1
|
Göse M, Magill EE, Hughes-Games A, Shaw SJ, Diffin FM, Rawson T, Nagy Z, Seidel R, Szczelkun MD. Short-range translocation by a restriction enzyme motor triggers diffusion along DNA. Nat Chem Biol 2024; 20:689-698. [PMID: 38167920 PMCID: PMC11142916 DOI: 10.1038/s41589-023-01504-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 11/09/2023] [Indexed: 01/05/2024]
Abstract
Cleavage of bacteriophage DNA by the Type III restriction-modification enzymes requires long-range interaction between DNA sites. This is facilitated by one-dimensional diffusion ('DNA sliding') initiated by ATP hydrolysis catalyzed by a superfamily 2 helicase-like ATPase. Here we combined ultrafast twist measurements based on plasmonic DNA origami nano-rotors with stopped-flow fluorescence and gel-based assays to examine the role(s) of ATP hydrolysis. Our data show that the helicase-like domain has multiple roles. First, this domain stabilizes initial DNA interactions alongside the methyltransferase subunits. Second, it causes environmental changes in the flipped adenine base following hydrolysis of the first ATP. Finally, it remodels nucleoprotein interactions via constrained translocation of a ∼ 5 to 22-bp double stranded DNA loop. Initiation of DNA sliding requires 8-15 bp of DNA downstream of the motor, corresponding to the site of nuclease domain binding. Our data unify previous contradictory communication models for Type III enzymes.
Collapse
Affiliation(s)
- Martin Göse
- Peter Debye Institute for Soft Matter Physics, Universität Leipzig, Leipzig, Germany
| | - Emma E Magill
- DNA-Protein Interactions Unit, School of Biochemistry, University of Bristol, Bristol, UK
| | - Alex Hughes-Games
- DNA-Protein Interactions Unit, School of Biochemistry, University of Bristol, Bristol, UK
| | - Steven J Shaw
- DNA-Protein Interactions Unit, School of Biochemistry, University of Bristol, Bristol, UK
| | - Fiona M Diffin
- DNA-Protein Interactions Unit, School of Biochemistry, University of Bristol, Bristol, UK
| | - Tara Rawson
- DNA-Protein Interactions Unit, School of Biochemistry, University of Bristol, Bristol, UK
| | - Zsofia Nagy
- DNA-Protein Interactions Unit, School of Biochemistry, University of Bristol, Bristol, UK
| | - Ralf Seidel
- Peter Debye Institute for Soft Matter Physics, Universität Leipzig, Leipzig, Germany.
| | - Mark D Szczelkun
- DNA-Protein Interactions Unit, School of Biochemistry, University of Bristol, Bristol, UK.
| |
Collapse
|
2
|
Helwer R, Charette JM. The SSU Processome Component Utp25p is a Pseudohelicase. MICROPUBLICATION BIOLOGY 2022; 2022:10.17912/micropub.biology.000606. [PMID: 36212518 PMCID: PMC9539457 DOI: 10.17912/micropub.biology.000606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/19/2022] [Accepted: 09/19/2022] [Indexed: 11/09/2022]
Abstract
RNA helicases are involved in nearly all aspects of RNA metabolism and factor prominently in ribosome assembly. The SSU processome includes 10 helicases and many helicase-cofactors. Together, they mediate the structural rearrangements that occur as part of ribosomal SSU assembly. During the identification of the SSU processome component Utp25/Def, it was noticed that the protein displays some sequence similarity to DEAD-box RNA helicases and is essential for growth. Interestingly, mutational ablation showed that Utp25's DEAD-box motifs are dispensable. Here, we show that the Utp25 AlphaFold prediction displays considerable structural similarity to DEAD-box helicases and is the first fully validated pseudohelicase.
Collapse
Affiliation(s)
- Rafe Helwer
- Department of Chemistry, Brandon University, Brandon, Manitoba, Canada.
,
Children’s Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada.
,
CancerCare Manitoba Research Institute, Winnipeg, Manitoba, Canada
| | - J. Michael Charette
- Department of Chemistry, Brandon University, Brandon, Manitoba, Canada.
,
Children’s Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada.
,
CancerCare Manitoba Research Institute, Winnipeg, Manitoba, Canada.
,
Correspondence to: J. Michael Charette (
)
| |
Collapse
|
3
|
Abstract
This paper provides a perspective on potential applications of a new single-molecule technique, viz., the nanopore electro-osmotic trap (NEOtrap). This solid-state nanopore-based method uses locally induced electro-osmosis to form a hydrodynamic trap for single molecules. Ionic current recordings allow one to study an unlabeled protein or nanoparticle of arbitrary charge that can be held in the nanopore's most sensitive region for very long times. After motivating the need for improved single-molecule technologies, we sketch various possible technical extensions and combinations of the NEOtrap. We lay out diverse applications in biosensing, enzymology, protein folding, protein dynamics, fingerprinting of proteins, detecting post-translational modifications, and all that at the level of single proteins - illustrating the unique versatility and potential of the NEOtrap.
Collapse
Affiliation(s)
- Sonja Schmid
- Nanodynamics Lab, Laboratory of Biophysics, Wageningen University, Stippeneng 4, 6708WE Wageningen, the Netherlands
| | - Cees Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, the Netherlands
| |
Collapse
|
4
|
Gao Y, Cao D, Zhu J, Feng H, Luo X, Liu S, Yan XX, Zhang X, Gao P. Structural insights into assembly, operation and inhibition of a type I restriction-modification system. Nat Microbiol 2020; 5:1107-1118. [PMID: 32483229 DOI: 10.1038/s41564-020-0731-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 04/29/2020] [Indexed: 11/09/2022]
Abstract
Type I restriction-modification (R-M) systems are widespread in prokaryotic genomes and provide robust protection against foreign DNA. They are multisubunit enzymes with methyltransferase, endonuclease and translocase activities. Despite extensive studies over the past five decades, little is known about the molecular mechanisms of these sophisticated machines. Here, we report the cryo-electron microscopy structures of the representative EcoR124I R-M system in different assemblies (R2M2S1, R1M2S1 and M2S1) bound to target DNA and the phage and mobile genetic element-encoded anti-restriction proteins Ocr and ArdA. EcoR124I can precisely regulate different enzymatic activities by adopting distinct conformations. The marked conformational transitions of EcoR124I are dependent on the intrinsic flexibility at both the individual-subunit and assembled-complex levels. Moreover, Ocr and ArdA use a DNA-mimicry strategy to inhibit multiple activities, but do not block the conformational transitions of the complexes. These structural findings, complemented by mutational studies of key intermolecular contacts, provide insights into assembly, operation and inhibition mechanisms of type I R-M systems.
Collapse
Affiliation(s)
- Yina Gao
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Duanfang Cao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jingpeng Zhu
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Han Feng
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xiu Luo
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Songqing Liu
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xiao-Xue Yan
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xinzheng Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
| | - Pu Gao
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
5
|
Sinha D, Bialevich V, Shamayeva K, Guzanova A, Sisakova A, Csefalvay E, Reha D, Krejci L, Carey J, Weiserova M, Ettrich R. A residue of motif III positions the helicase domains of motor subunit HsdR in restriction-modification enzyme EcoR124I. J Mol Model 2018; 24:176. [PMID: 29943199 DOI: 10.1007/s00894-018-3722-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 06/15/2018] [Indexed: 11/27/2022]
Abstract
Type I restriction-modification enzymes differ significantly from the type II enzymes commonly used as molecular biology reagents. On hemi-methylated DNAs type I enzymes like the EcoR124I restriction-modification complex act as conventional adenine methylases at their specific target sequences, but unmethylated targets induce them to translocate thousands of base pairs through the stationary enzyme before cleaving distant sites nonspecifically. EcoR124I is a superfamily 2 DEAD-box helicase like eukaryotic double-strand DNA translocase Rad54, with two RecA-like helicase domains and seven characteristic sequence motifs that are implicated in translocation. In Rad54 a so-called extended region adjacent to motif III is involved in ATPase activity. Although the EcoR124I extended region bears sequence and structural similarities with Rad54, it does not influence ATPase or restriction activity as shown in this work, but mutagenesis of the conserved glycine residue of its motif III does alter ATPase and DNA cleavage activity. Through the lens of molecular dynamics, a full model of HsdR of EcoR124I based on available crystal structures allowed interpretation of functional effects of mutants in motif III and its extended region. The results indicate that the conserved glycine residue of motif III has a role in positioning the two helicase domains.
Collapse
Affiliation(s)
- Dhiraj Sinha
- Center for Nanobiology and Structural Biology, Institute of Microbiology, Academy of Sciences of the Czech Republic, Zamek 136, CZ-373 33, Nove Hrady, Czech Republic
| | - Vitali Bialevich
- Center for Nanobiology and Structural Biology, Institute of Microbiology, Academy of Sciences of the Czech Republic, Zamek 136, CZ-373 33, Nove Hrady, Czech Republic
| | - Katsiaryna Shamayeva
- Center for Nanobiology and Structural Biology, Institute of Microbiology, Academy of Sciences of the Czech Republic, Zamek 136, CZ-373 33, Nove Hrady, Czech Republic
| | - Alena Guzanova
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20, Praha 4, Czech Republic
| | - Alexandra Sisakova
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Kamenice 5/A7, 625 00, Brno, Czech Republic
| | - Eva Csefalvay
- Center for Nanobiology and Structural Biology, Institute of Microbiology, Academy of Sciences of the Czech Republic, Zamek 136, CZ-373 33, Nove Hrady, Czech Republic
| | - David Reha
- Center for Nanobiology and Structural Biology, Institute of Microbiology, Academy of Sciences of the Czech Republic, Zamek 136, CZ-373 33, Nove Hrady, Czech Republic.,Faculty of Sciences, University of South Bohemia in Ceske Budejovice, Zamek 136, CZ-373 33, Nove Hrady, Czech Republic
| | - Lumir Krejci
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Kamenice 5/A7, 625 00, Brno, Czech Republic.,National Centre for Biomolecular Research, Masaryk University, Kamenice 5/A4, 625 00, Brno, Czech Republic.,International Clinical Research Center, Center for Biomolecular and Cellular Engineering, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Jannette Carey
- Center for Nanobiology and Structural Biology, Institute of Microbiology, Academy of Sciences of the Czech Republic, Zamek 136, CZ-373 33, Nove Hrady, Czech Republic.,Chemistry Department, Princeton University, Princeton, NJ, 08544-1009, USA
| | - Marie Weiserova
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20, Praha 4, Czech Republic
| | - Rüdiger Ettrich
- Center for Nanobiology and Structural Biology, Institute of Microbiology, Academy of Sciences of the Czech Republic, Zamek 136, CZ-373 33, Nove Hrady, Czech Republic. .,College of Biomedical Sciences, Larkin University, 18301 North Miami Avenue, Miami, FL, 33169, USA.
| |
Collapse
|
6
|
LeGresley SE, Briggs K, Fischer CJ. Molecular motor translocation kinetics: Application of Monte Carlo computer simulations to determine microscopic kinetic parameters. Biosystems 2018; 168:8-25. [PMID: 29733888 DOI: 10.1016/j.biosystems.2018.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/30/2018] [Accepted: 05/02/2018] [Indexed: 10/17/2022]
Abstract
Methods for studying the translocation of motor proteins along a filament (e.g., nucleic acid and polypeptide) typically monitor the total production of ADP, the arrival/departure of the motor protein at/from a particular location (often one end of the filament), or the dissociation of the motor protein from the filament. The associated kinetic time courses are often analyzed using a simple sequential uniform n-step mechanism to estimate the macroscopic kinetic parameters (e.g., translocation rate and processivity) and the microscopic kinetic parameters (e.g., kinetic step-size and the rate constant for the rate-limiting step). These sequential uniform n-step mechanisms assume repetition of uniform and irreversible rate-limiting steps of forward motion along the filament. In order to determine how the presence of non-uniform motion (e.g., backward motion, random pauses, or jumping) affects the estimates of parameters obtained from such analyses, we evaluated computer simulated translocation time courses containing non-uniform motion using a simple sequential uniform n-step model. By comparing the kinetic parameters estimated from the analysis of the data generated by these simulations with the input parameters of the simulations, we were able to determine which of the kinetic parameters were likely to be over/under estimated due to non-uniform motion of the motor protein.
Collapse
Affiliation(s)
- Sarah E LeGresley
- Department of Physics and Astronomy, University of Kansas, 1251 Wescoe Hall Dr., 1082 Malott Hall, Lawrence, KS 66045, USA
| | - Koan Briggs
- Department of Physics and Astronomy, University of Kansas, 1251 Wescoe Hall Dr., 1082 Malott Hall, Lawrence, KS 66045, USA
| | - Christopher J Fischer
- Department of Physics and Astronomy, University of Kansas, 1251 Wescoe Hall Dr., 1082 Malott Hall, Lawrence, KS 66045, USA.
| |
Collapse
|
7
|
Toliusis P, Zaremba M, Silanskas A, Szczelkun MD, Siksnys V. CgII cleaves DNA using a mechanism distinct from other ATP-dependent restriction endonucleases. Nucleic Acids Res 2017; 45:8435-8447. [PMID: 28854738 PMCID: PMC5737866 DOI: 10.1093/nar/gkx580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 06/28/2017] [Indexed: 01/10/2023] Open
Abstract
The restriction endonuclease CglI from Corynebacterium glutamicum recognizes an asymmetric 5′-GCCGC-3′ site and cleaves the DNA 7 and 6/7 nucleotides downstream on the top and bottom DNA strands, respectively, in an NTP-hydrolysis dependent reaction. CglI is composed of two different proteins: an endonuclease (R.CglI) and a DEAD-family helicase-like ATPase (H.CglI). These subunits form a heterotetrameric complex with R2H2 stoichiometry. However, the R2H2·CglI complex has only one nuclease active site sufficient to cut one DNA strand suggesting that two complexes are required to introduce a double strand break. Here, we report studies to evaluate the DNA cleavage mechanism of CglI. Using one- and two-site circular DNA substrates we show that CglI does not require two sites on the same DNA for optimal catalytic activity. However, one-site linear DNA is a poor substrate, supporting a mechanism where CglI complexes must communicate along the one-dimensional DNA contour before cleavage is activated. Based on experimental data, we propose that adenosine triphosphate (ATP) hydrolysis by CglI produces translocation on DNA preferentially in a downstream direction from the target, although upstream translocation is also possible. Our results are consistent with a mechanism of CglI action that is distinct from that of other ATP-dependent restriction-modification enzymes.
Collapse
Affiliation(s)
- Paulius Toliusis
- Department of Protein-DNA Interactions, Institute of Biotechnology, Vilnius University, Sauletekio al. 7, LT-10257, Vilnius, Lithuania
| | - Mindaugas Zaremba
- Department of Protein-DNA Interactions, Institute of Biotechnology, Vilnius University, Sauletekio al. 7, LT-10257, Vilnius, Lithuania
| | - Arunas Silanskas
- Department of Protein-DNA Interactions, Institute of Biotechnology, Vilnius University, Sauletekio al. 7, LT-10257, Vilnius, Lithuania
| | - Mark D Szczelkun
- DNA-Protein Interactions Unit, School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK
| | - Virginijus Siksnys
- Department of Protein-DNA Interactions, Institute of Biotechnology, Vilnius University, Sauletekio al. 7, LT-10257, Vilnius, Lithuania
| |
Collapse
|
8
|
Bialevich V, Sinha D, Shamayeva K, Guzanova A, Řeha D, Csefalvay E, Carey J, Weiserova M, Ettrich RH. The helical domain of the EcoR124I motor subunit participates in ATPase activity and dsDNA translocation. PeerJ 2017; 5:e2887. [PMID: 28133570 PMCID: PMC5248579 DOI: 10.7717/peerj.2887] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 12/08/2016] [Indexed: 01/20/2023] Open
Abstract
Type I restriction-modification enzymes are multisubunit, multifunctional molecular machines that recognize specific DNA target sequences, and their multisubunit organization underlies their multifunctionality. EcoR124I is the archetype of Type I restriction-modification family IC and is composed of three subunit types: HsdS, HsdM, and HsdR. DNA cleavage and ATP-dependent DNA translocation activities are housed in the distinct domains of the endonuclease/motor subunit HsdR. Because the multiple functions are integrated in this large subunit of 1,038 residues, a large number of interdomain contacts might be expected. The crystal structure of EcoR124I HsdR reveals a surprisingly sparse number of contacts between helicase domain 2 and the C-terminal helical domain that is thought to be involved in assembly with HsdM. Only two potential hydrogen-bonding contacts are found in a very small contact region. In the present work, the relevance of these two potential hydrogen-bonding interactions for the multiple activities of EcoR124I is evaluated by analysing mutant enzymes using in vivo and in vitro experiments. Molecular dynamics simulations are employed to provide structural interpretation of the functional data. The results indicate that the helical C-terminal domain is involved in the DNA translocation, cleavage, and ATPase activities of HsdR, and a role in controlling those activities is suggested.
Collapse
Affiliation(s)
- Vitali Bialevich
- Center for Nanobiology and Structural Biology, Institute of Microbiology of the Academy of Sciences of the Czech Republic, Nove Hrady, Czech Republic
- Faculty of Sciences, University of South Bohemia in Ceske Budejovice, Nove Hrady, Czech Republic
| | - Dhiraj Sinha
- Center for Nanobiology and Structural Biology, Institute of Microbiology of the Academy of Sciences of the Czech Republic, Nove Hrady, Czech Republic
- Faculty of Sciences, University of South Bohemia in Ceske Budejovice, Nove Hrady, Czech Republic
| | - Katsiaryna Shamayeva
- Center for Nanobiology and Structural Biology, Institute of Microbiology of the Academy of Sciences of the Czech Republic, Nove Hrady, Czech Republic
| | - Alena Guzanova
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - David Řeha
- Center for Nanobiology and Structural Biology, Institute of Microbiology of the Academy of Sciences of the Czech Republic, Nove Hrady, Czech Republic
- Faculty of Sciences, University of South Bohemia in Ceske Budejovice, Nove Hrady, Czech Republic
| | - Eva Csefalvay
- Center for Nanobiology and Structural Biology, Institute of Microbiology of the Academy of Sciences of the Czech Republic, Nove Hrady, Czech Republic
| | - Jannette Carey
- Center for Nanobiology and Structural Biology, Institute of Microbiology of the Academy of Sciences of the Czech Republic, Nove Hrady, Czech Republic
- Chemistry Department, Princeton University, Princeton, NJ, United States
| | - Marie Weiserova
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Rüdiger H. Ettrich
- Center for Nanobiology and Structural Biology, Institute of Microbiology of the Academy of Sciences of the Czech Republic, Nove Hrady, Czech Republic
- Faculty of Sciences, University of South Bohemia in Ceske Budejovice, Nove Hrady, Czech Republic
- College of Medical Sciences, Nova Southeastern University, Fort Lauderdale, FL, United States
| |
Collapse
|
9
|
Youell J, Sikora AE, Vejsadová Š, Weiserova M, Smith JR, Firman K. Cofactor induced dissociation of the multifunctional multisubunit EcoR124I investigated using electromobility shift assays, AFM and SPR. RSC Adv 2017. [DOI: 10.1039/c7ra07505g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We have applied three techniques to the study of subunit assembly of the Type IC Restriction–Modification enzyme EcoR124I.
Collapse
Affiliation(s)
- James Youell
- School of Biological Sciences
- University of Portsmouth
- Portsmouth PO1 2DY
- UK
| | - Aneta E. Sikora
- School of Biological Sciences
- University of Portsmouth
- Portsmouth PO1 2DY
- UK
| | - Štěpánka Vejsadová
- School of Biological Sciences
- University of Portsmouth
- Portsmouth PO1 2DY
- UK
| | - Marie Weiserova
- Institute of Microbiology
- ASCR, v.v.i
- 142 20 Prague 4
- Czech Republic
| | - James R. Smith
- School of Pharmacy and Biomedical Sciences
- University of Portsmouth
- Portsmouth PO1 2DT
- UK
| | - Keith Firman
- School of Biological Sciences
- University of Portsmouth
- Portsmouth PO1 2DY
- UK
| |
Collapse
|
10
|
Kemmerich FE, Kasaciunaite K, Seidel R. Modular magnetic tweezers for single-molecule characterizations of helicases. Methods 2016; 108:4-13. [PMID: 27402355 DOI: 10.1016/j.ymeth.2016.07.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 07/05/2016] [Accepted: 07/06/2016] [Indexed: 01/09/2023] Open
Abstract
Magnetic tweezers provide a versatile toolkit supporting the mechanistic investigation of helicases. In the present article, we show that custom magnetic tweezers setups are straightforward to construct and can easily be extended to provide adaptable platforms, capable of addressing a multitude of enquiries regarding the functions of these fascinating molecular machines. We first address the fundamental components of a basic magnetic tweezers scheme and review some previous results to demonstrate the versatility of this instrument. We then elaborate on several extensions to the basic magnetic tweezers scheme, and demonstrate their applications with data from ongoing research. As our methodological overview illustrates, magnetic tweezers are an extremely useful tool for the characterization of helicases and a custom built instrument can be specifically tailored to suit the experimenter's needs.
Collapse
Affiliation(s)
- Felix E Kemmerich
- Molecular Biophysics Group, Institute of Experimental Physics I, Universität Leipzig, 04103 Leipzig, Germany
| | - Kristina Kasaciunaite
- Molecular Biophysics Group, Institute of Experimental Physics I, Universität Leipzig, 04103 Leipzig, Germany
| | - Ralf Seidel
- Molecular Biophysics Group, Institute of Experimental Physics I, Universität Leipzig, 04103 Leipzig, Germany.
| |
Collapse
|
11
|
Chand MK, Nirwan N, Diffin FM, van Aelst K, Kulkarni M, Pernstich C, Szczelkun MD, Saikrishnan K. Translocation-coupled DNA cleavage by the Type ISP restriction-modification enzymes. Nat Chem Biol 2015; 11:870-7. [PMID: 26389736 PMCID: PMC4636054 DOI: 10.1038/nchembio.1926] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 08/27/2015] [Indexed: 01/21/2023]
Abstract
Production of endonucleolytic double-strand DNA breaks requires separate strand cleavage events. Although catalytic mechanisms for simple, dimeric endonucleases are known, there are many complex nuclease machines that are poorly understood. Here we studied the single polypeptide Type ISP restriction-modification (RM) enzymes, which cleave random DNA between distant target sites when two enzymes collide after convergent ATP-driven translocation. We report the 2.7-Å resolution X-ray crystal structure of a Type ISP enzyme-DNA complex, revealing that both the helicase-like ATPase and nuclease are located upstream of the direction of translocation, an observation inconsistent with simple nuclease-domain dimerization. Using single-molecule and biochemical techniques, we demonstrate that each ATPase remodels its DNA-protein complex and translocates along DNA without looping it, leading to a collision complex in which the nuclease domains are distal. Sequencing of the products of single cleavage events suggests a previously undescribed endonuclease model, where multiple, stochastic strand-nicking events combine to produce DNA scission.
Collapse
Affiliation(s)
- Mahesh Kumar Chand
- Division of Biology, Indian Institute of Science Education and Research, Pune, 411008, India
| | - Neha Nirwan
- Division of Biology, Indian Institute of Science Education and Research, Pune, 411008, India
| | - Fiona M. Diffin
- DNA-Protein Interactions Unit, School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Kara van Aelst
- DNA-Protein Interactions Unit, School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Manasi Kulkarni
- Division of Biology, Indian Institute of Science Education and Research, Pune, 411008, India
| | - Christian Pernstich
- DNA-Protein Interactions Unit, School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Mark D. Szczelkun
- DNA-Protein Interactions Unit, School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Kayarat Saikrishnan
- Division of Biology, Indian Institute of Science Education and Research, Pune, 411008, India
| |
Collapse
|
12
|
Liu N, Chistol G, Bustamante C. Two-subunit DNA escort mechanism and inactive subunit bypass in an ultra-fast ring ATPase. eLife 2015; 4. [PMID: 26452092 PMCID: PMC4728128 DOI: 10.7554/elife.09224] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 10/08/2015] [Indexed: 11/17/2022] Open
Abstract
SpoIIIE is a homo-hexameric dsDNA translocase responsible for completing chromosome segregation in Bacillus subtilis. Here, we use a single-molecule approach to monitor SpoIIIE translocation when challenged with neutral-backbone DNA and non-hydrolyzable ATP analogs. We show that SpoIIIE makes multiple essential contacts with phosphates on the 5'→3' strand in the direction of translocation. Using DNA constructs with two neutral-backbone segments separated by a single charged base pair, we deduce that SpoIIIE’s step size is 2 bp. Finally, experiments with non-hydrolyzable ATP analogs suggest that SpoIIIE can operate with non-consecutive inactive subunits. We propose a two-subunit escort translocation mechanism that is strict enough to enable SpoIIIE to track one DNA strand, yet sufficiently compliant to permit the motor to bypass inactive subunits without arrest. We speculate that such a flexible mechanism arose for motors that, like SpoIIIE, constitute functional bottlenecks where the inactivation of even a single motor can be lethal for the cell. DOI:http://dx.doi.org/10.7554/eLife.09224.001 Bacillus subtilis is a bacterium that lives in the soil. When food is in short supply, B. subtilis stops reproducing and individual bacterial cells transform into spores that lay dormant until conditions improve. While, B subtilis is generally harmless, it forms spores in a similar way to other bacteria that cause diseases such as anthrax. During spore formation, a membrane forms to divide the cell into a large mother cell and a smaller “forespore” cell. Then, a copy of the mother cell’s DNA – which is made of building blocks called bases – moves into the forespore. A group of proteins called SpoIIIE is instrumental in this process as it uses energy from a molecule called ATP to pump the DNA across the membrane at the rapid speed of 5,000 base pairs of DNA per second. SpoIIIE contains six individual protein subunits that form a ring-shaped motor structure that spans the membrane. It belongs to a large family of proteins that are found in all living organisms and drive many vital processes. How does SpoIIIE interact with DNA and how do the individual subunits coordinate their behaviour? Liu, Chistol et al. address these questions by using instruments called optical tweezers, which use a laser beam to hold and manipulate tiny objects. The experiments show that to move a fragment of DNA across a membrane, SpoIIIE only makes contact with one of the two strands that make up the DNA molecule. The experiments suggest that the DNA is handed over from one SpoIIIE subunit to another in a sequential order. This would allow the DNA to remain bound to SpoIIIE at all times as it passes through the membrane. Next, Liu, Chistol et al. measured how SpoIIIE steps along the DNA and found that each subunit takes a small two base pair step when energy is released from a single molecule of ATP. There is an element of flexibility in the system, because SpoIIIE can still move DNA normally even if some subunits cannot use energy from ATP. This provides a fail-safe mechanism that still allows the cells to form spores in the event that one subunit is disabled. Future work will concentrate in understanding how the subunits communicate around the ring to coordinate their sequential use of ATP and their DNA pumping activity. DOI:http://dx.doi.org/10.7554/eLife.09224.002
Collapse
Affiliation(s)
- Ninning Liu
- Jason L. Choy Laboratory of Single Molecule Biophysics, University of California, Berkeley, United States.,Department of Molecular and Cell Biology, University of California, Berkeley, United States
| | - Gheorghe Chistol
- Jason L. Choy Laboratory of Single Molecule Biophysics, University of California, Berkeley, United States.,Department of Physics, University of California, Berkeley, United States
| | - Carlos Bustamante
- Jason L. Choy Laboratory of Single Molecule Biophysics, University of California, Berkeley, United States.,Department of Molecular and Cell Biology, University of California, Berkeley, United States.,Department of Physics, University of California, Berkeley, United States.,California Institute for Quantitative Biosciences, Berkeley, United States.,Department of Chemistry, Howard Hughes Medical Institute, University of California, Berkeley, United States.,Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, United States.,Kavli Energy NanoSciences Institute at the University of California, Berkeley and the Lawrence Berkeley National Laboratory, Berkeley, United States
| |
Collapse
|
13
|
Briggs K, Fischer CJ. All motors have to decide is what to do with the DNA that is given them. Biomol Concepts 2015; 5:383-95. [PMID: 25367619 DOI: 10.1515/bmc-2014-0017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 09/09/2014] [Indexed: 11/15/2022] Open
Abstract
DNA translocases are a diverse group of molecular motors responsible for a wide variety of cellular functions. The goal of this review is to identify common aspects in the mechanisms for how these enzymes couple the binding and hydrolysis of ATP to their movement along DNA. Not surprisingly, the shared structural components contained within the catalytic domains of several of these motors appear to give rise to common aspects of DNA translocation. Perhaps more interesting, however, are the differences between the families of translocases and the potential associated implications both for the functions of the members of these families and for the evolution of these families. However, as there are few translocases for which complete characterizations of the mechanisms of DNA binding, DNA translocation, and DNA-stimulated ATPase have been completed, it is difficult to form many inferences. We therefore hope that this review motivates the necessary further experimentation required for broader comparisons and conclusions.
Collapse
|
14
|
Zaremba M, Toliusis P, Grigaitis R, Manakova E, Silanskas A, Tamulaitiene G, Szczelkun MD, Siksnys V. DNA cleavage by CgII and NgoAVII requires interaction between N- and R-proteins and extensive nucleotide hydrolysis. Nucleic Acids Res 2014; 42:13887-96. [PMID: 25429977 PMCID: PMC4267653 DOI: 10.1093/nar/gku1236] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 10/31/2014] [Accepted: 11/10/2014] [Indexed: 01/07/2023] Open
Abstract
The stress-sensitive restriction-modification (RM) system CglI from Corynebacterium glutamicum and the homologous NgoAVII RM system from Neisseria gonorrhoeae FA1090 are composed of three genes: a DNA methyltransferase (M.CglI and M.NgoAVII), a putative restriction endonuclease (R.CglI and R.NgoAVII, or R-proteins) and a predicted DEAD-family helicase/ATPase (N.CglI and N.NgoAVII or N-proteins). Here we report a biochemical characterization of the R- and N-proteins. Size-exclusion chromatography and SAXS experiments reveal that the isolated R.CglI, R.NgoAVII and N.CglI proteins form homodimers, while N.NgoAVII is a monomer in solution. Moreover, the R.CglI and N.CglI proteins assemble in a complex with R2N2 stoichiometry. Next, we show that N-proteins have ATPase activity that is dependent on double-stranded DNA and is stimulated by the R-proteins. Functional ATPase activity and extensive ATP hydrolysis (∼170 ATP/s/monomer) are required for site-specific DNA cleavage by R-proteins. We show that ATP-dependent DNA cleavage by R-proteins occurs at fixed positions (6-7 nucleotides) downstream of the asymmetric recognition sequence 5'-GCCGC-3'. Despite similarities to both Type I and II restriction endonucleases, the CglI and NgoAVII enzymes may employ a unique catalytic mechanism for DNA cleavage.
Collapse
Affiliation(s)
- Mindaugas Zaremba
- Department of Protein-DNA Interactions, Institute of Biotechnology, Vilnius University, Graiciuno 8, LT-02241 Vilnius, Lithuania
| | - Paulius Toliusis
- Department of Protein-DNA Interactions, Institute of Biotechnology, Vilnius University, Graiciuno 8, LT-02241 Vilnius, Lithuania
| | - Rokas Grigaitis
- Department of Protein-DNA Interactions, Institute of Biotechnology, Vilnius University, Graiciuno 8, LT-02241 Vilnius, Lithuania
| | - Elena Manakova
- Department of Protein-DNA Interactions, Institute of Biotechnology, Vilnius University, Graiciuno 8, LT-02241 Vilnius, Lithuania
| | - Arunas Silanskas
- Department of Protein-DNA Interactions, Institute of Biotechnology, Vilnius University, Graiciuno 8, LT-02241 Vilnius, Lithuania
| | - Giedre Tamulaitiene
- Department of Protein-DNA Interactions, Institute of Biotechnology, Vilnius University, Graiciuno 8, LT-02241 Vilnius, Lithuania
| | - Mark D Szczelkun
- DNA-Protein Interactions Unit, School of Biochemistry, Medical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Virginijus Siksnys
- Department of Protein-DNA Interactions, Institute of Biotechnology, Vilnius University, Graiciuno 8, LT-02241 Vilnius, Lithuania
| |
Collapse
|
15
|
Loenen WAM, Dryden DTF, Raleigh EA, Wilson GG. Type I restriction enzymes and their relatives. Nucleic Acids Res 2014; 42:20-44. [PMID: 24068554 PMCID: PMC3874165 DOI: 10.1093/nar/gkt847] [Citation(s) in RCA: 175] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 08/26/2013] [Accepted: 08/29/2013] [Indexed: 12/24/2022] Open
Abstract
Type I restriction enzymes (REases) are large pentameric proteins with separate restriction (R), methylation (M) and DNA sequence-recognition (S) subunits. They were the first REases to be discovered and purified, but unlike the enormously useful Type II REases, they have yet to find a place in the enzymatic toolbox of molecular biologists. Type I enzymes have been difficult to characterize, but this is changing as genome analysis reveals their genes, and methylome analysis reveals their recognition sequences. Several Type I REases have been studied in detail and what has been learned about them invites greater attention. In this article, we discuss aspects of the biochemistry, biology and regulation of Type I REases, and of the mechanisms that bacteriophages and plasmids have evolved to evade them. Type I REases have a remarkable ability to change sequence specificity by domain shuffling and rearrangements. We summarize the classic experiments and observations that led to this discovery, and we discuss how this ability depends on the modular organizations of the enzymes and of their S subunits. Finally, we describe examples of Type II restriction-modification systems that have features in common with Type I enzymes, with emphasis on the varied Type IIG enzymes.
Collapse
Affiliation(s)
- Wil A. M. Loenen
- Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands, EastChem School of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9, 3JJ, Scotland, UK and New England Biolabs Inc., 240 County Road Ipswich, MA 01938-2723, USA
| | - David T. F. Dryden
- Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands, EastChem School of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9, 3JJ, Scotland, UK and New England Biolabs Inc., 240 County Road Ipswich, MA 01938-2723, USA
| | - Elisabeth A. Raleigh
- Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands, EastChem School of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9, 3JJ, Scotland, UK and New England Biolabs Inc., 240 County Road Ipswich, MA 01938-2723, USA
| | - Geoffrey G. Wilson
- Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands, EastChem School of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9, 3JJ, Scotland, UK and New England Biolabs Inc., 240 County Road Ipswich, MA 01938-2723, USA
| |
Collapse
|
16
|
Schwarz FW, Tóth J, van Aelst K, Cui G, Clausing S, Szczelkun MD, Seidel R. The helicase-like domains of type III restriction enzymes trigger long-range diffusion along DNA. Science 2013; 340:353-6. [PMID: 23599494 PMCID: PMC3646237 DOI: 10.1126/science.1231122] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Helicases are ubiquitous adenosine triphosphatases (ATPases) with widespread roles in genome metabolism. Here, we report a previously undescribed functionality for ATPases with helicase-like domains; namely, that ATP hydrolysis can trigger ATP-independent long-range protein diffusion on DNA in one dimension (1D). Specifically, using single-molecule fluorescence microscopy we show that the Type III restriction enzyme EcoP15I uses its ATPase to switch into a distinct structural state that diffuses on DNA over long distances and long times. The switching occurs only upon binding to the target site and requires hydrolysis of ~30 ATPs. We define the mechanism for these enzymes and show how ATPase activity is involved in DNA target site verification and 1D signaling, roles that are common in DNA metabolism: for example, in nucleotide excision and mismatch repair.
Collapse
Affiliation(s)
- Friedrich W. Schwarz
- DNA motors group, Biotechnology Center, Technische Universität Dresden, 01062 Dresden, Germany
| | - Júlia Tóth
- DNA-Protein Interactions Unit, School of Biochemistry, Medical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK
| | - Kara van Aelst
- DNA-Protein Interactions Unit, School of Biochemistry, Medical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK
| | - Guanshen Cui
- DNA-Protein Interactions Unit, School of Biochemistry, Medical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK
| | - Sylvia Clausing
- DNA motors group, Biotechnology Center, Technische Universität Dresden, 01062 Dresden, Germany
| | - Mark D. Szczelkun
- DNA-Protein Interactions Unit, School of Biochemistry, Medical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK
| | - Ralf Seidel
- DNA motors group, Biotechnology Center, Technische Universität Dresden, 01062 Dresden, Germany
- Institute of Molecular Cell Biology, University of Münster, 48149 Münster, Germany
| |
Collapse
|
17
|
Roles for Helicases as ATP-Dependent Molecular Switches. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 767:225-44. [PMID: 23161014 DOI: 10.1007/978-1-4614-5037-5_11] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
On the basis of the familial name, a "helicase" might be expected to have an enzymatic activity that unwinds duplex polynucleotides to form single strands. A more encompassing taxonomy that captures alternative enzymatic roles has defined helicases as a sub-class of molecular motors that move directionally and processively along nucleic acids, the so-called "translocases". However, even this definition may be limiting in capturing the full scope of helicase mechanism and activity. Discussed here is another, alternative view of helicases-as machines which couple NTP-binding and hydrolysis to changes in protein conformation to resolve stable nucleoprotein assembly states. This "molecular switch" role differs from the classical view of helicases as molecular motors in that only a single catalytic NTPase cycle may be involved. This is illustrated using results obtained with the DEAD-box family of RNA helicases and with a model bacterial system, the ATP-dependent Type III restriction-modification enzymes. Further examples are discussed and illustrate the wide-ranging examples of molecular switches in genome metabolism.
Collapse
|
18
|
van Aelst K, Šišáková E, Szczelkun MD. DNA cleavage by Type ISP Restriction-Modification enzymes is initially targeted to the 3'-5' strand. Nucleic Acids Res 2012; 41:1081-90. [PMID: 23221632 PMCID: PMC3553963 DOI: 10.1093/nar/gks1210] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The mechanism by which a double-stranded DNA break is produced following collision of two translocating Type I Restriction–Modification enzymes is not fully understood. Here, we demonstrate that the related Type ISP Restriction–Modification enzymes LlaGI and LlaBIII can cooperate to cleave DNA following convergent translocation and collision. When one of these enzymes is a mutant protein that lacks endonuclease activity, DNA cleavage of the 3′-5′ strand relative to the wild-type enzyme still occurs, with the same kinetics and at the same collision loci as for a reaction between two wild-type enzymes. The DNA nicking activity of the wild-type enzyme is still activated by a protein variant entirely lacking the Mrr nuclease domain and by a helicase mutant that cannot translocate. However, the helicase mutant cannot cleave the DNA despite the presence of an intact nuclease domain. Cleavage by the wild-type enzyme is not activated by unrelated protein roadblocks. We suggest that the nuclease activity of the Type ISP enzymes is activated following collision with another Type ISP enzyme and requires adenosine triphosphate binding/hydrolysis but, surprisingly, does not require interaction between the nuclease domains. Following the initial rapid endonuclease activity, additional DNA cleavage events then occur more slowly, leading to further processing of the initial double-stranded DNA break.
Collapse
Affiliation(s)
- Kara van Aelst
- DNA-Protein Interactions Unit, School of Biochemistry, Medical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | | | | |
Collapse
|
19
|
Tóth J, van Aelst K, Salmons H, Szczelkun MD. Dissociation from DNA of Type III Restriction-Modification enzymes during helicase-dependent motion and following endonuclease activity. Nucleic Acids Res 2012; 40:6752-64. [PMID: 22523084 PMCID: PMC3413136 DOI: 10.1093/nar/gks328] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
DNA cleavage by the Type III Restriction–Modification (RM) enzymes requires the binding of a pair of RM enzymes at two distant, inversely orientated recognition sequences followed by helicase-catalysed ATP hydrolysis and long-range communication. Here we addressed the dissociation from DNA of these enzymes at two stages: during long-range communication and following DNA cleavage. First, we demonstrated that a communicating species can be trapped in a DNA domain without a recognition site, with a non-specific DNA association lifetime of ∼200 s. If free DNA ends were present the lifetime became too short to measure, confirming that ends accelerate dissociation. Secondly, we observed that Type III RM enzymes can dissociate upon DNA cleavage and go on to cleave further DNA molecules (they can ‘turnover’, albeit inefficiently). The relationship between the observed cleavage rate and enzyme concentration indicated independent binding of each site and a requirement for simultaneous interaction of at least two enzymes per DNA to achieve cleavage. In light of various mechanisms for helicase-driven motion on DNA, we suggest these results are most consistent with a thermally driven random 1D search model (i.e. ‘DNA sliding’).
Collapse
Affiliation(s)
- Júlia Tóth
- DNA-Protein Interactions Unit, School of Biochemistry, Medical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK
| | | | | | | |
Collapse
|
20
|
Luzzietti N, Knappe S, Richter I, Seidel R. Nicking enzyme-based internal labeling of DNA at multiple loci. Nat Protoc 2012; 7:643-53. [PMID: 22402634 DOI: 10.1038/nprot.2012.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The labeling of biomolecules has become standard practice in molecular biosciences. Modifications are used for detection, sorting and isolation of small molecules, complexes and entire cells. We have recently reported a method for introducing internal chemical and structural modifications into kbp-sized DNA target substrates that are frequently used in single-molecule experiments. It makes use of nicking enzymes that create single-stranded DNA gaps, which can be subsequently filled with labeled oligonucleotides. Here we provide a detailed protocol and further expand this method. We show that modifications can be introduced at distant loci within one molecule in a simple one-pot reaction. In addition, we achieve labeling on both strands at a specific locus, as demonstrated by Förster resonance energy transfer (FRET) experiments. The protocol requires an initial cloning of the target substrate (3-5 d), whereas the labeling itself takes 4-6 h. More elaborate purification and verification of label incorporation requires 2 h for each method.
Collapse
Affiliation(s)
- Nicholas Luzzietti
- Biotechnology Center, Dresden University of Technology, Dresden, Germany
| | | | | | | |
Collapse
|
21
|
Andreou AZ, Klostermeier D. Conformational changes of DEAD-box helicases monitored by single molecule fluorescence resonance energy transfer. Methods Enzymol 2012; 511:75-109. [PMID: 22713316 DOI: 10.1016/b978-0-12-396546-2.00004-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
DEAD-box proteins catalyze the ATP-dependent unwinding of RNA duplexes. The common unit of these enzymes is a helicase core of two flexibly linked RecA domains. ATP binding and phosphate release control opening and closing of the cleft in the helicase core. This movement coordinates RNA-binding and ATPase activity and is thus central to the function of DEAD-box helicases. In most DEAD box proteins, the helicase core is flanked by ancillary N-and C-terminal domains. Here, we describe single molecule fluorescence resonance energy transfer (smFRET) approaches to directly monitor conformational changes associated with opening and closing of the helicase core. We further outline smFRET strategies to determine the orientation of flanking N- and C-terminal domains of DEAD-box helicases and to assess the effects of regulatory proteins on DEAD-box helicase conformation.
Collapse
|
22
|
Translocation, switching and gating: potential roles for ATP in long-range communication on DNA by Type III restriction endonucleases. Biochem Soc Trans 2011; 39:589-94. [PMID: 21428945 PMCID: PMC3064402 DOI: 10.1042/bst0390589] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
To cleave DNA, the Type III RM (restriction–modification) enzymes must communicate the relative orientation of two recognition sequences, which may be separated by many thousands of base pairs. This long-range interaction requires ATP hydrolysis by a helicase domain, and both active (DNA translocation) and passive (DNA sliding) modes of motion along DNA have been proposed. Potential roles for ATP binding and hydrolysis by the helicase domains are discussed, with a focus on bipartite ATPases that act as molecular switches.
Collapse
|
23
|
Schwarz FW, van Aelst K, Tóth J, Seidel R, Szczelkun MD. DNA cleavage site selection by Type III restriction enzymes provides evidence for head-on protein collisions following 1D bidirectional motion. Nucleic Acids Res 2011; 39:8042-51. [PMID: 21724613 PMCID: PMC3185417 DOI: 10.1093/nar/gkr502] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
DNA cleavage by the Type III Restriction–Modification enzymes requires communication in 1D between two distant indirectly-repeated recognitions sites, yet results in non-specific dsDNA cleavage close to only one of the two sites. To test a recently proposed ATP-triggered DNA sliding model, we addressed why one site is selected over another during cleavage. We examined the relative cleavage of a pair of identical sites on DNA substrates with different distances to a free or protein blocked end, and on a DNA substrate using different relative concentrations of protein. Under these conditions a bias can be induced in the cleavage of one site over the other. Monte-Carlo simulations based on the sliding model reproduce the experimentally observed behaviour. This suggests that cleavage site selection simply reflects the dynamics of the preceding stochastic enzyme events that are consistent with bidirectional motion in 1D and DNA cleavage following head-on protein collision.
Collapse
Affiliation(s)
- Friedrich W Schwarz
- Biotechnology Center, Dresden University of Technology, 01062 Dresden, Germany
| | | | | | | | | |
Collapse
|
24
|
Roberts GA, Cooper LP, White JH, Su TJ, Zipprich JT, Geary P, Kennedy C, Dryden DTF. An investigation of the structural requirements for ATP hydrolysis and DNA cleavage by the EcoKI Type I DNA restriction and modification enzyme. Nucleic Acids Res 2011; 39:7667-76. [PMID: 21685455 PMCID: PMC3177214 DOI: 10.1093/nar/gkr480] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Type I DNA restriction/modification systems are oligomeric enzymes capable of switching between a methyltransferase function on hemimethylated host DNA and an endonuclease function on unmethylated foreign DNA. They have long been believed to not turnover as endonucleases with the enzyme becoming inactive after cleavage. Cleavage is preceded and followed by extensive ATP hydrolysis and DNA translocation. A role for dissociation of subunits to allow their reuse has been proposed for the EcoR124I enzyme. The EcoKI enzyme is a stable assembly in the absence of DNA, so recycling was thought impossible. Here, we demonstrate that EcoKI becomes unstable on long unmethylated DNA; reuse of the methyltransferase subunits is possible so that restriction proceeds until the restriction subunits have been depleted. We observed that RecBCD exonuclease halts restriction and does not assist recycling. We examined the DNA structure required to initiate ATP hydrolysis by EcoKI and find that a 21-bp duplex with single-stranded extensions of 12 bases on either side of the target sequence is sufficient to support hydrolysis. Lastly, we discuss whether turnover is an evolutionary requirement for restriction, show that the ATP hydrolysis is not deleterious to the host cell and discuss how foreign DNA occasionally becomes fully methylated by these systems.
Collapse
|
25
|
Luzzietti N, Brutzer H, Klaue D, Schwarz FW, Staroske W, Clausing S, Seidel R. Efficient preparation of internally modified single-molecule constructs using nicking enzymes. Nucleic Acids Res 2010; 39:e15. [PMID: 21071409 PMCID: PMC3035433 DOI: 10.1093/nar/gkq1004] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Investigations of enzymes involved in DNA metabolism have strongly benefited from the establishment of single molecule techniques. These experiments frequently require elaborate DNA substrates, which carry chemical labels or nucleic acid tertiary structures. Preparing such constructs often represents a technical challenge: long modified DNA molecules are usually produced via multi-step processes, involving low efficiency intermolecular ligations of several fragments. Here, we show how long stretches of DNA (>50 bp) can be modified using nicking enzymes to produce complex DNA constructs. Multiple different chemical and structural modifications can be placed internally along DNA, in a specific and precise manner. Furthermore, the nicks created can be resealed efficiently yielding intact molecules, whose mechanical properties are preserved. Additionally, the same strategy is applied to obtain long single-strand overhangs subsequently used for efficient ligation of ss- to dsDNA molecules. This technique offers promise for a wide range of applications, in particular single-molecule experiments, where frequently multiple internal DNA modifications are required.
Collapse
Affiliation(s)
- Nicholas Luzzietti
- Biotechnology Center, Technische Universität Dresden, D-01062 Dresden, Germany
| | | | | | | | | | | | | |
Collapse
|
26
|
Ishikawa K, Fukuda E, Kobayashi I. Conflicts targeting epigenetic systems and their resolution by cell death: novel concepts for methyl-specific and other restriction systems. DNA Res 2010; 17:325-42. [PMID: 21059708 PMCID: PMC2993543 DOI: 10.1093/dnares/dsq027] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Epigenetic modification of genomic DNA by methylation is important for defining the epigenome and the transcriptome in eukaryotes as well as in prokaryotes. In prokaryotes, the DNA methyltransferase genes often vary, are mobile, and are paired with the gene for a restriction enzyme. Decrease in a certain epigenetic methylation may lead to chromosome cleavage by the partner restriction enzyme, leading to eventual cell death. Thus, the pairing of a DNA methyltransferase and a restriction enzyme forces an epigenetic state to be maintained within the genome. Although restriction enzymes were originally discovered for their ability to attack invading DNAs, it may be understood because such DNAs show deviation from this epigenetic status. DNAs with epigenetic methylation, by a methyltransferase linked or unlinked with a restriction enzyme, can also be the target of DNases, such as McrBC of Escherichia coli, which was discovered because of its methyl-specific restriction. McrBC responds to specific genome methylation systems by killing the host bacterial cell through chromosome cleavage. Evolutionary and genomic analysis of McrBC homologues revealed their mobility and wide distribution in prokaryotes similar to restriction–modification systems. These findings support the hypothesis that this family of methyl-specific DNases evolved as mobile elements competing with specific genome methylation systems through host killing. These restriction systems clearly demonstrate the presence of conflicts between epigenetic systems.
Collapse
Affiliation(s)
- Ken Ishikawa
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, Japan
| | | | | |
Collapse
|
27
|
Chan SH, Stoddard BL, Xu SY. Natural and engineered nicking endonucleases--from cleavage mechanism to engineering of strand-specificity. Nucleic Acids Res 2010; 39:1-18. [PMID: 20805246 PMCID: PMC3017599 DOI: 10.1093/nar/gkq742] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Restriction endonucleases (REases) are highly specific DNA scissors that have facilitated the development of modern molecular biology. Intensive studies of double strand (ds) cleavage activity of Type IIP REases, which recognize 4–8 bp palindromic sequences, have revealed a variety of mechanisms of molecular recognition and catalysis. Less well-studied are REases which cleave only one of the strands of dsDNA, creating a nick instead of a ds break. Naturally occurring nicking endonucleases (NEases) range from frequent cutters such as Nt.CviPII (^CCD; ^ denotes the cleavage site) to rare-cutting homing endonucleases (HEases) such as I-HmuI. In addition to these bona fida NEases, individual subunits of some heterodimeric Type IIS REases have recently been shown to be natural NEases. The discovery and characterization of more REases that recognize asymmetric sequences, particularly Types IIS and IIA REases, has revealed recognition and cleavage mechanisms drastically different from the canonical Type IIP mechanisms, and has allowed researchers to engineer highly strand-specific NEases. Monomeric LAGLIDADG HEases use two separate catalytic sites for cleavage. Exploitation of this characteristic has also resulted in useful nicking HEases. This review aims at providing an overview of the cleavage mechanisms of Types IIS and IIA REases and LAGLIDADG HEases, the engineering of their nicking variants, and the applications of NEases and nicking HEases.
Collapse
|
28
|
Eoff RL, Raney KD. Kinetic mechanism for DNA unwinding by multiple molecules of Dda helicase aligned on DNA. Biochemistry 2010; 49:4543-53. [PMID: 20408588 DOI: 10.1021/bi100061v] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Helicases catalyze the separation of double-stranded nucleic acids to form single-stranded intermediates. Using transient state kinetic methods, we have determined the kinetic properties of DNA unwinding under conditions that favor a monomeric form of the Dda helicase as well as conditions that allow multiple molecules to function on the same substrate. Multiple helicase molecules can align like a train on the DNA track. The number of base pairs unwound in a single binding event for Dda is increased from approximately 19 bp for the monomeric form to approximately 64 bp when as many as four Dda molecules are aligned on the same substrate, while the kinetic step size (3.2 +/- 0.7 bp) and unwinding rate (242 +/- 25 bp/s) appear to be independent of the number of Dda molecules present on a given substrate. The data support a model in which the helicase molecules bound to the same substrate move along the DNA track independently during DNA unwinding. The observed increase in processivity arises from the increased probability that at least one of the helicases will completely unwind the DNA prior to dissociation. These results are in contrast to previous reports in which multiple Dda molecules on the same track greatly enhanced the rate and amplitude for displacement of protein blocks on the track. Therefore, only when the progress of the lead molecule in the train is impeded by some type of block, such as a protein bound to DNA, do the trailing molecules interact with the lead molecule to overcome the block. The fact that trailing helicase molecules have little impact on the lead molecule in the train during routine DNA unwinding suggests that the trailing molecules are moving at rates similar to that of the lead molecule. This result implicates a step in the translocation mechanism as contributing greatly to the overall rate-limiting step for unwinding of duplex DNA.
Collapse
Affiliation(s)
- Robert L Eoff
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | | |
Collapse
|
29
|
Abstract
Many biological processes rely on the interaction of proteins with multiple DNA sites separated by thousands of base pairs. These long-range communication events can be driven by both the thermal motions of proteins and DNA, and directional protein motions that are rectified by ATP hydrolysis. The present review describes conflicting experiments that have sought to explain how the ATP-dependent Type III restriction-modification enzymes can cut DNA with two sites in an inverted repeat, but not DNA with two sites in direct repeat. We suggest that an ATPase activity may not automatically indicate a DNA translocase, but can alternatively indicate a molecular switch that triggers communication by thermally driven DNA sliding. The generality of this mechanism to other ATP-dependent communication processes such as mismatch repair is also discussed.
Collapse
|
30
|
Smith RM, Josephsen J, Szczelkun MD. The single polypeptide restriction-modification enzyme LlaGI is a self-contained molecular motor that translocates DNA loops. Nucleic Acids Res 2010; 37:7219-30. [PMID: 19783815 PMCID: PMC2790907 DOI: 10.1093/nar/gkp794] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
To cleave DNA, the single polypeptide restriction–modification enzyme LlaGI must communicate between a pair of indirectly repeated recognition sites. We demonstrate that this communication occurs by a 1-dimensional route, namely unidirectional dsDNA loop translocation rightward of the specific recognition sequence 5′-CTnGAyG-3′ as written (where n is either A, G, C or T and y is either C or T). Motion across thousands of base pairs is catalysed by the helicase domain and requires the hydrolysis of 1.5-2 ATP per base pair. DNA loop extrusion is accompanied by changes in DNA twist consistent with the motor following the helical pitch of the polynucleotide track. LlaGI is therefore an example of a polypeptide that is a completely self-contained, multi-functional molecular machine.
Collapse
Affiliation(s)
- Rachel M Smith
- DNA-Protein Interactions Unit, Department of Biochemistry, School of Medical Sciences, University of Bristol, Bristol, BS8 1TD, UK
| | | | | |
Collapse
|
31
|
Substrate interactions and promiscuity in a viral DNA packaging motor. Nature 2009; 461:669-73. [PMID: 19794496 PMCID: PMC2769991 DOI: 10.1038/nature08443] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Accepted: 08/20/2009] [Indexed: 11/15/2022]
Abstract
The ASCE superfamily of proteins consists of structurally similar ATPases associated with diverse cellular activities involving metabolism and transport of proteins and nucleic acids in all forms of life1. A subset of these enzymes are multimeric ringed pumps responsible for DNA transport in processes including genome packaging in adenoviruses, herpesviruses, poxviruses, and tailed bacteriophages2. While their mechanism of mechanochemical conversion is beginning to be understood3, little is known about how these motors engage their nucleic acid substrates. Do motors contact a single DNA element, such as a phosphate or a base, or are contacts distributed over multiple parts of the DNA? In addition, what role do these contacts play in the mechanochemical cycle? Here we use the genome packaging motor of the Bacillus subtilis bacteriophage φ294 to address these questions. The full mechanochemical cycle of the motor, whose ATPase is a pentameric-ring5 of gene product 16, involves two phases-- an ATP loading dwell followed by a translocation burst of four 2.5-bp steps6 triggered by hydrolysis product release7. By challenging the motor with a variety of modified DNA substrates, we find that during the dwell phase important contacts are made with adjacent phosphates every 10-bp on the 5’-3’ strand in the direction of packaging. In addition to providing stable, long-lived contacts, these phosphate interactions also regulate the chemical cycle. In contrast, during the burst phase, we find that DNA translocation is driven against large forces by extensive contacts, some of which are not specific to the chemical moieties of DNA. Such promiscuous, non-specific contacts may reflect common translocase-substrate interactions for both the nucleic acid and protein translocases of the ASCE superfamily1.
Collapse
|
32
|
Uyen NT, Park SY, Choi JW, Lee HJ, Nishi K, Kim JS. The fragment structure of a putative HsdR subunit of a type I restriction enzyme from Vibrio vulnificus YJ016: implications for DNA restriction and translocation activity. Nucleic Acids Res 2009; 37:6960-9. [PMID: 19625490 PMCID: PMC2777439 DOI: 10.1093/nar/gkp603] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Among four types of bacterial restriction enzymes that cleave a foreign DNA depending on its methylation status, type I enzymes composed of three subunits are interesting because of their unique DNA cleavage and translocation mechanisms performed by the restriction subunit (HsdR). The elucidated N-terminal fragment structure of a putative HsdR subunit from Vibrio vulnificus YJ016 reveals three globular domains. The nucleolytic core within an N-terminal nuclease domain (NTD) is composed of one basic and three acidic residues, which include a metal-binding site. An ATP hydrolase (ATPase) site at the interface of two RecA-like domains (RDs) is located close to the probable DNA-binding site for translocation, which is far from the NTD nucleolytic core. Comparison of relative domain arrangements with other functionally related ATP and/or DNA complex structures suggests a possible translocation and restriction mechanism of the HsdR subunit. Furthermore, careful analysis of its sequence and structure implies that a linker helix connecting two RDs and an extended region within the nuclease domain may play a central role in switching the DNA translocation into the restriction activity.
Collapse
Affiliation(s)
- Nguyen To Uyen
- Interdisciplinary Graduate Program in Molecular Medicine, Gwangju 501-746, Korea
| | | | | | | | | | | |
Collapse
|
33
|
Ishikawa K, Handa N, Kobayashi I. Cleavage of a model DNA replication fork by a Type I restriction endonuclease. Nucleic Acids Res 2009; 37:3531-44. [PMID: 19357093 PMCID: PMC2699502 DOI: 10.1093/nar/gkp214] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Cleavage of a DNA replication fork leads to fork restoration by recombination repair. In prokaryote cells carrying restriction-modification systems, fork passage reduces genome methylation by the modification enzyme and exposes the chromosome to attack by the restriction enzyme. Various observations have suggested a relationship between the fork and Type I restriction enzymes, which cleave DNA at a distance from a recognition sequence. Here, we demonstrate that a Type I restriction enzyme preparation cleaves a model replication fork at its branch. The enzyme probably tracks along the DNA from an unmethylated recognition site on the daughter DNA and cuts the fork upon encountering the branch point. Our finding suggests that these restriction-modification systems contribute to genome maintenance through cell death and indicates that DNA replication fork cleavage represents a critical point in genome maintenance to choose between the restoration pathway and the destruction pathway.
Collapse
Affiliation(s)
- Ken Ishikawa
- Graduate Program in Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, Tokyo 108-8639, Japan
| | | | | |
Collapse
|
34
|
Bonné L, Bigot S, Chevalier F, Allemand JF, Barre FX. Asymmetric DNA requirements in Xer recombination activation by FtsK. Nucleic Acids Res 2009; 37:2371-80. [PMID: 19246541 PMCID: PMC2673442 DOI: 10.1093/nar/gkp104] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In bacteria with circular chromosomes, homologous recombination events can lead to the formation of chromosome dimers. In Escherichia coli, chromosome dimers are resolved by the addition of a crossover by two tyrosine recombinases, XerC and XerD, at a specific site on the chromosome, dif. Recombination depends on a direct contact between XerD and a cell division protein, FtsK, which functions as a hexameric double stranded DNA translocase. Here, we have investigated how the structure and composition of DNA interferes with Xer recombination activation by FtsK. XerC and XerD each cleave a specific strand on dif, the top and bottom strand, respectively. We found that the integrity and nature of eight bottom-strand nucleotides and three top-strand nucleotides immediately adjacent to the XerD-binding site of dif are crucial for recombination. These nucleotides are probably not implicated in FtsK translocation since FtsK could translocate on single stranded DNA in both the 5′–3′ and 3′–5′ orientation along a few nucleotides. We propose that they are required to stabilize FtsK in the vicinity of dif for recombination to occur because the FtsK–XerD interaction is too transient or too weak in itself to allow for XerD catalysis.
Collapse
Affiliation(s)
- Laetitia Bonné
- CNRS, Centre de Génétique Moléculaire, FRE 3144, 91198 Gif-sur-Yvette, France
| | | | | | | | | |
Collapse
|
35
|
Sanders KL, Catto LE, Bellamy SRW, Halford SE. Targeting individual subunits of the FokI restriction endonuclease to specific DNA strands. Nucleic Acids Res 2009; 37:2105-15. [PMID: 19223323 PMCID: PMC2673415 DOI: 10.1093/nar/gkp046] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Many restriction endonucleases are dimers that act symmetrically at palindromic DNA sequences, with each active site cutting one strand. In contrast, FokI acts asymmetrically at a non-palindromic sequence, cutting ‘top’ and ‘bottom’ strands 9 and 13 nucleotides downstream of the site. FokI is a monomeric protein with one active site and a single monomer covers the entire recognition sequence. To cut both strands, the monomer at the site recruits a second monomer from solution, but it is not yet known which DNA strand is cut by the monomer bound to the site and which by the recruited monomer. In this work, mutants of FokI were used to show that the monomer bound to the site made the distal cut in the bottom strand, whilst the recruited monomer made in parallel the proximal cut in the top strand. Procedures were also established to direct FokI activity, either preferentially to the bottom strand or exclusively to the top strand. The latter extends the range of enzymes for nicking specified strands at specific sequences, and may facilitate further applications of FokI in gene targeting.
Collapse
Affiliation(s)
- Kelly L Sanders
- Department of Biochemistry, School of Medical Sciences, University of Bristol, Bristol, UK
| | | | | | | |
Collapse
|
36
|
Type III restriction enzymes communicate in 1D without looping between their target sites. Proc Natl Acad Sci U S A 2009; 106:1748-53. [PMID: 19181848 DOI: 10.1073/pnas.0807193106] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To cleave DNA, Type III restriction enzymes must communicate the relative orientation of two asymmetric recognition sites over hundreds of base pairs. The basis of this long-distance communication, for which ATP hydrolysis by their helicase domains is required, is poorly understood. Several conflicting DNA-looping mechanisms have been proposed, driven either by active DNA translocation or passive 3D diffusion. Using single-molecule DNA stretching in combination with bulk-solution assays, we provide evidence that looping is both highly unlikely and unnecessary, and that communication is strictly confined to a 1D route. Integrating our results with previous data, a simple communication scheme is concluded based on 1D diffusion along DNA.
Collapse
|
37
|
Structure of the motor subunit of type I restriction-modification complex EcoR124I. Nat Struct Mol Biol 2008; 16:94-5. [PMID: 19079266 DOI: 10.1038/nsmb.1523] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Accepted: 10/29/2008] [Indexed: 11/08/2022]
Abstract
Type I restriction-modification enzymes act as conventional adenine methylases on hemimethylated DNAs, but unmethylated recognition targets induce them to translocate thousands of base pairs before cleaving distant sites nonspecifically. The first crystal structure of a type I motor subunit responsible for translocation and cleavage suggests how the pentameric translocating complex is assembled and provides a structural framework for translocation of duplex DNA by RecA-like ATPase motors.
Collapse
|
38
|
Sisáková E, Weiserová M, Dekker C, Seidel R, Szczelkun MD. The interrelationship of helicase and nuclease domains during DNA translocation by the molecular motor EcoR124I. J Mol Biol 2008; 384:1273-86. [PMID: 18952104 PMCID: PMC2602864 DOI: 10.1016/j.jmb.2008.10.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2008] [Revised: 10/02/2008] [Accepted: 10/02/2008] [Indexed: 11/25/2022]
Abstract
The type I restriction–modification enzyme EcoR124I comprises three subunits with the stoichiometry HsdR2/HsdM2/HsdS1. The HsdR subunits are archetypical examples of the fusion between nuclease and helicase domains into a single polypeptide, a linkage that is found in a great many other DNA processing enzymes. To explore the interrelationship between these physically linked domains, we examined the DNA translocation properties of EcoR124I complexes in which the HsdR subunits had been mutated in the RecB-like nuclease motif II or III. We found that nuclease mutations can have multiple effects on DNA translocation despite being distinct from the helicase domain. In addition to reductions in DNA cleavage activity, we also observed decreased translocation and ATPase rates, different enzyme populations with different characteristic translocation rates, a tendency to stall during initiation and altered HsdR turnover dynamics. The significance of these observations to our understanding of domain interactions in molecular machines is discussed.
Collapse
Affiliation(s)
- Eva Sisáková
- Institute of Microbiology, v.v.i., Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | | | | | | | |
Collapse
|
39
|
Abstract
Helicases and remodeling enzymes are ATP-dependent motor proteins that play a critical role in every aspect of RNA and DNA metabolism. Most RNA-remodeling enzymes are members of helicase superfamily 2 (SF2), which includes many DNA helicase enzymes that display similar structural and mechanistic features. Although SF2 enzymes are typically called helicases, many of them display other types of functions, including single-strand translocation, strand annealing, and protein displacement. There are two mechanisms by which RNA helicase enzymes unwind RNA: The nonprocessive DEAD group catalyzes local unwinding of short duplexes adjacent to their binding sites. Members of the processive DExH group often translocate along single-stranded RNA and displace paired strands (or proteins) in their path. In the latter case, unwinding is likely to occur by an active mechanism that involves Brownian motor function and stepwise translocation along RNA. Through structural and single-molecule investigations, researchers are developing coherent models to explain the functions and dynamic motions of helicase enzymes.
Collapse
Affiliation(s)
- Anna Marie Pyle
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute and Yale University, New Haven, Connecticut 06520, USA.
| |
Collapse
|
40
|
EcoR124I: from plasmid-encoded restriction-modification system to nanodevice. Microbiol Mol Biol Rev 2008; 72:365-77, table of contents. [PMID: 18535150 DOI: 10.1128/mmbr.00043-07] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
SUMMARY Plasmid R124 was first described in 1972 as being a new member of incompatibility group IncFIV, yet early physical investigations of plasmid DNA showed that this type of classification was more complex than first imagined. Throughout the history of the study of this plasmid, there have been many unexpected observations. Therefore, in this review, we describe the history of our understanding of this plasmid and the type I restriction-modification (R-M) system that it encodes, which will allow an opportunity to correct errors, or misunderstandings, that have arisen in the literature. We also describe the characterization of the R-M enzyme EcoR124I and describe the unusual properties of both type I R-M enzymes and EcoR124I in particular. As we approached the 21st century, we began to see the potential of the EcoR124I R-M enzyme as a useful molecular motor, and this leads to a description of recent work that has shown that the R-M enzyme can be used as a nanoactuator. Therefore, this is a history that takes us from a plasmid isolated from (presumably) an infected source to the potential use of the plasmid-encoded R-M enzyme in bionanotechnology.
Collapse
|
41
|
Šišáková E, Stanley LK, Weiserová M, Szczelkun MD. A RecB-family nuclease motif in the Type I restriction endonuclease EcoR124I. Nucleic Acids Res 2008; 36:3939-49. [PMID: 18511464 PMCID: PMC2475608 DOI: 10.1093/nar/gkn333] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2008] [Revised: 04/30/2008] [Accepted: 05/08/2008] [Indexed: 12/03/2022] Open
Abstract
The Type I restriction-modification enzyme EcoR124I is an ATP-dependent endonuclease that uses dsDNA translocation to locate and cleave distant non-specific DNA sites. Bioinformatic analysis of the HsdR subunits of EcoR124I and related Type I enzymes showed that in addition to the principal PD-(E/D)xK Motifs, I, II and III, a QxxxY motif is also present that is characteristic of RecB-family nucleases. The QxxxY motif resides immediately C-terminal to Motif III within a region of predicted alpha-helix. Using mutagenesis, we examined the role of the Q and Y residues in DNA binding, translocation and cleavage. Roles for the QxxxY motif in coordinating the catalytic residues or in stabilizing the nuclease domain on the DNA are discussed.
Collapse
Affiliation(s)
- Eva Šišáková
- Institute of Microbiology v.v.i., Academy of Sciences of the Czech Republic, Prague, Czech Republic and DNA-Protein Interactions Unit, Department of Biochemistry, University of Bristol, Bristol, BS8 1TD, UK
| | - Louise K. Stanley
- Institute of Microbiology v.v.i., Academy of Sciences of the Czech Republic, Prague, Czech Republic and DNA-Protein Interactions Unit, Department of Biochemistry, University of Bristol, Bristol, BS8 1TD, UK
| | - Marie Weiserová
- Institute of Microbiology v.v.i., Academy of Sciences of the Czech Republic, Prague, Czech Republic and DNA-Protein Interactions Unit, Department of Biochemistry, University of Bristol, Bristol, BS8 1TD, UK
| | - Mark D. Szczelkun
- Institute of Microbiology v.v.i., Academy of Sciences of the Czech Republic, Prague, Czech Republic and DNA-Protein Interactions Unit, Department of Biochemistry, University of Bristol, Bristol, BS8 1TD, UK
| |
Collapse
|
42
|
Seidel R, Bloom JGP, Dekker C, Szczelkun MD. Motor step size and ATP coupling efficiency of the dsDNA translocase EcoR124I. EMBO J 2008; 27:1388-98. [PMID: 18388857 PMCID: PMC2291450 DOI: 10.1038/emboj.2008.69] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2007] [Accepted: 03/03/2008] [Indexed: 11/30/2022] Open
Abstract
The Type I restriction-modification enzyme EcoR124I is an archetypical helicase-based dsDNA translocase that moves unidirectionally along the 3′–5′ strand of intact duplex DNA. Using a combination of ensemble and single-molecule measurements, we provide estimates of two physicochemical constants that are fundamental to a full description of motor protein activity—the ATP coupling efficiency (the number of ATP consumed per base pair) and the step size (the number of base pairs transported per motor step). Our data indicate that EcoR124I makes small steps along the DNA of 1 bp in length with 1 ATP consumed per step, but with some uncoupling of the ATPase and translocase cycles occurring so that the average number of ATP consumed per base pair slightly exceeds unity. Our observations form a framework for understanding energy coupling in a great many other motors that translocate along dsDNA rather than ssDNA.
Collapse
Affiliation(s)
- Ralf Seidel
- Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | | | | | | |
Collapse
|
43
|
Singleton MR, Dillingham MS, Wigley DB. Structure and mechanism of helicases and nucleic acid translocases. Annu Rev Biochem 2007; 76:23-50. [PMID: 17506634 DOI: 10.1146/annurev.biochem.76.052305.115300] [Citation(s) in RCA: 973] [Impact Index Per Article: 54.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Helicases and translocases are a ubiquitous, highly diverse group of proteins that perform an extraordinary variety of functions in cells. Consequently, this review sets out to define a nomenclature for these enzymes based on current knowledge of sequence, structure, and mechanism. Using previous definitions of helicase families as a basis, we delineate six superfamilies of enzymes, with examples of crystal structures where available, and discuss these structures in the context of biochemical data to outline our present understanding of helicase and translocase activity. As a result, each superfamily is subdivided, where appropriate, on the basis of mechanistic understanding, which we hope will provide a framework for classification of new superfamily members as they are discovered and characterized.
Collapse
Affiliation(s)
- Martin R Singleton
- Macromolecular Structure and Function Laboratory, The London Research Institute, London WC2A 3PX, United Kingdom.
| | | | | |
Collapse
|
44
|
Crampton N, Roes S, Dryden DTF, Rao DN, Edwardson JM, Henderson RM. DNA looping and translocation provide an optimal cleavage mechanism for the type III restriction enzymes. EMBO J 2007; 26:3815-25. [PMID: 17660745 PMCID: PMC1952222 DOI: 10.1038/sj.emboj.7601807] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2007] [Accepted: 07/02/2007] [Indexed: 11/09/2022] Open
Abstract
EcoP15I is a type III restriction enzyme that requires two recognition sites in a defined orientation separated by up to 3.5 kbp to efficiently cleave DNA. The mechanism through which site-bound EcoP15I enzymes communicate between the two sites is unclear. Here, we use atomic force microscopy to study EcoP15I-DNA pre-cleavage complexes. From the number and size distribution of loops formed, we conclude that the loops observed do not result from translocation, but are instead formed by a contact between site-bound EcoP15I and a nonspecific region of DNA. This conclusion is confirmed by a theoretical polymer model. It is further shown that translocation must play some role, because when translocation is blocked by a Lac repressor protein, DNA cleavage is similarly blocked. On the basis of these results, we present a model for restriction by type III restriction enzymes and highlight the similarities between this and other classes of restriction enzymes.
Collapse
Affiliation(s)
- Neal Crampton
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, UK
| | - Stefanie Roes
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, UK
| | | | - Desirazu N Rao
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - J Michael Edwardson
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, UK
| | - Robert M Henderson
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, UK
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK. Tel.: +44 1223 334 053; Fax: +44 1223 334 100; E-mail:
| |
Collapse
|
45
|
Crampton N, Yokokawa M, Dryden DTF, Edwardson JM, Rao DN, Takeyasu K, Yoshimura SH, Henderson RM. Fast-scan atomic force microscopy reveals that the type III restriction enzyme EcoP15I is capable of DNA translocation and looping. Proc Natl Acad Sci U S A 2007; 104:12755-60. [PMID: 17646654 PMCID: PMC1937539 DOI: 10.1073/pnas.0700483104] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many DNA-modifying enzymes act in a manner that requires communication between two noncontiguous DNA sites. These sites can be brought into contact either by a diffusion-mediated chance interaction between enzymes bound at the two sites, or by active translocation of the intervening DNA by a site-bound enzyme. EcoP15I, a type III restriction enzyme, needs to interact with two recognition sites separated by up to 3,500 bp before it can cleave DNA. Here, we have studied the behavior of EcoP15I, using a novel fast-scan atomic force microscope, which uses a miniaturized cantilever and scan stage to reduce the mechanical response time of the cantilever and to prevent the onset of resonant motion at high scan speeds. With this instrument, we were able to achieve scan rates of up to 10 frames per s under fluid. The improved time resolution allowed us to image EcoP15I in real time at scan rates of 1-3 frames per s. EcoP15I translocated DNA in an ATP-dependent manner, at a rate of 79 +/- 33 bp/s. The accumulation of supercoiling, as a consequence of movement of EcoP15I along the DNA, could also be observed. EcoP15I bound to its recognition site was also seen to make nonspecific contacts with other DNA sites, thus forming DNA loops and reducing the distance between the two recognition sites. On the basis of our results, we conclude that EcoP15I uses two distinct mechanisms to communicate between two recognition sites: diffusive DNA loop formation and ATPase-driven translocation of the intervening DNA contour.
Collapse
Affiliation(s)
- Neal Crampton
- *Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom
| | - Masatoshi Yokokawa
- Laboratory of Plasma Membrane and Nuclear Signaling, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kitashirakawa-Oiwake-cho, Kyoto 606-8502, Japan
| | - David T. F. Dryden
- School of Chemistry, The King's Buildings, University of Edinburgh, Edinburgh EH9 3JJ, United Kingdom; and
| | - J. Michael Edwardson
- *Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom
| | - Desirazu N. Rao
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Kunio Takeyasu
- Laboratory of Plasma Membrane and Nuclear Signaling, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kitashirakawa-Oiwake-cho, Kyoto 606-8502, Japan
| | - Shige H. Yoshimura
- Laboratory of Plasma Membrane and Nuclear Signaling, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kitashirakawa-Oiwake-cho, Kyoto 606-8502, Japan
| | - Robert M. Henderson
- *Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
46
|
Lapkouski M, Panjikar S, Kuta Smatanova I, Csefalvay E. Purification, crystallization and preliminary X-ray analysis of the HsdR subunit of the EcoR124I endonuclease from Escherichia coli. Acta Crystallogr Sect F Struct Biol Cryst Commun 2007; 63:582-5. [PMID: 17620716 PMCID: PMC2335136 DOI: 10.1107/s174430910702622x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2007] [Accepted: 05/29/2007] [Indexed: 05/16/2023]
Abstract
EcoR124I is a multicomplex enzyme belonging to the type I restriction-modification system from Escherichia coli. Although EcoR124I has been extensively characterized biochemically, there is no direct structural information available about particular subunits. HsdR is a motor subunit that is responsible for ATP hydrolysis, DNA translocation and cleavage of the DNA substrate recognized by the complex. Recombinant HsdR subunit was crystallized using the sitting-drop vapour-diffusion method. Crystals belong to the primitive monoclinic space group, with unit-cell parameters a = 85.75, b = 124.71, c = 128.37 A, beta = 108.14 degrees. Native data were collected to 2.6 A resolution at the X12 beamline of EMBL Hamburg.
Collapse
Affiliation(s)
- Mikalai Lapkouski
- Institute of Physical Biology, University of South Bohemia in Ceske Budejovice, Zamek 136, CZ-373 33 Nove Hrady, Czech Republic
- Institute of Systems Biology and Ecology, Academy of Sciences of the Czech Republic, Zamek 136, CZ-373 33 Nove Hrady, Czech Republic
| | - Santosh Panjikar
- EMBL Hamburg Outstation, c/o DESY, Notkestrasse 85, D-22603 Hamburg, Germany
| | - Ivana Kuta Smatanova
- Institute of Physical Biology, University of South Bohemia in Ceske Budejovice, Zamek 136, CZ-373 33 Nove Hrady, Czech Republic
- Institute of Systems Biology and Ecology, Academy of Sciences of the Czech Republic, Zamek 136, CZ-373 33 Nove Hrady, Czech Republic
| | - Eva Csefalvay
- Institute of Physical Biology, University of South Bohemia in Ceske Budejovice, Zamek 136, CZ-373 33 Nove Hrady, Czech Republic
- Institute of Systems Biology and Ecology, Academy of Sciences of the Czech Republic, Zamek 136, CZ-373 33 Nove Hrady, Czech Republic
- Correspondence e-mail:
| |
Collapse
|
47
|
Abstract
The study of chromosome segregation in bacteria has gained strong insights from the use of cytology techniques. A global view of chromosome choreography during the cell cycle is emerging, highlighting as a next challenge the description of the molecular mechanisms and factors involved. Here, we review one of such factor, the FtsK DNA translocase. FtsK couples segregation of the chromosome terminus, the ter region, with cell division. It is a powerful and fast translocase that reads chromosome polarity to find the end, thereby sorting sister ter regions on either side of the division septum, and activating the last steps of segregation. Recent data have revealed the structure of the FtsK motor, how translocation is oriented by specific DNA motifs, termed KOPS, and suggests novel mechanisms for translocation and sensing chromosome polarity.
Collapse
Affiliation(s)
- Sarah Bigot
- Laboratoire de Microbiologie et de Génétique Moléculaire du CNRS, Université Paul Sabatier--Toulouse III, 118 route de Narbonne, 31062 Toulouse Cedex, France.
| | | | | | | | | |
Collapse
|
48
|
|
49
|
Seidel R, Dekker C. Single-molecule studies of nucleic acid motors. Curr Opin Struct Biol 2007; 17:80-6. [PMID: 17207989 DOI: 10.1016/j.sbi.2006.12.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2006] [Revised: 11/22/2006] [Accepted: 12/15/2006] [Indexed: 11/26/2022]
Abstract
Nucleic acid motors comprise a variety of structurally, mechanistically and functionally very different enzymes. These motor proteins have in common the ability to directionally move DNA or RNA, or to move along DNA or RNA using a chemical energy source such as ATP. Recently, it became possible to study the action of a single motor on single DNA or RNA molecules in real time; this has provided unprecedented insight into the behavior and mechanism of these motors. As a result, the past few years have witnessed an enormous increase in such single-molecule studies of a variety of different motor systems. Particular highlights have included the investigation of the sequence-dependent behavior and helical tracking of motors, and the attainment of the ultimate (i.e. single base pair) resolution, which enables the detection of individual single base motor steps.
Collapse
Affiliation(s)
- Ralf Seidel
- Biotechnological Centre, University of Technology Dresden, Tatzberg 47-51, 01307 Dresden, Germany
| | | |
Collapse
|
50
|
Hopfner KP, Michaelis J. Mechanisms of nucleic acid translocases: lessons from structural biology and single-molecule biophysics. Curr Opin Struct Biol 2006; 17:87-95. [PMID: 17157498 DOI: 10.1016/j.sbi.2006.11.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2006] [Revised: 10/18/2006] [Accepted: 11/27/2006] [Indexed: 10/23/2022]
Abstract
Enzymes that translocate nucleic acids using ATP hydrolysis include DNA and RNA helicases, viral genome packaging motors and chromatin remodeling ATPases. Recent structural analysis, in conjunction with single-molecule studies, has revealed a wealth of new insights into how these enzymes use ATP-driven conformational changes to move on nucleic acids.
Collapse
|