) in the absence of H-NS.
Collapse
Affiliation(s)
- Stephen Fitzgerald
- Department of Biology, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
- Division of Immunity and Infection, The Roslin Institute and R(D)SVS, University of Edinburgh, Edinburgh EH25 9RG, UK
| | - Stefani C Kary
- Department of Biology, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Ebtihal Y Alshabib
- Department of Biology, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
- Institute for Microbial Systems and Society, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Keith D MacKenzie
- Department of Biology, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
- Institute for Microbial Systems and Society, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Daniel M Stoebel
- Department of Biology, Harvey Mudd College, Claremont, CA 91711, USA
| | - Tzu-Chiao Chao
- Department of Biology, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
- Institute of Environmental Change and Society, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Andrew D S Cameron
- Department of Biology, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
- Institute for Microbial Systems and Society, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| |
Collapse
|
6
|
Yaghini N. Population balance modeling of assembly formation; accounting for the H-NS protein oligomerization and DNA binding mechanisms. Int J Biol Macromol 2019; 142:33-51. [PMID: 31491518 DOI: 10.1016/j.ijbiomac.2019.08.229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/26/2019] [Accepted: 08/27/2019] [Indexed: 10/26/2022]
Abstract
The results obtained in this study demonstrate H-NS oligomerization in solution is not sufficient in forming large structures of H-NS-DNA assemblies indicating oligomerization along bacterial DNA is crucial. We present a comprehensive and novel multi-scale modeling scheme to study protein-protein and protein-DNA interactions, with the focus on population balance modeling of assemblies formed by the H-NS protein and bacterial DNA. The model helps understanding how the concentration of H-NS influences the formation of H-NS-DNA assemblies. The presented model covers the two underlying molecular mechanisms involved in assembly formation, H-NS oligomerization in solution and H-NS-DNA binding. Within protein oligomerization interactions, protein molecules are entitled to dimerize, propagate, recombine and deform (break). In addition, DNA binding and unbinding interactions are included to account for formation of filaments along DNA. All mechanisms have been modeled with their associated forward (formation) and backward (deformation) interactions. The results obtained agree well with former experimental studies.
Collapse
Affiliation(s)
- Nazila Yaghini
- Department of Mechanical Engineering, Materials Technology Group, Eindhoven University of Technology, P.O. Box 513, Eindhoven, MB 5600, the Netherlands
| |
Collapse
|
7
|
Will WR, Whitham PJ, Reid PJ, Fang FC. Modulation of H-NS transcriptional silencing by magnesium. Nucleic Acids Res 2019; 46:5717-5725. [PMID: 29757411 PMCID: PMC6009595 DOI: 10.1093/nar/gky387] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 04/30/2018] [Indexed: 11/15/2022] Open
Abstract
The bacterial histone-like protein H-NS silences AT-rich DNA, binding DNA as 'stiffened' filaments or 'bridged' intrastrand loops. The switch between these modes has been suggested to depend on the concentration of divalent cations, in particular Mg2+, with elevated Mg2+ concentrations associated with a transition to bridging. Here we demonstrate that the observed binding mode is a function of the local concentration of H-NS and its cognate binding sites, as well as the affinity of the interactions between them. Mg2+ does not control a binary switch between these two modes but rather modulates the affinity of this interaction, inhibiting the DNA-binding and silencing activity of H-NS in a continuous linear fashion. The direct relationship between conditions that favor stiffening and transcriptional silencing activity suggests that although both modes can occur in the cell, stiffening is the predominant mode of binding at silenced genes.
Collapse
Affiliation(s)
- W Ryan Will
- Department of Laboratory Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Patrick J Whitham
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Philip J Reid
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Ferric C Fang
- Department of Laboratory Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA.,Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98195, USA
| |
Collapse
|
8
|
H-NS Family Members MvaT and MvaU Regulate the Pseudomonas aeruginosa Type III Secretion System. J Bacteriol 2019; 201:JB.00054-19. [PMID: 30782629 DOI: 10.1128/jb.00054-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 02/07/2019] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic Gram-negative pathogen capable of causing severe disease in immunocompromised individuals. A major P. aeruginosa virulence factor is the type III secretion system (T3SS). The T3SS is used to translocate effector proteins into host cells, causing cytotoxicity. The T3SS is under the transcriptional control of the master regulator ExsA. ExsA is encoded in the exsCEBA operon and autoregulates transcription via the P exsC promoter. There is also a Vfr-dependent promoter (P exsA ) located in the intergenic region between exsB and exsA A previous chromatin immunoprecipitation (ChIP)-on-chip experiment identified strong binding signatures for MvaT and MvaU in the intergenic region containing the P exsA promoter. MvaT and MvaU are DNA-binding histone-like nucleoid-structuring proteins that can repress gene expression. As predicted from the previous ChIP data, purified MvaT specifically bound to the P exsA promoter region in electrophoretic mobility shift assays. Whereas disruption of mvaT or mvaU by either transposon insertion or clustered regularly interspaced short palindromic repeat interference (CRISPRi) derepressed P exsA promoter activity and T3SS gene expression, overexpression of MvaT or MvaU inhibited P exsA promoter activity. Disruption of mvaT, however, did not suppress the Vfr requirement for P exsA promoter activity. Mutated MvaT/MvaU defective in transcriptional silencing exhibited dominant negative activity, resulting in a significant increase in P exsA promoter activity. Because no effect of MvaT or MvaU on Vfr expression was detected, we propose a model in which the primary effect of MvaT/MvaU on T3SS gene expression is through direct silencing of the P exsA promoter.IMPORTANCE Global regulatory systems play a prominent role in controlling the P. aeruginosa T3SS and include the Gac/RsmA, c-di-GMP, and Vfr-cAMP signaling pathways. Many of these pathways appear to directly or indirectly influence exsA transcription or translation. In this study, the histone-like proteins MvaT and MvaU are added to the growing list of global regulators that control the T3SS. MvaT and MvaU bind AT-rich regions in the genome and silence xenogeneic genes, including pathogenicity islands. The T3SS gene cluster has been horizontally transmitted among many Gram-negative pathogens. Control by MvaT/MvaU may reflect a residual effect that has persisted since the initial acquisition of the gene cluster, subsequently imposing a requirement for active regulatory mechanisms to override MvaT/MvaU-mediated silencing.
Collapse
|
9
|
Identifying the region responsible for Brucella abortus MucR higher-order oligomer formation and examining its role in gene regulation. Sci Rep 2018; 8:17238. [PMID: 30467359 PMCID: PMC6250670 DOI: 10.1038/s41598-018-35432-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 11/05/2018] [Indexed: 11/09/2022] Open
Abstract
MucR is a member of the Ros/MucR family of prokaryotic zinc-finger proteins found in the α-proteobacteria which regulate the expression of genes required for the successful pathogenic and symbiotic interactions of these bacteria with the eukaryotic hosts. The structure and function of their distinctive zinc-finger domain has been well-studied, but only recently the quaternary structure of the full length proteins was investigated demonstrating their ability to form higher-order oligomers. The aim of this study was to identify the region of MucR involved in higher-order oligomer formation by analysing deletion and point mutants of this protein by Light Scattering, and to determine the role that MucR oligomerization plays in the regulatory function of this protein. Here we demonstrate that a conserved hydrophobic region at the N-terminus of MucR is responsible for higher-order oligomer formation and that MucR oligomerization is essential for its regulatory function in Brucella. All these features of MucR are shared by the histone-like nucleoid structuring protein, (H-NS), leading us to propose that the prokaryotic zinc-finger proteins in the MucR/Ros family control gene expression employing a mechanism similar to that used by the H-NS proteins, rather than working as classical transcriptional regulators.
Collapse
|
10
|
Winardhi RS, Yan J, Kenney LJ. H-NS Regulates Gene Expression and Compacts the Nucleoid: Insights from Single-Molecule Experiments. Biophys J 2016; 109:1321-9. [PMID: 26445432 DOI: 10.1016/j.bpj.2015.08.016] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 08/07/2015] [Accepted: 08/12/2015] [Indexed: 10/23/2022] Open
Abstract
A set of abundant nucleoid-associated proteins (NAPs) play key functions in organizing the bacterial chromosome and regulating gene transcription globally. Histone-like nucleoid structuring protein (H-NS) is representative of a family of NAPs that are widespread across bacterial species. They have drawn extensive attention due to their crucial function in gene silencing in bacterial pathogens. Recent rapid progress in single-molecule manipulation and imaging technologies has made it possible to directly probe DNA binding by H-NS, its impact on DNA conformation and topology, and its competition with other DNA-binding proteins at the single-DNA-molecule level. Here, we review recent findings from such studies, and provide our views on how these findings yield new insights into the understanding of the roles of H-NS family members in DNA organization and gene silencing.
Collapse
Affiliation(s)
- Ricksen S Winardhi
- Mechanobiology Institute, National University of Singapore, Singapore; Department of Physics, National University of Singapore, Singapore
| | - Jie Yan
- Mechanobiology Institute, National University of Singapore, Singapore; Department of Physics, National University of Singapore, Singapore.
| | - Linda J Kenney
- Mechanobiology Institute, National University of Singapore, Singapore; Department of Biological Sciences, National University of Singapore, Singapore; Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois; Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, Illinois.
| |
Collapse
|
11
|
Brandi A, Giangrossi M, Giuliodori AM, Falconi M. An Interplay among FIS, H-NS, and Guanosine Tetraphosphate Modulates Transcription of the Escherichia coli cspA Gene under Physiological Growth Conditions. Front Mol Biosci 2016; 3:19. [PMID: 27252944 PMCID: PMC4877382 DOI: 10.3389/fmolb.2016.00019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 05/01/2016] [Indexed: 11/13/2022] Open
Abstract
CspA, the most characterized member of the csp gene family of Escherichia coli, is highly expressed not only in response to cold stress, but also during the early phase of growth at 37°C. Here, we investigate at molecular level the antagonistic role played by the nucleoid proteins FIS and H-NS in the regulation of cspA expression under non-stress conditions. By means of both probing experiments and immunological detection, we demonstrate in vitro the existence of binding sites for these proteins on the cspA regulatory region, in which FIS and H-NS bind simultaneously to form composite DNA-protein complexes. While the in vitro promoter activity of cspA is stimulated by FIS and repressed by H-NS, a compensatory effect is observed when both proteins are added in the transcription assay. Consistently with these findings, inactivation of fis and hns genes reversely affect the in vivo amount of cspA mRNA. In addition, by means of strains expressing a high level of the alarmone guanosine tetraphosphate ((p)ppGpp) and in vitro transcription assays, we show that the cspA promoter is sensitive to (p)ppGpp inhibition. The (p)ppGpp-mediated expression of fis and hns genes is also analyzed, thus clarifying some aspects of the regulatory loop governing cspA transcription.
Collapse
Affiliation(s)
- Anna Brandi
- Laboratory of Genetics, School of Bioscience and Veterinary Medicine, University of Camerino Camerino, Italy
| | - Mara Giangrossi
- Laboratory of Genetics, School of Bioscience and Veterinary Medicine, University of Camerino Camerino, Italy
| | - Anna M Giuliodori
- Laboratory of Genetics, School of Bioscience and Veterinary Medicine, University of Camerino Camerino, Italy
| | - Maurizio Falconi
- Laboratory of Genetics, School of Bioscience and Veterinary Medicine, University of Camerino Camerino, Italy
| |
Collapse
|
12
|
van der Maarel JRC, Guttula D, Arluison V, Egelhaaf SU, Grillo I, Forsyth VT. Structure of the H-NS-DNA nucleoprotein complex. SOFT MATTER 2016; 12:3636-3642. [PMID: 26976786 DOI: 10.1039/c5sm03076e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Nucleoid associated proteins (NAPs) play a key role in the compaction and expression of the prokaryotic genome. Here we report the organisation of a major NAP, the protein H-NS on a double stranded DNA fragment. For this purpose we have carried out a small angle neutron scattering study in conjunction with contrast variation to obtain the contributions to the scattering (structure factors) from DNA and H-NS. The H-NS structure factor agrees with a heterogeneous, two-state binding model with sections of the DNA duplex surrounded by protein and other sections having protein bound to the major groove. In the presence of magnesium chloride, we observed a structural rearrangement through a decrease in cross-sectional diameter of the nucleoprotein complex and an increase in fraction of major groove bound H-NS. The two observed binding modes and their modulation by magnesium ions provide a structural basis for H-NS-mediated genome organisation and expression regulation.
Collapse
Affiliation(s)
| | - Durgarao Guttula
- Department of Physics, National University of Singapore, Singapore 117542, Singapore.
| | - Véronique Arluison
- Laboratoire Léon Brillouin UMR 12 CEA, CNRS, Université Paris Saclay, CEA-Saclay, Gif sur Yvette Cedex 91191, France and Université Paris Diderot, Sorbonne Paris Cité, 75013 Paris, France
| | - Stefan U Egelhaaf
- Heinrich-Heine University, Condensed Matter Physics Laboratory, Düsseldorf, 40225, Germany
| | | | - V Trevor Forsyth
- Institut Laue-Langevin, 38042 Grenoble, France and Keele University, Faculty of Natural Sciences, Staffordshire, ST5 5BG, UK
| |
Collapse
|
13
|
Ares MA, Fernández-Vázquez JL, Rosales-Reyes R, Jarillo-Quijada MD, von Bargen K, Torres J, González-y-Merchand JA, Alcántar-Curiel MD, De la Cruz MA. H-NS Nucleoid Protein Controls Virulence Features of Klebsiella pneumoniae by Regulating the Expression of Type 3 Pili and the Capsule Polysaccharide. Front Cell Infect Microbiol 2016; 6:13. [PMID: 26904512 PMCID: PMC4746245 DOI: 10.3389/fcimb.2016.00013] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 01/22/2016] [Indexed: 12/14/2022] Open
Abstract
Klebsiella pneumoniae is an opportunistic pathogen causing nosocomial infections. Main virulence determinants of K. pneumoniae are pili, capsular polysaccharide, lipopolysaccharide, and siderophores. The histone-like nucleoid-structuring protein (H-NS) is a pleiotropic regulator found in several gram-negative pathogens. It has functions both as an architectural component of the nucleoid and as a global regulator of gene expression. We generated a Δhns mutant and evaluated the role of the H-NS nucleoid protein on the virulence features of K. pneumoniae. A Δhns mutant down-regulated the mrkA pilin gene and biofilm formation was affected. In contrast, capsule expression was derepressed in the absence of H-NS conferring a hypermucoviscous phenotype. Moreover, H-NS deficiency affected the K. pneumoniae adherence to epithelial cells such as A549 and HeLa cells. In infection experiments using RAW264.7 and THP-1 differentiated macrophages, the Δhns mutant was less phagocytized than the wild-type strain. This phenotype was likely due to the low adherence to these phagocytic cells. Taken together, our data indicate that H-NS nucleoid protein is a crucial regulator of both T3P and CPS of K. pneumoniae.
Collapse
Affiliation(s)
- Miguel A Ares
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Hospital de PediatríaMexico City, Mexico; Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico NacionalMexico City, Mexico
| | - José L Fernández-Vázquez
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México Mexico City, Mexico
| | - Roberto Rosales-Reyes
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México Mexico City, Mexico
| | - Ma Dolores Jarillo-Quijada
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México Mexico City, Mexico
| | | | - Javier Torres
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Hospital de Pediatría Mexico City, Mexico
| | - Jorge A González-y-Merchand
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional Mexico City, Mexico
| | - María D Alcántar-Curiel
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México Mexico City, Mexico
| | - Miguel A De la Cruz
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Hospital de Pediatría Mexico City, Mexico
| |
Collapse
|
14
|
Solórzano C, Srikumar S, Canals R, Juárez A, Paytubi S, Madrid C. Hha has a defined regulatory role that is not dependent upon H-NS or StpA. Front Microbiol 2015; 6:773. [PMID: 26284052 PMCID: PMC4519777 DOI: 10.3389/fmicb.2015.00773] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 07/14/2015] [Indexed: 11/13/2022] Open
Abstract
The Hha family of proteins is involved in the regulation of gene expression in enterobacteria by forming complexes with H-NS-like proteins. Whereas several amino acid residues of both proteins participate in the interaction, some of them play a key role. Residue D48 of Hha protein is essential for the interaction with H-NS, thus the D48N substitution in Hha protein abrogates H-NS/Hha interaction. Despite being a paralog of H-NS protein, StpA interacts with HhaD48N with higher affinity than with the wild type Hha protein. To analyze whether Hha is capable of acting independently of H-NS and StpA, we conducted transcriptomic analysis on the hha and stpA deletion strains and the hhaD48N substitution strain of Salmonella Typhimurium using a custom microarray. The results obtained allowed the identification of 120 genes regulated by Hha in an H-NS/StpA-independent manner, 38% of which are horizontally acquired genes. A significant number of the identified genes are involved in functions related to cell motility, iron uptake, and pathogenicity. Thus, motility assays, siderophore detection and intra-macrophage replication assays were performed to confirm the transcriptomic data. Our findings point out the importance of Hha protein as an independent regulator in S. Typhimurium, highlighting a regulatory role on virulence.
Collapse
Affiliation(s)
- Carla Solórzano
- Departament de Microbiologia, Universitat de Barcelona Barcelona, Spain
| | | | - Rocío Canals
- Institute of Integrative Biology, University of Liverpool Liverpool, UK
| | - Antonio Juárez
- Departament de Microbiologia, Universitat de Barcelona Barcelona, Spain ; Institut de Bioenginyeria de Catalunya, Parc Científic de Barcelona Barcelona, Spain
| | - Sonia Paytubi
- Departament de Microbiologia, Universitat de Barcelona Barcelona, Spain
| | - Cristina Madrid
- Departament de Microbiologia, Universitat de Barcelona Barcelona, Spain
| |
Collapse
|
15
|
Ulissi U, Fabbretti A, Sette M, Giuliodori AM, Spurio R. Time-resolved assembly of a nucleoprotein complex between Shigella flexneri virF promoter and its transcriptional repressor H-NS. Nucleic Acids Res 2014; 42:13039-50. [PMID: 25389261 PMCID: PMC4245942 DOI: 10.1093/nar/gku1052] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The virF gene of Shigella, responsible for triggering the virulence cascade in this pathogenic bacterium, is transcriptionally repressed by the nucleoid-associated protein H-NS. The primary binding sites of H-NS within the promoter region of virF have been detected here by footprinting experiments in the presence of H-NS or its monomeric DNA-binding domain (H-NSctd), which displays the same specificity as intact H-NS. Of the 14 short DNA fragments identified, 10 overlap sequences similar to the H-NS binding motif. The ‘fast’, ‘intermediate’ and ‘slow’ H-NS binding events leading to the formation of the nucleoprotein complex responsible for transcription repression have been determined by time-resolved hydroxyl radical footprinting experiments in the presence of full-length H-NS. We demonstrate that this process is completed in ≤1 s and H-NS protections occur simultaneously on site I and site II of the virF promoter. Furthermore, all ‘fast’ protections have been identified in regions containing predicted H-NS binding motifs, in agreement with the hypothesis that H-NS nucleoprotein complex assembles from a few nucleation sites containing high-affinity binding sequences. Finally, data are presented showing that the 22-bp fragment corresponding to one of the HNS binding sites deviates from canonical B-DNA structure at three TpA steps.
Collapse
Affiliation(s)
- Ulisse Ulissi
- Laboratory of Genetics, School of Biosciences and Veterinary Medicine, University of Camerino, Camerino (MC) 62032, Italy
| | - Attilio Fabbretti
- Laboratory of Genetics, School of Biosciences and Veterinary Medicine, University of Camerino, Camerino (MC) 62032, Italy
| | - Marco Sette
- Department of Chemical Sciences and Technologies, University of Rome-Tor Vergata, 00133 Roma, Italy
| | - Anna Maria Giuliodori
- Laboratory of Genetics, School of Biosciences and Veterinary Medicine, University of Camerino, Camerino (MC) 62032, Italy
| | - Roberto Spurio
- Laboratory of Genetics, School of Biosciences and Veterinary Medicine, University of Camerino, Camerino (MC) 62032, Italy
| |
Collapse
|
16
|
Giangrossi M, Wintraecken K, Spurio R, de Vries R. Probing the relation between protein-protein interactions and DNA binding for a linker mutant of the bacterial nucleoid protein H-NS. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1844:339-45. [PMID: 24275506 DOI: 10.1016/j.bbapap.2013.11.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 10/29/2013] [Accepted: 11/15/2013] [Indexed: 10/26/2022]
Abstract
We have investigated the relationship between oligomerization in solution and DNA binding for the bacterial nucleoid protein H-NS. This was done by comparing oligomerization and DNA binding of H-NS with that of a H-NS D68V-D71V linker mutant. The double linker mutation D68V-D71V, that makes the linker significantly more hydrophobic, leads to a dramatically enhanced and strongly temperature-dependent H-NS oligomerization in solution, as detected by dynamic light scattering. The DNA binding affinity of H-NS D68V-D71V for the hns promoter region is lower and has stronger temperature dependence than that of H-NS. DNase I footprinting experiments show that at high concentrations, regions protected by H-NS D68V-D71V are larger and less defined than for H-NS. In vitro transcription assays show that the enhanced protection also leads to enhanced transcriptional repression. Whereas the lower affinity of the H-NS D68V-D71V for DNA could be caused by competition between oligomerization in solution and oligomerization on DNA, the larger size of protected regions clearly confirms the notion that cooperative binding of H-NS to DNA is related to protein-protein interactions. These results emphasize the relative contributions of protein-protein interactions and substrate-dependent oligomerization in the control of gene repression operated by H-NS.
Collapse
Affiliation(s)
- Mara Giangrossi
- University of Camerino, School of Biosciences and Biotechnologies, 62032 Camerino, MC, Italy
| | - Kathelijne Wintraecken
- Lab. Phys. Chem. Colloid Sci., Wageningen University, Dreijenplein 4, 6703 HB Wageningen, The Netherlands
| | - Roberto Spurio
- University of Camerino, School of Biosciences and Biotechnologies, 62032 Camerino, MC, Italy
| | - Renko de Vries
- Lab. Phys. Chem. Colloid Sci., Wageningen University, Dreijenplein 4, 6703 HB Wageningen, The Netherlands.
| |
Collapse
|
17
|
Ali SS, Whitney JC, Stevenson J, Robinson H, Howell PL, Navarre WW. Structural insights into the regulation of foreign genes in Salmonella by the Hha/H-NS complex. J Biol Chem 2013; 288:13356-69. [PMID: 23515315 DOI: 10.1074/jbc.m113.455378] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Hha facilitates H-NS-mediated silencing of foreign genes in bacteria. RESULTS Two Hha monomers bind opposing faces of the H-NS N-terminal dimerization domain. CONCLUSION Hha binds the dimerization domain of H-NS and may contact DNA via positively charged surface residues. SIGNIFICANCE The structure of Hha and H-NS in complex provides a mechanistic model of how Hha may affect gene regulation. The bacterial nucleoid-associated proteins Hha and H-NS jointly repress horizontally acquired genes in Salmonella, including essential virulence loci encoded within Salmonella pathogenicity islands. Hha is known to interact with the N-terminal dimerization domain of H-NS; however, the manner in which this interaction enhances transcriptional silencing is not understood. To further understand this process, we solved the x-ray crystal structure of Hha in complex with the N-terminal dimerization domain of H-NS (H-NS(1-46)) to 3.2 Å resolution. Two monomers of Hha bind to symmetrical sites on either side of the H-NS(1-46) dimer. Disruption of the Hha/H-NS interaction by the H-NS site-specific mutation I11A results in increased expression of the Hha/H-NS co-regulated gene hilA without affecting the expression levels of proV, a target gene repressed by H-NS in an Hha-independent fashion. Examination of the structure revealed a cluster of conserved basic amino acids that protrude from the surface of Hha on the opposite side of the Hha/H-NS(1-46) interface. Hha mutants with a diminished positively charged surface maintain the ability to interact with H-NS but can no longer regulate hilA. Increased expression of the hilA locus did not correspond to significant depletion of H-NS at the promoter region in chromatin immunoprecipitation assays. However, in vitro, we find Hha improves H-NS binding to target DNA fragments. Taken together, our results show for the first time how Hha and H-NS interact to direct transcriptional repression and reveal that a positively charged surface of Hha enhances the silencing activity of H-NS nucleoprotein filaments.
Collapse
Affiliation(s)
- Sabrina S Ali
- Departments of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | | | | | | | | |
Collapse
|
18
|
Lim CJ, Lee SY, Teramoto J, Ishihama A, Yan J. The nucleoid-associated protein Dan organizes chromosomal DNA through rigid nucleoprotein filament formation in E. coli during anoxia. Nucleic Acids Res 2012. [PMID: 23180762 PMCID: PMC3553945 DOI: 10.1093/nar/gks1126] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Dan is a transcription factor that regulates the ttd operon encoding tartrate dehydratase. During anaerobic conditions, its copy number increases by 100-fold, making Dan an abundant nucleoid-associated protein. However, little is known about the mode of Dan–DNA interaction. To understand its cellular functions, we used single-molecule manipulation and imaging techniques to show that Dan binds cooperatively along DNA, resulting in formation of a rigid periodic nucleoprotein filament that strongly restricts accessibility to DNA. Furthermore, in the presence of physiologic levels of magnesium, these filaments interact with each other to cause global DNA condensation. Overall, these results shed light on the architectural role of Dan in the compaction of Escherichia coli chromosomal DNA under anaerobic conditions. Formation of the nucleoprotein filament provides a basis in understanding how Dan may play roles in both chromosomal DNA protection and gene regulation.
Collapse
Affiliation(s)
- Ci Ji Lim
- National University of Singapore, Graduate School for Integrative Sciences and Engineering, Singapore
| | | | | | | | | |
Collapse
|
19
|
The detection and quantitation of protein oligomerization. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 747:19-41. [PMID: 22949109 DOI: 10.1007/978-1-4614-3229-6_2] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
There are many different techniques available to biologists and biochemists that can be used to detect and characterize the self-association of proteins. Each technique has strengths and weaknesses and it is often useful to combine several approaches to maximize the former and minimize the latter. Here we review a range of methodologies that identify protein self-association and/or allow the stoichiometry and affinity of the interaction to be determined, placing an emphasis on what type of information can be obtained and outlining the advantages and disadvantages involved. In general, in vitro biophysical techniques, such as size exclusion chromatography, analytical ultracentrifugation, scattering techniques, NMR spectroscopy, isothermal titration calorimetry, fluorescence anisotropy and mass spectrometry, provide information on stoichiometry and/or binding affinities. Other approaches such as cross-linking, fluorescence methods (e.g., fluorescence correlation spectroscopy, FCS; Förster resonance energy transfer, FRET; fluorescence recovery after photobleaching, FRAP; and proximity imaging, PRIM) and complementation approaches (e.g., yeast two hybrid assays and bimolecular fluorescence complementation, BiFC) can be used to detect protein self-association in a cellular context.
Collapse
|
20
|
Lim CJ, Whang YR, Kenney LJ, Yan J. Gene silencing H-NS paralogue StpA forms a rigid protein filament along DNA that blocks DNA accessibility. Nucleic Acids Res 2011; 40:3316-28. [PMID: 22187157 PMCID: PMC3333869 DOI: 10.1093/nar/gkr1247] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Nucleoid-associated proteins are bacterial proteins that are responsible for chromosomal DNA compaction and global gene regulation. One such protein is Escherichia coli Histone-like nucleoid structuring protein (H-NS) which functions as a global gene silencer. Whereas the DNA-binding mechanism of H-NS is well-characterized, its paralogue, StpA which is also able to silence genes is less understood. Here we show that StpA is similar to H-NS in that it is able to form a rigid filament along DNA. In contrast to H-NS, the StpA filament interacts with a naked DNA segment to cause DNA bridging which results in simultaneous stiffening and bridging of DNA. DNA accessibility is effectively blocked after the formation of StpA filament on DNA, suggesting rigid filament formation is the important step in promoting gene silencing. We also show that >1 mM magnesium promotes higher order DNA condensation, suggesting StpA may also play a role in chromosomal DNA packaging.
Collapse
Affiliation(s)
- Ci Ji Lim
- NUS Graduate school for Integrative Sciences and Engineering, National University of Singapore, 28 Medical Drive, Singapore, 119077, Singapore
| | | | | | | |
Collapse
|
21
|
The 5.5 protein of phage T7 inhibits H-NS through interactions with the central oligomerization domain. J Bacteriol 2011; 193:4881-92. [PMID: 21764926 DOI: 10.1128/jb.05198-11] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The 5.5 protein (T7p32) of coliphage T7 (5.5(T7)) was shown to bind and inhibit gene silencing by the nucleoid-associated protein H-NS, but the mechanism by which it acts was not understood. The 5.5(T7) protein is insoluble when expressed in Escherichia coli, but we find that 5.5(T7) can be isolated in a soluble form when coexpressed with a truncated version of H-NS followed by subsequent disruption of the complex during anion-exchange chromatography. Association studies reveal that 5.5(T7) binds a region of H-NS (residues 60 to 80) recently found to contain a distinct domain necessary for higher-order H-NS oligomerization. Accordingly, we find that purified 5.5(T7) can disrupt higher-order H-NS-DNA complexes in vitro but does not abolish DNA binding by H-NS per se. Homologues of the 5.5(T7) protein are found exclusively among members of the Autographivirinae that infect enteric bacteria, and despite fairly low sequence conservation, the H-NS binding properties of these proteins are largely conserved. Unexpectedly, we find that the 5.5(T7) protein copurifies with heterogeneous low-molecular-weight RNA, likely tRNA, through several chromatography steps and that this interaction does not require the DNA binding domain of H-NS. The 5.5 proteins utilize a previously undescribed mechanism of H-NS antagonism that further highlights the critical importance that higher-order oligomerization plays in H-NS-mediated gene repression.
Collapse
|
22
|
Structural basis for recognition of AT-rich DNA by unrelated xenogeneic silencing proteins. Proc Natl Acad Sci U S A 2011; 108:10690-5. [PMID: 21673140 DOI: 10.1073/pnas.1102544108] [Citation(s) in RCA: 169] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
H-NS and Lsr2 are nucleoid-associated proteins from Gram-negative bacteria and Mycobacteria, respectively, that play an important role in the silencing of horizontally acquired foreign DNA that is more AT-rich than the resident genome. Despite the fact that Lsr2 and H-NS proteins are dissimilar in sequence and structure, they serve apparently similar functions and can functionally complement one another. The mechanism by which these xenogeneic silencers selectively target AT-rich DNA has been enigmatic. We performed high-resolution protein binding microarray analysis to simultaneously assess the binding preference of H-NS and Lsr2 for all possible 8-base sequences. Concurrently, we performed a detailed structure-function relationship analysis of their C-terminal DNA binding domains by NMR. Unexpectedly, we found that H-NS and Lsr2 use a common DNA binding mechanism where a short loop containing a "Q/RGR" motif selectively interacts with the DNA minor groove, where the highest affinity is for AT-rich sequences that lack A-tracts. Mutations of the Q/RGR motif abolished DNA binding activity. Netropsin, a DNA minor groove-binding molecule effectively outcompeted H-NS and Lsr2 for binding to AT-rich sequences. These results provide a unified molecular mechanism to explain findings related to xenogeneic silencing proteins, including their lack of apparent sequence specificity but preference for AT-rich sequences. Our findings also suggest that structural information contained within the DNA minor groove is deciphered by xenogeneic silencing proteins to distinguish genetic material that is self from nonself.
Collapse
|
23
|
Modulation of Rho-dependent transcription termination in Escherichia coli by the H-NS family of proteins. J Bacteriol 2011; 193:3832-41. [PMID: 21602341 DOI: 10.1128/jb.00220-11] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nascent transcripts in Escherichia coli that fail to be simultaneously translated are subject to a factor-dependent mechanism of termination (also termed a polarity) that involves the proteins Rho and NusG. In this study, we found that overexpression of YdgT suppressed the polarity relief phenotypes and restored the efficiency of termination in rho or nusG mutants. YdgT and Hha belong to the H-NS and StpA family of proteins that repress a large number of genes in Gram-negative bacteria. Variants of H-NS defective in one or the other of its two dimerization domains, but not those defective in DNA binding alone, also conferred a similar suppression phenotype in rho and nusG mutants. YdgT overexpression was associated with derepression of proU, a prototypical H-NS-silenced locus. Polarity relief conferred by rho or nusG was unaffected in a derivative completely deficient for both H-NS and StpA, although the suppression effects of YdgT or the oligomerization-defective H-NS variants were abolished in this background. Transcription elongation rates in vivo were unaffected in any of the suppressor-bearing strains. Finally, the polarity defects of rho and nusG mutants were exacerbated by Hha and YdgT deficiency. A model is proposed that invokes a novel role for the polymeric architectural scaffold formed on DNA by H-NS and StpA independent of the gene-silencing functions of these nucleoid proteins, in modulating Rho-dependent transcription termination such that interruption of the scaffold (as obtained by expression either of the H-NS oligomerization variants or of YdgT) is associated with improved termination efficiency in the rho and nusG mutants.
Collapse
|
24
|
Phage encoded H-NS: a potential achilles heel in the bacterial defence system. PLoS One 2011; 6:e20095. [PMID: 21625595 PMCID: PMC3097231 DOI: 10.1371/journal.pone.0020095] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Accepted: 04/11/2011] [Indexed: 01/21/2023] Open
Abstract
The relationship between phage and their microbial hosts is difficult to elucidate in complex natural ecosystems. Engineered systems performing enhanced biological phosphorus removal (EBPR), offer stable, lower complexity communities for studying phage-host interactions. Here, metagenomic data from an EBPR reactor dominated by Candidatus Accumulibacter phosphatis (CAP), led to the recovery of three complete and six partial phage genomes. Heat-stable nucleoid structuring (H-NS) protein, a global transcriptional repressor in bacteria, was identified in one of the complete phage genomes (EPV1), and was most similar to a homolog in CAP. We infer that EPV1 is a CAP-specific phage and has the potential to repress up to 6% of host genes based on the presence of putative H-NS binding sites in the CAP genome. These genes include CRISPR associated proteins and a Type III restriction-modification system, which are key host defense mechanisms against phage infection. Further, EPV1 was the only member of the phage community found in an EBPR microbial metagenome collected seven months prior. We propose that EPV1 laterally acquired H-NS from CAP providing it with a means to reduce bacterial defenses, a selective advantage over other phage in the EBPR system. Phage encoded H-NS could constitute a previously unrecognized weapon in the phage-host arms race.
Collapse
|
25
|
Rimsky S, Travers A. Pervasive regulation of nucleoid structure and function by nucleoid-associated proteins. Curr Opin Microbiol 2011; 14:136-41. [PMID: 21288763 DOI: 10.1016/j.mib.2011.01.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 01/07/2011] [Accepted: 01/07/2011] [Indexed: 01/10/2023]
Abstract
Bacterial DNA is organised in a compact nucleoid body that is tightly associated with the coupled transcription and translation of mRNAs. This structure contains abundant DNA-binding proteins which perform both structural and regulatory roles, and, in Escherichia coli, serve to buffer and organise pervasive DNA superhelicity. We argue that NAPs coordinate regulation of gene expression and superhelicity at the global (or chromosomal) and at local (corresponding to promoter activity and genetic recombination) levels.
Collapse
Affiliation(s)
- Sylvie Rimsky
- LBPA, Ecole Normale Supérieure de Cachan, CNRS, 94235 Cachan, France.
| | | |
Collapse
|
26
|
Castang S, Dove SL. High-order oligomerization is required for the function of the H-NS family member MvaT in Pseudomonas aeruginosa. Mol Microbiol 2010; 78:916-31. [PMID: 20815825 DOI: 10.1111/j.1365-2958.2010.07378.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
H-NS is an abundant DNA-binding protein that has been implicated in the silencing of foreign DNA in several different bacteria. The ability of H-NS dimers to form higher-order oligomers is thought to aid the polymerization of the protein across AT-rich stretches of DNA and facilitate gene silencing. Although the oligomerization of H-NS from enteric bacteria has been the subject of intense investigation, little is known regarding the oligomerization of H-NS family members from bacteria outside of the enterobacteriaceae, many of which share little sequence similarity with their enteric counterparts. Here we show that MvaT, a member of the H-NS family of proteins from Pseudomonas aeruginosa, can form both dimers and higher-order oligomers, and we identify a region within MvaT that mediates higher-order oligomer formation. Using genetic assays we identify mutants of MvaT that are defective for higher-order oligomer formation. We present evidence that these mutants are functionally impaired and exhibit DNA-binding defects because of their inability to form higher-order oligomers. Our findings support a model in which the ability of MvaT to bind efficiently to the DNA depends upon protein-protein interactions between MvaT dimers and suggest that the ability to form higher-order oligomers is a conserved and essential feature of H-NS family members.
Collapse
Affiliation(s)
- Sandra Castang
- Division of Infectious Diseases, Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
27
|
Giangrossi M, Prosseda G, Tran CN, Brandi A, Colonna B, Falconi M. A novel antisense RNA regulates at transcriptional level the virulence gene icsA of Shigella flexneri. Nucleic Acids Res 2010; 38:3362-75. [PMID: 20129941 PMCID: PMC2879508 DOI: 10.1093/nar/gkq025] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2009] [Revised: 12/30/2009] [Accepted: 01/11/2010] [Indexed: 12/26/2022] Open
Abstract
The virulence gene icsA of Shigella flexneri encodes an invasion protein crucial for host colonization by pathogenic bacteria. Within the intergenic region virA-icsA, we have discovered a new gene that encodes a non-translated antisense RNA (named RnaG), transcribed in cis on the complementary strand of icsA. In vitro transcription assays show that RnaG promotes premature termination of transcription of icsA mRNA. Transcriptional inhibition is also observed in vivo by monitoring the expression profile in Shigella by real-time polymerase chain reaction and when RnaG is provided in trans. Chemical and enzymatic probing of the leader region of icsA mRNA either free or bound to RnaG indicate that upon hetero-duplex formation an intrinsic terminator, leading to transcription block, is generated on the nascent icsA mRNA. Mutations in the hairpin structure of the proposed terminator impair the RnaG mediated-regulation of icsA transcription. This study represents the first evidence of transcriptional attenuation mechanism caused by a small RNA in Gram-negative bacteria. We also present data on the secondary structure of the antisense region of RnaG. In addition, alternatively silencing icsA and RnaG promoters, we find that transcription from the strong RnaG promoter reduces the activity of the weak convergent icsA promoter through the transcriptional interference regulation.
Collapse
Affiliation(s)
- Mara Giangrossi
- Laboratory of Molecular Genetics, Department of Biology MCA, University of Camerino, 62032 Camerino, MC, Italy
| | | | | | | | | | | |
Collapse
|
28
|
Sette M, Spurio R, Trotta E, Brandizi C, Brandi A, Pon CL, Barbato G, Boelens R, Gualerzi CO. Sequence-specific recognition of DNA by the C-terminal domain of nucleoid-associated protein H-NS. J Biol Chem 2009; 284:30453-62. [PMID: 19740756 DOI: 10.1074/jbc.m109.044313] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The molecular determinants necessary and sufficient for recognition of its specific DNA target are contained in the C-terminal domain (H-NSctd) of nucleoid-associated protein H-NS. H-NSctd protects from DNaseI cleavage a few short DNA segments of the H-NS-sensitive hns promoter whose sequences closely match the recently identified H-NS consensus motif (tCG(t/a)T(a/t)AATT) and, alone or fused to the protein oligomerization domain of phage lambda CI repressor, inhibits transcription from the hns promoter in vitro and in vivo. The importance of H-NS oligomerization is indicated by the fact that with an extended hns promoter construct (400 bp), which allows protein oligomerization, DNA binding and transcriptional repression are highly and almost equally efficient with native H-NS and H-NSctd::lambdaCI and much less effective with the monomeric H-NSctd. With a shorter (110 bp) construct, which does not sustain extensive protein oligomerization, transcriptional repression is less effective, but native H-NS, H-NSctd::lambdaCI, and monomeric H-NSctd have comparable activity on this construct. The specific H-NS-DNA interaction was investigated by NMR spectroscopy using monomeric H-NSctd and short DNA duplexes encompassing the H-NS target sequence of hns (TCCTTACATT) with the best fit (8 of 10 residues) to the H-NS-binding motif. H-NSctd binds specifically and with high affinity to the chosen duplexes via an overall electropositive surface involving four residues (Thr(109), Arg(113), Thr(114), and Ala(116)) belonging to the same protein loop and Glu(101). The DNA target is recognized by virtue of its sequence and of a TpA step that confers a structural irregularity to the B-DNA duplex.
Collapse
Affiliation(s)
- Marco Sette
- From the Department of Chemical Sciences and Technology, University of Rome-Tor Vergata, 00133 Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Protein occupancy landscape of a bacterial genome. Mol Cell 2009; 35:247-53. [PMID: 19647521 DOI: 10.1016/j.molcel.2009.06.035] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2008] [Revised: 04/07/2009] [Accepted: 06/24/2009] [Indexed: 11/22/2022]
Abstract
Protein-DNA interactions are fundamental to core biological processes, including transcription, DNA replication, and chromosomal organization. We have developed in vivo protein occupancy display (IPOD), a technology that reveals protein occupancy across an entire bacterial chromosome at the resolution of individual binding sites. Application to Escherichia coli reveals thousands of protein occupancy peaks, highly enriched within and in close proximity to noncoding regulatory regions. In addition, we discovered extensive (>1 kilobase) protein occupancy domains (EPODs), some of which are localized to highly expressed genes, enriched in RNA-polymerase occupancy. However, the majority are localized to transcriptionally silent loci dominated by conserved hypothetical ORFs. These regions are highly enriched in both predicted and experimentally determined binding sites of nucleoid proteins and exhibit extreme biophysical characteristics such as high intrinsic curvature. Our observations implicate these transcriptionally silent EPODs as the elusive organizing centers, long proposed to topologically isolate chromosomal domains.
Collapse
|
30
|
Wardle SJ, Chan A, Haniford DB. H-NS binds with high affinity to the Tn10 transpososome and promotes transpososome stabilization. Nucleic Acids Res 2009; 37:6148-60. [PMID: 19696075 PMCID: PMC2764420 DOI: 10.1093/nar/gkp672] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
H-NS is a bacterial DNA-binding protein that regulates gene expression and DNA transposition. In the case of Tn10, H-NS binds directly to the transposition machinery (i.e. the transpososome) to influence the outcome of the reaction. In the current work we evaluated the binding affinity of H-NS for two forms of the Tn10 transpososome, including the initial folded form and a pre-unfolded form. These two forms differ in that IHF is bound to the former but not the latter. IHF binding induces a bend (or fold) in the transposon end that facilitates transpososome formation. However, the continued presence of IHF in the transpososome inhibits intermolecular transposition events. We show that H-NS binds particularly strongly to the pre-unfolded transpososome with an apparent K(d) of approximately 0.3 nM. This represents the highest affinity interaction between H-NS and a binding partner documented to date. We also show that binding of H-NS to the transpososome stabilizes this structure and propose that both high-affinity binding and stabilization result from the combined interaction between H-NS and DNA and H-NS and transposase within the transpososome. Mechanistic implications for tight binding of H-NS to the transpososome and transpososome stabilization are considered.
Collapse
Affiliation(s)
- Simon J Wardle
- Department of Biochemistry, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | | | | |
Collapse
|
31
|
N9L and L9N mutations toggle Hha binding and hemolysin regulation byEscherichia coliandVibrio choleraeH-NS. FEBS Lett 2009; 583:2911-6. [DOI: 10.1016/j.febslet.2009.07.054] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Revised: 07/28/2009] [Accepted: 07/29/2009] [Indexed: 11/18/2022]
|
32
|
Baños RC, Vivero A, Aznar S, García J, Pons M, Madrid C, Juárez A. Differential regulation of horizontally acquired and core genome genes by the bacterial modulator H-NS. PLoS Genet 2009; 5:e1000513. [PMID: 19521501 PMCID: PMC2686267 DOI: 10.1371/journal.pgen.1000513] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Accepted: 05/12/2009] [Indexed: 11/20/2022] Open
Abstract
Horizontal acquisition of DNA by bacteria dramatically increases genetic diversity and hence successful bacterial colonization of several niches, including the human host. A relevant issue is how this newly acquired DNA interacts and integrates in the regulatory networks of the bacterial cell. The global modulator H-NS targets both core genome and HGT genes and silences gene expression in response to external stimuli such as osmolarity and temperature. Here we provide evidence that H-NS discriminates and differentially modulates core and HGT DNA. As an example of this, plasmid R27-encoded H-NS protein has evolved to selectively silence HGT genes and does not interfere with core genome regulation. In turn, differential regulation of both gene lineages by resident chromosomal H-NS requires a helper protein: the Hha protein. Tight silencing of HGT DNA is accomplished by H-NS-Hha complexes. In contrast, core genes are modulated by H-NS homoligomers. Remarkably, the presence of Hha-like proteins is restricted to the Enterobacteriaceae. In addition, conjugative plasmids encoding H-NS variants have hitherto been isolated only from members of the family. Thus, the H-NS system in enteric bacteria presents unique evolutionary features. The capacity to selectively discriminate between core and HGT DNA may help to maintain horizontally transmitted DNA in silent form and may give these bacteria a competitive advantage in adapting to new environments, including host colonization. Acquisition of DNA by horizontal gene transfer (HGT) significantly increases bacterial genetic variability. Relevant issues are the mechanisms that bacterial cells have evolved to efficiently integrate the newly acquired DNA into the host cell regulatory machinery. In Gram negative cells, the nucleoid associated protein H-NS has been shown to bind AT-rich sequences of HGT DNA and silence unwanted expression of these genes. This has led to consider H-NS as a “genome sentinel.” Nevertheless, this proposed role must be compatible with its role modulating core genome genes. Weak expression of recently transferred genes must be coordinated with proper expression levels of housekeeping genes. In this paper, we describe a strategy that enteric bacteria have developed to differentially modulate HGT and core genome genes. Two independent lines of experimental evidence suggest that the H-NS system of enteric bacteria may have evolved to discriminate between core genome and HGT DNA. The plasmid R27-encoded H-NS protein selectively modulates HGT genes. This avoids plasmid-encoded H-NS interfering with modulation of core functions. We also show that, for efficient silencing of HGT genes, resident chromosomal H-NS recruits the Hha protein and forms heteromeric complexes with DNA. In contrast, housekeeping genes are modulated by H-NS alone.
Collapse
Affiliation(s)
- Rosa C. Baños
- Institut de Bioenginyeria de Catalunya (IBEC), Parc Científic de Barcelona, Barcelona, Spain
| | - Aitziber Vivero
- Departament de Microbiologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Sonia Aznar
- Departament de Microbiologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Jesús García
- Institute for Research in Biomedicine (IRB Barcelona), Parc Científic de Barcelona, Barcelona, Spain
| | - Miquel Pons
- Institute for Research in Biomedicine (IRB Barcelona), Parc Científic de Barcelona, Barcelona, Spain
- Departament de Química Orgànica, Universitat de Barcelona, Barcelona, Spain
| | - Cristina Madrid
- Departament de Microbiologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- * E-mail: (CM); (AJ)
| | - Antonio Juárez
- Institut de Bioenginyeria de Catalunya (IBEC), Parc Científic de Barcelona, Barcelona, Spain
- Departament de Microbiologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- * E-mail: (CM); (AJ)
| |
Collapse
|
33
|
Leonard PG, Ono S, Gor J, Perkins SJ, Ladbury JE. Investigation of the self-association and hetero-association interactions of H-NS and StpA from Enterobacteria. Mol Microbiol 2009; 73:165-79. [PMID: 19508284 DOI: 10.1111/j.1365-2958.2009.06754.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The nucleoid-associated protein H-NS and its paralogue StpA are global regulators of gene expression and form an integral part of the protein scaffold responsible for DNA condensation in Escherichia coli and Salmonella typhimurium. Although protein oligomerization is a requirement for this function, it is not entirely understood how this is accomplished. We address this by reporting on the self-association of H-NS and its hetero-association with StpA. We identify residues 1-77 of H-NS as being necessary and sufficient for high-order association. A multi-technique-based approach was used to measure the effects of salt concentration on the size distribution of H-NS and the thermal stability of H-NS and StpA dimers. The thermal stability of the StpA homodimer is significantly greater than that of H-NS(1-74). Investigation of the hetero-association of H-NS and StpA proteins suggested that the association of H-NS with StpA is more stable than the self-association of either H-NS or StpA with themselves. This provides a clear understanding of the method of oligomerization of these important proteins in effecting DNA condensation and reveals that the different associative properties of H-NS and StpA allow them to perform distinct, yet complementary roles in the bacterial nucleoid.
Collapse
Affiliation(s)
- Paul G Leonard
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK
| | | | | | | | | |
Collapse
|
34
|
Mellies JL, Larabee FJ, Zarr MA, Horback KL, Lorenzen E, Mavor D. Ler interdomain linker is essential for anti-silencing activity in enteropathogenic Escherichia coli. MICROBIOLOGY-SGM 2009; 154:3624-3638. [PMID: 19047730 DOI: 10.1099/mic.0.2008/023382-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Enteropathogenic Escherichia coli (EPEC) expresses a type III secretion system (T3SS) required for pathogenesis. Regulation of the genes encoding the T3SS is complex; two major regulators control transcription, the silencer H-NS, and the related H-NS-like protein Ler. Our laboratory is interested in understanding the molecular differences that distinguish the anti-silencer Ler from H-NS, and how Ler differentially regulates EPEC virulence genes. Here, we demonstrate that mutated Ler proteins either containing H-NS alpha-helices 1 and 2, missing from Ler, or truncated for the 11 aa C-terminal extension compared with the related H-NS protein, did not appreciably alter Ler function. In contrast, mutating the proline at position 92 of Ler, in the conserved C-terminal DNA binding motif, eliminated Ler activity. Inserting 11 H-NS-specific amino acids, 11 alanines or 6 alanines into the Ler linker severely impaired the ability of Ler to increase LEE5 transcription. To extend our analysis, we constructed six chimeric proteins containing the N terminus, linker region or C terminus of Ler in different combinations with the complementary domains of H-NS, and monitored their in vivo activities. Replacing the Ler linker domain with that of H-NS, or replacing the Ler C-terminal, DNA binding domain with that of H-NS eliminated the ability of Ler to increase transcription at the LEE5 promoter. Thus, the linker and C-terminal domains of Ler and H-NS are not functionally equivalent. Conversely, replacing the H-NS linker region with that of Ler caused increased transcription at LEE5 in a strain deleted for hns. In summary, the interdomain linker specific to Ler is necessary for anti-silencing activity in EPEC.
Collapse
Affiliation(s)
- Jay L Mellies
- Biology Department, Reed College, Portland, OR 97202, USA
| | | | | | - Katy L Horback
- Oregon Health Sciences University, Portland, OR 97202, USA
| | - Emily Lorenzen
- Biology Department, Reed College, Portland, OR 97202, USA
| | - David Mavor
- Biology Department, Reed College, Portland, OR 97202, USA
| |
Collapse
|
35
|
Whitfield CR, Wardle SJ, Haniford DB. The global bacterial regulator H-NS promotes transpososome formation and transposition in the Tn5 system. Nucleic Acids Res 2008; 37:309-21. [PMID: 19042975 PMCID: PMC2632911 DOI: 10.1093/nar/gkn935] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The histone-like nucleoid structuring protein (H-NS) is an important regulator of stress response and virulence genes in gram-negative bacteria. In addition to binding regulatory regions of genes in a structure-specific manner, H-NS also binds in a structure-specific manner to sites in the Tn10 transpososome, allowing it to act as a positive regulator of Tn10 transposition. This is the only example to date of H-NS regulating a transposition system by interacting directly with the transposition machinery. In general, transposition complexes tend to include segments of deformed DNA and given the capacity of H-NS to bind such structures, and the results from the Tn10 system, we asked if H-NS might regulate another transposition system (Tn5) by directly binding the transposition machinery. We show in the current work that H-NS does bind Tn5 transposition complexes and use hydroxyl radical footprinting to characterize the H-NS interaction with the Tn5 transpososome. We also show that H-NS can promote Tn5 transpososome formation in vitro, which correlates with the Tn5 system showing a dependence on H-NS for transposition in vivo. Taken together the results suggest that H-NS might play an important role in the regulation of many different bacterial transposition systems and thereby contribute directly to lateral gene transfer.
Collapse
Affiliation(s)
- Crystal R Whitfield
- Department of Biochemistry, University of Western Ontario, London, Ontario, Canada N6A 5C1
| | | | | |
Collapse
|
36
|
Bae SH, Liu D, Lim HM, Lee Y, Choi BS. Structure of the Nucleoid-Associated Protein Cnu Reveals Common Binding Sites for H-NS in Cnu and Hha,. Biochemistry 2008; 47:1993-2001. [DOI: 10.1021/bi701914t] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Sung-Hun Bae
- Department of Chemistry, KAIST, 373-1 Guseong-Dong Yuseong-Gu, Daejeon 305-701, Republic of Korea, and Department of Biology, School of Biological Science and Biotechnology, Chungnam National University, Daejeon, 305-764, Republic of Korea
| | - Dinan Liu
- Department of Chemistry, KAIST, 373-1 Guseong-Dong Yuseong-Gu, Daejeon 305-701, Republic of Korea, and Department of Biology, School of Biological Science and Biotechnology, Chungnam National University, Daejeon, 305-764, Republic of Korea
| | - Heon M. Lim
- Department of Chemistry, KAIST, 373-1 Guseong-Dong Yuseong-Gu, Daejeon 305-701, Republic of Korea, and Department of Biology, School of Biological Science and Biotechnology, Chungnam National University, Daejeon, 305-764, Republic of Korea
| | - Younghoon Lee
- Department of Chemistry, KAIST, 373-1 Guseong-Dong Yuseong-Gu, Daejeon 305-701, Republic of Korea, and Department of Biology, School of Biological Science and Biotechnology, Chungnam National University, Daejeon, 305-764, Republic of Korea
| | - Byong-Seok Choi
- Department of Chemistry, KAIST, 373-1 Guseong-Dong Yuseong-Gu, Daejeon 305-701, Republic of Korea, and Department of Biology, School of Biological Science and Biotechnology, Chungnam National University, Daejeon, 305-764, Republic of Korea
| |
Collapse
|
37
|
Ward CM, Wardle SJ, Singh RK, Haniford DB. The global regulator H-NS binds to two distinct classes of sites within the Tn10 transpososome to promote transposition. Mol Microbiol 2007; 64:1000-13. [PMID: 17501923 DOI: 10.1111/j.1365-2958.2007.05708.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The histone-like nucleoid structuring protein (H-NS) is a global transcriptional regulator that influences stress response and virulence pathways in Gram-negative bacteria. H-NS also promotes Tn10 transposition by binding directly to the transpososome and inducing a conformational change in the transpososome that favours intermolecular transposition events. H-NS binds preferentially to curved DNA and can bend non-curved DNA, it self-oligomerizes and can interact with other proteins. To determine what functions of H-NS are important in promoting Tn10 transposition, we have examined the ability of two mutant forms of H-NS, P116S and 1-64, to act in Tn10 transposition. We provide evidence that the initial interaction of H-NS with the transpososome is dependent on H-NS binding to a specific structure in DNA flanking the transposon end. Additional molecules of H-NS then bind within the transposon end. This latter event appears to be directed by H-NS binding to the Tn10 transposase protein, and is important in maintaining the transpososome in a conformation that promotes intermolecular transposition. The binding of H-NS to a transposase protein is a novel function for this important regulatory molecule.
Collapse
Affiliation(s)
- Chris M Ward
- Department of Biochemistry, University of Western Ontario, London, Ontario, Canada N6A 5C1
| | | | | | | |
Collapse
|
38
|
Rajkowitsch L, Schroeder R. Dissecting RNA chaperone activity. RNA (NEW YORK, N.Y.) 2007; 13:2053-60. [PMID: 17901153 PMCID: PMC2080586 DOI: 10.1261/rna.671807] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2007] [Accepted: 08/20/2007] [Indexed: 05/17/2023]
Abstract
Many RNA-binding proteins help RNAs to fold via their RNA chaperone activity. This term has been used widely without accounting for the diversity of the observed reactions, which include complex events like restructuring of misfolded catalytic RNAs, promoting the assembly of RNA-protein complexes, and mediating RNA-RNA interactions. Proteins display very diverse activities depending on the assays used to measure RNA chaperone activity. To classify proteins with this activity, we compared three exemplary proteins from E. coli, host factor Hfq, ribosomal protein S1, and the histone-like protein StpA for their abilities to promote two simple reactions, RNA annealing and strand displacement. The results of a FRET-based assay show that S1 promotes only RNA strand displacement while Hfq solely enhances RNA annealing. StpA, in contrast, is active in both reactions. To test whether the two activities can be assigned to different domains of the bipartite-structured StpA, we assayed the purified N- and C- terminal domains separately. While both domains are unable to promote RNA annealing, we can attribute the RNA strand displacement activity of StpA to the C-terminal domain. Correlating with their RNA annealing activities, only Hfq and full-length StpA display simultaneous binding of two RNAs, suggesting a matchmaker-like model for this activity. For StpA, this "RNA crowding" requires protein-protein interactions, since a dimerization-deficient StpA mutant lost the ability to bind and anneal two RNAs. These results underline the difference between the two reaction types, making it necessary to distinguish and classify proteins according to their specific RNA chaperone activities.
Collapse
|
39
|
Duong N, Osborne S, Bustamante VH, Tomljenovic AM, Puente JL, Coombes BK. Thermosensing coordinates a cis-regulatory module for transcriptional activation of the intracellular virulence system in Salmonella enterica serovar Typhimurium. J Biol Chem 2007; 282:34077-84. [PMID: 17895240 DOI: 10.1074/jbc.m707352200] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The expression of bacterial virulence genes is tightly controlled by the convergence of multiple extracellular signals. As a zoonotic pathogen, virulence gene regulation in Salmonella enterica serovar Typhimurium must be responsive to multiple cues from the general environment as well as from multiple niches within animal and human hosts. Previous work has identified combined magnesium and phosphate limitation as an environmental cue that activates genes required for intracellular virulence. One unanswered question is how virulence genes that are expressed within the host are inhibited in non-host environments that satisfy the phosphate and magnesium limitation cues. We report here that thermosensing is the major mechanism controlling incongruous activation of the intracellular virulence phenotype. Bacteria grown at 30 degrees C or lower were unable to activate the intracellular type III secretion system even under strong inducing signals such as synthetic medium, contact with macrophages, and exposure to the murine gut. Thermoregulation was fully recapitulated in a Salmonella bongori strain engineered to contain the intracellular virulence genes of S. enterica sv. Typhimurium, suggesting that orthologous thermoregulators were available. Accordingly, virulence gene repression at the nonpermissive temperature required Hha and H-NS, two nucleoid-like proteins involved in virulence gene control. The use of combined environmental cues to control transcriptional "logic gates" allows for transcriptional selectivity of virulence genes that would otherwise be superfluous if activated in the non-host environment. Thus, thermosensing by Salmonella provides integrated control of host niche-specific virulence factors.
Collapse
Affiliation(s)
- Nancy Duong
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1200 Main Street West, Hamilton, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
40
|
Navarre WW, McClelland M, Libby SJ, Fang FC. Silencing of xenogeneic DNA by H-NS--facilitation of lateral gene transfer in bacteria by a defense system that recognizes foreign DNA. Genes Dev 2007; 21:1456-71. [PMID: 17575047 DOI: 10.1101/gad.1543107] [Citation(s) in RCA: 227] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Lateral gene transfer has played a prominent role in bacterial evolution, but the mechanisms allowing bacteria to tolerate the acquisition of foreign DNA have been incompletely defined. Recent studies show that H-NS, an abundant nucleoid-associated protein in enteric bacteria and related species, can recognize and selectively silence the expression of foreign DNA with higher adenine and thymine content relative to the resident genome, a property that has made this molecule an almost universal regulator of virulence determinants in enteric bacteria. These and other recent findings challenge the ideas that curvature is the primary determinant recognized by H-NS and that activation of H-NS-silenced genes in response to environmental conditions occurs through a change in the structure of H-NS itself. Derepression of H-NS-silenced genes can occur at specific promoters by several mechanisms including competition with sequence-specific DNA-binding proteins, thereby enabling the regulated expression of foreign genes. The possibility that microorganisms maintain and exploit their characteristic genomic GC ratios for the purpose of self/non-self-discrimination is discussed.
Collapse
Affiliation(s)
- William Wiley Navarre
- Department of Laboratory Medicine, University of Washington, Seattle, Washington 98195, USA
| | | | | | | |
Collapse
|
41
|
Bouffartigues E, Buckle M, Badaut C, Travers A, Rimsky S. H-NS cooperative binding to high-affinity sites in a regulatory element results in transcriptional silencing. Nat Struct Mol Biol 2007; 14:441-8. [PMID: 17435766 DOI: 10.1038/nsmb1233] [Citation(s) in RCA: 208] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2006] [Accepted: 03/14/2007] [Indexed: 12/19/2022]
Abstract
H-NS is a protein of the bacterial nucleoid involved in DNA compaction and transcription regulation. In vivo, H-NS selectively silences specific genes of the bacterial chromosome. However, many studies have concluded that H-NS binds sequence-independently to DNA, leaving the molecular basis for its selectivity unexplained. We show that the negative regulatory element (NRE) of the supercoiling-sensitive Escherichia coliproU gene contains two identical high-affinity binding sites for H-NS. Cooperative binding of H-NS is abrogated by changes in DNA superhelical density and temperature. We further demonstrate that the high-affinity sites nucleate cooperative binding and establish a nucleoprotein structure required for silencing. Mutations in these sites result in loss of repression by H-NS. In this model, silencing at proU, and by inference at other genes directly regulated by H-NS, is tightly controlled by the cooperativity between bound H-NS molecules.
Collapse
Affiliation(s)
- Emeline Bouffartigues
- Laboratoire de Biotechnologie et Pharmacologie génétique Appliquée (LBPA), UMR 8113 CNRS, Ecole Normale Supérieure, 61 Avenue du Président Wilson, 94235 Cachan, France
| | | | | | | | | |
Collapse
|
42
|
Abstract
Tn10 is a bacterial transposon that transposes through a non-replicative mechanism. This mode of DNA transposition is widely used in bacteria and is also used by "DNA-based" transposons in eukaryotes. Tn10 has served as a paradigm for this mode of transposition and continues to provide novel insights into how steps in transposition reactions occur and how these steps are regulated. A common feature of transposition reactions is that they require the formation of a higher order protein-DNA complex called a transpososome. A major objective in the last few years has been to better understand the dynamics of transpososome assembly and progression through the course of transposition reactions. This problem is particularly interesting in the Tn10 system because two important host proteins, IHF and H-NS, have been implicated in regulating transpososome assembly and/or function. Interestingly, H-NS is an integral part of stress response pathways in bacteria, and its function is known to be sensitive to changes in environmental conditions. Consequently, H-NS may provide a means of allowing Tn10 to responed to changing environmental conditions. The current review focuses on the roles of both IHF and H-NS on Tn10 transposition.
Collapse
Affiliation(s)
- David B Haniford
- Department of Biochemistry, University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
43
|
Abstract
Two recent reports have indicated that the H-NS protein in Salmonella enterica serovar Typhimurium has a key role in selectively silencing the transcription of large numbers of horizontally acquired AT-rich genes, including those that make up its major pathogenicity islands. Broadly similar conclusions have emerged from a study of H-NS binding to DNA in Escherichia coli. How do these findings affect our view of H-NS and its ability to influence bacterial evolution?
Collapse
Affiliation(s)
- Charles J Dorman
- Department of Microbiology, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
44
|
Madrid C, Balsalobre C, García J, Juárez A. The novel Hha/YmoA family of nucleoid-associated proteins: use of structural mimicry to modulate the activity of the H-NS family of proteins. Mol Microbiol 2006; 63:7-14. [PMID: 17116239 DOI: 10.1111/j.1365-2958.2006.05497.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Hha/YmoA family of proteins is a group of conserved, low-molecular-weight proteins involved in the regulation of gene expression. Studies performed in Escherichia coli, Salmonella sp. and Yersinia sp. highlight the contribution of these proteins in regulating bacterial virulence, horizontal gene transfer and cell physiology. Genes encoding such proteins are located on chromosomes and plasmids in different genera of Gram-negative bacteria. Their mode of action is currently being analysed by studying direct binding of Hha to DNA and as a component of protein complexes with regulatory functions. Recent data on the interaction of Hha with the H-NS family of proteins and structural information suggest a physiological role for such protein complexes in many aspects of gene regulation.
Collapse
Affiliation(s)
- Cristina Madrid
- Departament de Microbiologia, Universitat de Barcelona, Avda. Diagonal 645, 08028 Barcelona, Spain
| | | | | | | |
Collapse
|
45
|
Madrid C, García J, Pons M, Juárez A. Molecular evolution of the H-NS protein: interaction with Hha-like proteins is restricted to enterobacteriaceae. J Bacteriol 2006; 189:265-8. [PMID: 17041043 PMCID: PMC1797219 DOI: 10.1128/jb.01124-06] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We show here that chromosomal hha-like genes are restricted to the Enterobacteriaceae. The H-NS N-terminal domain of members of this family includes an unaltered seven-amino-acid sequence located between helixes 1 and 2, termed the Hha signature, that contains key residues for H-NS-Hha interaction.
Collapse
Affiliation(s)
- Cristina Madrid
- Department of Microbiology, University of Barcelona, Avda. Diagonal 645, 08028 Barcelona, Spain
| | | | | | | |
Collapse
|
46
|
García J, Madrid C, Juárez A, Pons M. New roles for key residues in helices H1 and H2 of the Escherichia coli H-NS N-terminal domain: H-NS dimer stabilization and Hha binding. J Mol Biol 2006; 359:679-89. [PMID: 16650431 DOI: 10.1016/j.jmb.2006.03.059] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2006] [Revised: 03/07/2006] [Accepted: 03/29/2006] [Indexed: 10/24/2022]
Abstract
Bacterial nucleoid-associated proteins H-NS and Hha modulate gene expression in response to environmental factors. The N-terminal domain of H-NS is involved in homomeric and heteromeric protein-protein interactions. Homomeric interaction leads to the formation of dimers and higher oligomers. Heteromeric interactions with Hha-like proteins modify the modulatory properties of H-NS. In this study, we have used NMR and mutagenesis of the N-terminal domain of H-NS to identify the Hha-binding region around helices H1 and H2 of H-NS. Two conserved arginine residues, R12 and R15, located in the same side and in adjacent turns of helix H2 are shown to be involved in two different protein-protein interactions: R12 is essential for Hha binding and does not affect H-NS dimer formation, and R15 does not affect Hha binding but is essential for the proper folding of H-NS dimers. Our results demonstrate a close structural connection between Hha-H-NS interactions and H-NS dimerization that may be involved in a possible mechanism for the modulation of the H-NS regulatory activity by Hha.
Collapse
Affiliation(s)
- Jesús García
- Laboratory of Biomolecular NMR, Institut de Recerca Biomèdica-Parc Científic de Barcelona, Josep Samitier, 1-5 08028 Barcelona, Spain
| | | | | | | |
Collapse
|
47
|
Stella S, Falconi M, Lammi M, Gualerzi CO, Pon CL. Environmental control of the in vivo oligomerization of nucleoid protein H-NS. J Mol Biol 2005; 355:169-74. [PMID: 16303134 DOI: 10.1016/j.jmb.2005.10.034] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2005] [Revised: 09/26/2005] [Accepted: 10/11/2005] [Indexed: 12/27/2022]
Abstract
The nucleoid-associated transcriptional repressor H-NS forms both dimers and tetramers in vivo. Two types of two-hybrid systems, one capable of detecting protein dimerization and the other protein tetramerization, have been used to determine whether environmental changes could affect the oligomerization capacity of this protein in the cell. Increasing the temperature from 37 degrees C to 48 degrees C and changing the pH between 4.0 and 9.0 did not influence either dimerization or tetramerization, whereas lowering the temperature below 25 degrees C and increasing osmolarity were found to reduce the formation of H-NS tetramers, which are the active form of this protein, without affecting dimerization. These findings provide a rationale to explain the induction of H-NS expression during cold-shock, suggest a mechanism contributing to derepressing osmotic-shock genes transcriptionally regulated by H-NS and indicate that changes of the oligomerization properties of H-NS do not play a role in the H-NS and temperature-dependent control of virulence gene expression.
Collapse
Affiliation(s)
- Stefano Stella
- Laboratory of Genetics, Department of Biology MCA, University of Camerino, 62032 Camerino (MC), Italy
| | | | | | | | | |
Collapse
|