1
|
Petushkov I, Elkina D, Burenina O, Kubareva E, Kulbachinskiy A. Key interactions of RNA polymerase with 6S RNA and secondary channel factors during pRNA synthesis. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195032. [PMID: 38692564 DOI: 10.1016/j.bbagrm.2024.195032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/17/2024] [Accepted: 04/26/2024] [Indexed: 05/03/2024]
Abstract
Small non-coding 6S RNA mimics DNA promoters and binds to the σ70 holoenzyme of bacterial RNA polymerase (RNAP) to suppress transcription of various genes mainly during the stationary phase of cell growth or starvation. This inhibition can be relieved upon synthesis of short product RNA (pRNA) performed by RNAP from the 6S RNA template. Here, we have shown that pRNA synthesis depends on specific contacts of 6S RNA with RNAP and interactions of the σ finger with the RNA template in the active site of RNAP, and is also modulated by the secondary channel factors. We have adapted a molecular beacon assay with fluorescently labeled σ70 to analyze 6S RNA release during pRNA synthesis. We found the kinetics of 6S RNA release to be oppositely affected by mutations in the σ finger and in the CRE pocket of core RNAP, similarly to the reported role of these regions in promoter-dependent transcription. Secondary channel factors, DksA and GreB, inhibit pRNA synthesis and 6S RNA release from RNAP, suggesting that they may contribute to the 6S RNA-mediated switch in transcription during stringent response. Our results demonstrate that pRNA synthesis depends on a similar set of contacts between RNAP and 6S RNA as in the case of promoter-dependent transcription initiation and reveal that both processes can be regulated by universal transcription factors acting on RNAP.
Collapse
Affiliation(s)
- Ivan Petushkov
- National Research Center "Kurchatov Institute", Moscow 123182, Russia; Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Daria Elkina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
| | - Olga Burenina
- Center of Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Moscow 121205, Russia; Chemistry Department, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Elena Kubareva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
| | - Andrey Kulbachinskiy
- National Research Center "Kurchatov Institute", Moscow 123182, Russia; Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia.
| |
Collapse
|
2
|
How to Shut Down Transcription in Archaea during Virus Infection. Microorganisms 2022; 10:microorganisms10091824. [PMID: 36144426 PMCID: PMC9501531 DOI: 10.3390/microorganisms10091824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/09/2022] [Accepted: 09/10/2022] [Indexed: 11/16/2022] Open
Abstract
Multisubunit RNA polymerases (RNAPs) carry out transcription in all domains of life; during virus infection, RNAPs are targeted by transcription factors encoded by either the cell or the virus, resulting in the global repression of transcription with distinct outcomes for different host–virus combinations. These repressors serve as versatile molecular probes to study RNAP mechanisms, as well as aid the exploration of druggable sites for the development of new antibiotics. Here, we review the mechanisms and structural basis of RNAP inhibition by the viral repressor RIP and the crenarchaeal negative regulator TFS4, which follow distinct strategies. RIP operates by occluding the DNA-binding channel and mimicking the initiation factor TFB/TFIIB. RIP binds tightly to the clamp and locks it into one fixed position, thereby preventing conformational oscillations that are critical for RNAP function as it progresses through the transcription cycle. TFS4 engages with RNAP in a similar manner to transcript cleavage factors such as TFS/TFIIS through the NTP-entry channel; TFS4 interferes with the trigger loop and bridge helix within the active site by occlusion and allosteric mechanisms, respectively. The conformational changes in RNAP described above are universally conserved and are also seen in inactive dimers of eukaryotic RNAPI and several inhibited RNAP complexes of both bacterial and eukaryotic RNA polymerases, including inactive states that precede transcription termination. A comparison of target sites and inhibitory mechanisms reveals that proteinaceous repressors and RNAP-specific antibiotics use surprisingly common ways to inhibit RNAP function.
Collapse
|
3
|
Agapov A, Olina A, Kulbachinskiy A. OUP accepted manuscript. Nucleic Acids Res 2022; 50:3018-3041. [PMID: 35323981 PMCID: PMC8989532 DOI: 10.1093/nar/gkac174] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 02/26/2022] [Accepted: 03/03/2022] [Indexed: 11/14/2022] Open
Abstract
Cellular DNA is continuously transcribed into RNA by multisubunit RNA polymerases (RNAPs). The continuity of transcription can be disrupted by DNA lesions that arise from the activities of cellular enzymes, reactions with endogenous and exogenous chemicals or irradiation. Here, we review available data on translesion RNA synthesis by multisubunit RNAPs from various domains of life, define common principles and variations in DNA damage sensing by RNAP, and consider existing controversies in the field of translesion transcription. Depending on the type of DNA lesion, it may be correctly bypassed by RNAP, or lead to transcriptional mutagenesis, or result in transcription stalling. Various lesions can affect the loading of the templating base into the active site of RNAP, or interfere with nucleotide binding and incorporation into RNA, or impair RNAP translocation. Stalled RNAP acts as a sensor of DNA damage during transcription-coupled repair. The outcome of DNA lesion recognition by RNAP depends on the interplay between multiple transcription and repair factors, which can stimulate RNAP bypass or increase RNAP stalling, and plays the central role in maintaining the DNA integrity. Unveiling the mechanisms of translesion transcription in various systems is thus instrumental for understanding molecular pathways underlying gene regulation and genome stability.
Collapse
Affiliation(s)
- Aleksei Agapov
- Correspondence may also be addressed to Aleksei Agapov. Tel: +7 499 196 0015; Fax: +7 499 196 0015;
| | - Anna Olina
- Institute of Molecular Genetics, National Research Center “Kurchatov Institute” Moscow 123182, Russia
| | - Andrey Kulbachinskiy
- To whom correspondence should be addressed. Tel: +7 499 196 0015; Fax: +7 499 196 0015;
| |
Collapse
|
4
|
Mutational analysis of Escherichia coli GreA protein reveals new functional activity independent of antipause and lethal when overexpressed. Sci Rep 2020; 10:16074. [PMID: 32999370 PMCID: PMC7527559 DOI: 10.1038/s41598-020-73069-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 09/07/2020] [Indexed: 12/17/2022] Open
Abstract
There is a growing appreciation for the diverse regulatory consequences of the family of proteins that bind to the secondary channel of E. coli RNA polymerase (RNAP), such as GreA, GreB or DksA. Similar binding sites could suggest a competition between them. GreA is characterised to rescue stalled RNAP complexes due to its antipause activity, but also it is involved in transcription fidelity and proofreading. Here, overexpression of GreA is noted to be lethal independent of its antipause activity. A library of random GreA variants has been used to isolate lethality suppressors to assess important residues for GreA functionality and its interaction with the RNA polymerase. Some mutant defects are inferred to be associated with altered binding competition with DksA, while other variants seem to have antipause activity defects that cannot reverse a GreA-sensitive pause site in a fliC::lacZ reporter system. Surprisingly, apparent binding and cleavage defects are found scattered throughout both the coiled-coil and globular domains. Thus, the coiled-coil of GreA is not just a measuring stick ensuring placement of acidic residues precisely at the catalytic centre but also seems to have binding functions. These lethality suppressor mutants may provide valuable tools for future structural and functional studies.
Collapse
|
5
|
Nagarkar RP, Fichman G, Schneider JP. Engineering and characterization of apH‐sensitive homodimeric antiparallel coiled coil. Pept Sci (Hoboken) 2020. [DOI: 10.1002/pep2.24180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Radhika P. Nagarkar
- Department of Chemistry and Biochemistry University of Delaware Newark Delaware USA
| | - Galit Fichman
- Chemical Biology Laboratory, National Cancer Institute, National Institutes of Health Frederick Maryland USA
| | - Joel P. Schneider
- Chemical Biology Laboratory, National Cancer Institute, National Institutes of Health Frederick Maryland USA
| |
Collapse
|
6
|
Agapov A, Kulbachinskiy A. Four paralogous Gfh factors in the extremophilic bacterium Deinococcus peraridilitoris have distinct effects on various steps of transcription. Biochimie 2019; 170:21-25. [PMID: 31843578 DOI: 10.1016/j.biochi.2019.12.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 12/11/2019] [Indexed: 11/30/2022]
Abstract
Gre factors are ubiquitous transcription regulators that stimulate co-transcriptional RNA cleavage by bacterial RNA polymerase (RNAP). Here, we show that the stress-resistant bacterium Deinococcus peraridilitoris encodes four Gre factor homologs, Gfh proteins, that have distinct effects on transcription by RNAP. Two of the factors, Gfh1α and Gfh2β inhibit transcription initiation, and one of them, Gfh1α can also regulate transcription elongation. We show that this factor strongly stimulates transcriptional pausing and intrinsic termination in the presence of manganese ions but has no effect on RNA cleavage. Thus, some Gfh factors encoded by Deinococci serve as lineage-specific transcription inhibitors that may play a role in stress resistance, while the functions of others remain to be discovered.
Collapse
Affiliation(s)
- Aleksei Agapov
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182, Russia.
| | - Andrey Kulbachinskiy
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182, Russia.
| |
Collapse
|
7
|
Agapov A, Esyunina D, Kulbachinskiy A. Gre-family factors modulate DNA damage sensing by Deinococcus radiodurans RNA polymerase. RNA Biol 2019; 16:1711-1720. [PMID: 31416390 DOI: 10.1080/15476286.2019.1656027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Deinococcus radiodurans is a highly stress resistant bacterium that encodes universal as well as lineage-specific factors involved in DNA transcription and repair. However, the effects of DNA lesions on RNA synthesis by D. radiodurans RNA polymerase (RNAP) have never been studied. We investigated the ability of this RNAP to transcribe damaged DNA templates and demonstrated that various lesions significantly affect the efficiency and fidelity of RNA synthesis. DNA modifications that disrupt correct base-pairing can strongly inhibit transcription and increase nucleotide misincorporation by D. radiodurans RNAP. The universal transcription factor GreA and Deinococcus-specific factor Gfh1 stimulate RNAP stalling at various DNA lesions, depending on the type of the lesion and the presence of Mn2+ ions, abundant divalent cations in D. radiodurans. Furthermore, Gfh1 stimulates the action of the Mfd translocase, which removes transcription elongation complexes paused at the sites of DNA lesions. Thus, Gre-family factors in D. radiodurans might have evolved to increase the efficiency of DNA damage recognition by the transcription and repair machineries in this bacterium.
Collapse
Affiliation(s)
- Aleksei Agapov
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Daria Esyunina
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | | |
Collapse
|
8
|
Belogurov GA, Artsimovitch I. The Mechanisms of Substrate Selection, Catalysis, and Translocation by the Elongating RNA Polymerase. J Mol Biol 2019; 431:3975-4006. [PMID: 31153902 DOI: 10.1016/j.jmb.2019.05.042] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/24/2019] [Accepted: 05/24/2019] [Indexed: 11/15/2022]
Abstract
Multi-subunit DNA-dependent RNA polymerases synthesize all classes of cellular RNAs, ranging from short regulatory transcripts to gigantic messenger RNAs. RNA polymerase has to make each RNA product in just one try, even if it takes millions of successive nucleotide addition steps. During each step, RNA polymerase selects a correct substrate, adds it to a growing chain, and moves one nucleotide forward before repeating the cycle. However, RNA synthesis is anything but monotonous: RNA polymerase frequently pauses upon encountering mechanical, chemical and torsional barriers, sometimes stepping back and cleaving off nucleotides from the growing RNA chain. A picture in which these intermittent dynamics enable processive, accurate, and controllable RNA synthesis is emerging from complementary structural, biochemical, computational, and single-molecule studies. Here, we summarize our current understanding of the mechanism and regulation of the on-pathway transcription elongation. We review the details of substrate selection, catalysis, proofreading, and translocation, focusing on rate-limiting steps, structural elements that modulate them, and accessory proteins that appear to control RNA polymerase translocation.
Collapse
Affiliation(s)
| | - Irina Artsimovitch
- Department of Microbiology and The Center for RNA Biology, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
9
|
Joseph A, Nagaraja V, Natesh R. Mycobacterial transcript cleavage factor Gre, exhibits chaperone-like activity. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:757-764. [PMID: 31125617 DOI: 10.1016/j.bbapap.2019.05.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 05/13/2019] [Accepted: 05/18/2019] [Indexed: 02/05/2023]
Abstract
Gre factors reactivate stalled elongation complexes by enhancing the intrinsic transcript cleavage activity of RNA polymerase. Previous work by us has shown that unlike in Escherichia coli (E.coli), Mycobacterium tuberculosis Gre factor is essential for its survival. Apart from their role in transcription regulation Gre factors have been implicated in stress response. A recent study has shown the role of E.coli GreA as a cellular chaperone, which inhibits aggregation of substrate proteins under heat stress condition. Moreover it was shown that GreA enables E.coli to survive heat shock and oxidative stress. In the current work, we have characterized the moonlighting chaperone activity and its plausible mechanism in Mycobacterium smegmatis Gre (MsGre) factor. We show here that MsGre prevents heat-induced aggregation of the substrate protein and also protects enzymatic activity. Interestingly Gre factor exists as a dimer in solution and does not undergo heat induced oligomerization. From the 8-anilino-1-naphthalene sulfonate (ANS) binding studies MsGre was shown to expose hydrophobic surface upon heat stress that would allow binding to unfolded or partially folded substrate protein. From Circular Dichroism (CD) studies, we also show that MsGre has a stable secondary structure under thermal stress. We propose that the presence of C-terminal FKBP-like fold in MsGre factor that might contribute to its chaperone-like function.
Collapse
Affiliation(s)
- Abyson Joseph
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala P.O., Vithura, Trivandrum, Kerala 695551, India
| | - Valakunja Nagaraja
- Microbiology and Cell Biology Unit, Indian Institute of Science, Bangalore, Karnataka, India; Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, Karnataka, India
| | - Ramanathan Natesh
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala P.O., Vithura, Trivandrum, Kerala 695551, India.
| |
Collapse
|
10
|
Fouqueau T, Blombach F, Cackett G, Carty AE, Matelska DM, Ofer S, Pilotto S, Phung DK, Werner F. The cutting edge of archaeal transcription. Emerg Top Life Sci 2018; 2:517-533. [PMID: 33525828 PMCID: PMC7289017 DOI: 10.1042/etls20180014] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 10/01/2018] [Accepted: 10/04/2018] [Indexed: 12/26/2022]
Abstract
The archaeal RNA polymerase (RNAP) is a double-psi β-barrel enzyme closely related to eukaryotic RNAPII in terms of subunit composition and architecture, promoter elements and basal transcription factors required for the initiation and elongation phase of transcription. Understanding archaeal transcription is, therefore, key to delineate the universally conserved fundamental mechanisms of transcription as well as the evolution of the archaeo-eukaryotic transcription machineries. The dynamic interplay between RNAP subunits, transcription factors and nucleic acids dictates the activity of RNAP and ultimately gene expression. This review focusses on recent progress in our understanding of (i) the structure, function and molecular mechanisms of known and less characterized factors including Elf1 (Elongation factor 1), NusA (N-utilization substance A), TFS4, RIP and Eta, and (ii) their evolution and phylogenetic distribution across the expanding tree of Archaea.
Collapse
Affiliation(s)
- Thomas Fouqueau
- RNAP laboratory, Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London WC1E 6BT, U.K
| | - Fabian Blombach
- RNAP laboratory, Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London WC1E 6BT, U.K
| | - Gwenny Cackett
- RNAP laboratory, Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London WC1E 6BT, U.K
| | - Alice E Carty
- RNAP laboratory, Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London WC1E 6BT, U.K
| | - Dorota M Matelska
- RNAP laboratory, Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London WC1E 6BT, U.K
| | - Sapir Ofer
- RNAP laboratory, Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London WC1E 6BT, U.K
| | - Simona Pilotto
- RNAP laboratory, Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London WC1E 6BT, U.K
| | - Duy Khanh Phung
- RNAP laboratory, Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London WC1E 6BT, U.K
| | - Finn Werner
- RNAP laboratory, Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London WC1E 6BT, U.K
| |
Collapse
|
11
|
Puzzling conformational changes affecting proteins binding to the RNA polymerase. Proc Natl Acad Sci U S A 2018; 115:12550-12552. [PMID: 30498028 DOI: 10.1073/pnas.1818361115] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
12
|
Gourse RL, Chen AY, Gopalkrishnan S, Sanchez-Vazquez P, Myers A, Ross W. Transcriptional Responses to ppGpp and DksA. Annu Rev Microbiol 2018; 72:163-184. [PMID: 30200857 PMCID: PMC6586590 DOI: 10.1146/annurev-micro-090817-062444] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The stringent response to nutrient deprivation is a stress response found throughout the bacterial domain of life. Although first described in proteobacteria for matching ribosome synthesis to the cell's translation status and for preventing formation of defective ribosomal particles, the response is actually much broader, regulating many hundreds of genes-some positively, some negatively. Utilization of the signaling molecules ppGpp and pppGpp for this purpose is ubiquitous in bacterial evolution, although the mechanisms employed vary. In proteobacteria, the signaling molecules typically bind to two sites on RNA polymerase, one at the interface of the β' and ω subunits and one at the interface of the β' secondary channel and the transcription factor DksA. The β' secondary channel is targeted by other transcription regulators as well. Although studies on the transcriptional outputs of the stringent response date back at least 50 years, the mechanisms responsible are only now coming into focus.
Collapse
Affiliation(s)
- Richard L Gourse
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; , , , , ,
| | - Albert Y Chen
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; , , , , ,
| | - Saumya Gopalkrishnan
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; , , , , ,
| | - Patricia Sanchez-Vazquez
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; , , , , ,
| | | | - Wilma Ross
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; , , , , ,
| |
Collapse
|
13
|
Joseph A, Nagaraja V, Natesh R. MSMEG_6292, a Mycobacterium smegmatis RNA polymerase secondary channel-binding protein: purification, crystallization and X-ray diffraction analysis. Acta Crystallogr F Struct Biol Commun 2018; 74:543-548. [PMID: 30198886 PMCID: PMC6130422 DOI: 10.1107/s2053230x18009755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 07/09/2018] [Indexed: 11/10/2022] Open
Abstract
The transcriptional activity of RNA polymerase (RNAP) is controlled by a diverse set of regulatory factors. A subset of these regulators modulate the activity of RNAP through its secondary channel. Gre factors reactivate stalled elongation complexes by enhancing the intrinsic cleavage activity of RNAP. In the present study, the protein MSMEG_6292, a Gre-factor homologue from Mycobacterium smegmatis, was expressed heterologously in Escherichia coli and purified using standard chromatographic techniques. The hanging-drop vapour-diffusion crystallization method yielded diffraction-quality crystals. The crystals belonged to the trigonal space group P3121 (or its enantiomorph P3221), with unit-cell parameters a = b = 83.15, c = 107.07 Å, α = β = 90, γ = 120°. The crystals diffracted to better than 3.0 Å resolution. Molecular-replacement attempts did not yield any phasing models; hence, platinum derivatization was carried out with K2PtCl4 and derivative data were collected to 3.4 Å resolution.
Collapse
Affiliation(s)
- Abyson Joseph
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Trivandrum, Kerala 695 016, India
| | - Valakunja Nagaraja
- Microbiology and Cell Biology Unit, Indian Institute of Science, Bangalore, Karnataka, India
| | - Ramanathan Natesh
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Trivandrum, Kerala 695 016, India
| |
Collapse
|
14
|
Fouqueau T, Blombach F, Hartman R, Cheung ACM, Young MJ, Werner F. The transcript cleavage factor paralogue TFS4 is a potent RNA polymerase inhibitor. Nat Commun 2017; 8:1914. [PMID: 29203770 PMCID: PMC5715097 DOI: 10.1038/s41467-017-02081-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 11/05/2017] [Indexed: 12/03/2022] Open
Abstract
TFIIS-like transcript cleavage factors enhance the processivity and fidelity of archaeal and eukaryotic RNA polymerases. Sulfolobus solfataricus TFS1 functions as a bona fide cleavage factor, while the paralogous TFS4 evolved into a potent RNA polymerase inhibitor. TFS4 destabilises the TBP–TFB–RNAP pre-initiation complex and inhibits transcription initiation and elongation. All inhibitory activities are dependent on three lysine residues at the tip of the C-terminal zinc ribbon of TFS4; the inhibition likely involves an allosteric component and is mitigated by the basal transcription factor TFEα/β. A chimeric variant of yeast TFIIS and TFS4 inhibits RNAPII transcription, suggesting that the molecular basis of inhibition is conserved between archaea and eukaryotes. TFS4 expression in S. solfataricus is induced in response to infection with the Sulfolobus turreted icosahedral virus. Our results reveal a compelling functional diversification of cleavage factors in archaea, and provide novel insights into transcription inhibition in the context of the host–virus relationship. Transcript cleavage factors such as eukaryotic TFIIS assist the resumption of transcription following RNA pol II backtracking. Here the authors find that one of the Sulfolobus solfataricus TFIIS homolog—TFS4—has evolved into a potent RNA polymerase inhibitor potentially involved in antiviral defense.
Collapse
Affiliation(s)
- Thomas Fouqueau
- Institute of Structural & Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, UK
| | - Fabian Blombach
- Institute of Structural & Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, UK
| | - Ross Hartman
- Department of Microbiology, Montana State University, 173520, Bozeman, MT, MT 59717, USA
| | - Alan C M Cheung
- Institute of Structural & Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, UK
| | - Mark J Young
- Department of Microbiology, Montana State University, 173520, Bozeman, MT, MT 59717, USA.,Department of Plant Sciences, Montana State University, 173150, Bozeman, MT, MT 59717, USA
| | - Finn Werner
- Institute of Structural & Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
15
|
Agapov A, Olina A, Esyunina D, Kulbachinskiy A. Gfh factors and NusA cooperate to stimulate transcriptional pausing and termination. FEBS Lett 2017; 591:946-953. [PMID: 28236657 DOI: 10.1002/1873-3468.12609] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 02/12/2017] [Accepted: 02/21/2017] [Indexed: 11/09/2022]
Abstract
Lineage-specific Gfh factors from the radioresistant bacterium Deinococcus radiodurans, which bind within the secondary channel of RNA polymerase, stimulate transcriptional pausing at a wide range of pause signals (elemental, hairpin-dependent, post-translocated, backtracking-dependent, and consensus pauses) and increase intrinsic termination. Universal bacterial factor NusA, which binds near the RNA exit channel, enhances the effects of Gfh factors on termination and hairpin-dependent pausing but do not act on other pause sites. It is proposed that NusA and Gfh target different steps in the pausing pathway and may act together to regulate transcription under stress conditions. Thus, transcription factors that interact with nascent RNA in the RNA exit channel can communicate with secondary channel regulators to modulate RNA polymerase activities.
Collapse
Affiliation(s)
- Aleksei Agapov
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia.,Department of Molecular Biology, Biological Faculty, Moscow State University, Russia
| | - Anna Olina
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia.,Department of Plant Physiology, Biological Faculty, Moscow State University, Russia
| | - Daria Esyunina
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Andrey Kulbachinskiy
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia.,Department of Molecular Biology, Biological Faculty, Moscow State University, Russia
| |
Collapse
|
16
|
Regulation of transcription initiation by Gfh factors from Deinococcus radiodurans. Biochem J 2016; 473:4493-4505. [PMID: 27754888 DOI: 10.1042/bcj20160659] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 10/15/2016] [Accepted: 10/17/2016] [Indexed: 02/06/2023]
Abstract
Transcription factors of the Gre family bind within the secondary channel of bacterial RNA polymerase (RNAP) directly modulating its catalytic activities. Universally conserved Gre factors activate RNA cleavage by RNAP, by chelating catalytic metal ions in the RNAP active site, and facilitate both promoter escape and transcription elongation. Gfh factors are Deinococcus/Thermus-specific homologues of Gre factors whose transcription functions remain poorly understood. Recently, we found that Gfh1 and Gfh2 proteins from Deinococcus radiodurans dramatically stimulate RNAP pausing during transcription elongation in the presence of Mn2+, but not Mg2+, ions. In contrast, we show that Gfh1 and Gfh2 moderately inhibit transcription initiation in the presence of either Mg2+ or Mn2+ ions. By using a molecular beacon assay, we demonstrate that Gfh1 and Gfh2 do not significantly change promoter complex stability or the rate of promoter escape by D. radiodurans RNAP. At the same time, Gfh factors significantly increase the apparent KM value for the 5'-initiating nucleotide, without having major effects on the affinity of metal ions for the RNAP active site. Similar inhibitory effects of Gfh factors are observed for transcription initiation on promoters recognized by the principal and an alternative σ factor. In summary, our data suggest that D. radiodurans Gfh factors impair the binding of initiating substrates independently of the metal ions bound in the RNAP active site, but have only mild overall effects on transcription initiation. Thus the mechanisms of modulation of RNAP activity by these factors are different for various steps of transcription.
Collapse
|
17
|
Agapov AA, Kulbachinskiy AV. Mechanisms of Stress Resistance and Gene Regulation in the Radioresistant Bacterium Deinococcus radiodurans. BIOCHEMISTRY (MOSCOW) 2016; 80:1201-16. [PMID: 26567564 DOI: 10.1134/s0006297915100016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The bacterium Deinococcus radiodurans reveals extraordinary resistance to ionizing radiation, oxidative stress, desiccation, and other damaging conditions. In this review, we consider the main molecular mechanisms underlying such resistance, including the action of specific DNA repair and antioxidation systems, and transcription regulation during the anti-stress response.
Collapse
Affiliation(s)
- A A Agapov
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182, Russia.
| | | |
Collapse
|
18
|
Regulation of transcriptional pausing through the secondary channel of RNA polymerase. Proc Natl Acad Sci U S A 2016; 113:8699-704. [PMID: 27432968 DOI: 10.1073/pnas.1603531113] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Transcriptional pausing has emerged as an essential mechanism of genetic regulation in both bacteria and eukaryotes, where it serves to coordinate transcription with other cellular processes and to activate or halt gene expression rapidly in response to external stimuli. Deinococcus radiodurans, a highly radioresistant and stress-resistant bacterium, encodes three members of the Gre family of transcription factors: GreA and two Gre factor homologs, Gfh1 and Gfh2. Whereas GreA is a universal bacterial factor that stimulates RNA cleavage by RNA polymerase (RNAP), the functions of lineage-specific Gfh proteins remain unknown. Here, we demonstrate that these proteins, which bind within the RNAP secondary channel, strongly enhance site-specific transcriptional pausing and intrinsic termination. Uniquely, the pause-stimulatory activity of Gfh proteins depends on the nature of divalent ions (Mg(2+) or Mn(2+)) present in the reaction and is also modulated by the nascent RNA structure and the trigger loop in the RNAP active site. Our data reveal remarkable plasticity of the RNAP active site in response to various regulatory stimuli and highlight functional diversity of transcription factors that bind inside the secondary channel of RNAP.
Collapse
|
19
|
Sekine SI, Murayama Y, Svetlov V, Nudler E, Yokoyama S. Ratcheting of RNA polymerase toward structural principles of RNA polymerase operations. Transcription 2016. [PMID: 26226152 PMCID: PMC4581356 DOI: 10.1080/21541264.2015.1059922] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
RNA polymerase (RNAP) performs various tasks during transcription by changing its conformational states, which are gradually becoming clarified. A recent study focusing on the conformational transition of RNAP between the ratcheted and tight forms illuminated the structural principles underlying its functional operations.
Collapse
Affiliation(s)
- Shun-ichi Sekine
- a Division of Structural and Synthetic Biology ; RIKEN Center for Life Science Technologies ; Suehiro-cho, Tsurumi-ku , Yokohama , Japan
| | | | | | | | | |
Collapse
|
20
|
Esyunina D, Turtola M, Pupov D, Bass I, Klimašauskas S, Belogurov G, Kulbachinskiy A. Lineage-specific variations in the trigger loop modulate RNA proofreading by bacterial RNA polymerases. Nucleic Acids Res 2016; 44:1298-308. [PMID: 26733581 PMCID: PMC4756841 DOI: 10.1093/nar/gkv1521] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 12/20/2015] [Indexed: 02/01/2023] Open
Abstract
RNA cleavage by bacterial RNA polymerase (RNAP) has been implicated in transcriptional proofreading and reactivation of arrested transcription elongation complexes but its molecular mechanism is less understood than the mechanism of nucleotide addition, despite both reactions taking place in the same active site. RNAP from the radioresistant bacterium Deinococcus radiodurans is characterized by highly efficient intrinsic RNA cleavage in comparison with Escherichia coli RNAP. We find that the enhanced RNA cleavage activity largely derives from amino acid substitutions in the trigger loop (TL), a mobile element of the active site involved in various RNAP activities. The differences in RNA cleavage between these RNAPs disappear when the TL is deleted, or in the presence of GreA cleavage factors, which replace the TL in the active site. We propose that the TL substitutions modulate the RNA cleavage activity by altering the TL folding and its contacts with substrate RNA and that the resulting differences in transcriptional proofreading may play a role in bacterial stress adaptation.
Collapse
Affiliation(s)
- Daria Esyunina
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov square 2, Moscow 123182, Russia
| | - Matti Turtola
- Department of Biochemistry, University of Turku, Turku 20014, Finland
| | - Danil Pupov
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov square 2, Moscow 123182, Russia
| | - Irina Bass
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov square 2, Moscow 123182, Russia
| | | | - Georgiy Belogurov
- Department of Biochemistry, University of Turku, Turku 20014, Finland
| | - Andrey Kulbachinskiy
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov square 2, Moscow 123182, Russia
| |
Collapse
|
21
|
Zhang N, Schäfer J, Sharma A, Rayner L, Zhang X, Tuma R, Stockley P, Buck M. Mutations in RNA Polymerase Bridge Helix and Switch Regions Affect Active-Site Networks and Transcript-Assisted Hydrolysis. J Mol Biol 2015; 427:3516-3526. [PMID: 26365052 PMCID: PMC4641871 DOI: 10.1016/j.jmb.2015.09.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 09/02/2015] [Accepted: 09/03/2015] [Indexed: 11/21/2022]
Abstract
In bacterial RNA polymerase (RNAP), the bridge helix and switch regions form an intricate network with the catalytic active centre and the main channel. These interactions are important for catalysis, hydrolysis and clamp domain movement. By targeting conserved residues in Escherichia coli RNAP, we are able to show that functions of these regions are differentially required during σ70-dependent and the contrasting σ54-dependent transcription activations and thus potentially underlie the key mechanistic differences between the two transcription paradigms. We further demonstrate that the transcription factor DksA directly regulates σ54-dependent activation both positively and negatively. This finding is consistent with the observed impacts of DksA on σ70-dependent promoters. DksA does not seem to significantly affect RNAP binding to a pre-melted promoter DNA but affects extensively activity at the stage of initial RNA synthesis on σ54-regulated promoters. Strikingly, removal of the σ54 Region I is sufficient to invert the action of DksA (from stimulation to inhibition or vice versa) at two test promoters. The RNAP mutants we generated also show a strong propensity to backtrack. These mutants increase the rate of transcript-hydrolysis cleavage to a level comparable to that seen in the Thermus aquaticus RNAP even in the absence of a non-complementary nucleotide. These novel phenotypes imply an important function of the bridge helix and switch regions as an anti-backtracking ratchet and an RNA hydrolysis regulator. The bridge helix and switch regions form an intricate network in RNAP. The σ70 and σ54 transcription systems differentially use this interaction network. Transcription factor DksA and σ54 Region I also contribute to this network. Disruption of this network enhances backtracking and intrinsic RNA hydrolysis.
Collapse
Affiliation(s)
- Nan Zhang
- Division of Cell and Molecular Biology, Imperial College London, Sir Alexander Fleming Building, Exhibition Road, London SW7 2AZ, United Kingdom.
| | - Jorrit Schäfer
- Division of Cell and Molecular Biology, Imperial College London, Sir Alexander Fleming Building, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Amit Sharma
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Lucy Rayner
- Division of Cell and Molecular Biology, Imperial College London, Sir Alexander Fleming Building, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Xiaodong Zhang
- Division of Macromolecular Structure and Function, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Roman Tuma
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Peter Stockley
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Martin Buck
- Division of Cell and Molecular Biology, Imperial College London, Sir Alexander Fleming Building, Exhibition Road, London SW7 2AZ, United Kingdom.
| |
Collapse
|
22
|
New Insights into the Functions of Transcription Factors that Bind the RNA Polymerase Secondary Channel. Biomolecules 2015; 5:1195-209. [PMID: 26120903 PMCID: PMC4598747 DOI: 10.3390/biom5031195] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 05/06/2015] [Accepted: 06/09/2015] [Indexed: 11/25/2022] Open
Abstract
Transcription elongation is regulated at several different levels, including control by various accessory transcription elongation factors. A distinct group of these factors interacts with the RNA polymerase secondary channel, an opening at the enzyme surface that leads to its active center. Despite investigation for several years, the activities and in vivo roles of some of these factors remain obscure. Here, we review the recent progress in understanding the functions of the secondary channel binding factors in bacteria. In particular, we highlight the surprising role of global regulator DksA in fidelity of RNA synthesis and the resolution of RNA polymerase traffic jams by the Gre factor. These findings indicate a potential link between transcription fidelity and collisions of the transcription and replication machineries.
Collapse
|
23
|
Rudra P, Prajapati RK, Banerjee R, Sengupta S, Mukhopadhyay J. Novel mechanism of gene regulation: the protein Rv1222 of Mycobacterium tuberculosis inhibits transcription by anchoring the RNA polymerase onto DNA. Nucleic Acids Res 2015; 43:5855-67. [PMID: 25999340 PMCID: PMC4499140 DOI: 10.1093/nar/gkv516] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 05/06/2015] [Indexed: 12/21/2022] Open
Abstract
We propose a novel mechanism of gene regulation in Mycobacterium tuberculosis where the protein Rv1222 inhibits transcription by anchoring RNA polymerase (RNAP) onto DNA. In contrast to our existing knowledge that transcriptional repressors function either by binding to DNA at specific sequences or by binding to RNAP, we show that Rv1222-mediated transcription inhibition requires simultaneous binding of the protein to both RNAP and DNA. We demonstrate that the positively charged C-terminus tail of Rv1222 is responsible for anchoring RNAP on DNA, hence the protein slows down the movement of RNAP along the DNA during transcription elongation. The interaction between Rv1222 and DNA is electrostatic, thus the protein could inhibit transcription from any gene. As Rv1222 slows down the RNA synthesis, upon expression of the protein in Mycobacterium smegmatis or Escherichia coli, the growth rate of the bacteria is severely impaired. The protein does not possess any significant affinity for DNA polymerase, thus, is unable to inhibit DNA synthesis. The proposed mechanism by which Rv1222 inhibits transcription reveals a new repertoire of prokaryotic gene regulation.
Collapse
Affiliation(s)
- Paulami Rudra
- Department of Chemistry, Bose Institute, 93/1 APC Road, Kolkata-700009, India
| | | | - Rajdeep Banerjee
- Department of Chemistry, Bose Institute, 93/1 APC Road, Kolkata-700009, India
| | - Shreya Sengupta
- Department of Chemistry, Bose Institute, 93/1 APC Road, Kolkata-700009, India
| | | |
Collapse
|
24
|
Furman R, Danhart EM, NandyMazumdar M, Yuan C, Foster MP, Artsimovitch I. pH dependence of the stress regulator DksA. PLoS One 2015; 10:e0120746. [PMID: 25799498 PMCID: PMC4370453 DOI: 10.1371/journal.pone.0120746] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 02/06/2015] [Indexed: 11/23/2022] Open
Abstract
DksA controls transcription of genes associated with diverse stress responses, such as amino acid and carbon starvation, oxidative stress, and iron starvation. DksA binds within the secondary channel of RNA polymerase, extending its long coiled-coil domain towards the active site. The cellular expression of DksA remains constant due to a negative feedback autoregulation, raising the question of whether DksA activity is directly modulated during stress. Here, we show that Escherichia coli DksA is essential for survival in acidic conditions and that, while its cellular levels do not change significantly, DksA activity and binding to RNA polymerase are increased at lower pH, with a concomitant decrease in its stability. NMR data reveal pH-dependent structural changes centered at the interface of the N and C-terminal regions of DksA. Consistently, we show that a partial deletion of the N-terminal region and substitutions of a histidine 39 residue at the domain interface abolish pH sensitivity in vitro. Together, these data suggest that DksA responds to changes in pH by shifting between alternate conformations, in which competing interactions between the N- and C-terminal regions modify the protein activity.
Collapse
Affiliation(s)
- Ran Furman
- Department of Microbiology, The Ohio State University, Columbus, Ohio, United States of America
- The Center for RNA Biology, The Ohio State University, Columbus, Ohio, United States of America
| | - Eric M. Danhart
- The Center for RNA Biology, The Ohio State University, Columbus, Ohio, United States of America
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, United States of America
| | - Monali NandyMazumdar
- Department of Microbiology, The Ohio State University, Columbus, Ohio, United States of America
- The Center for RNA Biology, The Ohio State University, Columbus, Ohio, United States of America
| | - Chunhua Yuan
- Campus Chemical Instrument Center, The Ohio State University, Columbus, Ohio, United States of America
| | - Mark P. Foster
- The Center for RNA Biology, The Ohio State University, Columbus, Ohio, United States of America
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, United States of America
| | - Irina Artsimovitch
- Department of Microbiology, The Ohio State University, Columbus, Ohio, United States of America
- The Center for RNA Biology, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
25
|
Sekine SI, Murayama Y, Svetlov V, Nudler E, Yokoyama S. The ratcheted and ratchetable structural states of RNA polymerase underlie multiple transcriptional functions. Mol Cell 2015; 57:408-21. [PMID: 25601758 DOI: 10.1016/j.molcel.2014.12.014] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 10/24/2014] [Accepted: 12/05/2014] [Indexed: 11/25/2022]
Abstract
DNA-dependent RNA polymerase (RNAP) accomplishes multiple tasks during transcription by assuming different structural forms. Reportedly, the "tight" form performs nucleotide addition to nascent RNA, while the "ratcheted" form is adopted for transcription inhibition. In this study, we performed Cys-pair crosslinking (CPX) analyses of various transcription complexes of a bacterial RNAP and crystallographic analyses of its backtracked and Gre-factor-bound states to clarify which of the two forms is adopted. The ratcheted form was revealed to support GreA-dependent transcript cleavage, long backtracking, hairpin-dependent pausing, and termination. In contrast, the tight form correlated with nucleotide addition, mismatch-dependent pausing, one-nucleotide backtracking, and factor-independent transcript cleavage. RNAP in the paused/backtracked state, but not the nucleotide-addition state, readily transitions to the ratcheted form ("ratchetable"), indicating that the tight form represents two distinct regulatory states. The 3' end and the hairpin structure of the nascent RNA promote the ratchetable nature by modulating the trigger-loop conformation.
Collapse
Affiliation(s)
- Shun-ichi Sekine
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan; Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan.
| | - Yuko Murayama
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan; Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Vladimir Svetlov
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Evgeny Nudler
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA; Howard Hughes Medical Institute, New York University School of Medicine, New York, NY 10016, USA
| | - Shigeyuki Yokoyama
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan; Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; RIKEN Structural Biology Laboratory, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan.
| |
Collapse
|
26
|
Tagami S, Sekine SI, Yokoyama S. A novel conformation of RNA polymerase sheds light on the mechanism of transcription. Transcription 2014; 2:162-167. [PMID: 21922057 DOI: 10.4161/trns.2.4.16148] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 05/06/2011] [Accepted: 05/06/2011] [Indexed: 01/22/2023] Open
Abstract
Transcription is a complicated, multistep process requiring stringent control. Its accuracy may be achieved in part by the conformational changes of RNA polymerase (RNAP). Here, we discuss the functional relevance of the recently reported conformational changes of RNAP, which may affect transcription control, RNAP translocation and transcription termination.
Collapse
Affiliation(s)
- Shunsuke Tagami
- RIKEN Systems and Structural Biology Center; Tsurumi, Yokohama Japan
| | | | | |
Collapse
|
27
|
A third subunit in ancestral cytochrome c-dependent nitric oxide reductases. Appl Environ Microbiol 2014; 80:4871-8. [PMID: 24907324 DOI: 10.1128/aem.00790-14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Reduction of NO to N2O by denitrifiying bacteria is catalyzed either by a monomeric quinol-nitric oxide reductase (qNor) or by a heterodimeric cytochrome c-dependent nitric oxide reductase (cNor). In ancient thermophilic bacteria belonging to the Thermales and Aquificales phylogenetic groups, the cluster encoding the cNor includes a small third gene (norH), in addition to those encoding homologues to the subunits of a typical cNor (norC and norB). We show in Thermus thermophilus that the three genes are cotranscribed in a single mRNA from an inducible promoter. The isolation of individual nor mutants and the production in vivo of His-tagged NorH protein followed by immobilized-metal affinity chromatography (IMAC) allowed us to conclude that NorH constitutes a third subunit of the cNor from T. thermophilus, which is involved in denitrification in vivo, likely allowing more efficient electron transport to cNor.
Collapse
|
28
|
Zenkin N. Multiple personalities of the RNA polymerase active centre. MICROBIOLOGY-SGM 2014; 160:1316-1320. [PMID: 24763425 DOI: 10.1099/mic.0.079020-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Transcription in all living organisms is accomplished by highly conserved multi-subunit RNA polymerases (RNAPs). Our understanding of the functioning of the active centre of RNAPs has transformed recently with the finding that a conserved flexible domain near the active centre, the trigger loop (TL), participates directly in the catalysis of RNA synthesis and serves as a major determinant for fidelity of transcription. It also appears that the TL is involved in the unique ability of RNAPs to exchange catalytic activities of the active centre. In this phenomenon the TL is replaced by a transcription factor which changes the amino acid content and, as a result, the catalytic properties of the active centre. The existence of a number of transcription factors that act through substitution of the TL suggests that the RNAP has several different active centres to choose from in response to external or internal signals. A video of this Prize Lecture, presented at the Society for General Microbiology Annual Conference 2014, can be viewed via this link: https://www.youtube.com/watch?v=79Z7iXVEPo4.
Collapse
Affiliation(s)
- Nikolay Zenkin
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Baddiley-Clark Building, Richardson Road, Newcastle upon Tyne NE2 4AX, UK
| |
Collapse
|
29
|
Swarts DC, Jore MM, Westra ER, Zhu Y, Janssen JH, Snijders AP, Wang Y, Patel DJ, Berenguer J, Brouns SJJ, van der Oost J. DNA-guided DNA interference by a prokaryotic Argonaute. Nature 2014; 507:258-261. [PMID: 24531762 DOI: 10.1038/nature12971] [Citation(s) in RCA: 315] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 12/19/2013] [Indexed: 12/19/2022]
Abstract
RNA interference is widely distributed in eukaryotes and has a variety of functions, including antiviral defence and gene regulation. All RNA interference pathways use small single-stranded RNA (ssRNA) molecules that guide proteins of the Argonaute (Ago) family to complementary ssRNA targets: RNA-guided RNA interference. The role of prokaryotic Ago variants has remained elusive, although bioinformatics analysis has suggested their involvement in host defence. Here we demonstrate that Ago of the bacterium Thermus thermophilus (TtAgo) acts as a barrier for the uptake and propagation of foreign DNA. In vivo, TtAgo is loaded with 5'-phosphorylated DNA guides, 13-25 nucleotides in length, that are mostly plasmid derived and have a strong bias for a 5'-end deoxycytidine. These small interfering DNAs guide TtAgo to cleave complementary DNA strands. Hence, despite structural homology to its eukaryotic counterparts, TtAgo functions in host defence by DNA-guided DNA interference.
Collapse
Affiliation(s)
- Daan C Swarts
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, the Netherlands
| | - Matthijs M Jore
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, the Netherlands
| | - Edze R Westra
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, the Netherlands
| | - Yifan Zhu
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, the Netherlands
| | - Jorijn H Janssen
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, the Netherlands
| | - Ambrosius P Snijders
- Clare Hall Laboratories, Cancer Research UK, London Research Institute, South Mimms EN6 3LD, UK
| | - Yanli Wang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Dinshaw J Patel
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | - José Berenguer
- Centro de Biología Molecular Severo Ochoa, UAM-CSIC, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Stan J J Brouns
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, the Netherlands
| | - John van der Oost
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, the Netherlands
| |
Collapse
|
30
|
Yuzenkova Y, Roghanian M, Zenkin N. Multiple active centers of multi-subunit RNA polymerases. Transcription 2012; 3:115-8. [PMID: 22771945 PMCID: PMC3616080 DOI: 10.4161/trns.19887] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The active center of multi-subunit RNA polymerase consists of two modules, the Mg2+ module, holding the catalytic Mg2+ ion, and a module made of a flexible domain, the Trigger Loop. Uniquely, the “TL module” can be substituted by “alternative modules,” thus changing the catalytic properties of the active center.
Collapse
Affiliation(s)
- Yulia Yuzenkova
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| | | | | |
Collapse
|
31
|
Acosta F, de Pedro MA, Berenguer J. Homogeneous incorporation of secondary cell wall polysaccharides to the cell wall of Thermus thermophilus HB27. Extremophiles 2012; 16:485-95. [PMID: 22527042 DOI: 10.1007/s00792-012-0448-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 04/02/2012] [Indexed: 11/27/2022]
Abstract
Regular surface protein layers (S-layers) from most Gram-positive bacteria and from the ancestral bacterium Thermus thermophilus attach to pyruvylated polysaccharides (SCWP) covalently bound to the peptidoglycan through their SLH domain. However, it is not known whether the synthesis of SCWP and S-layer is coordinated enough as to follow a similar pattern of incorporation to the cell wall during growth. In this work we analyse the localization of newly synthesized SCWP on the cell wall of T. thermophilus by immunoelectron microscopy. For this, we obtained mutants with a reduced amount of pyruvylated SCWP through mutation of the csaB gene encoding the SCWP-pyruvylating activity, and its upstream gene csaA, a putative sugar transporter. We hypothesized that CsaA would be required for the synthesis of the SCWP. However, we found that csaA mutants showed only a minor decrease in the amount of SCWP immunodetected on the cell walls in comparison with csaB mutants, revealing its irrelevance in the process. Complementation experiments of csaB mutants with CsaB expressed from inducible promoters revealed that newly synthesized SCWP was homogeneously distributed along the cell wall. Fusions with thermostable fluorescent protein revealed that CsaB was distributed also in homogeneous pattern associated with the membrane. These data support that synthesis of SCWP takes place in disperse and homogeneous form all over the cell surface, in contrast to the zonal incorporation at the cell centre recently demonstrated for SlpA.
Collapse
Affiliation(s)
- Federico Acosta
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, Campus de la UAM, 28049, Madrid, Spain
| | | | | |
Collapse
|
32
|
Sekine SI, Tagami S, Yokoyama S. Structural basis of transcription by bacterial and eukaryotic RNA polymerases. Curr Opin Struct Biol 2012; 22:110-8. [DOI: 10.1016/j.sbi.2011.11.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 11/14/2011] [Accepted: 11/16/2011] [Indexed: 01/22/2023]
|
33
|
Inhibition of Mycobacterium tuberculosis RNA polymerase by binding of a Gre factor homolog to the secondary channel. J Bacteriol 2011; 194:1009-17. [PMID: 22194445 DOI: 10.1128/jb.06128-11] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Because of its essential nature, each step of transcription, viz., initiation, elongation, and termination, is subjected to elaborate regulation. A number of transcription factors modulate the rates of transcription at these different steps, and several inhibitors shut down the process. Many modulators, including small molecules and proteinaceous inhibitors, bind the RNA polymerase (RNAP) secondary channel to control transcription. We describe here the first small protein inhibitor of transcription in Mycobacterium tuberculosis. Rv3788 is a homolog of the Gre factors that binds near the secondary channel of RNAP to inhibit transcription. The factor also affected the action of guanosine pentaphosphate (pppGpp) on transcription and abrogated Gre action, indicating its function in the modulation of the catalytic center of RNAP. Although it has a Gre factor-like domain organization with the conserved acidic residues in the N terminus and retains interaction with RNAP, the factor did not show any transcript cleavage stimulatory activity. Unlike Rv3788, another Gre homolog from Mycobacterium smegmatis, MSMEG_6292 did not exhibit transcription-inhibitory activities, hinting at the importance of the former in influencing the lifestyle of M. tuberculosis.
Collapse
|
34
|
Lee JH, Lennon CW, Ross W, Gourse RL. Role of the coiled-coil tip of Escherichia coli DksA in promoter control. J Mol Biol 2011; 416:503-17. [PMID: 22200485 DOI: 10.1016/j.jmb.2011.12.028] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 12/10/2011] [Accepted: 12/12/2011] [Indexed: 01/19/2023]
Abstract
Escherichia coli DksA works in conjunction with the small-molecule ppGpp to regulate transcription initiation negatively or positively, depending on the identity of the promoter. DksA is in a class of transcription factors that do not bind directly to DNA such as classical repressors or activators but rather bind in the RNA polymerase (RNAP) secondary channel such as the transcription elongation factors GreA and GreB in E. coli and TFIIS in eukaryotes. We found that substitution for either of two residues in its coiled-coil tip, D74 or A76, eliminates DksA function without affecting its apparent affinity for RNAP. The properties of DksA-Gre factor chimeras indicated that the coiled-coil tip is responsible for the DksA-specific effects on open complex formation. A conservative substitution at position 74, D74E, resulted in a loss of DksA function in both negative and positive control, and an E44D substitution at the analogous position in GreA resulted in a gain of function in both negative and positive control. That a single methylene group has such an extraordinary effect on these transcription factors highlights the critical nature of the identity of coiled-coil tip interactions with RNAP for open complex formation.
Collapse
Affiliation(s)
- Jeong-Hyun Lee
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706-1521, USA
| | | | | | | |
Collapse
|
35
|
A transcript cleavage factor of Mycobacterium tuberculosis important for its survival. PLoS One 2011; 6:e21941. [PMID: 21760927 PMCID: PMC3132773 DOI: 10.1371/journal.pone.0021941] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 06/13/2011] [Indexed: 11/19/2022] Open
Abstract
After initiation of transcription, a number of proteins participate during elongation and termination modifying the properties of the RNA polymerase (RNAP). Gre factors are one such group conserved across bacteria. They regulate transcription by projecting their N-terminal coiled-coil domain into the active center of RNAP through the secondary channel and stimulating hydrolysis of the newly synthesized RNA in backtracked elongation complexes. Rv1080c is a putative gre factor (MtbGre) in the genome of Mycobacterium tuberculosis. The protein enhanced the efficiency of promoter clearance by lowering abortive transcription and also rescued arrested and paused elongation complexes on the GC rich mycobacterial template. Although MtbGre is similar in domain organization and shares key residues for catalysis and RNAP interaction with the Gre factors of Escherichia coli, it could not complement an E. coli gre deficient strain. Moreover, MtbGre failed to rescue E. coli RNAP stalled elongation complexes, indicating the importance of specific protein-protein interactions for transcript cleavage. Decrease in the level of MtbGre reduced the bacterial survival by several fold indicating its essential role in mycobacteria. Another Gre homolog, Rv3788 was not functional in transcript cleavage activity indicating that a single Gre is sufficient for efficient transcription of the M. tuberculosis genome.
Collapse
|
36
|
Proshkin SA, Mironov AS. Regulation of bacterial transcription elongation. Mol Biol 2011. [DOI: 10.1134/s0026893311020154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
37
|
Roghanian M, Yuzenkova Y, Zenkin N. Controlled interplay between trigger loop and Gre factor in the RNA polymerase active centre. Nucleic Acids Res 2011; 39:4352-9. [PMID: 21266474 PMCID: PMC3105419 DOI: 10.1093/nar/gkq1359] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The highly processive transcription by multi-subunit RNA polymerases (RNAP) can be interrupted by misincorporation or backtracking events that may stall transcription or lead to erroneous transcripts. Backtracked/misincorporated complexes can be resolved via hydrolysis of the transcript. Here, we show that, in response to misincorporation and/or backtracking, the catalytic domain of RNAP active centre, the trigger loop (TL), is substituted by transcription factor Gre. This substitution turns off the intrinsic TL-dependent hydrolytic activity of RNAP active centre, and exchanges it to a far more efficient Gre-dependent mechanism of RNA hydrolysis. Replacement of the TL by Gre factor occurs only in backtracked/misincorporated complexes, and not in correctly elongating complexes. This controlled switching of RNAP activities allows the processivity of elongation to be unaffected by the hydrolytic activity of Gre, while ensuring efficient proofreading of transcription and resolution of backtracked complexes.
Collapse
Affiliation(s)
- Mohammad Roghanian
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Baddiley-Clark Building, Richardson Road, Newcastle upon Tyne NE2 4AX, UK
| | | | | |
Collapse
|
38
|
Blaby-Haas CE, Furman R, Rodionov DA, Artsimovitch I, de Crécy-Lagard V. Role of a Zn-independent DksA in Zn homeostasis and stringent response. Mol Microbiol 2010; 79:700-15. [PMID: 21255113 DOI: 10.1111/j.1365-2958.2010.07475.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
DksA is a global transcriptional regulator that directly interacts with RNA polymerase (RNAP) and, in conjunction with an alarmone ppGpp, alters transcription initiation at target promoters. DksA proteins studied to date contain a canonical Cys-4 Zn-finger motif thought to be essential for their proper folding and thus activity. In addition to the canonical DksA protein, the Pseudomonas aeruginosa genome encodes a closely related paralogue DksA2 that lacks the Zn-finger motif. Here, we report that DksA2 can functionally substitute for the canonical DksA in vivo in Escherichia coli and P. aeruginosa. We also demonstrate that DksA2 affects transcription by the E. coli RNAP in vitro similarly to DksA. The dksA2 gene is positioned downstream of a putative Zur binding site. Accordingly, we show that dksA2 expression is repressed by the presence of exogenous Zn, deletion of Zur results in constitutive expression of dksA2, and Zur binds specifically to the promoter region of dksA2. We also found that deletion of dksA2 confers a growth defect in the absence of Zn. Our data suggest that DksA2 plays a role in Zn homeostasis and serves as a back-up copy of the canonical Zn-dependent DksA in Zn-poor environments.
Collapse
Affiliation(s)
- Crysten E Blaby-Haas
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| | | | | | | | | |
Collapse
|
39
|
Tagami S, Sekine SI, Kumarevel T, Hino N, Murayama Y, Kamegamori S, Yamamoto M, Sakamoto K, Yokoyama S. Crystal structure of bacterial RNA polymerase bound with a transcription inhibitor protein. Nature 2010; 468:978-82. [PMID: 21124318 DOI: 10.1038/nature09573] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Accepted: 10/12/2010] [Indexed: 11/09/2022]
Abstract
The multi-subunit DNA-dependent RNA polymerase (RNAP) is the principal enzyme of transcription for gene expression. Transcription is regulated by various transcription factors. Gre factor homologue 1 (Gfh1), found in the Thermus genus, is a close homologue of the well-conserved bacterial transcription factor GreA, and inhibits transcription initiation and elongation by binding directly to RNAP. The structural basis of transcription inhibition by Gfh1 has remained elusive, although the crystal structures of RNAP and Gfh1 have been determined separately. Here we report the crystal structure of Thermus thermophilus RNAP complexed with Gfh1. The amino-terminal coiled-coil domain of Gfh1 fully occludes the channel formed between the two central modules of RNAP; this channel would normally be used for nucleotide triphosphate (NTP) entry into the catalytic site. Furthermore, the tip of the coiled-coil domain occupies the NTP β-γ phosphate-binding site. The NTP-entry channel is expanded, because the central modules are 'ratcheted' relative to each other by ∼7°, as compared with the previously reported elongation complexes. This 'ratcheted state' is an alternative structural state, defined by a newly acquired contact between the central modules. Therefore, the shape of Gfh1 is appropriate to maintain RNAP in the ratcheted state. Simultaneously, the ratcheting expands the nucleic-acid-binding channel, and kinks the bridge helix, which connects the central modules. Taken together, the present results reveal that Gfh1 inhibits transcription by preventing NTP binding and freezing RNAP in the alternative structural state. The ratcheted state might also be associated with other aspects of transcription, such as RNAP translocation and transcription termination.
Collapse
Affiliation(s)
- Shunsuke Tagami
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Pupov DV, Kulbachinskiy AV. Structural dynamics of the active center of multisubunit RNA polymerases during RNA synthesis and proofreading. Mol Biol 2010. [DOI: 10.1134/s0026893310040023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
41
|
Tagami S, Sekine SI, Kumarevel T, Yamamoto M, Yokoyama S. Crystallization and preliminary X-ray crystallographic analysis of Thermus thermophilus transcription elongation complex bound to Gfh1. Acta Crystallogr Sect F Struct Biol Cryst Commun 2009; 66:64-8. [PMID: 20057074 DOI: 10.1107/s1744309109049215] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Accepted: 11/18/2009] [Indexed: 11/10/2022]
Abstract
RNA polymerase (RNAP) elongates RNA by iterative nucleotide-addition cycles (NAC). A specific structural state (or states) of RNAP may be the target of transcription elongation factors. Gfh1, a Thermus thermophilus Gre-family protein, inhibits NAC. To elucidate which RNAP structural state Gfh1 associates with, the T. thermophilus RNAP elongation complex (EC) was cocrystallized with Gfh1. Of the 70 DNA/RNA scaffolds tested, two (for EC1 and EC2) were successfully crystallized. In the presence of Gfh1, EC1 and EC2 yielded crystals belonging to space group P2(1) with similar unit-cell parameters (crystals 1 and 2, respectively). X-ray diffraction data sets were obtained at 3.6 and 3.8 A resolution, respectively.
Collapse
Affiliation(s)
- Shunsuke Tagami
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | |
Collapse
|
42
|
Vassylyev DG. Elongation by RNA polymerase: a race through roadblocks. Curr Opin Struct Biol 2009; 19:691-700. [PMID: 19896365 DOI: 10.1016/j.sbi.2009.10.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Revised: 09/10/2009] [Accepted: 10/07/2009] [Indexed: 01/22/2023]
Abstract
Transcription is the first and most regulated step of gene expression. RNA polymerase (RNAP) is the heart of the transcription machinery and a major target for numerous regulatory pathways in living cells. The crystal structures of transcription complexes formed by bacterial RNAP in various configurations have provided a number of breakthroughs in understanding basic, universal mechanisms of transcription and have revealed regulatory 'hot spots' in RNAP that serve as targets and anchors for auxiliary transcription factors. In combination with biochemical analyses, these structures allow feasible modeling of the regulatory complexes for which experimental structural data are still missing. The available structural information suggests a number of general mechanistic predictions that provide a reference point and direction for future studies of transcription regulation.
Collapse
Affiliation(s)
- Dmitry G Vassylyev
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Schools of Medicine and Dentistry, 402B KAUL Genetics Building, 720 20th Street South, Birmingham, AL 35294, United States.
| |
Collapse
|
43
|
Stepanova EV, Shevelev AB, Borukhov SI, Severinov KV. Mechanisms of action of RNA polymerase-binding transcription factors that do not bind to DNA. Biophysics (Nagoya-shi) 2009. [DOI: 10.1134/s0006350909050017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
44
|
Abstract
RNA polymerase (RNAP) is a complex molecular machine that governs gene expression and its regulation in all cellular organisms. To accomplish its function of accurately producing a full-length RNA copy of a gene, RNAP performs a plethora of chemical reactions and undergoes multiple conformational changes in response to cellular conditions. At the heart of this machine is the active center, the engine, which is composed of distinct fixed and moving parts that serve as the ultimate acceptor of regulatory signals and as the target of inhibitory drugs. Recent advances in the structural and biochemical characterization of RNAP explain the active center at the atomic level and enable new approaches to understanding the entire transcription mechanism, its exceptional fidelity and control.
Collapse
Affiliation(s)
- Evgeny Nudler
- Department of Biochemistry, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
45
|
Mandai T, Fujiwara S, Imaoka S. A novel electron transport system for thermostable CYP175A1 fromThermus thermophilusHB27. FEBS J 2009; 276:2416-29. [DOI: 10.1111/j.1742-4658.2009.06974.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
46
|
Lamour V, Rutherford ST, Kuznedelov K, Ramagopal UA, Gourse RL, Severinov K, Darst SA. Crystal structure of Escherichia coli Rnk, a new RNA polymerase-interacting protein. J Mol Biol 2008; 383:367-79. [PMID: 18760284 DOI: 10.1016/j.jmb.2008.08.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2008] [Revised: 08/04/2008] [Accepted: 08/07/2008] [Indexed: 10/21/2022]
Abstract
Sequence-based searches identified a new family of genes in proteobacteria, named rnk, which shares high sequence similarity with the C-terminal domains of the Gre factors (GreA and GreB) and the Thermus/Deinococcus anti-Gre factor Gfh1. We solved the X-ray crystal structure of Escherichia coli regulator of nucleoside kinase (Rnk) at 1.9 A resolution using the anomalous signal from the native protein. The Rnk structure strikingly resembles those of E. coli GreA and GreB and Thermus Gfh1, all of which are RNA polymerase (RNAP) secondary channel effectors and have a C-terminal domain belonging to the FKBP fold. Rnk, however, has a much shorter N-terminal coiled coil. Rnk does not stimulate transcript cleavage in vitro, nor does it reduce the lifetime of the complex formed by RNAP on promoters. We show that Rnk competes with the Gre factors and DksA (another RNAP secondary channel effector) for binding to RNAP in vitro, and although we found that the concentration of Rnk in vivo was much lower than that of DksA, it was similar to that of GreB, consistent with a potential regulatory role for Rnk as an anti-Gre factor.
Collapse
Affiliation(s)
- Valerie Lamour
- Laboratory of Molecular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Advances in bacterial promoter recognition and its control by factors that do not bind DNA. Nat Rev Microbiol 2008; 6:507-19. [PMID: 18521075 DOI: 10.1038/nrmicro1912] [Citation(s) in RCA: 239] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Early work identified two promoter regions, the -10 and -35 elements, that interact sequence specifically with bacterial RNA polymerase (RNAP). However, we now know that several additional promoter elements contact RNAP and influence transcription initiation. Furthermore, our picture of promoter control has evolved beyond one in which regulation results solely from activators and repressors that bind to DNA sequences near the RNAP binding site: many important transcription factors bind directly to RNAP without binding to DNA. These factors can target promoters by affecting specific kinetic steps on the pathway to open complex formation, thereby regulating RNA output from specific promoters.
Collapse
|
48
|
Cava F, de Pedro MA, Blas-Galindo E, Waldo GS, Westblade LF, Berenguer J. Expression and use of superfolder green fluorescent protein at high temperatures in vivo: a tool to study extreme thermophile biology. Environ Microbiol 2008; 10:605-13. [DOI: 10.1111/j.1462-2920.2007.01482.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
49
|
Aberg A, Shingler V, Balsalobre C. Regulation of the fimB promoter: a case of differential regulation by ppGpp and DksA in vivo. Mol Microbiol 2008; 67:1223-41. [PMID: 18284577 DOI: 10.1111/j.1365-2958.2008.06115.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The expression of type 1 fimbriae is dependent on the intracellular levels of ppGpp through stimulation of fimB transcription. Here we show that in contrast to the previously described decreased fimbriation observed in a ppGpp-deficient strain, DksA deficiency results in a hyperfimbriated state. In vivo assays show that the effect of DksA deficiency on the type 1 fimbriae occurs at the phase variation level because of elevated transcription from the fimB P2 promoter. In contrast, our in vitro transcription studies demonstrate that ppGpp and DksA can stimulate transcription from the fimB P2 promoter both independently and codependently. We provide evidences that the apparently contradictory results from the in vivo and in vitro transcriptional studies are at least in part a consequence of the increased association of the anti-pausing factors (GreA and GreB) to the RNA polymerase in the absence of DksA in vivo.
Collapse
Affiliation(s)
- Anna Aberg
- Department of Molecular Biology, Umeå University, S-90187 Umeå, Sweden
| | | | | |
Collapse
|
50
|
Gene-specific regulation by a transcript cleavage factor: facilitating promoter escape. J Bacteriol 2007; 189:8769-71. [PMID: 17951384 DOI: 10.1128/jb.01611-07] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|