1
|
Cheng F, Fransson LÅ, Mani K. Interplay between glypican-1, amyloid-β and tau phosphorylation in human neural stem cells. Neuroscience 2024; 553:121-127. [PMID: 38992568 DOI: 10.1016/j.neuroscience.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/19/2024] [Accepted: 07/04/2024] [Indexed: 07/13/2024]
Abstract
INTRODUCTION Alzheimer's disease (AD) is characterized by accumulation of amyloid beta (Aβ) and hyperphosphorylated tau (Tau-P) in the brain. Aβ enhances the activity of kinases involved in the formation of Tau-P. Phosphorylation at Thr 181 determines the propagation of multiple tau phosphorylations. Aβ is derived from the amyloid precursor protein (APP). Cleavage of APP by β-secretase also initiates release of heparan sulfate (HS) from the proteoglycan glypican-1 (GPC1). OBJECTIVES In this study, we have explored possible connections between GPC1 expression, HS release, APP processing and Tau-P formation in human neural stem cells. METHODS GPC1 formation was suppressed by using CRISPR/Cas9 and increased by using a vector encoding GPC1. HS release from GPC1 was increased by growing cells in medium containing Arg and ascorbate. Effects were monitored by immunofluorescence microscopy and slot immunoblotting using antibodies/antisera recognizing Aβ, GPC1, HS released from GPC1, total Tau, and Tau phosphorylated at Thr-181, 217 or 231. The latter have been used as blood biomarkers for AD. RESULTS Suppression of GPC1 expression resulted in increased phosphorylation at Thr 181 and Thr 217. When GPC1 was overexpressed, phosphorylation at Thr 217 decreased. Stimulation of HS release from GPC1 diminished tau phosphorylation at all of the three Thr positions, while expression of GPC1 was unaffected. Simultaneous stimulation of HS release and APP processing by the cytokine TNF-α also suppressed tau phosphorylation. CONCLUSION The increased release of GPC1-derived HS may interfere with Aβ formation and/or Aβ interaction with tau.
Collapse
Affiliation(s)
- Fang Cheng
- Department of Experimental Medical Science, Division of Neuroscience, Glycobiology Group, Lund University, Biomedical Center A13, SE-221 84 Lund, Sweden
| | - Lars-Åke Fransson
- Department of Experimental Medical Science, Division of Neuroscience, Glycobiology Group, Lund University, Biomedical Center A13, SE-221 84 Lund, Sweden
| | - Katrin Mani
- Department of Experimental Medical Science, Division of Neuroscience, Glycobiology Group, Lund University, Biomedical Center A13, SE-221 84 Lund, Sweden.
| |
Collapse
|
2
|
Fu J, Lai X, Zhang C, Wei Q, Chen X, Shang H. Correlation analysis of peripheral platelet markers and disease phenotypes in Alzheimer's disease. Alzheimers Dement 2024; 20:4366-4372. [PMID: 38713702 PMCID: PMC11180931 DOI: 10.1002/alz.13841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 05/09/2024]
Abstract
INTRODUCTION Platelets serve as the primary peripheral reservoir of amyloid beta (Aβ). However, there is limited research on platelet markers in routine blood examinations, particularly with regard to the large platelet ratio (P-LCR) in Alzheimer's disease (AD). METHODS This study included 512 AD patients and 205 healthy controls (HCs). Platelet markers and apolipoprotein E (APOE) 4 status were assessed in all participants. RESULTS The study revealed that P-LCR was significantly elevated in AD patients compared to HCs. In AD patients carrying APOE4, P-LCR significantly negatively correlated with Montreal Cognitive Assessment scores. There was an observed increasing trend in the rate of change in P-LCR with disease progression. Binary logistic regression analysis indicated that P-LCR may constitute a risk factor for AD, after adjusting for age, sex, APOE4, and body mass index. DISCUSSION P-LCR is associated with disease severity in AD patients carrying APOE4. P-LCR may be a promising marker to reflect platelet activity in AD patients. HIGHLIGHTS P-LCR significantly negatively correlated with MoCA scores in AD patients with APOE4. The rate of change in P-LCR showed an increasing trend with disease progression. P-LCR may be a risk factor for AD.
Collapse
Affiliation(s)
- Jiajia Fu
- Department of NeurologyWest China HospitalSichuan UniversityChengduSichuanChina
- Rare disease centerWest China HospitalSichuan UniversityChengduSichuanChina
- Laboratory of Neurodegenerative DisordersWest China HospitalSichuan UniversityChengduSichuanChina
| | - Xiaohui Lai
- Department of NeurologyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Chongwei Zhang
- Department of Experimental MedicineWest China HospitalSichuan UniversityChengduSichuanChina
| | - Qianqian Wei
- Department of NeurologyWest China HospitalSichuan UniversityChengduSichuanChina
- Rare disease centerWest China HospitalSichuan UniversityChengduSichuanChina
- Laboratory of Neurodegenerative DisordersWest China HospitalSichuan UniversityChengduSichuanChina
| | - Xueping Chen
- Department of NeurologyWest China HospitalSichuan UniversityChengduSichuanChina
- Rare disease centerWest China HospitalSichuan UniversityChengduSichuanChina
- Laboratory of Neurodegenerative DisordersWest China HospitalSichuan UniversityChengduSichuanChina
| | - Huifang Shang
- Department of NeurologyWest China HospitalSichuan UniversityChengduSichuanChina
- Rare disease centerWest China HospitalSichuan UniversityChengduSichuanChina
- Laboratory of Neurodegenerative DisordersWest China HospitalSichuan UniversityChengduSichuanChina
| |
Collapse
|
3
|
Li Y, Liu D, Zhang X, Rimal S, Lu B, Li S. RACK1 and IRE1 participate in the translational quality control of amyloid precursor protein in Drosophila models of Alzheimer's disease. J Biol Chem 2024; 300:105719. [PMID: 38311171 PMCID: PMC10907166 DOI: 10.1016/j.jbc.2024.105719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/17/2024] [Accepted: 01/29/2024] [Indexed: 02/10/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by dysregulation of the expression and processing of the amyloid precursor protein (APP). Protein quality control systems are dedicated to remove faulty and deleterious proteins to maintain cellular protein homeostasis (proteostasis). Identidying mechanisms underlying APP protein regulation is crucial for understanding AD pathogenesis. However, the factors and associated molecular mechanisms regulating APP protein quality control remain poorly defined. In this study, we show that mutant APP with its mitochondrial-targeting sequence ablated exhibited predominant endoplasmic reticulum (ER) distribution and led to aberrant ER morphology, deficits in locomotor activity, and shortened lifespan. We searched for regulators that could counteract the toxicity caused by the ectopic expression of this mutant APP. Genetic removal of the ribosome-associated quality control (RQC) factor RACK1 resulted in reduced levels of ectopically expressed mutant APP. By contrast, gain of RACK1 function increased mutant APP level. Additionally, overexpression of the ER stress regulator (IRE1) resulted in reduced levels of ectopically expressed mutant APP. Mechanistically, the RQC related ATPase VCP/p97 and the E3 ubiquitin ligase Hrd1 were required for the reduction of mutant APP level by IRE1. These factors also regulated the expression and toxicity of ectopically expressed wild type APP, supporting their relevance to APP biology. Our results reveal functions of RACK1 and IRE1 in regulating the quality control of APP homeostasis and mitigating its pathogenic effects, with implications for the understanding and treatment of AD.
Collapse
Affiliation(s)
- Yu Li
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Dongyue Liu
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Xuejing Zhang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Suman Rimal
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Bingwei Lu
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Shuangxi Li
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China.
| |
Collapse
|
4
|
Chen J, Chen JS, Li S, Zhang F, Deng J, Zeng LH, Tan J. Amyloid Precursor Protein: A Regulatory Hub in Alzheimer's Disease. Aging Dis 2024; 15:201-225. [PMID: 37307834 PMCID: PMC10796103 DOI: 10.14336/ad.2023.0308] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/08/2023] [Indexed: 06/14/2023] Open
Abstract
Decades of research have demonstrated an incontrovertible role of amyloid-β (Aβ) in the etiology of Alzheimer's disease (AD). However, the overemphasis on the pathological impacts of Aβ may obscure the role of its metabolic precursor, amyloid precursor protein (APP), as a significant hub in the occurrence and progression of AD. The complicated enzymatic processing, ubiquitous receptor-like properties, and abundant expression of APP in the brain, as well as its close links with systemic metabolism, mitochondrial function and neuroinflammation, imply that APP plays multifaceted roles in AD. In this review, we briefly describe the evolutionarily conserved biological characteristics of APP, including its structure, functions and enzymatic processing. We also discuss the possible involvement of APP and its enzymatic metabolites in AD, both detrimental and beneficial. Finally, we describe pharmacological agents or genetic approaches with the capability to reduce APP expression or inhibit its cellular internalization, which can ameliorate multiple aspects of AD pathologies and halt disease progression. These approaches provide a basis for further drug development to combat this terrible disease.
Collapse
Affiliation(s)
- Jiang Chen
- Key Laboratory of Endemic and Ethnic Diseases, Laboratory of Molecular Biology, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China.
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China.
| | - Jun-Sheng Chen
- Key Laboratory of Endemic and Ethnic Diseases, Laboratory of Molecular Biology, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China.
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China.
| | - Song Li
- The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.
| | - Fengning Zhang
- Key Laboratory of Endemic and Ethnic Diseases, Laboratory of Molecular Biology, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China.
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China.
| | - Jie Deng
- Key Laboratory of Endemic and Ethnic Diseases, Laboratory of Molecular Biology, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China.
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China.
| | - Ling-Hui Zeng
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, China
| | - Jun Tan
- Key Laboratory of Endemic and Ethnic Diseases, Laboratory of Molecular Biology, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China.
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China.
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, China
| |
Collapse
|
5
|
Eugenín J, Eugenín-von Bernhardi L, von Bernhardi R. Age-dependent changes on fractalkine forms and their contribution to neurodegenerative diseases. Front Mol Neurosci 2023; 16:1249320. [PMID: 37818457 PMCID: PMC10561274 DOI: 10.3389/fnmol.2023.1249320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/06/2023] [Indexed: 10/12/2023] Open
Abstract
The chemokine fractalkine (FKN, CX3CL1), a member of the CX3C subfamily, contributes to neuron-glia interaction and the regulation of microglial cell activation. Fractalkine is expressed by neurons as a membrane-bound protein (mCX3CL1) that can be cleaved by extracellular proteases generating several sCX3CL1 forms. sCX3CL1, containing the chemokine domain, and mCX3CL1 have high affinity by their unique receptor (CX3CR1) which, physiologically, is only found in microglia, a resident immune cell of the CNS. The activation of CX3CR1contributes to survival and maturation of the neural network during development, glutamatergic synaptic transmission, synaptic plasticity, cognition, neuropathic pain, and inflammatory regulation in the adult brain. Indeed, the various CX3CL1 forms appear in some cases to serve an anti-inflammatory role of microglia, whereas in others, they have a pro-inflammatory role, aggravating neurological disorders. In the last decade, evidence points to the fact that sCX3CL1 and mCX3CL1 exhibit selective and differential effects on their targets. Thus, the balance in their level and activity will impact on neuron-microglia interaction. This review is focused on the description of factors determining the emergence of distinct fractalkine forms, their age-dependent changes, and how they contribute to neuroinflammation and neurodegenerative diseases. Changes in the balance among various fractalkine forms may be one of the mechanisms on which converge aging, chronic CNS inflammation, and neurodegeneration.
Collapse
Affiliation(s)
- Jaime Eugenín
- Facultad de Química y Biología, Departamento de Biología, Universidad de Santiago de Chile, USACH, Santiago, Chile
| | | | - Rommy von Bernhardi
- Facultad de Ciencias para el Cuidado de la Salud, Universidad San Sebastián, Santiago, Chile
| |
Collapse
|
6
|
Taneva SG, Todinova S, Andreeva T. Morphometric and Nanomechanical Screening of Peripheral Blood Cells with Atomic Force Microscopy for Label-Free Assessment of Alzheimer's Disease, Parkinson's Disease, and Amyotrophic Lateral Sclerosis. Int J Mol Sci 2023; 24:14296. [PMID: 37762599 PMCID: PMC10531602 DOI: 10.3390/ijms241814296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/09/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023] Open
Abstract
Neurodegenerative disorders (NDDs) are complex, multifactorial disorders with significant social and economic impact in today's society. NDDs are predicted to become the second-most common cause of death in the next few decades due to an increase in life expectancy but also to a lack of early diagnosis and mainly symptomatic treatment. Despite recent advances in diagnostic and therapeutic methods, there are yet no reliable biomarkers identifying the complex pathways contributing to these pathologies. The development of new approaches for early diagnosis and new therapies, together with the identification of non-invasive and more cost-effective diagnostic biomarkers, is one of the main trends in NDD biomedical research. Here we summarize data on peripheral biomarkers, biofluids (cerebrospinal fluid and blood plasma), and peripheral blood cells (platelets (PLTs) and red blood cells (RBCs)), reported so far for the three most common NDDs-Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). PLTs and RBCs, beyond their primary physiological functions, are increasingly recognized as valuable sources of biomarkers for NDDs. Special attention is given to the morphological and nanomechanical signatures of PLTs and RBCs as biophysical markers for the three pathologies. Modifications of the surface nanostructure and morphometric and nanomechanical signatures of PLTs and RBCs from patients with AD, PD, and ALS have been revealed by atomic force microscopy (AFM). AFM is currently experiencing rapid and widespread adoption in biomedicine and clinical medicine, in particular for early diagnostics of various medical conditions. AFM is a unique instrument without an analog, allowing the generation of three-dimensional cell images with extremely high spatial resolution at near-atomic scale, which are complemented by insights into the mechanical properties of cells and subcellular structures. Data demonstrate that AFM can distinguish between the three pathologies and the normal, healthy state. The specific PLT and RBC signatures can serve as biomarkers in combination with the currently used diagnostic tools. We highlight the strong correlation of the morphological and nanomechanical signatures between RBCs and PLTs in PD, ALS, and AD.
Collapse
Affiliation(s)
- Stefka G. Taneva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, “Acad. G. Bontchev” Str. 21, 1113 Sofia, Bulgaria; (S.T.); (T.A.)
| | - Svetla Todinova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, “Acad. G. Bontchev” Str. 21, 1113 Sofia, Bulgaria; (S.T.); (T.A.)
| | - Tonya Andreeva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, “Acad. G. Bontchev” Str. 21, 1113 Sofia, Bulgaria; (S.T.); (T.A.)
- Faculty of Life Sciences, Reutlingen University, Alteburgstraße 150, D-72762 Reutlingen, Germany
| |
Collapse
|
7
|
Mockett BG, Ryan MM. The therapeutic potential of the neuroactive peptides of soluble amyloid precursor protein-alpha in Alzheimer's disease and related neurological disorders. Semin Cell Dev Biol 2023; 139:93-101. [PMID: 35654665 DOI: 10.1016/j.semcdb.2022.05.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 12/31/2022]
Abstract
Soluble amyloid precursor protein-alpha (sAPPα) is a multi-functional brain-derived protein that has neuroprotective, neurogenic and neurotropic properties. Moreover, it is known to facilitate synaptic function and promote neural repair. These properties suggest sAPPα may be useful as a therapeutic agent for the treatment of neurological diseases characterized by synaptic failure and neuronal loss, such as occurs in Alzheimer's disease, and for neural repair following traumatic brain injury and stroke. However, sAPPα's relatively large size and the difficulty of ongoing delivery of therapeutics to the brain mean this is not currently practicable. Importantly, however, sAPPα is composed of several neuroactive domains that each possess properties that collectively are remarkably similar to those of sAPPα itself. Here, we review the molecular structure of sAPPα and identify the domains that contribute to its overall functionality. Four peptide motifs present as possible targets for therapeutic development. We review their physiochemical and neuroactive properties, both within sAPPα and as isolated peptides, and discuss their potential for future development as multipurpose therapeutic agents for the treatment of Alzheimer's disease and other disorders of neuronal function. Further, we discuss the role of heparin binding sites, found within sAPPα's structure and overlapping with the neuroactive domains, as sites for interactions with effector proteins and synaptic receptors. The potential role of the neuroactive peptides known as Cationic Arginine-Rich Peptides (CARPs) as neuroprotective motifs is also reviewed. Mechanisms of peptide delivery to the brain are briefly discussed. Finally, we summarise the potential benefits and pitfalls of using the isolated peptides, either individually or in combination, for the treatment of neurological diseases.
Collapse
Affiliation(s)
- Bruce G Mockett
- Department of Psychology, University of Otago, PO Box 56, Dunedin, New Zealand; Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Margaret M Ryan
- Department of Anatomy, School of Biomedical Sciences, University of Otago, PO Box 56, Dunedin, New Zealand; Brain Health Research Centre, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
8
|
Wang J, Cheng C, Liu Z, Lin Y, Yang L, Zhang Z, Sun X, Zhou M, Jing P, Zhong Z. Inhibition of A1 Astrocytes and Activation of A2 Astrocytes for the Treatment of Spinal Cord Injury. Neurochem Res 2023; 48:767-780. [PMID: 36418652 DOI: 10.1007/s11064-022-03820-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/20/2022] [Accepted: 11/09/2022] [Indexed: 11/25/2022]
Abstract
Spinal cord injury (SCI) is a serious injury to the central nervous system that causes significant physical and psychological trauma to the patient. SCI includes primary spinal cord injuries and secondary spinal cord injuries. The secondary injury refers to the pathological process or reaction after the primary injury. Although SCI has always been thought to be an incurable injury, the human nerve has the ability to repair itself after an injury. However, the reparability is limited because glial scar formation impedes functional recovery. There is a type of astrocyte that can differentiate into two forms of reactive astrocytes known as 'A1' and 'A2' astrocytes. A1 astrocytes release cytotoxic chemicals that cause neurons and oligodendrocytes to die and perform a harmful role. A2 astrocytes can produce neurotrophic factors and act as neuroprotectors. This article discusses ways to block A1 astrocytes while stimulating A2 astrocytes to formulate a new treatment for spinal cord injury.
Collapse
Affiliation(s)
- Jingxuan Wang
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Cai Cheng
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Zhongbing Liu
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Yan Lin
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Lingling Yang
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Zijun Zhang
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Xiaoduan Sun
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Meiling Zhou
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Pei Jing
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Zhirong Zhong
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Central Nervous System Drug Key Laboratory of Sichuan Province, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
9
|
Fu J, Lai X, Huang Y, Bao T, Yang J, Chen S, Chen X, Shang H. Meta-analysis and systematic review of peripheral platelet-associated biomarkers to explore the pathophysiology of alzheimer's disease. BMC Neurol 2023; 23:66. [PMID: 36774494 PMCID: PMC9921402 DOI: 10.1186/s12883-023-03099-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 01/30/2023] [Indexed: 02/13/2023] Open
Abstract
INTRODUCTION Platelets are the primary peripheral reserve of amyloid precursor protein (APP), providing more than 90% of blood amyloid-beta (Aβ). Some oxidative stress markers and neurotransmitter markers were also differentially expressed in the peripheral platelets of AD. Therefore, the present study explored the differences in platelet-associated biomarkers between AD and healthy controls using meta-analysis and systematic review to reveal the value of platelet in the pathogenesis and development of AD. METHODS We searched all the related studies that probed into the platelets in AD based on PubMed, Embase, and web of science databases from the establishment to November 04, 2021. RESULTS Eighty-eight studies were included in the meta-analysis, and the platelets data of 702 AD and 710 controls were analyzed. The results of standardized mean difference (SMD) showed that platelets in AD had lower levels of APP ratio (SMD: -1.89; p < 0.05), ADAM10 (SMD: -1.16; p < 0.05), Na + -K + -ATPase (SMD: -7.23; p < 0.05), but higher levels of HMW/LMW tau (SMD: 0.92; p < 0.05), adenosine A2 receptor (SMD: 4.27; p < 0.05), MAO-B (SMD: 1.73; p < 0.05), NO (SMD: 4.25; p < 0.05) and ONOO- (SMD: 7.33; p < 0.05). In the systematic review, some other platelet markers seem to be meaningful in AD patients. CONCLUSION The results of the present meta-analysis and systematic review demonstrated that the alterations of APP metabolic enzymes, oxidative stress markers, and neurotransmitter factors in platelets were similar to their changes in the central nervous system of AD, suggesting that platelet could be a good source of peripheral biomarkers and may play an important role in the pathophysiological development of AD.
Collapse
Affiliation(s)
- Jiajia Fu
- grid.412901.f0000 0004 1770 1022Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Xiaohui Lai
- grid.412901.f0000 0004 1770 1022Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Yan Huang
- grid.412901.f0000 0004 1770 1022Management Center, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Ting Bao
- grid.412901.f0000 0004 1770 1022Management Center, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Jing Yang
- grid.412901.f0000 0004 1770 1022Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Sihui Chen
- grid.412901.f0000 0004 1770 1022Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Xueping Chen
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Huifang Shang
- grid.412901.f0000 0004 1770 1022Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan China
| |
Collapse
|
10
|
More SJ, Bampidis V, Benford D, Bragard C, Halldorsson TI, Hernández‐Jerez AF, Bennekou SH, Koutsoumanis K, Lambré C, Machera K, Mullins E, Nielsen SS, Schlatter JR, Schrenk D, Turck D, Younes M, Boon P, Ferns GAA, Lindtner O, Smolders E, Wilks M, Bastaki M, de Sesmaisons‐Lecarré A, Ferreira L, Greco L, Kass GEN, Riolo F, Leblanc J. Re-evaluation of the existing health-based guidance values for copper and exposure assessment from all sources. EFSA J 2023; 21:e07728. [PMID: 36694841 PMCID: PMC9843535 DOI: 10.2903/j.efsa.2023.7728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Copper is an essential micronutrient and also a regulated product used in organic and in conventional farming pest management. Both deficiency and excessive exposure to copper can have adverse health effects. In this Scientific Opinion, the EFSA 2021 harmonised approach for establishing health-based guidance values (HBGVs) for substances that are regulated products and also nutrients was used to resolve the divergent existing HBGVs for copper. The tightly regulated homeostasis prevents toxicity manifestation in the short term, but the development of chronic copper toxicity is dependent on copper homeostasis and its tissue retention. Evidence from Wilson disease suggests that hepatic retention is indicative of potential future and possibly sudden onset of copper toxicity under conditions of continuous intake. Hence, emphasis was placed on copper retention as an early marker of potential adverse effects. The relationships between (a) chronic copper exposure and its retention in the body, particularly the liver, and (b) hepatic copper concentrations and evidence of toxicity were examined. The Scientific Committee (SC) concludes that no retention of copper is expected to occur with intake of 5 mg/day and established an Acceptable Daily Intake (ADI) of 0.07 mg/kg bw. A refined dietary exposure assessment was performed, assessing contribution from dietary and non-dietary sources. Background copper levels are a significant source of copper. The contribution of copper from its use as plant protection product (PPP), food and feed additives or fertilisers is negligible. The use of copper in fertilisers or PPPs contributes to copper accumulation in soil. Infant formula and follow-on formula are important contributors to dietary exposure of copper in infants and toddlers. Contribution from non-oral sources is negligible. Dietary exposure to total copper does not exceed the HBGV in adolescents, adults, elderly and the very elderly. Neither hepatic copper retention nor adverse effects are expected to occur from the estimated copper exposure in children due to higher nutrient requirements related to growth.
Collapse
|
11
|
Alraawi Z, Banerjee N, Mohanty S, Kumar TKS. Amyloidogenesis: What Do We Know So Far? Int J Mol Sci 2022; 23:ijms232213970. [PMID: 36430450 PMCID: PMC9695042 DOI: 10.3390/ijms232213970] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/01/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
The study of protein aggregation, and amyloidosis in particular, has gained considerable interest in recent times. Several neurodegenerative diseases, such as Alzheimer's (AD) and Parkinson's (PD) show a characteristic buildup of proteinaceous aggregates in several organs, especially the brain. Despite the enormous upsurge in research articles in this arena, it would not be incorrect to say that we still lack a crystal-clear idea surrounding these notorious aggregates. In this review, we attempt to present a holistic picture on protein aggregation and amyloids in particular. Using a chronological order of discoveries, we present the case of amyloids right from the onset of their discovery, various biophysical techniques, including analysis of the structure, the mechanisms and kinetics of the formation of amyloids. We have discussed important questions on whether aggregation and amyloidosis are restricted to a subset of specific proteins or more broadly influenced by the biophysiochemical and cellular environment. The therapeutic strategies and the significant failure rate of drugs in clinical trials pertaining to these neurodegenerative diseases have been also discussed at length. At a time when the COVID-19 pandemic has hit the globe hard, the review also discusses the plausibility of the far-reaching consequences posed by the virus, such as triggering early onset of amyloidosis. Finally, the application(s) of amyloids as useful biomaterials has also been discussed briefly in this review.
Collapse
Affiliation(s)
- Zeina Alraawi
- Department of Chemistry and Biochemistry, Fulbright College of Art and Science, University of Arkansas, Fayetteville, AR 72701, USA
| | - Nayan Banerjee
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Srujana Mohanty
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata 741246, India
| | | |
Collapse
|
12
|
Cirsiliol mitigates Aβ fibrillation and underlying membrane-leakage associated neurotoxicity: A possible implication in the treatment of neurodegenerative disease. Int J Biol Macromol 2022; 213:915-922. [PMID: 35688279 DOI: 10.1016/j.ijbiomac.2022.06.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 05/30/2022] [Accepted: 06/05/2022] [Indexed: 12/06/2022]
Abstract
Protein aggregating is known as a leading pathogenic characteristic of a wide range of neurodegenerative diseases (NDs). Preventing amyloid-β (Aβ) aggregation and uncovering the associated mechanism through the application of small bioactive compounds can be considered as a useful strategy in hampering the onset of ND. In this study, we analyzed the inhibitory effects of cirsiliol, a trihydroxy-dimethoxyflavone, against human Αβ42 fibrillization. Also, we explored the probable neurotoxicity of Αβ42 oligomers grown with cirsiliol at different molar ratios on PC-12 cells after 24 h. The results showed that significant changes in ThT and ANS fluorescence intensities, Congo red absorbance, and ellipticity changes were modulated by co-incubation of cirsiliol with Αβ42, in a concentration-dependent manner. The spectroscopy outcomes were also supported by imaging analysis, where a few Αβ42 fibrillar conformations were detected with cirsiliol. In addition, cellular assays demonstrated that co-incubated Αβ42 samples with cirsiliol regulated the cell mortality, LDH release, and caspase-3 activation relative to the PC-12 exposed to Aβ42 oligomers alone. In conclusion, it can suggest that cirsiliol can be used as a potential candidate in the development of small molecules-based drugs for the advancement of therapeutic platforms against ND.
Collapse
|
13
|
Singh SK, Balendra V, Obaid AA, Esposto J, Tikhonova MA, Gautam NK, Poeggeler B. Copper-Mediated β-Amyloid Toxicity and its Chelation Therapy in Alzheimer's Disease. Metallomics 2022; 14:6554256. [PMID: 35333348 DOI: 10.1093/mtomcs/mfac018] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 03/08/2022] [Indexed: 01/10/2023]
Abstract
The link between bio-metals, Alzheimer's disease (AD), and its associated protein, amyloid-β (Aβ) is very complex and one of the most studied aspects currently. Alzheimer's disease, a progressive neurodegenerative disease, is proposed to occurs due to the misfolding and aggregation of Aβ. Dyshomeostasis of metal ions and their interaction with Aβ has largely been implicated in AD. Copper plays a crucial role in amyloid-β toxicity and AD development potentially occurs through direct interaction with the copper-binding motif of APP and different amino acid residues of Aβ. Previous reports suggest that high levels of copper accumulation in the AD brain result in modulation of toxic Aβ peptide levels, implicating the role of copper in the pathophysiology of AD. In this review, we explore the possible mode of copper ion interaction with Aβ which accelerates the kinetics of fibril formation and promote amyloid-β mediated cell toxicity in Alzheimer's disease and the potential use of various copper chelators in the prevention of copper-mediated Aβ toxicity.
Collapse
Affiliation(s)
- Sandeep Kumar Singh
- Indian Scientific Education and Technology Foundation, Lucknow-226002, India
| | - Vyshnavy Balendra
- Saint James School of Medicine, Park Ridge, Illinois, United States of America 60068
| | - Ahmad A Obaid
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Josephine Esposto
- Department of Environmental and Life Sciences, Trent University, Peterborough, Ontario, CanadaK9L 0G2
| | - Maria A Tikhonova
- Laboratory of the Experimental Models of Neurodegenerative Processes, Scientific Research Institute of Neurosciences and Medicine; Timakov st., 4, Novosibirsk, 630117, Russia
| | - Naveen Kumar Gautam
- Department of Urology and Renal Transplantation, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
| | - Burkhard Poeggeler
- Johann-Friedrich-Blumenbach-Institute for Zoology & Anthropology, Faculty of Biology and Psychology, Georg-August-University of Göttingen, Am Türmchen 3,33332 Gütersloh, Germany
| |
Collapse
|
14
|
Eldeeb MA, Ragheb MA, Soliman MH, Fahlman RP. Regulation of Neurodegeneration-associated Protein Fragments by the N-degron Pathways. Neurotox Res 2022; 40:298-318. [PMID: 35043375 DOI: 10.1007/s12640-021-00396-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/20/2021] [Accepted: 07/20/2021] [Indexed: 12/20/2022]
Abstract
Among the most salient features that underpin the development of aging-related neurodegenerative disorders are the accumulation of protein aggregates and the decrease in cellular degradation capacity. Mammalian cells have evolved sophisticated quality control mechanisms to repair or eliminate the otherwise abnormal or misfolded proteins. Chaperones identify unstable or abnormal conformations in proteins and often help them regain their correct conformation. However, if repair is not an option, abnormal proteins are selectively degraded to prevent undesired interactions with other proteins or oligomerization into toxic multimeric complexes. The autophagic-lysosomal system and the ubiquitin-proteasome system mediate the selective and targeted degradation of abnormal or aberrant protein fragments. Despite an increasing understanding regarding the molecular responses that counteract the formation and clearance of dysfunctional protein aggregates, the role of N-degrons in these processes is poorly understood. Previous work demonstrated that the Arg-N-end rule degradation pathway (Arg-N-degron pathway) mediates the degradation of neurodegeneration-associated proteins, thereby regulating crucial signaling hubs that modulate the progression of neurodegenerative diseases. Herein, we discuss the functional interconnection between N-degron pathways and proteins associated with neurodegenerative disorders, including Alzheimer's disease, amyotrophic lateral sclerosis, and Parkinson's disease. We also highlight some future prospects related to how the molecular insights gained from these processes will help unveil novel therapeutic approaches.
Collapse
Affiliation(s)
- Mohamed A Eldeeb
- Chemistry Department (Biochemistry Division), Faculty of Science, Cairo University, Giza, Egypt. .,Neurodegenerative Diseases Group, Department of Neurology and Neurosurgery, McGill Parkinson Program, Montreal Neurological Institute, McGill University, Montreal, QC, Canada.
| | - Mohamed A Ragheb
- Chemistry Department (Biochemistry Division), Faculty of Science, Cairo University, Giza, Egypt
| | - Marwa H Soliman
- Chemistry Department (Biochemistry Division), Faculty of Science, Cairo University, Giza, Egypt
| | - Richard P Fahlman
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
15
|
Cheng F, Fransson LÅ, Mani K. Complex modulation of cytokine-induced α-synuclein aggregation by glypican-1-derived heparan sulfate in neural cells. Glycobiology 2021; 32:333-342. [PMID: 34939110 PMCID: PMC8970428 DOI: 10.1093/glycob/cwab126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 12/03/2022] Open
Abstract
In Parkinson’s disease (PD), there is accumulation of α-synuclein (SYN) aggregates in neurons, which is promoted by neuroinflammation. The cytokines TNF-α, IL-1β and IL-6 induce accumulation of degradation products of the amyloid precursor protein (APP) combined with heparan sulfate (HS) chains released from glypican-1 (Gpc-1) by NO-dependent cleavage. We have investigated the effects of the cytokines and HS on SYN aggregation and secretion in dividing human neuroblastoma (SH-SY5Y) and inducible neural progenitor cells (NPC) by using immunofluorescence microscopy, vesicle isolation and slot blotting with antibodies recognizing SYN monomers and aggregates, Gpc-1, the released HS, endosomes, and autophagosomes. In SH-SY5Y cells, the capacity to release HS was fully utilized, while NPC displayed dormant capacity. TNF-α induced increased formation of SYN aggregates and clustering of HS in SH-SY5Y cells. When the supply of NO was simultaneously increased, SYN and HS accumulation disappeared. When NO formation was inhibited, SYN and HS aggregation also disappeared, but there was now a 4-fold increase in SYN secretion. In NPC, IL-6 induced increased aggregation of SYN and stimulated HS release from Gpc-1. Both SYN and HS co-localized with autophagosome marker. When HS-deficient Gpc-1 was simultaneously generated, by using a cyanobacterial neurotoxin, accumulation diminished and there was massive secretion of SYN. We suggest that the cytokines increase APP processing, which initiates NO-dependent release of HS from Gpc-1. The APP degradation products also trigger SYN aggregation. As HS can inhibit APP processing, HS- or NO-deficiency may result in autophagosomal dysfunction and both APP degradation products and SYN are secreted.
Collapse
Affiliation(s)
- Fang Cheng
- Department of Experimental Medical Science, Division of Neuroscience, Glycobiology Group, Lund University, Biomedical Center A13, SE-221 84 Lund, Sweden
| | - Lars-Åke Fransson
- Department of Experimental Medical Science, Division of Neuroscience, Glycobiology Group, Lund University, Biomedical Center A13, SE-221 84 Lund, Sweden
| | - Katrin Mani
- Department of Experimental Medical Science, Division of Neuroscience, Glycobiology Group, Lund University, Biomedical Center A13, SE-221 84 Lund, Sweden
| |
Collapse
|
16
|
Ricci M, Cimini A, Camedda R, Chiaravalloti A, Schillaci O. Tau Biomarkers in Dementia: Positron Emission Tomography Radiopharmaceuticals in Tauopathy Assessment and Future Perspective. Int J Mol Sci 2021; 22:ijms222313002. [PMID: 34884804 PMCID: PMC8657996 DOI: 10.3390/ijms222313002] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/14/2021] [Accepted: 11/25/2021] [Indexed: 01/20/2023] Open
Abstract
Abnormal accumulation of Tau protein is closely associated with neurodegeneration and cognitive impairment and it is a biomarker of neurodegeneration in the dementia field, especially in Alzheimer’s disease (AD); therefore, it is crucial to be able to assess the Tau deposits in vivo. Beyond the fluid biomarkers of tauopathy described in this review in relationship with the brain glucose metabolic patterns, this review aims to focus on tauopathy assessment by using Tau PET imaging. In recent years, several first-generation Tau PET tracers have been developed and applied in the dementia field. Common limitations of first-generation tracers include off-target binding and subcortical white-matter uptake; therefore, several institutions are working on developing second-generation Tau tracers. The increasing knowledge about the distribution of first- and second-generation Tau PET tracers in the brain may support physicians with Tau PET data interpretation, both in the research and in the clinical field, but an updated description of differences in distribution patterns among different Tau tracers, and in different clinical conditions, has not been reported yet. We provide an overview of first- and second-generation tracers used in ongoing clinical trials, also describing the differences and the properties of novel tracers, with a special focus on the distribution patterns of different Tau tracers. We also describe the distribution patterns of Tau tracers in AD, in atypical AD, and further neurodegenerative diseases in the dementia field.
Collapse
Affiliation(s)
- Maria Ricci
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (A.C.); (R.C.); (A.C.); (O.S.)
- Correspondence:
| | - Andrea Cimini
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (A.C.); (R.C.); (A.C.); (O.S.)
| | - Riccardo Camedda
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (A.C.); (R.C.); (A.C.); (O.S.)
| | - Agostino Chiaravalloti
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (A.C.); (R.C.); (A.C.); (O.S.)
- Nuclear Medicine Section, IRCCS Neuromed, 86077 Pozzilli, Italy
| | - Orazio Schillaci
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (A.C.); (R.C.); (A.C.); (O.S.)
- Nuclear Medicine Section, IRCCS Neuromed, 86077 Pozzilli, Italy
| |
Collapse
|
17
|
LaRocca TJ, Cavalier AN, Roberts CM, Lemieux MR, Ramesh P, Garcia MA, Link CD. Amyloid beta acts synergistically as a pro-inflammatory cytokine. Neurobiol Dis 2021; 159:105493. [PMID: 34464705 PMCID: PMC8502211 DOI: 10.1016/j.nbd.2021.105493] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/08/2021] [Accepted: 08/26/2021] [Indexed: 12/12/2022] Open
Abstract
The amyloid beta (Aβ) peptide is believed to play a central role in Alzheimer's disease (AD), the most common age-related neurodegenerative disorder. However, the natural, evolutionarily selected functions of Aβ are incompletely understood. Here, we report that nanomolar concentrations of Aβ act synergistically with known cytokines to promote pro-inflammatory activation in primary human astrocytes (a cell type increasingly implicated in brain aging and AD). Using transcriptomics (RNA-seq), we show that Aβ can directly substitute for the complement component C1q in a cytokine cocktail previously shown to induce astrocyte immune activation. Furthermore, we show that astrocytes synergistically activated by Aβ have a transcriptional signature similar to neurotoxic "A1" astrocytes known to accumulate with age and in AD. Interestingly, we find that this biological action of Aβ at low concentrations is distinct from the transcriptome changes induced by the high/supraphysiological doses of Aβ often used in in vitro studies. Collectively, our results suggest an important, cytokine-like function for Aβ and a novel mechanism by which it may directly contribute to the neuroinflammation associated with brain aging and AD.
Collapse
Affiliation(s)
- Thomas J LaRocca
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States of America; Department of Health and Exercise Science, Center for Healthy Aging, Colorado State University (Current), Fort Collins, CO, United States of America.
| | - Alyssa N Cavalier
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States of America; Department of Health and Exercise Science, Center for Healthy Aging, Colorado State University (Current), Fort Collins, CO, United States of America
| | - Christine M Roberts
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States of America
| | - Maddie R Lemieux
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States of America
| | - Pooja Ramesh
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States of America
| | - Micklaus A Garcia
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States of America
| | - Christopher D Link
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States of America.
| |
Collapse
|
18
|
Liu T, Zhang T, Nicolas M, Boussicault L, Rice H, Soldano A, Claeys A, Petrova I, Fradkin L, De Strooper B, Potier MC, Hassan BA. The amyloid precursor protein is a conserved Wnt receptor. eLife 2021; 10:69199. [PMID: 34515635 PMCID: PMC8437438 DOI: 10.7554/elife.69199] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 09/01/2021] [Indexed: 12/31/2022] Open
Abstract
The Amyloid Precursor Protein (APP) and its homologues are transmembrane proteins required for various aspects of neuronal development and activity, whose molecular function is unknown. Specifically, it is unclear whether APP acts as a receptor, and if so what its ligand(s) may be. We show that APP binds the Wnt ligands Wnt3a and Wnt5a and that this binding regulates APP protein levels. Wnt3a binding promotes full-length APP (flAPP) recycling and stability. In contrast, Wnt5a promotes APP targeting to lysosomal compartments and reduces flAPP levels. A conserved Cysteine-Rich Domain (CRD) in the extracellular portion of APP is required for Wnt binding, and deletion of the CRD abrogates the effects of Wnts on flAPP levels and trafficking. Finally, loss of APP results in increased axonal and reduced dendritic growth of mouse embryonic primary cortical neurons. This phenotype can be cell-autonomously rescued by full length, but not CRD-deleted, APP and regulated by Wnt ligands in a CRD-dependent manner.
Collapse
Affiliation(s)
- Tengyuan Liu
- Paris Brain Institute - Institut du Cerveau, Sorbonne Université, Inserm, CNRS, Hôpital Pitié-Salpêtrière, Paris, France.,Doctoral School of Biomedical Sciences, Leuven, Belgium
| | - Tingting Zhang
- Paris Brain Institute - Institut du Cerveau, Sorbonne Université, Inserm, CNRS, Hôpital Pitié-Salpêtrière, Paris, France.,Doctoral School of Biomedical Sciences, Leuven, Belgium
| | - Maya Nicolas
- Doctoral School of Biomedical Sciences, Leuven, Belgium.,Center for Brain and Disease, Leuven, Belgium.,Center for Human Genetics, University of Leuven School of Medicine, Leuven, Belgium
| | - Lydie Boussicault
- Paris Brain Institute - Institut du Cerveau, Sorbonne Université, Inserm, CNRS, Hôpital Pitié-Salpêtrière, Paris, France
| | - Heather Rice
- Center for Brain and Disease, Leuven, Belgium.,Center for Human Genetics, University of Leuven School of Medicine, Leuven, Belgium
| | - Alessia Soldano
- Center for Brain and Disease, Leuven, Belgium.,Center for Human Genetics, University of Leuven School of Medicine, Leuven, Belgium
| | - Annelies Claeys
- Center for Brain and Disease, Leuven, Belgium.,Center for Human Genetics, University of Leuven School of Medicine, Leuven, Belgium
| | - Iveta Petrova
- Laboratory of Developmental Neurobiology, Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Lee Fradkin
- Laboratory of Developmental Neurobiology, Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Bart De Strooper
- Center for Brain and Disease, Leuven, Belgium.,UK Dementia Research institute at University College London, London, United Kingdom
| | - Marie-Claude Potier
- Paris Brain Institute - Institut du Cerveau, Sorbonne Université, Inserm, CNRS, Hôpital Pitié-Salpêtrière, Paris, France
| | - Bassem A Hassan
- Paris Brain Institute - Institut du Cerveau, Sorbonne Université, Inserm, CNRS, Hôpital Pitié-Salpêtrière, Paris, France
| |
Collapse
|
19
|
The curvature of gold nanoparticles influences the exposure of amyloid-β and modulates its aggregation process. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 128:112269. [PMID: 34474828 DOI: 10.1016/j.msec.2021.112269] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 06/09/2021] [Accepted: 06/16/2021] [Indexed: 11/21/2022]
Abstract
Gold nanoparticles (GNP) are tunable nanomaterials that can be used to develop rational therapeutic inhibitors against the formation of pathological aggregates of proteins. In the case of the pathological aggregation of the amyloid-β protein (Aβ), the shape of the GNP can slow down or accelerate its aggregation kinetics. However, there is a lack of elementary knowledge about how the curvature of GNP alters the interaction with the Aβ peptide and how this interaction modifies key molecular steps of fibril formation. In this study, we analysed the effect of flat gold nanoprisms (GNPr) and curved gold nanospheres (GNS) on in vitro Aβ42 fibril formation kinetics by using the thioflavin-based kinetic assay and global fitting analysis, with several models of aggregation. Whereas GNPr accelerate the aggregation process and maintain the molecular mechanism of aggregation, GNS slow down this process and modify the molecular mechanism to one of fragmentation/secondary nucleation, with respect to controls. These results can be explained by a differential interaction between the Aβ peptide and GNP observed by Raman spectroscopy. While flat GNPr expose key hydrophobic residues involved in the Aβ peptide aggregation, curved GNS hide these residues from the solvent. Thus, this study provides mechanistic insights to improve the rational design of GNP nanomaterials for biomedical applications in the field of amyloid-related aggregation.
Collapse
|
20
|
Zambrano P, Suwalsky M, Jemiola-Rzeminska M, Gallardo-Nelson MJ, Strzalka K, Muñoz-Torrero D. Protective Role of a Donepezil-Huprine Hybrid against the β-Amyloid (1-42) Effect on Human Erythrocytes. Int J Mol Sci 2021; 22:ijms22179563. [PMID: 34502472 PMCID: PMC8431064 DOI: 10.3390/ijms22179563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/27/2021] [Accepted: 08/31/2021] [Indexed: 12/17/2022] Open
Abstract
Aβ(1-42) peptide is a neurotoxic agent strongly associated with the etiology of Alzheimer's disease (AD). Current treatments are still of very low effectiveness, and deaths from AD are increasing worldwide. Huprine-derived molecules have a high affinity towards the enzyme acetylcholinesterase (AChE), act as potent Aβ(1-42) peptide aggregation inhibitors, and improve the behavior of experimental animals. AVCRI104P4 is a multitarget donepezil-huprine hybrid that improves short-term memory in a mouse model of AD and exerts protective effects in transgenic Caenorhabditis elegans that express Aβ(1-42) peptide. At present, there is no information about the effects of this compound on human erythrocytes. Thus, we considered it important to study its effects on the cell membrane and erythrocyte models, and to examine its protective effect against the toxic insult induced by Aβ(1-42) peptide in this cell and models. This research was developed using X-ray diffraction and differential scanning calorimetry (DSC) on molecular models of the human erythrocyte membrane constituted by lipid bilayers built of dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylethanolamine (DMPE). They correspond to phospholipids representative of those present in the external and internal monolayers, respectively, of most plasma and neuronal membranes. The effect of AVCRI104P4 on human erythrocyte morphology was studied by scanning electron microscopy (SEM). The experimental results showed a protective effect of AVCRI104P4 against the toxicity induced by Aβ(1-42) peptide in human erythrocytes and molecular models.
Collapse
Affiliation(s)
- Pablo Zambrano
- Facultad de Ciencias Químicas, Universidad de Concepción, Concepción 4030000, Chile
- Correspondence: ; Tel.: +49-89-8578-2374
| | - Mario Suwalsky
- Facultad de Medicina, Universidad Católica de la Santísima Concepción, Concepción 4030000, Chile;
| | - Malgorzata Jemiola-Rzeminska
- Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Kraków, Poland; (M.J.-R.); (K.S.)
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | | | - Kazimierz Strzalka
- Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Kraków, Poland; (M.J.-R.); (K.S.)
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Diego Muñoz-Torrero
- Laboratory of Medicinal Chemistry (CSIC Associated Unit), Faculty of Pharmacy and Food, Sciences, University of Barcelona (UB), E-08028 Barcelona, Spain;
- Institute of Biomedicine (IBUB), University of Barcelona (UB), E-08028 Barcelona, Spain
| |
Collapse
|
21
|
Chiu YJ, Lin CH, Lee MC, Hsieh-Li HM, Chen CM, Wu YR, Chang KH, Lee-Chen GJ. Formulated Chinese medicine Shaoyao Gancao Tang reduces NLRP1 and NLRP3 in Alzheimer's disease cell and mouse models for neuroprotection and cognitive improvement. Aging (Albany NY) 2021; 13:15620-15637. [PMID: 34106880 PMCID: PMC8221334 DOI: 10.18632/aging.203125] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 03/23/2021] [Indexed: 12/18/2022]
Abstract
Amyloid β (Aβ) plays a major role in the neurodegeneration of Alzheimer’s disease (AD). The accumulation of misfolded Aβ causes oxidative stress and inflammatory damage leading to apoptotic cell death. Traditional Chinese herbal medicine (CHM) has been widely used in treating neurodegenerative diseases by reducing oxidative stress and neuroinflammation. We examined the neuroprotective effect of formulated CHM Shaoyao Gancao Tang (SG-Tang, made of Paeonia lactiflora and Glycyrrhiza uralensis at 1:1 ratio) in AD cell and mouse models. In Aβ-GFP SH-SY5Y cells, SG-Tang reduced Aβ aggregation and reactive oxygen species (ROS) production, as well as improved neurite outgrowth. When the Aβ-GFP-expressing cells were stimulated with conditioned medium from interferon (IFN)-γ-activated HMC3 microglia, SG-Tang suppressed expressions of inducible nitric oxide synthase (iNOS), NLR family pyrin domain containing 1 (NLRP1) and 3 (NLRP3), tumor necrosis factor (TNF)-α, interleukin (IL)-1β and IL-6, attenuated caspase-1 activity and ROS production, and promoted neurite outgrowth. In streptozocin-induced hyperglycemic APP/PS1/Tau triple transgenic (3×Tg-AD) mice, SG-Tang also reduced expressions of NLRP1, NLRP3, Aβ and Tau in hippocampus and cortex, as well as improved working and spatial memories in Y maze and Morris water maze. Collectively, our results demonstrate the potential of SG-Tang in treating AD by moderating neuroinflammation.
Collapse
Affiliation(s)
- Ya-Jen Chiu
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Chih-Hsin Lin
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 33302, Taiwan
| | - Ming-Chung Lee
- Sun Ten Pharmaceutical Co. Ltd., New Taipei City 23143, Taiwan
| | - Hsiu Mei Hsieh-Li
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Chiung-Mei Chen
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 33302, Taiwan
| | - Yih-Ru Wu
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 33302, Taiwan
| | - Kuo-Hsuan Chang
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 33302, Taiwan
| | - Guey-Jen Lee-Chen
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| |
Collapse
|
22
|
Molecular Characteristics of Amyloid Precursor Protein (APP) and Its Effects in Cancer. Int J Mol Sci 2021; 22:ijms22094999. [PMID: 34066808 PMCID: PMC8125876 DOI: 10.3390/ijms22094999] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/02/2021] [Accepted: 05/06/2021] [Indexed: 12/16/2022] Open
Abstract
Amyloid precursor protein (APP) is a type 1 transmembrane glycoprotein, and its homologs amyloid precursor-like protein 1 (APLP1) and amyloid precursor-like protein 2 (APLP2) are highly conserved in mammals. APP and APLP are known to be intimately involved in the pathogenesis and progression of Alzheimer's disease and to play important roles in neuronal homeostasis and development and neural transmission. APP and APLP are also expressed in non-neuronal tissues and are overexpressed in cancer cells. Furthermore, research indicates they are involved in several cancers. In this review, we examine the biological characteristics of APP-related family members and their roles in cancer.
Collapse
|
23
|
Oyarzún MP, Tapia-Arellano A, Cabrera P, Jara-Guajardo P, Kogan MJ. Plasmonic Nanoparticles as Optical Sensing Probes for the Detection of Alzheimer's Disease. SENSORS (BASEL, SWITZERLAND) 2021; 21:2067. [PMID: 33809416 PMCID: PMC7998661 DOI: 10.3390/s21062067] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD), considered a common type of dementia, is mainly characterized by a progressive loss of memory and cognitive functions. Although its cause is multifactorial, it has been associated with the accumulation of toxic aggregates of the amyloid-β peptide (Aβ) and neurofibrillary tangles (NFTs) of tau protein. At present, the development of highly sensitive, high cost-effective, and non-invasive diagnostic tools for AD remains a challenge. In the last decades, nanomaterials have emerged as an interesting and useful tool in nanomedicine for diagnostics and therapy. In particular, plasmonic nanoparticles are well-known to display unique optical properties derived from their localized surface plasmon resonance (LSPR), allowing their use as transducers in various sensing configurations and enhancing detection sensitivity. Herein, this review focuses on current advances in in vitro sensing techniques such as Surface-enhanced Raman scattering (SERS), Surface-enhanced fluorescence (SEF), colorimetric, and LSPR using plasmonic nanoparticles for improving the sensitivity in the detection of main biomarkers related to AD in body fluids. Additionally, we refer to the use of plasmonic nanoparticles for in vivo imaging studies in AD.
Collapse
Affiliation(s)
- María Paz Oyarzún
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Dr. Carlos Lorca Tobar 964, Independencia, 8380000 Santiago, Chile; (M.P.O.); (A.T.-A.); (P.C.); (P.J.-G.)
- Advanced Center for Chronic Diseases (ACCDIS), Sergio Livingstone #1007, Independencia, 8380492 Santiago, Chile
| | - Andreas Tapia-Arellano
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Dr. Carlos Lorca Tobar 964, Independencia, 8380000 Santiago, Chile; (M.P.O.); (A.T.-A.); (P.C.); (P.J.-G.)
- Advanced Center for Chronic Diseases (ACCDIS), Sergio Livingstone #1007, Independencia, 8380492 Santiago, Chile
| | - Pablo Cabrera
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Dr. Carlos Lorca Tobar 964, Independencia, 8380000 Santiago, Chile; (M.P.O.); (A.T.-A.); (P.C.); (P.J.-G.)
- Advanced Center for Chronic Diseases (ACCDIS), Sergio Livingstone #1007, Independencia, 8380492 Santiago, Chile
| | - Pedro Jara-Guajardo
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Dr. Carlos Lorca Tobar 964, Independencia, 8380000 Santiago, Chile; (M.P.O.); (A.T.-A.); (P.C.); (P.J.-G.)
- Advanced Center for Chronic Diseases (ACCDIS), Sergio Livingstone #1007, Independencia, 8380492 Santiago, Chile
| | - Marcelo J. Kogan
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Dr. Carlos Lorca Tobar 964, Independencia, 8380000 Santiago, Chile; (M.P.O.); (A.T.-A.); (P.C.); (P.J.-G.)
- Advanced Center for Chronic Diseases (ACCDIS), Sergio Livingstone #1007, Independencia, 8380492 Santiago, Chile
| |
Collapse
|
24
|
da Rocha JF, Bastos L, Domingues SC, Bento AR, Konietzko U, da Cruz E Silva OAB, Vieira SI. APP Binds to the EGFR Ligands HB-EGF and EGF, Acting Synergistically with EGF to Promote ERK Signaling and Neuritogenesis. Mol Neurobiol 2021; 58:668-688. [PMID: 33009641 DOI: 10.1007/s12035-020-02139-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/17/2020] [Indexed: 12/31/2022]
Abstract
The amyloid precursor protein (APP) is a transmembrane glycoprotein central to Alzheimer's disease (AD) with functions in brain development and plasticity, including in neurogenesis and neurite outgrowth. Epidermal growth factor (EGF) and heparin-binding EGF-like growth factor (HB-EGF) are well-described neurotrophic and neuromodulator EGFR ligands, both implicated in neurological disorders, including AD. Pro-HB-EGF arose as a putative novel APP interactor in a human brain cDNA library yeast two-hybrid screen. Based on their structural and functional similarities, we first aimed to verify if APP could bind to (HB-)EGF proforms. Here, we show that APP interacts with these two EGFR ligands, and further characterized the effects of APP-EGF interaction in ERK activation and neuritogenesis. Yeast co-transformation and co-immunoprecipitation assays confirmed APP interaction with HB-EGF. Co-immunoprecipitation also revealed that APP binds to cellular pro-EGF. Overexpression of HB-EGF in HeLa cells, or exposure of SH-SY5Y cells to EGF, both resulted in increased APP protein levels. EGF and APP were observed to synergistically activate the ERK pathway, crucial for neuronal differentiation. Immunofluorescence analysis of cellular neuritogenesis in APP overexpression and EGF exposure conditions confirmed a synergistic effect in promoting the number and the mean length of neurite-like processes. Synergistic ERK activation and neuritogenic effects were completely blocked by the EGFR inhibitor PD 168393, implying APP/EGF-induced activation of EGFR as part of the mechanism. This work shows novel APP protein interactors and provides a major insight into the APP/EGF-driven mechanisms underlying neurite outgrowth and neuronal differentiation, with potential relevance for AD and for adult neuroregeneration.
Collapse
Affiliation(s)
- Joana F da Rocha
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Agra do Crasto, 3810-193, Aveiro, Portugal
| | - Luísa Bastos
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Agra do Crasto, 3810-193, Aveiro, Portugal
- Roche Sistemas de Diagnósticos, Lda, 2720-413, Amadora, Portugal
| | - Sara C Domingues
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Agra do Crasto, 3810-193, Aveiro, Portugal
| | - Ana R Bento
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Agra do Crasto, 3810-193, Aveiro, Portugal
| | - Uwe Konietzko
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
| | - Odete A B da Cruz E Silva
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Agra do Crasto, 3810-193, Aveiro, Portugal
| | - Sandra I Vieira
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Agra do Crasto, 3810-193, Aveiro, Portugal.
| |
Collapse
|
25
|
Cheng F, Fransson LÅ, Mani K. Reversal of apolipoprotein E4-dependent or chemical-induced accumulation of APP degradation products by vitamin C-induced release of heparan sulfate from glypican-1. Glycobiology 2021; 31:800-811. [PMID: 33403386 DOI: 10.1093/glycob/cwaa120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/17/2020] [Accepted: 12/17/2020] [Indexed: 12/20/2022] Open
Abstract
The Apolipoprotein E4 (ApoE4) genotype is the most influential risk factor for sporadic Alzheimer's disease. It appears to be associated with retarded endosome-to-autophagosome trafficking. The amyloid precursor protein (APP) and the heparan sulfate (HS)-containing proteoglycan glypican-1 (Gpc-1) are both processed in endosomes, and mutually regulated by the APP degradation products and the released HS. We have investigated APP and Gpc-1 processing in ApoE3 and ApoE4 expressing human fibroblasts, in human neural stem cells (NSC) exposed to the cholesterol transport inhibitor U18666A and in induced neurons obtained by reprogramming of ApoE fibroblasts (ApoE-iN). We have used immunofluorescence microscopy, flow cytometry, and SDS-PAGE-western blotting with antibodies recognizing the released HS, APP, amyloid ᵝ(Aᵝ), late endosomes (Rab7), autophagosomes (LC3) and neurons (Tuj1). We found that the capacity to release HS was not fully utilized in ApoE4 expressing fibroblasts and that HS-Aᵝ complexes accumulated in the nuclei. In ApoE3 fibroblasts, the ᵝ-cleaved APP C-terminal fragment (ᵝ-CTF) and Aᵝ were primarily present in late endosomes and autophagosomes. When HS release from Gpc-1 was enhanced by ascorbate in ApoE4/4 fibroblasts, there was efficient transfer of Aᵝ and HS from the nuclei to autophagosomes. In U18666A-treated NSC as well as in ApoE4/4-iN we repeatedly found accumulation of APP degradation products (ᵝ-CTF/Aᵝ). This was reversed by subsequent exposure to ascorbate or dehydroascorbic acid.
Collapse
Affiliation(s)
- Fang Cheng
- Department of Experimental Medical Science, Division of Neuroscience, Glycobiology Group, Lund University, Biomedical Center A13, SE-221 84 Lund, Sweden
| | - Lars-Åke Fransson
- Department of Experimental Medical Science, Division of Neuroscience, Glycobiology Group, Lund University, Biomedical Center A13, SE-221 84 Lund, Sweden
| | - Katrin Mani
- Department of Experimental Medical Science, Division of Neuroscience, Glycobiology Group, Lund University, Biomedical Center A13, SE-221 84 Lund, Sweden
| |
Collapse
|
26
|
Abstract
Mounting evidence has identified that impaired amyloid-β (Aβ) clearance might contribute to Alzheimer's disease (AD) pathology. The lysosome-autophagy network plays an important role in protein homeostasis and cell health by removing abnormal protein aggregates via intracellular degradation. Therefore, stimulation of cellular degradative machinery for efficient removal of Aβ has emerged as a growing field in AD research. However, mechanisms controlling such pathways and drugs to promote such mechanisms are poorly understood. Aspirin is a widely used drug throughout the world and recent studies have identified a new function of this drug. At low doses, aspirin stimulates lysosomal biogenesis and autophagy to clear amyloid plaques in an animal model of AD. This review delineates such functions of aspirin and analyzes underlying mechanisms that involve peroxisome proliferator-activated receptor alpha (PPARα)-mediated transcription of transcription factor EB (TFEB), the master regulator of lysosomal biogenesis.
Collapse
Affiliation(s)
- Sujyoti Chandra
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Avik Roy
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA.,Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA
| | - Dhruv R Patel
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Kalipada Pahan
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA.,Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA
| |
Collapse
|
27
|
Bhopatkar AA, Uversky VN, Rangachari V. Disorder and cysteines in proteins: A design for orchestration of conformational see-saw and modulatory functions. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 174:331-373. [PMID: 32828470 DOI: 10.1016/bs.pmbts.2020.06.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Being responsible for more than 90% of cellular functions, protein molecules are workhorses in all the life forms. In order to cater for such a high demand, proteins have evolved to adopt diverse structures that allow them to perform myriad of functions. Beginning with the genetically directed amino acid sequence, the classical understanding of protein function involves adoption of hierarchically complex yet ordered structures. However, advances made over the last two decades have revealed that inasmuch as 50% of eukaryotic proteome exists as partially or fully disordered structures. Significance of such intrinsically disordered proteins (IDPs) is further realized from their ability to exhibit multifunctionality, a feature attributable to their conformational plasticity. Among the coded amino acids, cysteines are considered to be "order-promoting" due to their ability to form inter- or intramolecular disulfide bonds, which confer robust thermal stability to the protein structure in oxidizing conditions. The co-existence of order-promoting cysteines with disorder-promoting sequences seems counter-intuitive yet many proteins have evolved to contain such sequences. In this chapter, we review some of the known cysteine-containing protein domains categorized based on the number of cysteines they possess. We show that many protein domains contain disordered sequences interspersed with cysteines. We show that a positive correlation exists between the degree of cysteines and disorder within the sequences that flank them. Furthermore, based on the computational platform, IUPred2A, we show that cysteine-rich sequences display significant disorder in the reduced but not the oxidized form, increasing the potential for such sequences to function in a redox-sensitive manner. Overall, this chapter provides insights into an exquisite evolutionary design wherein disordered sequences with interspersed cysteines enable potential modulatory protein functions under stress and environmental conditions, which thus far remained largely inconspicuous.
Collapse
Affiliation(s)
- Anukool A Bhopatkar
- Department of Chemistry and Biochemistry, School of Mathematics and Natural Sciences, University of Southern Mississippi, Hattiesburg, MS, United States
| | - Vladimir N Uversky
- Department of Molecular Medicine and Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States; Laboratory of New Methods in Biology, Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, Moscow Region, Russia
| | - Vijayaraghavan Rangachari
- Department of Chemistry and Biochemistry, School of Mathematics and Natural Sciences, University of Southern Mississippi, Hattiesburg, MS, United States; Center of Molecular and Cellular Biosciences, University of Southern Mississippi, Hattiesburg, MS, United States.
| |
Collapse
|
28
|
Hidese S, Hattori K, Sasayama D, Tsumagari T, Miyakawa T, Matsumura R, Yokota Y, Ishida I, Matsuo J, Yoshida S, Ota M, Kunugi H. Cerebrospinal fluid neuroplasticity-associated protein levels in patients with psychiatric disorders: a multiplex immunoassay study. Transl Psychiatry 2020; 10:161. [PMID: 32439851 PMCID: PMC7242469 DOI: 10.1038/s41398-020-0843-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 04/22/2020] [Accepted: 04/28/2020] [Indexed: 12/14/2022] Open
Abstract
To examine the role of neuroplasticity in the pathology of psychiatric disorders, we measured cerebrospinal fluid (CSF) neuroplasticity-associated protein levels. Participants were 94 patients with schizophrenia, 68 with bipolar disorder (BD), 104 with major depressive disorder (MDD), and 118 healthy controls, matched for age, sex, and ethnicity (Japanese). A multiplex immunoassay (22-plex assay) was performed to measure CSF neuroplasticity-associated protein levels. Among 22 proteins, 11 were successfully measured in the assay. CSF amyloid precursor protein (APP) and glial cell-derived neurotrophic factor (GDNF) levels were significantly lower in patients with schizophrenia, and CSF APP and neural cell adhesion molecule (NCAM)-1 levels were significantly lower in patients with BD, than in healthy controls (all p < 0.05). Positive and Negative Syndrome Scale total, positive, and general scores were significantly and positively correlated with CSF hepatocyte growth factor (HGF) (p < 0.01) and S100 calcium-binding protein B (S100B) (p < 0.05) levels in patients with schizophrenia. Young mania-rating scale score was significantly and positively correlated with CSF S100B level in patients with BD (p < 0.05). Hamilton Depression Rating Scale, core, sleep, activity, somatic anxiety, and delusion subscale scores were significantly and positively correlated with CSF HGF level, while sleep subscale score was positively correlated with CSF S100B and VEGF receptor 2 levels in patients with MDD (p < 0.05). Our results suggest that CSF APP, GDNF, and NCAM-1 levels are associated with psychiatric disorders, and that CSF HGF, S100B, and VEGF receptor 2 levels are related to psychiatric symptoms.
Collapse
Affiliation(s)
- Shinsuke Hidese
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1, Ogawa-Higashi, Kodaira, Tokyo, 187-8502, Japan.
| | - Kotaro Hattori
- grid.419280.60000 0004 1763 8916Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1, Ogawa-Higashi, Kodaira, Tokyo 187-8502 Japan ,grid.419280.60000 0004 1763 8916Medical Genome Center, National Center of Neurology and Psychiatry, 4-1-1, Ogawa-Higashi, Kodaira, Tokyo 187-8551 Japan
| | - Daimei Sasayama
- grid.419280.60000 0004 1763 8916Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1, Ogawa-Higashi, Kodaira, Tokyo 187-8502 Japan
| | - Takuya Tsumagari
- grid.419280.60000 0004 1763 8916Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1, Ogawa-Higashi, Kodaira, Tokyo 187-8502 Japan ,grid.419280.60000 0004 1763 8916Medical Genome Center, National Center of Neurology and Psychiatry, 4-1-1, Ogawa-Higashi, Kodaira, Tokyo 187-8551 Japan
| | - Tomoko Miyakawa
- grid.419280.60000 0004 1763 8916Medical Genome Center, National Center of Neurology and Psychiatry, 4-1-1, Ogawa-Higashi, Kodaira, Tokyo 187-8551 Japan
| | - Ryo Matsumura
- grid.419280.60000 0004 1763 8916Medical Genome Center, National Center of Neurology and Psychiatry, 4-1-1, Ogawa-Higashi, Kodaira, Tokyo 187-8551 Japan
| | - Yuuki Yokota
- grid.419280.60000 0004 1763 8916Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1, Ogawa-Higashi, Kodaira, Tokyo 187-8502 Japan ,grid.419280.60000 0004 1763 8916Medical Genome Center, National Center of Neurology and Psychiatry, 4-1-1, Ogawa-Higashi, Kodaira, Tokyo 187-8551 Japan
| | - Ikki Ishida
- grid.419280.60000 0004 1763 8916Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1, Ogawa-Higashi, Kodaira, Tokyo 187-8502 Japan
| | - Junko Matsuo
- grid.419280.60000 0004 1763 8916Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1, Ogawa-Higashi, Kodaira, Tokyo 187-8502 Japan
| | - Sumiko Yoshida
- grid.419280.60000 0004 1763 8916Medical Genome Center, National Center of Neurology and Psychiatry, 4-1-1, Ogawa-Higashi, Kodaira, Tokyo 187-8551 Japan ,grid.419280.60000 0004 1763 8916Department of Psychiatry, National Center Hospital, National Center of Neurology and Psychiatry, 4-1-1, Ogawa-Higashi, Kodaira, Tokyo 187-8551 Japan
| | - Miho Ota
- grid.419280.60000 0004 1763 8916Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1, Ogawa-Higashi, Kodaira, Tokyo 187-8502 Japan
| | - Hiroshi Kunugi
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1, Ogawa-Higashi, Kodaira, Tokyo, 187-8502, Japan.
| |
Collapse
|
29
|
Assaf N, El-Shamarka ME, Salem NA, Khadrawy YA, El Sayed NS. Neuroprotective effect of PPAR alpha and gamma agonists in a mouse model of amyloidogenesis through modulation of the Wnt/beta catenin pathway via targeting alpha- and beta-secretases. Prog Neuropsychopharmacol Biol Psychiatry 2020; 97:109793. [PMID: 31669201 DOI: 10.1016/j.pnpbp.2019.109793] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 10/11/2019] [Accepted: 10/17/2019] [Indexed: 12/11/2022]
Abstract
The present study was conducted to evaluate the efficacy of fenofibrate and pioglitazone in a mouse model of amyloidogenesis induced by amyloidβ (βA) peptide. Mice were injected intracerebroventricularly with βA1-40 (400 pmol/mouse) once, followed by treatment with fenofibrate (300 mg/kg), pioglitazone (30 mg/kg),or both. After 21 days of daily treatment, memory impairment and cognitive function were evaluated by Morris water maze (MWM), Y-maze and object recognition tests. On the 22nd day, mice were sacrificed, and their hippocampi were dissected to determine the levels of α- and β-secretase, peroxisome proliferator-activated receptor (PPARα and β), Wnt and β-catenin. Significant memory impairment and cognitive dysfunction were observed in the mouse model group. This finding was associated with a significant increase in α- and β-secretase levels and a significant decrease in Wnt, β-catenin, and PPARα and β levels. Neuronal damage was also evident after histopathological examination. Treatment with fenofibrate, pioglitazone and their combination resulted in a significant improvement in the behavioural and neurochemical changes induced by βA injection. The present findings indicate that the combined administration of fenofibrate and pioglitazone was more effective than monotherapy in ameliorating the behavioural, neurochemical and histopathological changes in amyloidogenesis model mice and provide a promising therapeutic approach in the management of Alzheimer's disease complicated by diabetes and hypercholesterolemia.
Collapse
Affiliation(s)
- Naglaa Assaf
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Misr University for Science and Technology, Cairo, Egypt
| | - Marwa E El-Shamarka
- Department of Narcotics, Ergogenic Aids and Poisons, Medical Research Division, National Research Centre, Giza, Egypt
| | - Neveen A Salem
- Department of Narcotics, Ergogenic Aids and Poisons, Medical Research Division, National Research Centre, Giza, Egypt; Department of Biochemistry, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Yasser A Khadrawy
- Department of Medical Physiology, Medical Research Division, National Research Centre, Egypt
| | - Nesrine S El Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Egypt.
| |
Collapse
|
30
|
Multifunctional imaging of amyloid-beta peptides with a new gadolinium-based contrast agent in Alzheimer’s disease. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2019.11.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
31
|
Cheng F, Fransson LÅ, Mani K. Proinflammatory cytokines induce accumulation of glypican-1-derived heparan sulfate and the C-terminal fragment of β-cleaved APP in autophagosomes of dividing neuronal cells. Glycobiology 2020; 30:539-549. [PMID: 32039447 PMCID: PMC7372925 DOI: 10.1093/glycob/cwaa011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 01/12/2020] [Accepted: 01/30/2020] [Indexed: 12/17/2022] Open
Abstract
Proinflammatory cytokines stimulate expression of β-secretase, which increases processing of amyloid precursor protein (APP), ultimately leading to the deposition of amyloid beta (Aβ). The N-terminal domain of β-cleaved APP supports Cu/NO-dependent release of heparan sulfate (HS) from the glypican-1 (Gpc-1) proteoglycan. HS is an inhibitor of β-secretase, thereby constituting a regulatory, negative feedback loop. Here, we have investigated the effect of the proinflammatory cytokines TNF-α, IL-1β and IL-6 on the interplay between APP processing and release of HS from Gpc-1 in neuronal cells. We have used deconvolution immunofluorescence microscopy and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and a panel of monoclonal/polyclonal antibodies recognizing the released HS, the N-terminus of Aβ, Aβ, the C-terminus of APP and the autophagosome marker LC3 as well as the chemical lysosome marker LysoTrackerRed (LTR). We repeatedly found that N2a neuroblastoma cells and human neural stem cells grown in the presence of the cytokines developed large cytoplasmic clusters, which stained positive for HS, the N-terminus of Aβ, Aβ, the C-terminus of APP, LC3 and LTR, indicating accumulation of HS and APP/APP degradation products in enlarged autophagosomes/lysosomes. The SDS-PAGE of immunoisolates obtained from TNF-α-treated N2a cells by using anti-C-terminus of APP revealed the presence of SDS-stable complexes between HS and the C-terminal fragment of β-cleaved APP (βCTF) migrating in the range 10-18 kDa. Clustered accumulation of βCTF disappeared when HS release was prevented and slightly enhanced when HS release was increased. Hence, when proinflammatory cytokines induce increased processing of APP, inhibition of β-secretase by HS is insufficient, which may lead to the impaired autophagosomal degradation.
Collapse
Affiliation(s)
- Fang Cheng
- Department of Experimental Medical Science, Division of Neuroscience, Glycobiology Group, Lund University, 221 00 Lund, Sweden
| | - Lars-Åke Fransson
- Department of Experimental Medical Science, Division of Neuroscience, Glycobiology Group, Lund University, 221 00 Lund, Sweden
| | - Katrin Mani
- Department of Experimental Medical Science, Division of Neuroscience, Glycobiology Group, Lund University, 221 00 Lund, Sweden
- To whom correspondence should be addressed: Tel: +46-46-222-4044; e-mail:
| |
Collapse
|
32
|
Ma DL, Wu C, Li G, Yung TL, Leung CH. Transition metal complexes as imaging or therapeutic agents for neurodegenerative diseases. J Mater Chem B 2020; 8:4715-4725. [DOI: 10.1039/c9tb02669j] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Neurodegenerative diseases are the result of neurodegeneration, which is the process of losing neuronal functions gradually due to the irreversible damage and death of neurons. Metal complexes have attracted intense interest over recent decades as probes or inhibitors of biomolecules.
Collapse
Affiliation(s)
- Dik-Lung Ma
- Department of Chemistry
- Faculty of Science
- Hong Kong Baptist University
- Kowloon
- China
| | - Chun Wu
- Department of Chemistry
- Faculty of Science
- Hong Kong Baptist University
- Kowloon
- China
| | - Guodong Li
- State Key Laboratory of Quality Research in Chinese Medicine
- Institute of Chinese Medical Sciences
- University of Macau
- Taipa
- China
| | - Tsan-Ling Yung
- Department of Chemistry
- Faculty of Science
- Hong Kong Baptist University
- Kowloon
- China
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine
- Institute of Chinese Medical Sciences
- University of Macau
- Taipa
- China
| |
Collapse
|
33
|
Leong YQ, Ng KY, Chye SM, Ling APK, Koh RY. Mechanisms of action of amyloid-beta and its precursor protein in neuronal cell death. Metab Brain Dis 2020; 35:11-30. [PMID: 31811496 DOI: 10.1007/s11011-019-00516-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 11/14/2019] [Indexed: 02/08/2023]
Abstract
Extracellular senile plaques and intracellular neurofibrillary tangles are the neuropathological findings of the Alzheimer's disease (AD). Based on the amyloid cascade hypothesis, the main component of senile plaques, the amyloid-beta (Aβ) peptide, and its derivative called amyloid precursor protein (APP) both have been found to place their central roles in AD development for years. However, the recent therapeutics have yet to reverse or halt this disease. Previous evidence demonstrates that the accumulation of Aβ peptides and APP can exert neurotoxicity and ultimately neuronal cell death. Hence, we discuss the mechanisms of excessive production of Aβ peptides and APP serving as pathophysiologic stimuli for the initiation of various cell signalling pathways including apoptosis, necrosis, necroptosis and autophagy which lead to neuronal cell death. Conversely, the activation of such pathways could also result in the abnormal generation of APP and Aβ peptides. An elucidation of actions of APP and its metabolite, Aβ, could be vital in suggesting novel therapeutic opportunities.
Collapse
Affiliation(s)
- Yong Qi Leong
- School of Health Sciences, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Khuen Yen Ng
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500, Subang Jaya, Selangor, Malaysia
| | - Soi Moi Chye
- School of Health Sciences, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Anna Pick Kiong Ling
- School of Health Sciences, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Rhun Yian Koh
- School of Health Sciences, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia.
| |
Collapse
|
34
|
Scharfenberg F, Armbrust F, Marengo L, Pietrzik C, Becker-Pauly C. Regulation of the alternative β-secretase meprin β by ADAM-mediated shedding. Cell Mol Life Sci 2019; 76:3193-3206. [PMID: 31201463 PMCID: PMC11105663 DOI: 10.1007/s00018-019-03179-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 05/23/2019] [Accepted: 05/29/2019] [Indexed: 12/12/2022]
Abstract
Alzheimer's Disease (AD) is the sixth-leading cause of death in industrialized countries. Neurotoxic amyloid-β (Aβ) plaques are one of the pathological hallmarks in AD patient brains. Aβ accumulates in the brain upon sequential, proteolytic processing of the amyloid precursor protein (APP) by β- and γ-secretases. However, so far disease-modifying drugs targeting β- and γ-secretase pathways seeking a decrease in the production of toxic Aβ peptides have failed in clinics. It has been demonstrated that the metalloproteinase meprin β acts as an alternative β-secretase, capable of generating truncated Aβ2-x peptides that have been described to be increased in AD patients. This indicates an important β-site cleaving enzyme 1 (BACE-1)-independent contribution of the metalloprotease meprin β within the amyloidogenic pathway and may lead to novel drug targeting avenues. However, meprin β itself is embedded in a complex regulatory network. Remarkably, the anti-amyloidogenic α-secretase a disintegrin and metalloproteinase domain-containing protein 10 (ADAM10) is a direct competitor for APP at the cell surface, but also a sheddase of inactive pro-meprin β. Overall, we highlight the current cellular, molecular and structural understanding of meprin β as alternative β-secretase within the complex protease web, regulating APP processing in health and disease.
Collapse
Affiliation(s)
- Franka Scharfenberg
- Unit for Degradomics of the Protease Web, Biochemical Institute, University of Kiel, Kiel, Germany
| | - Fred Armbrust
- Unit for Degradomics of the Protease Web, Biochemical Institute, University of Kiel, Kiel, Germany
| | - Liana Marengo
- Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Claus Pietrzik
- Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.
| | - Christoph Becker-Pauly
- Unit for Degradomics of the Protease Web, Biochemical Institute, University of Kiel, Kiel, Germany.
| |
Collapse
|
35
|
DelBove CE, Strothman CE, Lazarenko RM, Huang H, Sanders CR, Zhang Q. Reciprocal modulation between amyloid precursor protein and synaptic membrane cholesterol revealed by live cell imaging. Neurobiol Dis 2019; 127:449-461. [PMID: 30885793 PMCID: PMC6588454 DOI: 10.1016/j.nbd.2019.03.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 02/03/2019] [Accepted: 03/12/2019] [Indexed: 12/20/2022] Open
Abstract
The amyloid precursor protein (APP) has been extensively studied because of its association with Alzheimer's disease (AD). However, APP distribution across different subcellular membrane compartments and its function in neurons remains unclear. We generated an APP fusion protein with a pH-sensitive green fluorescent protein at its ectodomain and a pH-insensitive blue fluorescent protein at its cytosolic domain and used it to measure APP's distribution, subcellular trafficking, and cleavage in live neurons. This reporter, closely resembling endogenous APP, revealed only a limited correlation between synaptic activities and APP trafficking. However, the synaptic surface fraction of APP was increased by a reduction in membrane cholesterol levels, a phenomenon that involves APP's cholesterol-binding motif. Mutations at or near binding sites not only reduced both the surface fraction of APP and membrane cholesterol levels in a dominant negative manner, but also increased synaptic vulnerability to moderate membrane cholesterol reduction. Our results reveal reciprocal modulation of APP and membrane cholesterol levels at synaptic boutons.
Collapse
Affiliation(s)
- Claire E DelBove
- Department of Pharmacology, Vanderbilt University, United States of America
| | - Claire E Strothman
- Department of Cell and Developmental Biology, Vanderbilt University, United States of America
| | - Roman M Lazarenko
- Department of Pharmacology, Vanderbilt University, United States of America
| | - Hui Huang
- Department of Biochemistry, Vanderbilt University, United States of America
| | - Charles R Sanders
- Department of Biochemistry, Vanderbilt University, United States of America; Department of Medicine, Vanderbilt University Medical Center, United States of America
| | - Qi Zhang
- Department of Pharmacology, Vanderbilt University, United States of America; Brain Institute, Florida Atlantic University, United States of America.
| |
Collapse
|
36
|
Plasma microRNA miR-26b as a potential diagnostic biomarker of degenerative myelopathy in Pembroke welsh corgis. BMC Vet Res 2019; 15:192. [PMID: 31182094 PMCID: PMC6558770 DOI: 10.1186/s12917-019-1944-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 06/04/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Degenerative myelopathy (DM) is a progressive neurodegenerative disease frequently found in Pembroke Welsh Corgis (PWCs). Most DM-affected PWCs are homozygous for the mutant superoxide dismutase 1 (SOD1) allele; however, the genetic examination for the SOD1 mutation does not exclusively detect symptomatic dogs. In order to identify novel biomarkers, the plasma microRNA (miRNA) profiles of PWCs with DM were investigated. RESULTS Quantification of the plasma levels of 277 miRNAs by an RT-qPCR array identified 11 up-regulated miRNAs and 7 down-regulated miRNAs in DM-affected PWCs from those in wild-type SOD1 PWCs. A pathway analysis identified 3 miRNAs: miR-26b, miR-181a, and miR-196a, which potentially regulate several genes associated with SOD1. In order to validate the diagnostic accuracy of the candidate miRNAs in the aged PWC population, candidate miRNAs in plasma were measured by RT-qPCR and a receiver operating characteristic (ROC) curve analysis was performed. miR-26b had the largest area under the ROC curve for distinguishing DM PWCs from healthy PWCs (sensitivity, 66.7%; specificity, 87.0%). The plasma level of miR-26b was significantly higher in the DM group than in the healthy control group. A positive correlation was observed between increases in the plasma level of miR-26b and disease progression. CONCLUSIONS These results suggest that plasma miR-26b is a potential novel diagnostic biomarker of DM.
Collapse
|
37
|
The cyanobacterial neurotoxin β-N-methylamino-l-alanine prevents addition of heparan sulfate to glypican-1 and increases processing of amyloid precursor protein in dividing neuronal cells. Exp Cell Res 2019; 379:172-181. [DOI: 10.1016/j.yexcr.2019.03.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/27/2019] [Accepted: 03/30/2019] [Indexed: 12/20/2022]
|
38
|
Chandra S, Pahan K. Gemfibrozil, a Lipid-Lowering Drug, Lowers Amyloid Plaque Pathology and Enhances Memory in a Mouse Model of Alzheimer's Disease via Peroxisome Proliferator-Activated Receptor α. J Alzheimers Dis Rep 2019; 3:149-168. [PMID: 31259309 PMCID: PMC6597963 DOI: 10.3233/adr-190104] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Deposition of extracellular senile plaques containing amyloid-β is one of the major neuropathological characteristics of Alzheimer’s disease (AD). Therefore, targeting amyloid-β dyshomeostasis is an important therapeutic strategy for treatment of AD. In this study, we demonstrate that gemfibrozil, an FDA-approved drug for hyperlipidemia, can lower the amyloid plaque burden in the hippocampus and cortex of the 5XFAD model of AD. Additionally, gemfibrozil reduced microgliosis and astrogliosis associated with plaque in these mice. Administration of gemfibrozil also improved spatial learning and memory of the 5XFAD mice. Finally, we delineate that gemfibrozil requires the transcription factor peroxisome proliferator-activated receptor alpha (PPARα) to exhibit its amyloid lowering and memory enhancing effects in 5XFAD mice. These results highlight a new therapeutic property of gemfibrozil and suggest that this drug may be repurposed for treatment of AD.
Collapse
Affiliation(s)
- Sujyoti Chandra
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Kalipada Pahan
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA.,Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA
| |
Collapse
|
39
|
Synthesis, molecular modeling and BACE-1 inhibitory study of tetrahydrobenzo[b] pyran derivatives. Bioorg Chem 2019; 84:202-210. [DOI: 10.1016/j.bioorg.2018.11.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 11/16/2018] [Accepted: 11/17/2018] [Indexed: 11/24/2022]
|
40
|
Andrew RJ, Fisher K, Heesom KJ, Kellett KAB, Hooper NM. Quantitative interaction proteomics reveals differences in the interactomes of amyloid precursor protein isoforms. J Neurochem 2019; 149:399-412. [PMID: 30664241 DOI: 10.1111/jnc.14666] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 06/21/2018] [Accepted: 01/16/2019] [Indexed: 02/04/2023]
Abstract
The generation of the amyloid-β (Aβ) peptides from the amyloid precursor protein (APP) through sequential proteolysis by β- and γ-secretases is a key pathological event in the initiation and propagation of Alzheimer's disease. Aβ and the transcriptionally active APP intracellular domain are generated preferentially from the APP695 isoform compared to the longer APP751 isoform. As the Aβ and amyloid precursor protein intracellular domain produced from cleavage of APP695 and APP751 are identical we hypothesised that the two isoforms have differences within their interactomes which mediate the differential processing of the two isoforms. To investigate this, we applied a proteomics-based approach to identify differences in the interactomes of the APP695 and APP751 isoforms. Using stable isotope labelling of amino acids in cell culture and quantitative proteomics, we compared the interactomes of APP695 and APP751 expressed in human SH-SY5Y cells. Through this approach, we identified enrichment of proteins involved in mitochondrial function, the nuclear pore and nuclear transport specifically in the APP695 interactome. Further interrogation of the APP interactome and subsequent experimental validation (co-immunoprecipitation and siRNA knockdown) revealed GAP43 as a specific modulator of APP751 proteolysis, altering Aβ generation. Our data indicate that interrogation of the APP interactome can be exploited to identify proteins which influence APP proteolysis and Aβ production in an isoform dependent-manner. Cover Image for this issue: doi: 10.1111/jnc.14504.
Collapse
Affiliation(s)
- Robert J Andrew
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, School of Biological Sciences, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Kate Fisher
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, School of Biological Sciences, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Kate J Heesom
- Proteomics Facility, Faculty of Medical and Veterinary Sciences, University of Bristol, Bristol, UK
| | - Katherine A B Kellett
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, School of Biological Sciences, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Nigel M Hooper
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, School of Biological Sciences, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| |
Collapse
|
41
|
Liu L, Ding L, Rovere M, Wolfe MS, Selkoe DJ. A cellular complex of BACE1 and γ-secretase sequentially generates Aβ from its full-length precursor. J Cell Biol 2019; 218:644-663. [PMID: 30626721 PMCID: PMC6363461 DOI: 10.1083/jcb.201806205] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/12/2018] [Accepted: 11/26/2018] [Indexed: 01/13/2023] Open
Abstract
Intramembrane proteolysis of transmembrane substrates by the presenilin-γ-secretase complex is preceded and regulated by shedding of the substrate's ectodomain by α- or β-secretase. We asked whether β- and γ-secretases interact to mediate efficient sequential processing of APP, generating the amyloid β (Aβ) peptides that initiate Alzheimer's disease. We describe a hitherto unrecognized multiprotease complex containing active β- and γ-secretases. BACE1 coimmunoprecipitated and cofractionated with γ-secretase in cultured cells and in mouse and human brain. An endogenous high molecular weight (HMW) complex (∼5 MD) containing β- and γ-secretases and holo-APP was catalytically active in vitro and generated a full array of Aβ peptides, with physiological Aβ42/40 ratios. The isolated complex responded properly to γ-secretase modulators. Alzheimer's-causing mutations in presenilin altered the Aβ42/40 peptide ratio generated by the HMW β/γ-secretase complex indistinguishably from that observed in whole cells. Thus, Aβ is generated from holo-APP by a BACE1-γ-secretase complex that provides sequential, efficient RIP processing of full-length substrates to final products.
Collapse
Affiliation(s)
- Lei Liu
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Li Ding
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Matteo Rovere
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Michael S Wolfe
- University of Kansas School of Pharmacy, Department of Medical Chemistry, Lawrence, KS
| | - Dennis J Selkoe
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
42
|
Recinto SJ, Paschkowsky S, Munter LM. An alternative processing pathway of APP reveals two distinct cleavage modes for rhomboid protease RHBDL4. Biol Chem 2018; 399:1399-1408. [DOI: 10.1515/hsz-2018-0259] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 08/28/2018] [Indexed: 02/02/2023]
Abstract
AbstractSince the first genetic description of a rhomboid inDrosophila melanogaster, tremendous efforts have been geared towards elucidating the proteolytic mechanism of this particular class of intramembrane proteases. In particular, mammalian rhomboid proteases sparked our interest and we aimed to investigate the human homologue RHBDL4. In light of our recent finding of the amyloid precursor protein (APP) family as efficient substrates of RHBDL4, we were enticed to further study the specific proteolytic mechanism of this enzyme by comparing cleavage patterns of wild type APP and APP TMS chimeras. Here, we demonstrate that the introduction of positively charged amino acid residues in the TMS redirects the RHBDL4-mediated cleavage of APP from its ectodomain closer towards the TMS, possibly inducing an ER-associated degradation (ERAD) of the substrate. In addition, we concluded that the cytoplasmic tail and proposed palmitoylation sites in the ectodomain of APP are not essential for the RHBDL4-mediated APP processing. In summary, our previously identified APP ectodomain cleavages by RHBDL4 are a subsidiary mechanism to the proposed RHBDL4-mediated ERAD of substrates likely through a single cleavage near or within the TMS.
Collapse
|
43
|
Satoh JI, Kino Y, Yanaizu M, Ishida T, Saito Y. Microglia express gamma-interferon-inducible lysosomal thiol reductase in the brains of Alzheimer's disease and Nasu-Hakola disease. Intractable Rare Dis Res 2018; 7:251-257. [PMID: 30560017 PMCID: PMC6290847 DOI: 10.5582/irdr.2018.01119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Gamma-interferon-inducible lysosomal thiol reductase (GILT), expressed in antigen-presenting cells (APCs), facilitates the reduction of disulfide bonds of endocytosed proteins in the endocytic pathway and they are further processed for presentation of immunogenic peptides loaded on major histocompatibility complex (MHC) class II. Although the constitutive and IFNγ-inducible expression of GILT was observed in various APCs, such as dendritic cells, monocytes/macrophages, and B cells, GILT-expressing cell types remain unknown in the human central nervous system (CNS). Nasu-Hakola disease (NHD) is a rare autosomal recessive disorder characterized by sclerosing leukoencephalopathy and multifocal bone cysts, caused by a loss-of-function mutation of either TYROBP (DAP12) or TREM2, both of which are expressed on microglia. A rare heterozygous variant of the TREM2 gene encoding p.Arg47His causes a 3-fold increase in the risk for late-onset Alzheimer's disease (LOAD), suggesting that both NHD and AD are induced by dysfunction of the microglial TREM2 signaling pathway in the brains. We studied by immunohistochemistry GILT expression in NHD and AD brains. GILT was expressed on amoeboid microglia with the highest levels of expression in AD brains, compared with those in non-neurological control (NC) brains and in NHD brains. In AD brains, the clusters of amoeboid microglia surrounding amyloid-beta (Aꞵ) deposition strongly expressed GILT. Furthermore, a human microglial cell line expressed GILT in response to IFNγ. These results indicate that microglia, expressing constitutively high levels of GILT, act as a principal cell type of APCs in AD brains, in contrast to baseline levels of GILT expression in NHD brains.
Collapse
Affiliation(s)
- Jun-ichi Satoh
- Department of Bioinformatics and Molecular Neuropathology, Meiji Pharmaceutical University, Tokyo, Japan
- Address correspondence to:Dr. Jun-ichi Satoh, Department of Bioinformatics and Molecular Neuropathology, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan. E-mail:
| | - Yoshihiro Kino
- Department of Bioinformatics and Molecular Neuropathology, Meiji Pharmaceutical University, Tokyo, Japan
| | - Motoaki Yanaizu
- Department of Bioinformatics and Molecular Neuropathology, Meiji Pharmaceutical University, Tokyo, Japan
| | - Tsuyoshi Ishida
- Department of Pathology and Laboratory Medicine, Kohnodai Hospital, NCGM, Chiba, Japan
| | - Yuko Saito
- Department of Laboratory Medicine, National Center Hospital, NCNP, Tokyo, Japan
| |
Collapse
|
44
|
Muralidharan A, Josyula VR, Hariharapura RC. Exploring the potential of marine microbes in clinical management of Alzheimer's disease: A road map for bioprospecting and identifying promising isolates. Life Sci 2018; 208:149-160. [PMID: 30031811 DOI: 10.1016/j.lfs.2018.07.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 07/18/2018] [Indexed: 10/28/2022]
Abstract
Pervasiveness of Alzheimer's disease (AD) across the globe is on rise, devitalizing the essential brain functions of the afflicted individual. Multiple neurological pathways viz., cholinergic, amyloidogenic and tau protein pathways underlying the disease and interdependence make it more complex to develop effective treatment strategies. Existing drug treatments for Alzheimer's disease majorly belong to the class of cholinergic inhibitors which improve the behavioral symptoms. But there are no drugs that could arrest the disease progression. Inhibition of beta secretase enzyme could prevent the deposition of amyloid plaques in the neurons, thereby arresting the disease progression. Search for novel drugs to treat the underlying pathogenesis of the disease is pivotal in this day and age. The source of most active lead molecules discovered recently is from the nature. Marine ecosystem provides a plethora of pharmacologically lead molecules from various living organisms inhabiting the sea. Among all, marine microbes are the most under-explored and indispensable source of many bioactive metabolites. Studies have been reported on potent metabolites from marine microbes which could inhibit the key enzymes involved in the AD pathogenesis. The advancement in microbial bioprospecting and molecular biology techniques have eased the process of cultivation and identification of microbes, isolation of novel bioactive metabolites of clinical use. Exploring such marine natural resources for pharmacological lead molecules could give a breakthrough in the drug discovery domain for treating AD such debilitating diseases. In this review, a comprehensive account of bioprospecting methods and reports of marine microbial isolates are discussed.
Collapse
Affiliation(s)
- Anuraag Muralidharan
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104 Udupi, Karnataka, India
| | - Venkata Rao Josyula
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104 Udupi, Karnataka, India.
| | - Raghu Chandrashekhar Hariharapura
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104 Udupi, Karnataka, India
| |
Collapse
|
45
|
Visconte C, Canino J, Guidetti GF, Zarà M, Seppi C, Abubaker AA, Pula G, Torti M, Canobbio I. Amyloid precursor protein is required for in vitro platelet adhesion to amyloid peptides and potentiation of thrombus formation. Cell Signal 2018; 52:95-102. [PMID: 30172024 DOI: 10.1016/j.cellsig.2018.08.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 07/31/2018] [Accepted: 08/28/2018] [Indexed: 01/08/2023]
Abstract
Amyloid precursor protein (APP) is the precursor of amyloid β (Aβ) peptides, whose accumulation in the brain is associated with Alzheimer's disease. APP is also expressed on the platelet surface and Aβ peptides are platelet agonists. The physiological role of APP is largely unknown. In neurons, APP acts as an adhesive receptor, facilitating integrin-mediated cell adhesion, while in platelets it regulates coagulation and venous thrombosis. In this work, we analyzed platelets from APP KO mice to investigate whether membrane APP supports platelet adhesion to physiological and pathological substrates. We found that APP-null platelets adhered and spread normally on collagen, von Willebrand Factor or fibrinogen. However, adhesion on immobilized Aβ peptides Aβ1-40, Aβ1-42 and Aβ25-35 was completely abolished in platelets lacking APP. By contrast, platelet activation and aggregation induced by Aβ peptides occurred normally in the absence of APP. Adhesion of APP-transfected HEK293 to Aβ peptides was significantly higher than that of control cells expressing low levels of APP. Co-coating of Aβ1-42 and Aβ25-35 with collagen strongly potentiated platelet adhesion when whole blood from wild type mice was perfused at arterial shear rate, but had no effects with blood from APP KO mice. These results demonstrate that APP selectively mediates platelet adhesion to Aβ under static condition but not platelet aggregation, and is responsible for Aβ-promoted potentiation of thrombus formation under flow. Therefore, APP may facilitate an early step in thrombus formation when Aβ peptides accumulate in cerebral vessel walls or atherosclerotic plaques.
Collapse
Affiliation(s)
- Caterina Visconte
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Jessica Canino
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy; Scuola Universitaria Superiore, IUSS, Pavia, Italy
| | | | - Marta Zarà
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Claudio Seppi
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | | | - Giordano Pula
- Institute of Biomedical & Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Mauro Torti
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Ilaria Canobbio
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy.
| |
Collapse
|
46
|
Wang X, Sun Y, Han S, Wu C, Ma Y, Zhao Y, Shao Y, Chen Y, Kong L, Li W, Zhang F, Xue L. Amyloid precursor like protein-1 promotes JNK-mediated cell migration in Drosophila. Oncotarget 2018; 8:49725-49734. [PMID: 28537903 PMCID: PMC5564802 DOI: 10.18632/oncotarget.17681] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 04/20/2017] [Indexed: 11/25/2022] Open
Abstract
The amyloid precursor like protein-1 (APLP1) is a member of the amyloid precursor protein (APP) family in mammals. While many studies have been focused on the pathologic role of APP in Alzheimer's disease, the physiological functions of APLP1 have remained largely elusive. Here we report that ectopic expression of APLP1 in Drosophila induces cell migration, which is suppressed by the loss of JNK signaling and enhanced by the gain of JNK signaling. APLP1 activates JNK signaling through phosphorylation of JNK, which up-regulates the expression of matrix metalloproteinase MMP1 required for basement membranes degradation and promotes actin remodeling essential for cell migration. Our data thus provide the first in vivo evidence for a cell-autonomous role of APLP1 protein in migration.
Collapse
Affiliation(s)
- Xingjun Wang
- Department of Interventional Radiology, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Ying Sun
- Department of Interventional Radiology, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Shilong Han
- Department of Interventional Radiology, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Chenxi Wu
- College of Chinese Medicine, North China University of Science and Technology, Tangshan 063210, China
| | - Yeqing Ma
- Department of Interventional Radiology, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Yu Zhao
- Department of Interventional Radiology, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Yingyao Shao
- Department of Interventional Radiology, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Yujun Chen
- Department of Interventional Radiology, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Lingzhi Kong
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Wenzhe Li
- Department of Interventional Radiology, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Fan Zhang
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Lei Xue
- Department of Interventional Radiology, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| |
Collapse
|
47
|
Kumar D, Ganeshpurkar A, Kumar D, Modi G, Gupta SK, Singh SK. Secretase inhibitors for the treatment of Alzheimer's disease: Long road ahead. Eur J Med Chem 2018; 148:436-452. [DOI: 10.1016/j.ejmech.2018.02.035] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 01/30/2018] [Accepted: 02/10/2018] [Indexed: 10/18/2022]
|
48
|
Kamikubo Y, Takasugi N, Niisato K, Hashimoto Y, Sakurai T. Consecutive Analysis of BACE1 Function on Developing and Developed Neuronal Cells. J Alzheimers Dis 2018; 56:641-653. [PMID: 28035928 DOI: 10.3233/jad-160806] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The amyloid-β protein precursor (AβPP) is cleaved by a transmembrane protease termed β-site AβPP cleavage enzyme (BACE1), which is being explored as a target for therapy and prevention of Alzheimer's disease (AD). Although genetic deletion of BACE1 results in abolished amyloid pathology in AD model mice, it also results in neurodevelopmental phenotypes such as hypomyelination and synaptic loss, observed in schizophrenia and autism-like phenotype. These lines of evidence indicate that the inhibition of BACE1 causes adverse side effects during the neurodevelopmental stage. However, the effects of the inhibition of BACE1 activity on already developed neurons remain unclear. Here, we utilized hippocampal slice cultures as an ex vivo model that enabled continuous and long-term analysis for the effect of BACE1 inhibition on neuronal circuits and synapses. Temporal changes in synaptic proteins in hippocampal slices indicated acute synaptic loss, followed by synapse formation and maintenance phases. Long-term BACE1 inhibition in the neurodevelopmental stage caused the loss of synaptic proteins but failed to alter synaptic proteins in the already developed maintenance stage. These data indicate that BACE1 function on synapses is dependent on synaptic developmental stages, and our study provides a useful model to observe the long-term effect of BACE1 activity in the brain, and to evaluate adverse effects of BACE inhibitors.
Collapse
|
49
|
Schiel KA. A new etiologic model for Alzheimers Disease. Med Hypotheses 2018; 111:27-35. [DOI: 10.1016/j.mehy.2017.12.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 11/19/2017] [Accepted: 12/12/2017] [Indexed: 01/26/2023]
|
50
|
Morel B, Carrasco MP, Jurado S, Marco C, Conejero-Lara F. Dynamic micellar oligomers of amyloid beta peptides play a crucial role in their aggregation mechanisms. Phys Chem Chem Phys 2018; 20:20597-20614. [DOI: 10.1039/c8cp02685h] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Aβ40 and Aβ42 peptides form micellar precursors of amyloid nuclei contributing to important differences in their aggregation pathways.
Collapse
Affiliation(s)
- Bertrand Morel
- Departamento de Química Física e Instituto de Biotecnología
- Facultad de Ciencias
- Universidad de Granada
- 18071 Granada
- Spain
| | - Maria Paz Carrasco
- Departamento de Bioquímica y Biología Molecular I
- Facultad de Ciencias
- Universidad de Granada
- 18071 Granada
- Spain
| | - Samuel Jurado
- Departamento de Química Física e Instituto de Biotecnología
- Facultad de Ciencias
- Universidad de Granada
- 18071 Granada
- Spain
| | - Carmen Marco
- Departamento de Bioquímica y Biología Molecular I
- Facultad de Ciencias
- Universidad de Granada
- 18071 Granada
- Spain
| | - Francisco Conejero-Lara
- Departamento de Química Física e Instituto de Biotecnología
- Facultad de Ciencias
- Universidad de Granada
- 18071 Granada
- Spain
| |
Collapse
|