1
|
Ito M, Fujita Y, Shinohara A. Positive and negative regulators of RAD51/DMC1 in homologous recombination and DNA replication. DNA Repair (Amst) 2024; 134:103613. [PMID: 38142595 DOI: 10.1016/j.dnarep.2023.103613] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/10/2023] [Accepted: 12/10/2023] [Indexed: 12/26/2023]
Abstract
RAD51 recombinase plays a central role in homologous recombination (HR) by forming a nucleoprotein filament on single-stranded DNA (ssDNA) to catalyze homology search and strand exchange between the ssDNA and a homologous double-stranded DNA (dsDNA). The catalytic activity of RAD51 assembled on ssDNA is critical for the DNA-homology-mediated repair of DNA double-strand breaks in somatic and meiotic cells and restarting stalled replication forks during DNA replication. The RAD51-ssDNA complex also plays a structural role in protecting the regressed/reversed replication fork. Two types of regulators control RAD51 filament formation, stability, and dynamics, namely positive regulators, including mediators, and negative regulators, so-called remodelers. The appropriate balance of action by the two regulators assures genome stability. This review describes the roles of positive and negative RAD51 regulators in HR and DNA replication and its meiosis-specific homolog DMC1 in meiotic recombination. We also provide future study directions for a comprehensive understanding of RAD51/DMC1-mediated regulation in maintaining and inheriting genome integrity.
Collapse
Affiliation(s)
- Masaru Ito
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan.
| | - Yurika Fujita
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan.
| | - Akira Shinohara
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
2
|
Meir A, Raina VB, Rivera CE, Marie L, Symington LS, Greene EC. The separation pin distinguishes the pro- and anti-recombinogenic functions of Saccharomyces cerevisiae Srs2. Nat Commun 2023; 14:8144. [PMID: 38065943 PMCID: PMC10709652 DOI: 10.1038/s41467-023-43918-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Srs2 is an Sf1a helicase that helps maintain genome stability in Saccharomyces cerevisiae through its ability to regulate homologous recombination. Srs2 downregulates HR by stripping Rad51 from single-stranded DNA, and Srs2 is also thought to promote synthesis-dependent strand annealing by unwinding D-loops. However, it has not been possible to evaluate the relative contributions of these two distinct activities to any aspect of recombination. Here, we used a structure-based approach to design an Srs2 separation-of-function mutant that can dismantle Rad51-ssDNA filaments but is incapable of disrupting D-loops, allowing us to assess the relative contributions of these pro- and anti-recombinogenic functions. We show that this separation-of-function mutant phenocopies wild-type SRS2 in vivo, suggesting that the ability of Srs2 to remove Rad51 from ssDNA is its primary role during HR.
Collapse
Affiliation(s)
- Aviv Meir
- Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY, 10032, USA
| | - Vivek B Raina
- Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY, 10032, USA
| | - Carly E Rivera
- Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY, 10032, USA
| | - Léa Marie
- Department of Microbiology & Immunology, Columbia University, New York, NY, 10032, USA
- Institute of Pharmacology and Structural Biology (IPBS), French National Centre for Scientific Research (CNRS), Université Toulouse III, Toulouse, France
| | - Lorraine S Symington
- Department of Microbiology & Immunology, Columbia University, New York, NY, 10032, USA
- Department of Genetics & Development, Columbia University, New York, NY, 10032, USA
| | - Eric C Greene
- Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY, 10032, USA.
| |
Collapse
|
3
|
Reitz D, Djeghmoum Y, Watson RA, Rajput P, Argueso JL, Heyer WD, Piazza A. Delineation of two multi-invasion-induced rearrangement pathways that differently affect genome stability. Genes Dev 2023; 37:621-639. [PMID: 37541760 PMCID: PMC10499017 DOI: 10.1101/gad.350618.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/14/2023] [Indexed: 08/06/2023]
Abstract
Punctuated bursts of structural genomic variations (SVs) have been described in various organisms, but their etiology remains incompletely understood. Homologous recombination (HR) is a template-guided mechanism of repair of DNA double-strand breaks and stalled or collapsed replication forks. We recently identified a DNA break amplification and genome rearrangement pathway originating from the endonucleolytic processing of a multi-invasion (MI) DNA joint molecule formed during HR. Genome-wide approaches confirmed that multi-invasion-induced rearrangement (MIR) frequently leads to several repeat-mediated SVs and aneuploidies. Using molecular and genetic analysis and a novel, highly sensitive proximity ligation-based assay for chromosomal rearrangement quantification, we further delineate two MIR subpathways. MIR1 is a universal pathway occurring in any sequence context, which generates secondary breaks and frequently leads to additional SVs. MIR2 occurs only if recombining donors exhibit substantial homology and results in sequence insertion without additional breaks or SVs. The most detrimental MIR1 pathway occurs late on a subset of persisting DNA joint molecules in a PCNA/Polδ-independent manner, unlike recombinational DNA synthesis. This work provides a refined mechanistic understanding of these HR-based SV formation pathways and shows that complex repeat-mediated SVs can occur without displacement DNA synthesis. Sequence signatures for inferring MIR1 from long-read data are proposed.
Collapse
Affiliation(s)
- Diedre Reitz
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, California 95616, USA
| | - Yasmina Djeghmoum
- Laboratory of Biology and Modelling of the Cell (UMR5239), Ecole Normale Supérieure de Lyon, 69007 Lyon, France
| | - Ruth A Watson
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Pallavi Rajput
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, California 95616, USA
| | - Juan Lucas Argueso
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Wolf-Dietrich Heyer
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, California 95616, USA;
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, California 95616, USA
| | - Aurèle Piazza
- Laboratory of Biology and Modelling of the Cell (UMR5239), Ecole Normale Supérieure de Lyon, 69007 Lyon, France;
| |
Collapse
|
4
|
Reitz D, Djeghmoum Y, Watson RA, Rajput P, Argueso JL, Heyer WD, Piazza A. Delineation of two multi-invasion-induced rearrangement pathways that differently affect genome stability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.15.532751. [PMID: 36993162 PMCID: PMC10055120 DOI: 10.1101/2023.03.15.532751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Punctuated bursts of structural genomic variations (SVs) have been described in various organisms, but their etiology remains incompletely understood. Homologous recombination (HR) is a template-guided mechanism of repair of DNA double-strand breaks and stalled or collapsed replication forks. We recently identified a DNA break amplification and genome rearrangement pathway originating from the endonucleolytic processing of a multi-invasion (MI) DNA joint molecule formed during HR. Genome-wide sequencing approaches confirmed that multi-invasion-induced rearrangement (MIR) frequently leads to several repeat-mediated SVs and aneuploidies. Using molecular and genetic analysis, and a novel, highly sensitive proximity ligation-based assay for chromosomal rearrangement quantification, we further delineate two MIR sub-pathways. MIR1 is a universal pathway occurring in any sequence context, which generates secondary breaks and frequently leads to additional SVs. MIR2 occurs only if recombining donors exhibit substantial homology, and results in sequence insertion without additional break or SV. The most detrimental MIR1 pathway occurs late on a subset of persisting DNA joint molecules in a PCNA/Polδ-independent manner, unlike recombinational DNA synthesis. This work provides a refined mechanistic understanding of these HR-based SV formation pathways and shows that complex repeat-mediated SVs can occur without displacement DNA synthesis. Sequence signatures for inferring MIR1 from long-read data are proposed.
Collapse
Affiliation(s)
- Diedre Reitz
- Department of Microbiology and Molecular Genetics, One Shields Ave, University of California, Davis, CA 95616, USA
| | - Yasmina Djeghmoum
- Univ Lyon, ENS, UCBL, CNRS, INSERM, Laboratory of Biology and Modelling of the Cell, UMR5239, U 1210, F-69364, Lyon, France
| | - Ruth A. Watson
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523
| | - Pallavi Rajput
- Department of Microbiology and Molecular Genetics, One Shields Ave, University of California, Davis, CA 95616, USA
| | - Juan Lucas Argueso
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523
| | - Wolf-Dietrich Heyer
- Department of Microbiology and Molecular Genetics, One Shields Ave, University of California, Davis, CA 95616, USA
- Department of Molecular and Cellular Biology, One Shields Ave, University of California, Davis, CA 95616, USA
| | - Aurèle Piazza
- Univ Lyon, ENS, UCBL, CNRS, INSERM, Laboratory of Biology and Modelling of the Cell, UMR5239, U 1210, F-69364, Lyon, France
| |
Collapse
|
5
|
Emmenecker C, Mézard C, Kumar R. Repair of DNA double-strand breaks in plant meiosis: role of eukaryotic RecA recombinases and their modulators. PLANT REPRODUCTION 2023; 36:17-41. [PMID: 35641832 DOI: 10.1007/s00497-022-00443-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Homologous recombination during meiosis is crucial for the DNA double-strand breaks (DSBs) repair that promotes the balanced segregation of homologous chromosomes and enhances genetic variation. In most eukaryotes, two recombinases RAD51 and DMC1 form nucleoprotein filaments on single-stranded DNA generated at DSB sites and play a central role in the meiotic DSB repair and genome stability. These nucleoprotein filaments perform homology search and DNA strand exchange to initiate repair using homologous template-directed sequences located elsewhere in the genome. Multiple factors can regulate the assembly, stability, and disassembly of RAD51 and DMC1 nucleoprotein filaments. In this review, we summarize the current understanding of the meiotic functions of RAD51 and DMC1 and the role of their positive and negative modulators. We discuss the current models and regulators of homology searches and strand exchange conserved during plant meiosis. Manipulation of these repair factors during plant meiosis also holds a great potential to accelerate plant breeding for crop improvements and productivity.
Collapse
Affiliation(s)
- Côme Emmenecker
- Institut Jean-Pierre Bourgin (IJPB), Université Paris-Saclay, INRAE, AgroParisTech, 78000, Versailles, France
- University of Paris-Sud, Université Paris-Saclay, 91405, Orsay, France
| | - Christine Mézard
- Institut Jean-Pierre Bourgin (IJPB), CNRS, Université Paris-Saclay, INRAE, AgroParisTech, 78000, Versailles, France.
| | - Rajeev Kumar
- Institut Jean-Pierre Bourgin (IJPB), Université Paris-Saclay, INRAE, AgroParisTech, 78000, Versailles, France.
| |
Collapse
|
6
|
Marie L, Kimble MT, Symington LS. Genetic reporters to detect and quantify homologous recombination in yeast. Methods Cell Biol 2022; 182:35-48. [PMID: 38359986 DOI: 10.1016/bs.mcb.2022.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Homologous recombination is a conserved process that cells use to repair damaged DNA. Many genetic assays have been developed in Saccharomyces cerevisiae to measure and characterize different types of recombination events, as well as identify proteins acting in such recombination events. Here, we describe two intrachromosomal reporters that utilize ade2 heteroalleles, whereby homologous recombination can be detected by colony color and adenine prototrophy. We detail the use of these reporters to measure recombination frequency, as well as to characterize the types of recombination events.
Collapse
Affiliation(s)
- Léa Marie
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY, United States
| | - Michael T Kimble
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY, United States; Program in Biological Sciences, Columbia University, New York, NY, United States
| | - Lorraine S Symington
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY, United States; Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY, United States.
| |
Collapse
|
7
|
Pham N, Yan Z, Yu Y, Faria Afreen M, Malkova A, Haber JE, Ira G. Mechanisms restraining break-induced replication at two-ended DNA double-strand breaks. EMBO J 2021; 40:e104847. [PMID: 33844333 DOI: 10.15252/embj.2020104847] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/04/2021] [Accepted: 03/09/2021] [Indexed: 11/09/2022] Open
Abstract
DNA synthesis during homologous recombination is highly mutagenic and prone to template switches. Two-ended DNA double-strand breaks (DSBs) are usually repaired by gene conversion with a short patch of DNA synthesis, thus limiting the mutation load to the vicinity of the DSB. Single-ended DSBs are repaired by break-induced replication (BIR), which involves extensive and mutagenic DNA synthesis spanning up to hundreds of kilobases. It remains unknown how mutagenic BIR is suppressed at two-ended DSBs. Here, we demonstrate that BIR is suppressed at two-ended DSBs by proteins coordinating the usage of two ends of a DSB: (i) ssDNA annealing proteins Rad52 and Rad59 that promote second end capture, (ii) D-loop unwinding helicase Mph1, and (iii) Mre11-Rad50-Xrs2 complex that promotes synchronous resection of two ends of a DSB. Finally, BIR is also suppressed when Sir2 silences a normally heterochromatic repair template. All of these proteins are particularly important for limiting BIR when recombination occurs between short repetitive sequences, emphasizing the significance of these mechanisms for species carrying many repetitive elements such as humans.
Collapse
Affiliation(s)
- Nhung Pham
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Zhenxin Yan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Yang Yu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Mosammat Faria Afreen
- Department of Biology, Rosenstiel Basic Medical Sciences Research Center, Waltham, MA, USA
| | - Anna Malkova
- Department of Biology, University of Iowa, Iowa City, IA, USA
| | - James E Haber
- Department of Biology, Rosenstiel Basic Medical Sciences Research Center, Waltham, MA, USA
| | - Grzegorz Ira
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
8
|
Abstract
The homologous recombination (HR) machinery plays multiple roles in genome maintenance. Best studied in the context of DNA double-stranded break (DSB) repair, recombination enzymes can cleave, pair, and unwind DNA molecules, and collaborate with regulatory proteins to execute multiple DNA processing steps before generating specific repair products. HR proteins also help to cope with problems arising from DNA replication, modulating impaired replication forks or filling DNA gaps. Given these important roles, it is not surprising that each HR step is subject to complex regulation to adjust repair efficiency and outcomes as well as to limit toxic intermediates. Recent studies have revealed intricate regulation of all steps of HR by the protein modifier SUMO, which has been increasingly recognized for its broad influence in nuclear functions. This review aims to connect established roles of SUMO with its newly identified effects on recombinational repair and stimulate further thought on many unanswered questions.
Collapse
Affiliation(s)
- Nalini Dhingra
- Molecular Biology Department, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Xiaolan Zhao
- Molecular Biology Department, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| |
Collapse
|
9
|
Jenkins SS, Gore S, Guo X, Liu J, Ede C, Veaute X, Jinks-Robertson S, Kowalczykowski SC, Heyer WD. Role of the Srs2-Rad51 Interaction Domain in Crossover Control in Saccharomyces cerevisiae. Genetics 2019; 212:1133-1145. [PMID: 31142613 PMCID: PMC6707447 DOI: 10.1534/genetics.119.302337] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 05/22/2019] [Indexed: 02/05/2023] Open
Abstract
Saccharomyces cerevisiae Srs2, in addition to its well-documented antirecombination activity, has been proposed to play a role in promoting synthesis-dependent strand annealing (SDSA). Here we report the identification and characterization of an SRS2 mutant with a single amino acid substitution (srs2-F891A) that specifically affects the Srs2 pro-SDSA function. This residue is located within the Srs2-Rad51 interaction domain and embedded within a protein sequence resembling a BRC repeat motif. The srs2-F891A mutation leads to a complete loss of interaction with Rad51 as measured through yeast two-hybrid analysis and a partial loss of interaction as determined through protein pull-down assays with purified Srs2, Srs2-F891A, and Rad51 proteins. Even though previous work has shown that internal deletions of the Srs2-Rad51 interaction domain block Srs2 antirecombination activity in vitro, the Srs2-F891A mutant protein, despite its weakened interaction with Rad51, exhibits no measurable defect in antirecombination activity in vitro or in vivo Surprisingly, srs2-F891A shows a robust shift from noncrossover to crossover repair products in a plasmid-based gap repair assay, but not in an ectopic physical recombination assay. Our findings suggest that the Srs2 C-terminal Rad51 interaction domain is more complex than previously thought, containing multiple interaction sites with unique effects on Srs2 activity.
Collapse
Affiliation(s)
- Shirin S Jenkins
- Department of Microbiology and Molecular Genetics, University of California, Davis, California 95616
| | - Steven Gore
- Department of Microbiology and Molecular Genetics, University of California, Davis, California 95616
| | - Xiaoge Guo
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina 27710
| | - Jie Liu
- Department of Microbiology and Molecular Genetics, University of California, Davis, California 95616
| | - Christopher Ede
- Department of Microbiology and Molecular Genetics, University of California, Davis, California 95616
| | - Xavier Veaute
- CEA, CIGEx, F-92265 Fontenay-aux-Roses Cedex, France
| | - Sue Jinks-Robertson
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina 27710
| | - Stephen C Kowalczykowski
- Department of Microbiology and Molecular Genetics, University of California, Davis, California 95616
- Department of Molecular and Cellular Biology, University of California, Davis, California 95616
| | - Wolf-Dietrich Heyer
- Department of Microbiology and Molecular Genetics, University of California, Davis, California 95616
- Department of Molecular and Cellular Biology, University of California, Davis, California 95616
| |
Collapse
|
10
|
Srs2 helicase prevents the formation of toxic DNA damage during late prophase I of yeast meiosis. Chromosoma 2019; 128:453-471. [DOI: 10.1007/s00412-019-00709-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 05/07/2019] [Accepted: 05/15/2019] [Indexed: 12/24/2022]
|
11
|
Crickard JB, Kaniecki K, Kwon Y, Sung P, Greene EC. Meiosis-specific recombinase Dmc1 is a potent inhibitor of the Srs2 antirecombinase. Proc Natl Acad Sci U S A 2018; 115:E10041-E10048. [PMID: 30301803 PMCID: PMC6205449 DOI: 10.1073/pnas.1810457115] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cross-over recombination products are a hallmark of meiosis because they are necessary for accurate chromosome segregation and they also allow for increased genetic diversity during sexual reproduction. However, cross-overs can also cause gross chromosomal rearrangements and are therefore normally down-regulated during mitotic growth. The mechanisms that enhance cross-over product formation upon entry into meiosis remain poorly understood. In Saccharomyces cerevisiae, the Superfamily 1 (Sf1) helicase Srs2, which is an ATP hydrolysis-dependent motor protein that actively dismantles recombination intermediates, promotes synthesis-dependent strand annealing, the result of which is a reduction in cross-over recombination products. Here, we show that the meiosis-specific recombinase Dmc1 is a potent inhibitor of Srs2. Biochemical and single-molecule assays demonstrate that Dmc1 acts by inhibiting Srs2 ATP hydrolysis activity, which prevents the motor protein from undergoing ATP hydrolysis-dependent translocation on Dmc1-bound recombination intermediates. We propose a model in which Dmc1 helps contribute to cross-over formation during meiosis by antagonizing the antirecombinase activity of Srs2.
Collapse
Affiliation(s)
- J Brooks Crickard
- Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY 10032
| | - Kyle Kaniecki
- Department of Genetics and Development, Columbia University, New York, NY 10032
| | - Youngho Kwon
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520
| | - Patrick Sung
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520
| | - Eric C Greene
- Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY 10032;
| |
Collapse
|
12
|
The Main Role of Srs2 in DNA Repair Depends on Its Helicase Activity, Rather than on Its Interactions with PCNA or Rad51. mBio 2018; 9:mBio.01192-18. [PMID: 30018112 PMCID: PMC6050964 DOI: 10.1128/mbio.01192-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Homologous recombination (HR) is a mechanism that repairs a variety of DNA lesions. Under certain circumstances, however, HR can generate intermediates that can interfere with other cellular processes such as DNA transcription or replication. Cells have therefore developed pathways that abolish undesirable HR intermediates. The Saccharomyces cerevisiae yeast Srs2 helicase has a major role in one of these pathways. Srs2 also works during DNA replication and interacts with the clamp PCNA. The relative importance of Srs2’s helicase activity, Rad51 removal function, and PCNA interaction in genome stability remains unclear. We created a new SRS2 allele [srs2(1-850)] that lacks the whole C terminus, containing the interaction site for Rad51 and PCNA and interactions with many other proteins. Thus, the new allele encodes an Srs2 protein bearing only the activity of the DNA helicase. We find that the interactions of Srs2 with Rad51 and PCNA are dispensable for the main role of Srs2 in the repair of DNA damage in vegetative cells and for proper completion of meiosis. On the other hand, it has been shown that in cells impaired for the DNA damage tolerance (DDT) pathways, Srs2 generates toxic intermediates that lead to DNA damage sensitivity; we show that this negative Srs2 activity requires the C terminus of Srs2. Dissection of the genetic interactions of the srs2(1-850) allele suggest a role for Srs2’s helicase activity in sister chromatid cohesion. Our results also indicate that Srs2’s function becomes more central in diploid cells. Homologous recombination (HR) is a key mechanism that repairs damaged DNA. However, this process has to be tightly regulated; failure to regulate it can lead to genome instability. The Srs2 helicase is considered a regulator of HR; it was shown to be able to evict the recombinase Rad51 from DNA. Cells lacking Srs2 exhibit sensitivity to DNA-damaging agents, and in some cases, they display defects in DNA replication. The relative roles of the helicase and Rad51 removal activities of Srs2 in genome stability remain unclear. To address this question, we created a new Srs2 mutant which has only the DNA helicase domain. Our study shows that only the DNA helicase domain is needed to deal with DNA damage and assist in DNA replication during vegetative growth and in meiosis. Thus, our findings shift the view on the role of Srs2 in the maintenance of genome integrity.
Collapse
|
13
|
Tight Regulation of Srs2 Helicase Activity Is Crucial for Proper Functioning of DNA Repair Mechanisms. G3-GENES GENOMES GENETICS 2018. [PMID: 29531123 PMCID: PMC5940153 DOI: 10.1534/g3.118.200181] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Proper DNA damage repair is one of the most vital and fundamental functions of every cell. Several different repair mechanisms exist to deal with various types of DNA damage, in various stages of the cell cycle and under different conditions. Homologous recombination is one of the most important repair mechanisms in all organisms. Srs2, a regulator of homologous recombination, is a DNA helicase involved in DNA repair, cell cycle progression and genome integrity. Srs2 can remove Rad51 from ssDNA, and is thought to inhibit unscheduled recombination. However, Srs2 has to be precisely regulated, as failure to do so is toxic and can lead to cell death. We noticed that a very slight elevation of the levels of Srs2 (by addition of a single extra copy of the SRS2 gene) leads to hyper-sensitivity of yeast cells to methyl methanesulfonate (MMS, a DNA damaging agent). This effect is seen in haploid, but not in diploid, cells. We analyzed the mechanism that controls haploid/diploid sensitivity and arrived to the conclusion that the sensitivity requires the activity of RAD59 and RDH54, whose expression in diploid cells is repressed. We carried out a mutational analysis of Srs2 to determine the regions of the protein required for the sensitization to genotoxins. Interestingly, Srs2 needs the HR machinery and its helicase activity for its toxicity, but does not need to dismantle Rad51. Our work underscores the tight regulation that is required on the levels of Srs2 activity, and the fact that Srs2 helicase activity plays a more central role in DNA repair than the ability of Srs2 to dismantle Rad51 filaments.
Collapse
|
14
|
Break-induced replication promotes formation of lethal joint molecules dissolved by Srs2. Nat Commun 2017; 8:1790. [PMID: 29176630 PMCID: PMC5702615 DOI: 10.1038/s41467-017-01987-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 10/27/2017] [Indexed: 12/20/2022] Open
Abstract
Break-induced replication (BIR) is a DNA double-strand break repair pathway that leads to genomic instabilities similar to those observed in cancer. BIR proceeds by a migrating bubble where asynchrony between leading and lagging strand synthesis leads to accumulation of long single-stranded DNA (ssDNA). It remains unknown how this ssDNA is prevented from unscheduled pairing with the template, which can lead to genomic instability. Here, we propose that uncontrolled Rad51 binding to this ssDNA promotes formation of toxic joint molecules that are counteracted by Srs2. First, Srs2 dislodges Rad51 from ssDNA preventing promiscuous strand invasions. Second, it dismantles toxic intermediates that have already formed. Rare survivors in the absence of Srs2 rely on structure-specific endonucleases, Mus81 and Yen1, that resolve toxic joint-molecules. Overall, we uncover a new feature of BIR and propose that tight control of ssDNA accumulated during this process is essential to prevent its channeling into toxic structures threatening cell viability. Break-induced replication (BIR) is a double-strand break repair pathway that can lead to genomic instability. Here the authors show that the absence of Srs2 helicase during BIR leads to uncontrolled binding of Rad51 to single-stranded DNA, which promotes the formation of toxic intermediates that need to be resolved by Mus81 or Yen1.
Collapse
|
15
|
Zilio N, Eifler-Olivi K, Ulrich HD. Functions of SUMO in the Maintenance of Genome Stability. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 963:51-87. [PMID: 28197906 DOI: 10.1007/978-3-319-50044-7_4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Like in most other areas of cellular metabolism, the functions of the ubiquitin-like modifier SUMO in the maintenance of genome stability are manifold and varied. Perturbations of global sumoylation causes a wide spectrum of phenotypes associated with defects in DNA maintenance, such as hypersensitivity to DNA-damaging agents, gross chromosomal rearrangements and loss of entire chromosomes. Consistent with these observations, many key factors involved in various DNA repair pathways have been identified as SUMO substrates. However, establishing a functional connection between a given SUMO target, the cognate SUMO ligase and a relevant phenotype has remained a challenge, mainly because of the difficulties involved in identifying important modification sites and downstream effectors that specifically recognize the target in its sumoylated state. This review will give an overview over the major pathways of DNA repair and genome maintenance influenced by the SUMO system and discuss selected examples of SUMO's actions in these pathways where the biological consequences of the modification have been elucidated.
Collapse
Affiliation(s)
- Nicola Zilio
- Institute of Molecular Biology (IMB), Ackermannweg 4, D-55128, Mainz, Germany
| | | | - Helle D Ulrich
- Institute of Molecular Biology (IMB), Ackermannweg 4, D-55128, Mainz, Germany.
| |
Collapse
|
16
|
Niu H, Klein HL. Multifunctional roles of Saccharomyces cerevisiae Srs2 protein in replication, recombination and repair. FEMS Yeast Res 2017; 17:fow111. [PMID: 28011904 DOI: 10.1093/femsyr/fow111] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 12/22/2016] [Indexed: 11/12/2022] Open
Abstract
The Saccharomyces cerevisiae Srs2 DNA helicase has important roles in DNA replication, recombination and repair. In replication, Srs2 aids in repair of gaps by repair synthesis by preventing gaps from being used to initiate recombination. This is considered to be an anti-recombination role. In recombination, Srs2 plays both prorecombination and anti-recombination roles to promote the synthesis-dependent strand annealing recombination pathway and to inhibit gaps from initiating homologous recombination. In repair, the Srs2 helicase actively promotes gap repair through an interaction with the Exo1 nuclease to enlarge a gap for repair and to prevent Rad51 protein from accumulating on single-stranded DNA. Finally, Srs2 helicase can unwind hairpin-forming repeat sequences to promote replication and prevent repeat instability. The Srs2 activities can be controlled by phosphorylation, SUMO modification and interaction with key partners at DNA damage or lesions sites, which include PCNA and Rad51. These interactions can also limit DNA polymerase function during recombinational repair independent of the Srs2 translocase or helicase activity, further highlighting the importance of the Srs2 protein in regulating recombination. Here we review the myriad roles of Srs2 that have been documented in genome maintenance and distinguish between the translocase, helicase and additional functions of the Srs2 protein.
Collapse
Affiliation(s)
- Hengyao Niu
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA
| | - Hannah L Klein
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|
17
|
Zhao X, Wei C, Li J, Xing P, Li J, Zheng S, Chen X. Cell cycle-dependent control of homologous recombination. Acta Biochim Biophys Sin (Shanghai) 2017; 49:655-668. [PMID: 28541389 DOI: 10.1093/abbs/gmx055] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Indexed: 01/29/2023] Open
Abstract
DNA double-strand breaks (DSBs) are among the most deleterious type of DNA lesions threatening genome integrity. Homologous recombination (HR) and non-homologous end joining (NHEJ) are two major pathways to repair DSBs. HR requires a homologous template to direct DNA repair, and is generally recognized as a high-fidelity pathway. In contrast, NHEJ directly seals broken ends, but the repair product is often accompanied by sequence alterations. The choice of repair pathways is strictly controlled by the cell cycle. The occurrence of HR is restricted to late S to G2 phases while NHEJ operates predominantly in G1 phase, although it can act throughout most of the cell cycle. Deregulation of repair pathway choice can result in genotoxic consequences associated with cancers. How the cell cycle regulates the choice of HR and NHEJ has been extensively studied in the past decade. In this review, we will focus on the current progresses on how HR is controlled by the cell cycle in both Saccharomyces cerevisiae and mammals. Particular attention will be given to how cyclin-dependent kinases modulate DSB end resection, DNA damage checkpoint signaling, repair and processing of recombination intermediates. In addition, we will discuss recent findings on how HR is repressed in G1 and M phases by the cell cycle.
Collapse
Affiliation(s)
- Xin Zhao
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences and the Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Chengwen Wei
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences and the Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Jingjing Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences and the Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Poyuan Xing
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences and the Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Jingyao Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences and the Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Sihao Zheng
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences and the Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Xuefeng Chen
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences and the Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| |
Collapse
|
18
|
Liu J, Ede C, Wright WD, Gore SK, Jenkins SS, Freudenthal BD, Todd Washington M, Veaute X, Heyer WD. Srs2 promotes synthesis-dependent strand annealing by disrupting DNA polymerase δ-extending D-loops. eLife 2017; 6. [PMID: 28535142 PMCID: PMC5441872 DOI: 10.7554/elife.22195] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 04/29/2017] [Indexed: 01/12/2023] Open
Abstract
Synthesis-dependent strand annealing (SDSA) is the preferred mode of homologous recombination in somatic cells leading to an obligatory non-crossover outcome, thus avoiding the potential for chromosomal rearrangements and loss of heterozygosity. Genetic analysis identified the Srs2 helicase as a prime candidate to promote SDSA. Here, we demonstrate that Srs2 disrupts D-loops in an ATP-dependent fashion and with a distinct polarity. Specifically, we partly reconstitute the SDSA pathway using Rad51, Rad54, RPA, RFC, DNA Polymerase δ with different forms of PCNA. Consistent with genetic data showing the requirement for SUMO and PCNA binding for the SDSA role of Srs2, Srs2 displays a slight but significant preference to disrupt extending D-loops over unextended D-loops when SUMOylated PCNA is present, compared to unmodified PCNA or monoubiquitinated PCNA. Our data establish a biochemical mechanism for the role of Srs2 in crossover suppression by promoting SDSA through disruption of extended D-loops. DOI:http://dx.doi.org/10.7554/eLife.22195.001
Collapse
Affiliation(s)
- Jie Liu
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, United States
| | - Christopher Ede
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, United States
| | - William D Wright
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, United States
| | - Steven K Gore
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, United States
| | - Shirin S Jenkins
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, United States
| | - Bret D Freudenthal
- Department of Biochemistry, University of Iowa Carver College of Medicine, Iowa City, United States
| | - M Todd Washington
- Department of Biochemistry, University of Iowa Carver College of Medicine, Iowa City, United States
| | | | - Wolf-Dietrich Heyer
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, United States.,Department of Molecular and Cellular Biology, University of California, Davis, Davis, United States
| |
Collapse
|
19
|
Branzei D, Szakal B. Building up and breaking down: mechanisms controlling recombination during replication. Crit Rev Biochem Mol Biol 2017; 52:381-394. [PMID: 28325102 DOI: 10.1080/10409238.2017.1304355] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The complete and faithful duplication of the genome is an essential prerequisite for proliferating cells to maintain genome integrity. This objective is greatly challenged by DNA damage encountered during replication, which causes fork stalling and in certain cases, fork breakage. DNA damage tolerance (DDT) pathways mitigate the effects on fork stability induced by replication fork stalling by mediating damage-bypass and replication fork restart. These DDT mechanisms, largely relying on homologous recombination (HR) and specialized polymerases, can however contribute to genome rearrangements and mutagenesis. There is a profound connection between replication and recombination: recombination proteins protect replication forks from nuclease-mediated degradation of the nascent DNA strands and facilitate replication completion in cells challenged by DNA damage. Moreover, in case of fork collapse and formation of double strand breaks (DSBs), the recombination factors present or recruited to the fork facilitate HR-mediated DSB repair, which is primarily error-free. Disruption of HR is inexorably linked to genome instability, but the premature activation of HR during replication often leads to genome rearrangements. Faithful replication necessitates the downregulation of HR and disruption of active RAD51 filaments at replication forks, but upon persistent fork stalling, building up of HR is critical for the reorganization of the replication fork and for filling-in of the gaps associated with discontinuous replication induced by DNA lesions. Here we summarize and reflect on our understanding of the mechanisms that either suppress recombination or locally enhance it during replication, and the principles that underlie this regulation.
Collapse
Affiliation(s)
- Dana Branzei
- a IFOM, the FIRC Institute of Molecular Oncology , Milan , Italy
| | - Barnabas Szakal
- a IFOM, the FIRC Institute of Molecular Oncology , Milan , Italy
| |
Collapse
|
20
|
PCNA SUMOylation protects against PCNA polyubiquitination-mediated, Rad59-dependent, spontaneous, intrachromosomal gene conversion. Mutat Res 2016; 791-792:10-18. [PMID: 27505077 DOI: 10.1016/j.mrfmmm.2016.08.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 06/29/2016] [Accepted: 08/01/2016] [Indexed: 11/23/2022]
Abstract
Homologous recombination is crucial in both the maintenance of genome stability and the generation of genetic diversity. Recently, multiple aspects of the recombination machinery functioning at arrested DNA replication forks have been established, yet the roles of diverse modifications of PCNA, the key platform organizing the replication complex, in intrachromosomal recombination have not been comprehensively elucidated. Here, we report how PCNA SUMOylation and/or polyubiquitination affects recombination between direct repeats in S. cerevisiae. Our results show that these PCNA modifications primarily affect gene conversion, whereas their effect on the recombination-mediated deletion of intervening sequence is much less obvious. Siz1-dependent PCNA SUMOylation strongly limits Rad52/Rad51/Rad59-dependent gene conversion. A 5- to 10-fold increase in the frequency of such recombination events is observed in Siz1-defective strains, but this increase is fully suppressed when PCNA polyubiquitination is also compromised. PCNA polyubiquitination can stimulate gene conversion in both PCNA SUMOylation-proficient and SUMOylation-deficient strains. On the other hand, in PCNA polyubiquitination-deficient strains, the lack of PCNA SUMOylation does not affect GC levels. Therefore, we postulate that the antirecombinogenic activity of Siz1 mainly concerns recombination induced by PCNA polyubiquitination. In the absence of PCNA SUMOylation, the frequency of PCNA polyubiquitination-mediated gene conversion is not only increased, but it is also channeled into the Rad59-dependent pathway. Additionally, we show a weak inhibitory effect of Rad5 on Rad52/Rad59-directed single-strand annealing.
Collapse
|
21
|
Keyamura K, Arai K, Hishida T. Srs2 and Mus81-Mms4 Prevent Accumulation of Toxic Inter-Homolog Recombination Intermediates. PLoS Genet 2016; 12:e1006136. [PMID: 27390022 PMCID: PMC4936719 DOI: 10.1371/journal.pgen.1006136] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 05/31/2016] [Indexed: 11/18/2022] Open
Abstract
Homologous recombination is an evolutionally conserved mechanism that promotes genome stability through the faithful repair of double-strand breaks and single-strand gaps in DNA, and the recovery of stalled or collapsed replication forks. Saccharomyces cerevisiae ATP-dependent DNA helicase Srs2 (a member of the highly conserved UvrD family of helicases) has multiple roles in regulating homologous recombination. A mutation (srs2K41A) resulting in a helicase-dead mutant of Srs2 was found to be lethal in diploid, but not in haploid, cells. In diploid cells, Srs2K41A caused the accumulation of inter-homolog joint molecule intermediates, increased the levels of spontaneous Rad52 foci, and induced gross chromosomal rearrangements. Srs2K41A lethality and accumulation of joint molecules were suppressed by inactivating Rad51 or deleting the Rad51-interaction domain of Srs2, whereas phosphorylation and sumoylation of Srs2 and its interaction with sumoylated proliferating cell nuclear antigen (PCNA) were not required for lethality. The structure-specific complex of crossover junction endonucleases Mus81 and Mms4 was also required for viability of diploid, but not haploid, SRS2 deletion mutants (srs2Δ), and diploid srs2Δ mus81Δ mutants accumulated joint molecule intermediates. Our data suggest that Srs2 and Mus81–Mms4 have critical roles in preventing the formation of (or in resolving) toxic inter-homolog joint molecules, which could otherwise interfere with chromosome segregation and lead to genetic instability. Homologous recombination (HR) is a DNA-repair mechanism that is generally considered error free because it uses an intact sister chromatid as a template. However, in diploid cells, HR can also occur between homologous chromosomes, which can lead to genomic instability through loss of heterozygosity. This alteration is often detected in genetic disorders and cancer, suggesting that tight control of this process is required to ensure genome stability. Yeast Srs2, conserved from bacteria to humans, plays multiple roles in the regulation of HR. We show here that a helicase-dead mutant of Srs2, srs2K41A, is lethal in diploid cells but not in haploid cells. Expression of Srs2K41A in diploid cells causes inter-homolog joint molecule intermediates to accumulate, and leads to gross chromosomal rearrangements. Moreover, srs2Δ mus81Δ double mutants have a severe diploid-specific growth defect with accumulation of inter-homolog joint molecules. These data demonstrate that Srs2 and Mus81-Mms4 participate in essential pathways preventing accumulation of inter-homolog recombination intermediates, thereby reducing the risk of genome instability.
Collapse
Affiliation(s)
- Kenji Keyamura
- Department of Life Science, Graduate School of Science, Gakushuin University, Tokyo, Japan
| | - Kota Arai
- Department of Life Science, Graduate School of Science, Gakushuin University, Tokyo, Japan
| | - Takashi Hishida
- Department of Life Science, Graduate School of Science, Gakushuin University, Tokyo, Japan
- * E-mail:
| |
Collapse
|
22
|
Urulangodi M, Sebesta M, Menolfi D, Szakal B, Sollier J, Sisakova A, Krejci L, Branzei D. Local regulation of the Srs2 helicase by the SUMO-like domain protein Esc2 promotes recombination at sites of stalled replication. Genes Dev 2016; 29:2067-80. [PMID: 26443850 PMCID: PMC4604347 DOI: 10.1101/gad.265629.115] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
In this study, Urulangodi et al. demonstrate that a SUMO-mediated regulatory mechanism enables recombination-mediated DNA damage tolerance (DDT) specifically at sites of compromised replication forks. By using a combination of genetic, biochemical, and molecular approaches, they identified a SUMO-like domain (SLD)-containing protein, Esc2, that allows optimal recruitment of the Rad51 recombinase at sites of perturbed replication, thus advancing our understanding of DDT and the pathways that support genome integrity. Accurate completion of replication relies on the ability of cells to activate error-free recombination-mediated DNA damage bypass at sites of perturbed replication. However, as anti-recombinase activities are also recruited to replication forks, how recombination-mediated damage bypass is enabled at replication stress sites remained puzzling. Here we uncovered that the conserved SUMO-like domain-containing Saccharomyces cerevisiae protein Esc2 facilitates recombination-mediated DNA damage tolerance by allowing optimal recruitment of the Rad51 recombinase specifically at sites of perturbed replication. Mechanistically, Esc2 binds stalled replication forks and counteracts the anti-recombinase Srs2 helicase via a two-faceted mechanism involving chromatin recruitment and turnover of Srs2. Importantly, point mutations in the SUMO-like domains of Esc2 that reduce its interaction with Srs2 cause suboptimal levels of Rad51 recruitment at damaged replication forks. In conclusion, our results reveal how recombination-mediated DNA damage tolerance is locally enabled at sites of replication stress and globally prevented at undamaged replicating chromosomes.
Collapse
Affiliation(s)
- Madhusoodanan Urulangodi
- FIRC (Fondazione Italiana per la Ricerca sul Cancro) Institute of Molecular Oncology (IFOM), 20139 Milan, Italy
| | - Marek Sebesta
- FIRC (Fondazione Italiana per la Ricerca sul Cancro) Institute of Molecular Oncology (IFOM), 20139 Milan, Italy; National Centre for Biomolecular Research, Masaryk University, CZ-62500 Brno, Czech Republic
| | - Demis Menolfi
- FIRC (Fondazione Italiana per la Ricerca sul Cancro) Institute of Molecular Oncology (IFOM), 20139 Milan, Italy
| | - Barnabas Szakal
- FIRC (Fondazione Italiana per la Ricerca sul Cancro) Institute of Molecular Oncology (IFOM), 20139 Milan, Italy
| | - Julie Sollier
- FIRC (Fondazione Italiana per la Ricerca sul Cancro) Institute of Molecular Oncology (IFOM), 20139 Milan, Italy
| | - Alexandra Sisakova
- Department of Biology, Masaryk University, CZ-62500 Brno, Czech Republic; International Clinical Research Center, Center for Biomolecular and Cellular Engineering, St. Anne's University Hospital Brno, CZ-656 91 Brno, Czech Republic
| | - Lumir Krejci
- National Centre for Biomolecular Research, Masaryk University, CZ-62500 Brno, Czech Republic; Department of Biology, Masaryk University, CZ-62500 Brno, Czech Republic; International Clinical Research Center, Center for Biomolecular and Cellular Engineering, St. Anne's University Hospital Brno, CZ-656 91 Brno, Czech Republic
| | - Dana Branzei
- FIRC (Fondazione Italiana per la Ricerca sul Cancro) Institute of Molecular Oncology (IFOM), 20139 Milan, Italy
| |
Collapse
|
23
|
Abstract
DNA damage may compromise genome integrity and lead to cell death. Cells have evolved a variety of processes to respond to DNA damage including damage repair and tolerance mechanisms, as well as damage checkpoints. The DNA damage tolerance (DDT) pathway promotes the bypass of single-stranded DNA lesions encountered by DNA polymerases during DNA replication. This prevents the stalling of DNA replication. Two mechanistically distinct DDT branches have been characterized. One is translesion synthesis (TLS) in which a replicative DNA polymerase is temporarily replaced by a specialized TLS polymerase that has the ability to replicate across DNA lesions. TLS is mechanistically simple and straightforward, but it is intrinsically error-prone. The other is the error-free template switching (TS) mechanism in which the stalled nascent strand switches from the damaged template to the undamaged newly synthesized sister strand for extension past the lesion. Error-free TS is a complex but preferable process for bypassing DNA lesions. However, our current understanding of this pathway is sketchy. An increasing number of factors are being found to participate or regulate this important mechanism, which is the focus of this editorial.
Collapse
|
24
|
Abstract
Homology-dependent exchange of genetic information between DNA molecules has a profound impact on the maintenance of genome integrity by facilitating error-free DNA repair, replication, and chromosome segregation during cell division as well as programmed cell developmental events. This chapter will focus on homologous mitotic recombination in budding yeast Saccharomyces cerevisiae. However, there is an important link between mitotic and meiotic recombination (covered in the forthcoming chapter by Hunter et al. 2015) and many of the functions are evolutionarily conserved. Here we will discuss several models that have been proposed to explain the mechanism of mitotic recombination, the genes and proteins involved in various pathways, the genetic and physical assays used to discover and study these genes, and the roles of many of these proteins inside the cell.
Collapse
|
25
|
Chavdarova M, Marini V, Sisakova A, Sedlackova H, Vigasova D, Brill SJ, Lisby M, Krejci L. Srs2 promotes Mus81-Mms4-mediated resolution of recombination intermediates. Nucleic Acids Res 2015; 43:3626-42. [PMID: 25765656 PMCID: PMC4402524 DOI: 10.1093/nar/gkv198] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 02/26/2015] [Indexed: 11/26/2022] Open
Abstract
A variety of DNA lesions, secondary DNA structures or topological stress within the DNA template may lead to stalling of the replication fork. Recovery of such forks is essential for the maintenance of genomic stability. The structure-specific endonuclease Mus81–Mms4 has been implicated in processing DNA intermediates that arise from collapsed forks and homologous recombination. According to previous genetic studies, the Srs2 helicase may play a role in the repair of double-strand breaks and ssDNA gaps together with Mus81–Mms4. In this study, we show that the Srs2 and Mus81–Mms4 proteins physically interact in vitro and in vivo and we map the interaction domains within the Srs2 and Mus81 proteins. Further, we show that Srs2 plays a dual role in the stimulation of the Mus81–Mms4 nuclease activity on a variety of DNA substrates. First, Srs2 directly stimulates Mus81–Mms4 nuclease activity independent of its helicase activity. Second, Srs2 removes Rad51 from DNA to allow access of Mus81–Mms4 to cleave DNA. Concomitantly, Mus81–Mms4 inhibits the helicase activity of Srs2. Taken together, our data point to a coordinated role of Mus81–Mms4 and Srs2 in processing of recombination as well as replication intermediates.
Collapse
Affiliation(s)
- Melita Chavdarova
- Department of Biology, Masaryk University, Kamenice 5/A7, Brno 625 00, Czech Republic National Centre for Biomolecular Research, Masaryk University, Kamenice 5/A4, Brno 625 00, Czech Republic
| | - Victoria Marini
- Department of Biology, Masaryk University, Kamenice 5/A7, Brno 625 00, Czech Republic
| | - Alexandra Sisakova
- Department of Biology, Masaryk University, Kamenice 5/A7, Brno 625 00, Czech Republic International Clinical Research Center, Center for Biomolecular and Cellular Engineering, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Hana Sedlackova
- Department of Biology, Masaryk University, Kamenice 5/A7, Brno 625 00, Czech Republic
| | - Dana Vigasova
- Department of Biology, Masaryk University, Kamenice 5/A7, Brno 625 00, Czech Republic Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Steven J Brill
- Department of Genetics, Cancer Research Institute, Vlarska 7, 833 91 Bratislava, Slovakia
| | - Michael Lisby
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ, USA
| | - Lumir Krejci
- Department of Biology, Masaryk University, Kamenice 5/A7, Brno 625 00, Czech Republic National Centre for Biomolecular Research, Masaryk University, Kamenice 5/A4, Brno 625 00, Czech Republic International Clinical Research Center, Center for Biomolecular and Cellular Engineering, St. Anne's University Hospital Brno, Brno, Czech Republic
| |
Collapse
|
26
|
Fasching CL, Cejka P, Kowalczykowski SC, Heyer WD. Top3-Rmi1 dissolve Rad51-mediated D loops by a topoisomerase-based mechanism. Mol Cell 2015; 57:595-606. [PMID: 25699708 PMCID: PMC4338411 DOI: 10.1016/j.molcel.2015.01.022] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 12/03/2014] [Accepted: 01/02/2015] [Indexed: 11/19/2022]
Abstract
The displacement loop (D loop) is a DNA strand invasion product formed during homologous recombination. Disruption of nascent D loops prevents recombination, and during synthesis-dependent strand annealing (SDSA), disruption of D loops extended by DNA polymerase ensures a non-crossover outcome. The proteins implicated in D loop disruption are DNA motor proteins/helicases that act by moving DNA junctions. Here we report that D loops can also be disrupted by DNA topoisomerase 3 (Top3), and this disruption depends on Top3's catalytic activity. Yeast Top3 specifically disrupts D loops mediated by yeast Rad51/Rad54; protein-free D loops or D loop mediated by bacterial RecA protein or human RAD51/RAD54 resist dissolution. Also, the human Topoisomerase IIIa-RMI1-RMI2 complex is capable of dissolving D loops. Consistent with genetic data, we suggest that the extreme growth defect and hyper-recombination phenotype of Top3-deficient yeast cells is partially a result of unprocessed D loops.
Collapse
Affiliation(s)
- Clare L Fasching
- Department of Microbiology & Molecular Genetics, University of California, Davis, Davis, CA 95616-8665, USA
| | - Petr Cejka
- Department of Microbiology & Molecular Genetics, University of California, Davis, Davis, CA 95616-8665, USA
| | - Stephen C Kowalczykowski
- Department of Microbiology & Molecular Genetics, University of California, Davis, Davis, CA 95616-8665, USA; Department of Molecular & Cellular Biology, University of California, Davis, Davis, CA 95616-8665, USA
| | - Wolf-Dietrich Heyer
- Department of Microbiology & Molecular Genetics, University of California, Davis, Davis, CA 95616-8665, USA; Department of Molecular & Cellular Biology, University of California, Davis, Davis, CA 95616-8665, USA.
| |
Collapse
|
27
|
Pietrobon V, Fréon K, Hardy J, Costes A, Iraqui I, Ochsenbein F, Lambert SA. The chromatin assembly factor 1 promotes Rad51-dependent template switches at replication forks by counteracting D-loop disassembly by the RecQ-type helicase Rqh1. PLoS Biol 2014; 12:e1001968. [PMID: 25313826 PMCID: PMC4196752 DOI: 10.1371/journal.pbio.1001968] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Accepted: 09/04/2014] [Indexed: 11/25/2022] Open
Abstract
A molecular switch for times of replication stress - Chromatin Assembly Factor 1 helps to protect DNA during recombination-mediated template-switching, favoring the rescue of stalled replication forks by both beneficial and detrimental homologous recombination events. At blocked replication forks, homologous recombination mediates the nascent strands to switch template in order to ensure replication restart, but faulty template switches underlie genome rearrangements in cancer cells and genomic disorders. Recombination occurs within DNA packaged into chromatin that must first be relaxed and then restored when recombination is completed. The chromatin assembly factor 1, CAF-1, is a histone H3-H4 chaperone involved in DNA synthesis-coupled chromatin assembly during DNA replication and DNA repair. We reveal a novel chromatin factor-dependent step during replication-coupled DNA repair: Fission yeast CAF-1 promotes Rad51-dependent template switches at replication forks, independently of the postreplication repair pathway. We used a physical assay that allows the analysis of the individual steps of template switch, from the recruitment of recombination factors to the formation of joint molecules, combined with a quantitative measure of the resulting rearrangements. We reveal functional and physical interplays between CAF-1 and the RecQ-helicase Rqh1, the BLM homologue, mutations in which cause Bloom's syndrome, a human disease associating genome instability with cancer predisposition. We establish that CAF-1 promotes template switch by counteracting D-loop disassembly by Rqh1. Consequently, the likelihood of faulty template switches is controlled by antagonistic activities of CAF-1 and Rqh1 in the stability of the D-loop. D-loop stabilization requires the ability of CAF-1 to interact with PCNA and is thus linked to the DNA synthesis step. We propose that CAF-1 plays a regulatory role during template switch by assembling chromatin on the D-loop and thereby impacting the resolution of the D-loop. Obstacles to the progression of DNA replication forks can result in genome rearrangements that are often observed in cancer cells and genomic disorders. Homologous recombination is a mechanism of restarting stalled replication fork that involves synthesis of the new DNA strands switching templates to a second (allelic) copy of the DNA sequence. However, the new strands can also occasionally recombine with nonallelic repeats (distinct regions of the genome that resemble the correct one) and thereby cause the inappropriate fusion of normally distant DNA segments; this is known as faulty template switching. The chromatin assembly factor 1 (CAF-1) is already known to be involved in depositing nucleosomes on DNA during DNA replication and repair. We have found that CAF-1 is also involved in the recombination-mediated template switch pathway in response to replication stress. Using both genetic and physical assays that allow the different steps of template switch to be analyzed, we reveal that CAF-1 protects recombination intermediates from disassembly by the RecQ-type helicase Rqh1, the homologue of BLM (people with mutations that affect BLM have Bloom's syndrome, an inherited predisposition to genome instability and cancer). Consequently, the likelihood of faulty template switch is controlled by the antagonistic activities of CAF-1 and Rqh1. We thus identified an evolutionarily conserved interplay between CAF-1 and RecQ-type helicases that helps to maintain genome stability in the face of replication stress.
Collapse
Affiliation(s)
- Violena Pietrobon
- Institut Curie, Centre de Recherche, Orsay, France
- Centre national de la Recherche Scientifique, UMR3348, Centre Universitaire, Orsay, France
| | - Karine Fréon
- Institut Curie, Centre de Recherche, Orsay, France
- Centre national de la Recherche Scientifique, UMR3348, Centre Universitaire, Orsay, France
| | - Julien Hardy
- Institut Curie, Centre de Recherche, Orsay, France
- Centre national de la Recherche Scientifique, UMR3348, Centre Universitaire, Orsay, France
| | - Audrey Costes
- Institut Curie, Centre de Recherche, Orsay, France
- Centre national de la Recherche Scientifique, UMR3348, Centre Universitaire, Orsay, France
| | - Ismail Iraqui
- Institut Curie, Centre de Recherche, Orsay, France
- Centre national de la Recherche Scientifique, UMR3348, Centre Universitaire, Orsay, France
| | - Françoise Ochsenbein
- Commissariat à l'Energie Atomique, iBiTec-S, Service de Biologie Intégrative et de Génétique Moléculaire, Gif-sur-Yvette, France
| | - Sarah A.E. Lambert
- Institut Curie, Centre de Recherche, Orsay, France
- Centre national de la Recherche Scientifique, UMR3348, Centre Universitaire, Orsay, France
- * E-mail:
| |
Collapse
|
28
|
Visualization of recombination-mediated damage bypass by template switching. Nat Struct Mol Biol 2014; 21:884-92. [PMID: 25195051 PMCID: PMC4189914 DOI: 10.1038/nsmb.2888] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 08/13/2014] [Indexed: 12/29/2022]
Abstract
Template switching (TS) mediates damage-bypass via a recombination-related mechanism involving PCNA polyubiquitylation and Polymerase δ-dependent DNA synthesis. Using two-dimensional gel electrophoresis and electron microscopy, here we characterize TS intermediates arising in Saccharomyces cerevisiae at a defined chromosome locus, identifying five major families of intermediates. Single-stranded DNA gaps in the range of 150-200 nucleotides, and not DNA ends, initiate TS by strand invasion. This causes re-annealing of the parental strands and exposure of the non-damaged newly synthesized chromatid as template for replication by the other blocked nascent strand. Structures resembling double Holliday Junctions, postulated to be central double-strand break repair intermediates, but so far only visualized in meiosis, mediate late stages of TS, before being processed to hemicatenanes. Our results reveal the DNA transitions accounting for recombination-mediated DNA damage tolerance in mitotic cells and for replication under conditions of genotoxic stress.
Collapse
|
29
|
Gritenaite D, Princz LN, Szakal B, Bantele SCS, Wendeler L, Schilbach S, Habermann BH, Matos J, Lisby M, Branzei D, Pfander B. A cell cycle-regulated Slx4-Dpb11 complex promotes the resolution of DNA repair intermediates linked to stalled replication. Genes Dev 2014; 28:1604-19. [PMID: 25030699 PMCID: PMC4102767 DOI: 10.1101/gad.240515.114] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A key function of the DNA damage response is to facilitate the bypass of replication fork-stalling DNA lesions. Template switch reactions allow such a bypass and involve the formation of DNA joint molecules (JMs) between sister chromatids. However, the regulation of JM resolution is poorly understood. Pfander and colleagues elucidate a mechanism in yeast that critically controls JM resolution by the Mus81–Mms4 endonuclease. The data show that the conserved complex comprising scaffold proteins Dbp11 and Slx4 integrates cellular inputs and regulates the activation of the JM-resolving nuclease Mus81. A key function of the cellular DNA damage response is to facilitate the bypass of replication fork-stalling DNA lesions. Template switch reactions allow such a bypass and involve the formation of DNA joint molecules (JMs) between sister chromatids. These JMs need to be resolved before cell division; however, the regulation of this process is only poorly understood. Here, we identify a regulatory mechanism in yeast that critically controls JM resolution by the Mus81–Mms4 endonuclease. Central to this regulation is a conserved complex comprising the scaffold proteins Dpb11 and Slx4 that is under stringent control. Cell cycle-dependent phosphorylation of Slx4 by Cdk1 promotes the Dpb11–Slx4 interaction, while in mitosis, phosphorylation of Mms4 by Polo-like kinase Cdc5 promotes the additional association of Mus81–Mms4 with the complex, thereby promoting JM resolution. Finally, the DNA damage checkpoint counteracts Mus81–Mms4 binding to the Dpb11–Slx4 complex. Thus, Dpb11–Slx4 integrates several cellular inputs and participates in the temporal program for activation of the JM-resolving nuclease Mus81.
Collapse
Affiliation(s)
- Dalia Gritenaite
- DNA Replication and Genome Integrity, Max-Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Lissa N Princz
- DNA Replication and Genome Integrity, Max-Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Barnabas Szakal
- Fondazione IFOM, Istituto FIRC di Oncologia Molecolare, 20139 Milan, Italy
| | - Susanne C S Bantele
- DNA Replication and Genome Integrity, Max-Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Lina Wendeler
- DNA Replication and Genome Integrity, Max-Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Sandra Schilbach
- DNA Replication and Genome Integrity, Max-Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Bianca H Habermann
- Computational Biology, Max-Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Joao Matos
- Institute of Biochemistry, Eidgenössische Technische Hochschule Zürich, 8093 Zürich, Switzerland
| | - Michael Lisby
- Department of Biology, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Dana Branzei
- Fondazione IFOM, Istituto FIRC di Oncologia Molecolare, 20139 Milan, Italy
| | - Boris Pfander
- DNA Replication and Genome Integrity, Max-Planck Institute of Biochemistry, 82152 Martinsried, Germany
| |
Collapse
|
30
|
Tsutsui Y, Kurokawa Y, Ito K, Siddique MSP, Kawano Y, Yamao F, Iwasaki H. Multiple regulation of Rad51-mediated homologous recombination by fission yeast Fbh1. PLoS Genet 2014; 10:e1004542. [PMID: 25165823 PMCID: PMC4148199 DOI: 10.1371/journal.pgen.1004542] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 06/16/2014] [Indexed: 11/18/2022] Open
Abstract
Fbh1, an F-box helicase related to bacterial UvrD, has been proposed to modulate homologous recombination in fission yeast. We provide several lines of evidence for such modulation. Fbh1, but not the related helicases Srs2 and Rqh1, suppressed the formation of crossover recombinants from single HO-induced DNA double-strand breaks. Purified Fbh1 in complex with Skp1 (Fbh1-Skp1 complex) inhibited Rad51-driven DNA strand exchange by disrupting Rad51 nucleoprotein filaments in an ATP-dependent manner; this disruption was alleviated by the Swi5-Sfr1 complex, an auxiliary activator of Rad51. In addition, the reconstituted SCFFbh1 complex, composed of purified Fbh1-Skp1 and Pcu1-Rbx1, displayed ubiquitin-ligase E3 activity toward Rad51. Furthermore, Fbh1 reduced the protein level of Rad51 in stationary phase in an F-box-dependent, but not in a helicase domain-independent manner. These results suggest that Fbh1 negatively regulates Rad51-mediated homologous recombination via its two putative, unrelated activities, namely DNA unwinding/translocation and ubiquitin ligation. In addition to its anti-recombinase activity, we tentatively suggest that Fbh1 might also have a pro-recombination role in vivo, because the Fbh1-Skp1 complex stimulated Rad51-mediated strand exchange in vitro after strand exchange had been initiated. Homologous recombination is required for repairing DNA double-strand breaks (DSBs), which are induced by exogenous factors such as DNA damaging agents or by endogenous factors such as collapse of DNA replication fork in mitotic cells. If improperly processed, DSBs could lead to chromosome rearrangement, cell death, or tumorigenesis in mammals, and thus HR is strictly controlled at several steps, including Rad51 recombinase-driven DNA strand exchange reaction. Specifically, DNA helicases have been shown to be important for suppression of inappropriate recombination events. In this study, we analyzed one such DNA helicase, fission yeast Fbh1. We used an in vivo single-DSB repair assay to show that Fbh1 suppresses crossover formation between homologous chromosomes. Next, we obtained in vitro evidence that Fbh1 acts as an inhibitor of the strand-exchange reaction in the absence of Swi5-Sfr1, but stimulates the reaction after it starts. Furthermore, we found that SCFFbh1 has ubiquitin-ligase activity toward Rad51 in vitro and that Fbh1 regulates the protein level of Rad51 in the stationary phase. These results suggest Fbh1 regulates Rad51-mediated homologous recombination by its seemingly-unrelated two activities, DNA helicase/translocase and ubiquitin ligase.
Collapse
Affiliation(s)
- Yasuhiro Tsutsui
- Department of Biological Sciences, School and Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan
- * E-mail: (YT); (HI)
| | - Yumiko Kurokawa
- Education Academy of Computational Life Science, Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan
| | - Kentaro Ito
- Department of Biological Sciences, School and Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan
| | - Md. Shahjahan P. Siddique
- Department of Biological Sciences, School and Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan
| | - Yumiko Kawano
- Department of Biological Sciences, School and Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan
| | - Fumiaki Yamao
- International Institute for Advanced Studies, Kizugawa, Kyoto, Japan
| | - Hiroshi Iwasaki
- Department of Biological Sciences, School and Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan
- * E-mail: (YT); (HI)
| |
Collapse
|
31
|
Signon L, Simon MN. The analysis of S. cerevisiae cells deleted for mitotic cyclin Clb2 reveals a novel requirement of Sgs1 DNA helicase and Exonuclease 1 when replication forks break in the presence of alkylation damage. Mutat Res 2014; 769:80-92. [PMID: 25771727 DOI: 10.1016/j.mrfmmm.2014.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 07/19/2014] [Accepted: 07/22/2014] [Indexed: 10/25/2022]
Abstract
In this study, we report the effects of deleting the principal mitotic cyclin, Clb2, in different repair deficient contexts on sensitivity to the alkylating DNA damaging agent, methyl methanesulphonate (MMS). A yeast clb2 mutant is sensitive to MMS and displays synergistic effect when combined with inactivation of numerous genes involved in DNA recombination and replication. In contrast, clb2 has basically no additional effect with deletion of the RecQ helicase SGS1, the exonuclease EXO1 and the protein kinase RAD53 suggesting that Clb2 functions in these pathways. In addition, clb2 increases the viability of the mec1 kinase deficient mutant, suggesting Mec1 inhibits a deleterious Clb2 activity. Interestingly, we found that the rescue by EXO1 deletion of rad53K227 mutant, deficient in checkpoint activation, requires Sgs1, suggesting a role for Rad53, independent of its checkpoint function, in regulating an ordered recruitment of Sgs1 and Exo1 to fork structure. Overall, our data suggest that Clb2 affects recombinant structure of replication fork blocked by alkylating DNA damage at numerous steps and could regulate Sgs1 and Exo1 activity. In addition, we found novel requirement of Sgs1 DNA helicase and Exonuclease 1 when replication forks breaks in the presence of alkylation damage. Models for the functional interactions of mitotic cyclin Clb2, Sgs1 and Exo1 with replication fork stabilization are proposed.
Collapse
Affiliation(s)
- Laurence Signon
- Laboratoire d'Ingenierie des Systèmes Macromoléculaires CNRS UPR9027, Aix-Marseille University, 13402 Marseille Cedex 20, France; Université Paris-Sud, CNRS UMR8621, Institut de Génétique et Microbiologie, Bâtiment 400, 91405 Orsay Cedex, France.
| | - Marie Noelle Simon
- Laboratoire d'Ingenierie des Systèmes Macromoléculaires CNRS UPR9027, Aix-Marseille University, 13402 Marseille Cedex 20, France
| |
Collapse
|
32
|
Lytle AK, Origanti SS, Qiu Y, VonGermeten J, Myong S, Antony E. Context-Dependent Remodeling of Rad51–DNA Complexes by Srs2 Is Mediated by a Specific Protein–Protein Interaction. J Mol Biol 2014; 426:1883-97. [DOI: 10.1016/j.jmb.2014.02.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Revised: 02/10/2014] [Accepted: 02/16/2014] [Indexed: 10/25/2022]
|
33
|
Esta A, Ma E, Dupaigne P, Maloisel L, Guerois R, Le Cam E, Veaute X, Coïc E. Rad52 sumoylation prevents the toxicity of unproductive Rad51 filaments independently of the anti-recombinase Srs2. PLoS Genet 2013; 9:e1003833. [PMID: 24130504 PMCID: PMC3794917 DOI: 10.1371/journal.pgen.1003833] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 08/12/2013] [Indexed: 11/18/2022] Open
Abstract
The budding yeast Srs2 is the archetype of helicases that regulate several aspects of homologous recombination (HR) to maintain genomic stability. Srs2 inhibits HR at replication forks and prevents high frequencies of crossing-over. Additionally, sensitivity to DNA damage and synthetic lethality with replication and recombination mutants are phenotypes that can only be attributed to another role of Srs2: the elimination of lethal intermediates formed by recombination proteins. To shed light on these intermediates, we searched for mutations that bypass the requirement of Srs2 in DNA repair without affecting HR. Remarkably, we isolated rad52-L264P, a novel allele of RAD52, a gene that encodes one of the most central recombination proteins in yeast. This mutation suppresses a broad spectrum of srs2Δ phenotypes in haploid cells, such as UV and γ-ray sensitivities as well as synthetic lethality with replication and recombination mutants, while it does not significantly affect Rad52 functions in HR and DNA repair. Extensive analysis of the genetic interactions between rad52-L264P and srs2Δ shows that rad52-L264P bypasses the requirement for Srs2 specifically for the prevention of toxic Rad51 filaments. Conversely, this Rad52 mutant cannot restore viability of srs2Δ cells that accumulate intertwined recombination intermediates which are normally processed by Srs2 post-synaptic functions. The avoidance of toxic Rad51 filaments by Rad52-L264P can be explained by a modification of its Rad51 filament mediator activity, as indicated by Chromatin immunoprecipitation and biochemical analysis. Remarkably, sensitivity to DNA damage of srs2Δ cells can also be overcome by stimulating Rad52 sumoylation through overexpression of the sumo-ligase SIZ2, or by replacing Rad52 by a Rad52-SUMO fusion protein. We propose that, like the rad52-L264P mutation, sumoylation modifies Rad52 activity thereby changing the properties of Rad51 filaments. This conclusion is strengthened by the finding that Rad52 is often associated with complete Rad51 filaments in vitro. Homologous recombination (HR) is essential for double-strand break repair and participates in post-replication restart of stalled and collapsed replication forks. However, HR can lead to genome rearrangements and has to be strictly controlled. The budding yeast Srs2 is involved in the prevention of high crossing-over frequencies and in the inhibition of HR at replication forks. Nevertheless, important phenotypes of srs2Δ mutants, like sensitivity to DNA damage and synthetic lethality with replication and recombination mutants, can only be attributed to another role of Srs2: the elimination of lethal intermediates formed by recombination proteins. The nature of these intermediates remains to be defined. In a screen designed to uncover mutations able to suppress srs2Δ phenotypes, we isolated a novel allele of Rad52 (rad52-L264P), the gene that codes for the major Rad51 nucleoprotein filament mediator. Interestingly, we observed that rad52-L264P bypasses the requirement for Srs2 without affecting DNA repair by HR. We also found that Rad52-L264P specifically prevents the formation of unproductive Rad51 filaments before strand invasion, allowing us to define Srs2 substrates. Further analysis showed that Rad52-L264P mimics the properties of the Rad52-SUMO conjugate, revealing that Rad52 assembles Rad51 filaments differently according to its sumoylation status.
Collapse
Affiliation(s)
- Aline Esta
- CEA, DSV, iRCM, SIGRR, LRGM, Fontenay-aux-Roses, France
| | - Emilie Ma
- CEA, DSV, iRCM, SIGRR, LRGM, Fontenay-aux-Roses, France
| | - Pauline Dupaigne
- Laboratoire de Microscopie Moléculaire et Cellulaire, UMR 8126, Interactions Moléculaires et Cancer, CNRS–Université Paris Sud–Institut de Cancérologie Gustave Roussy, Villejuif, France
| | | | | | - Eric Le Cam
- Laboratoire de Microscopie Moléculaire et Cellulaire, UMR 8126, Interactions Moléculaires et Cancer, CNRS–Université Paris Sud–Institut de Cancérologie Gustave Roussy, Villejuif, France
| | - Xavier Veaute
- CEA, DSV, iRCM, SIGRR, LRGM, Fontenay-aux-Roses, France
| | - Eric Coïc
- CEA, DSV, iRCM, SIGRR, LRGM, Fontenay-aux-Roses, France
- * E-mail:
| |
Collapse
|
34
|
Glineburg MR, Chavez A, Agrawal V, Brill SJ, Johnson FB. Resolution by unassisted Top3 points to template switch recombination intermediates during DNA replication. J Biol Chem 2013; 288:33193-204. [PMID: 24100144 DOI: 10.1074/jbc.m113.496133] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The evolutionarily conserved Sgs1/Top3/Rmi1 (STR) complex plays vital roles in DNA replication and repair. One crucial activity of the complex is dissolution of toxic X-shaped recombination intermediates that accumulate during replication of damaged DNA. However, despite several years of study the nature of these X-shaped molecules remains debated. Here we use genetic approaches and two-dimensional gel electrophoresis of genomic DNA to show that Top3, unassisted by Sgs1 and Rmi1, has modest capacities to provide resistance to MMS and to resolve recombination-dependent X-shaped molecules. The X-shaped molecules have structural properties consistent with hemicatenane-related template switch recombination intermediates (Rec-Xs) but not Holliday junction (HJ) intermediates. Consistent with these findings, we demonstrate that purified Top3 can resolve a synthetic Rec-X but not a synthetic double HJ in vitro. We also find that unassisted Top3 does not affect crossing over during double strand break repair, which is known to involve double HJ intermediates, confirming that unassisted Top3 activities are restricted to substrates that are distinct from HJs. These data help illuminate the nature of the X-shaped molecules that accumulate during replication of damaged DNA templates, and also clarify the roles played by Top3 and the STR complex as a whole during the resolution of replication-associated recombination intermediates.
Collapse
|
35
|
Abstract
Break-induced replication (BIR) refers to recombination-dependent DNA synthesis initiated from one end of a DNA double-strand break and can extend for more than 100 kb. BIR initiates by Rad51-catalyzed strand invasion, but the mechanism for DNA synthesis is not known. Here, we used BrdU incorporation to track DNA synthesis during BIR and found that the newly synthesized strands segregate with the broken chromosome, indicative of a conservative mode of DNA synthesis. Furthermore, we show the frequency of BIR is reduced and product formation is progressively delayed when the donor is placed at an increasing distance from the telomere, consistent with replication by a migrating D-loop from the site of initiation to the telomere.
Collapse
|
36
|
Trovesi C, Manfrini N, Falcettoni M, Longhese MP. Regulation of the DNA damage response by cyclin-dependent kinases. J Mol Biol 2013; 425:4756-66. [PMID: 23603016 DOI: 10.1016/j.jmb.2013.04.013] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 04/09/2013] [Accepted: 04/15/2013] [Indexed: 12/13/2022]
Abstract
The eukaryotic cell cycle comprises a series of events, whose ordering and correct progression depends on the oscillating activity of cyclin-dependent kinases (Cdks), which safeguard timely duplication and segregation of the genome. Cell division is intimately connected to an evolutionarily conserved DNA damage response (DDR), which involves DNA repair pathways that reverse DNA lesions, as well as checkpoint pathways that inhibit cell cycle progression while repair occurs. There is increasing evidence that Cdks are involved in the DDR, in particular in DNA repair by homologous recombination and in activation of the checkpoint response. However, Cdks have to be carefully regulated, because even an excess of their activity can affect genome stability. In this review, we consider the physiological role of Cdks in the DDR.
Collapse
Affiliation(s)
- Camilla Trovesi
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milano, Italy
| | | | | | | |
Collapse
|
37
|
Ulrich HD, Takahashi DT. Readers of PCNA modifications. Chromosoma 2013; 122:259-74. [PMID: 23580141 PMCID: PMC3714560 DOI: 10.1007/s00412-013-0410-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 03/20/2013] [Accepted: 03/22/2013] [Indexed: 01/29/2023]
Abstract
The eukaryotic sliding clamp, proliferating cell nuclear antigen (PCNA), acts as a central coordinator of DNA transactions by providing a multivalent interaction surface for factors involved in DNA replication, repair, chromatin dynamics and cell cycle regulation. Posttranslational modifications (PTMs), such as mono- and polyubiquitylation, sumoylation, phosphorylation and acetylation, further expand the repertoire of PCNA’s binding partners. These modifications affect PCNA’s activity in the bypass of lesions during DNA replication, the regulation of alternative damage processing pathways such as homologous recombination and DNA interstrand cross-link repair, or impact on the stability of PCNA itself. In this review, we summarise our current knowledge about how the PTMs are “read” by downstream effector proteins that mediate the appropriate action. Given the variety of interaction partners responding to PCNA’s modified forms, the ensemble of PCNA modifications serves as an instructive model for the study of biological signalling through PTMs in general.
Collapse
Affiliation(s)
- Helle D Ulrich
- Clare Hall Laboratories, Cancer Research UK London Research Institute, Blanche Lane, South Mimms EN6 3LD, UK.
| | | |
Collapse
|
38
|
Szakal B, Branzei D. Premature Cdk1/Cdc5/Mus81 pathway activation induces aberrant replication and deleterious crossover. EMBO J 2013; 32:1155-67. [PMID: 23531881 PMCID: PMC3630363 DOI: 10.1038/emboj.2013.67] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 03/04/2013] [Indexed: 12/31/2022] Open
Abstract
The error-free DNA damage tolerance (DDT) pathway is crucial for replication completion and genome integrity. Mechanistically, this process is driven by a switch of templates accompanied by sister chromatid junction (SCJ) formation. Here, we asked if DDT intermediate processing is temporarily regulated, and what impact such regulation may have on genome stability. We find that persistent DDT recombination intermediates are largely resolved before anaphase through a G2/M damage checkpoint-independent, but Cdk1/Cdc5-dependent pathway that proceeds via a previously described Mus81-Mms4-activating phosphorylation. The Sgs1-Top3- and Mus81-Mms4-dependent resolution pathways occupy different temporal windows in relation to replication, with the Mus81-Mms4 pathway being restricted to late G2/M. Premature activation of the Cdk1/Cdc5/Mus81 pathway, achieved here with phosphomimetic Mms4 variants as well as in S-phase checkpoint-deficient genetic backgrounds, induces crossover-associated chromosome translocations and precocious processing of damage-bypass SCJ intermediates. Taken together, our results underscore the importance of uncoupling error-free versus erroneous recombination intermediate processing pathways during replication, and establish a new paradigm for the role of the DNA damage response in regulating genome integrity by controlling crossover timing.
Collapse
Affiliation(s)
- Barnabas Szakal
- Department of Molecular Oncology, Fondazione IFOM, Istituto FIRC di Oncologia Molecolare, Milan 20139, Italy
| | | |
Collapse
|
39
|
Heteroduplex DNA position defines the roles of the Sgs1, Srs2, and Mph1 helicases in promoting distinct recombination outcomes. PLoS Genet 2013; 9:e1003340. [PMID: 23516370 PMCID: PMC3597516 DOI: 10.1371/journal.pgen.1003340] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 01/09/2013] [Indexed: 11/19/2022] Open
Abstract
The contributions of the Sgs1, Mph1, and Srs2 DNA helicases during mitotic double-strand break (DSB) repair in yeast were investigated using a gap-repair assay. A diverged chromosomal substrate was used as a repair template for the gapped plasmid, allowing mismatch-containing heteroduplex DNA (hDNA) formed during recombination to be monitored. Overall DSB repair efficiencies and the proportions of crossovers (COs) versus noncrossovers (NCOs) were determined in wild-type and helicase-defective strains, allowing the efficiency of CO and NCO production in each background to be calculated. In addition, the products of individual NCO events were sequenced to determine the location of hDNA. Because hDNA position is expected to differ depending on whether a NCO is produced by synthesis-dependent-strand-annealing (SDSA) or through a Holliday junction (HJ)-containing intermediate, its position allows the underlying molecular mechanism to be inferred. Results demonstrate that each helicase reduces the proportion of CO recombinants, but that each does so in a fundamentally different way. Mph1 does not affect the overall efficiency of gap repair, and its loss alters the CO-NCO by promoting SDSA at the expense of HJ-containing intermediates. By contrast, Sgs1 and Srs2 are each required for efficient gap repair, strongly promoting NCO formation and having little effect on CO efficiency. hDNA analyses suggest that all three helicases promote SDSA, and that Sgs1 and Srs2 additionally dismantle HJ-containing intermediates. The hDNA data are consistent with the proposed role of Sgs1 in the dissolution of double HJs, and we propose that Srs2 dismantles nicked HJs.
Collapse
|
40
|
Srs2 mediates PCNA-SUMO-dependent inhibition of DNA repair synthesis. EMBO J 2013; 32:742-55. [PMID: 23395907 PMCID: PMC3594751 DOI: 10.1038/emboj.2013.9] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 01/10/2013] [Indexed: 12/11/2022] Open
Abstract
Completion of DNA replication needs to be ensured even when challenged with fork progression problems or DNA damage. PCNA and its modifications constitute a molecular switch to control distinct repair pathways. In yeast, SUMOylated PCNA (S-PCNA) recruits Srs2 to sites of replication where Srs2 can disrupt Rad51 filaments and prevent homologous recombination (HR). We report here an unexpected additional mechanism by which S-PCNA and Srs2 block the synthesis-dependent extension of a recombination intermediate, thus limiting its potentially hazardous resolution in association with a cross-over. This new Srs2 activity requires the SUMO interaction motif at its C-terminus, but neither its translocase activity nor its interaction with Rad51. Srs2 binding to S-PCNA dissociates Polδ and Polη from the repair synthesis machinery, thus revealing a novel regulatory mechanism controlling spontaneous genome rearrangements. Our results suggest that cycling cells use the Siz1-dependent SUMOylation of PCNA to limit the extension of repair synthesis during template switch or HR and attenuate reciprocal DNA strand exchanges to maintain genome stability. An unexpected non-catalytic function of the recombination-attenuating helicase Srs2 further expands the manifold roles of PCNA modifications in ensuring genome stability.
Collapse
|
41
|
Sabatinos SA, Green MD, Forsburg SL. Continued DNA synthesis in replication checkpoint mutants leads to fork collapse. Mol Cell Biol 2012; 32:4986-97. [PMID: 23045396 PMCID: PMC3510540 DOI: 10.1128/mcb.01060-12] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 10/01/2012] [Indexed: 01/06/2023] Open
Abstract
Hydroxyurea (HU) treatment activates the intra-S phase checkpoint proteins Cds1 and Mrc1 to prevent replication fork collapse. We found that prolonged DNA synthesis occurs in cds1Δ and mrc1Δ checkpoint mutants in the presence of HU and continues after release. This is coincident with increased DNA damage measured by phosphorylated histone H2A in whole cells during release. High-resolution live-cell imaging shows that mutants first accumulate extensive replication protein A (RPA) foci, followed by increased Rad52. Both DNA synthesis and RPA accumulation require the MCM helicase. We propose that a replication fork "collapse point" in HU-treated cells describes the point at which accumulated DNA damage and instability at individual forks prevent further replication. After this point, cds1Δ and mrc1Δ forks cannot complete genome replication. These observations establish replication fork collapse as a dynamic process that continues after release from HU block.
Collapse
Affiliation(s)
- Sarah A Sabatinos
- Molecular and Computational Biology, University of Southern California, Los Angeles, California, USA.
| | | | | |
Collapse
|
42
|
Marini V, Krejci L. Unwinding of synthetic replication and recombination substrates by Srs2. DNA Repair (Amst) 2012; 11:789-98. [PMID: 22921573 PMCID: PMC3484393 DOI: 10.1016/j.dnarep.2012.05.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 05/14/2012] [Accepted: 05/17/2012] [Indexed: 12/30/2022]
Abstract
The budding yeast Srs2 protein possesses 3′ to 5′ DNA helicase activity and channels untimely recombination to post-replication repair by removing Rad51 from ssDNA. However, it also promotes recombination via a synthesis-dependent strand-annealing pathway (SDSA). Furthermore, at the replication fork, Srs2 is required for fork progression and prevents the instability of trinucleotide repeats. To better understand the multiple roles of the Srs2 helicase during these processes, we analysed the ability of Srs2 to bind and unwind various DNA substrates that mimic structures present during DNA replication and recombination. While leading or lagging strands were efficiently unwound, the presence of ssDNA binding protein RPA presented an obstacle for Srs2 translocation. We also tested the preferred directionality of unwinding of various substrates and studied the effect of Rad51 and Mre11 proteins on Srs2 helicase activity. These biochemical results help us understand the possible role of Srs2 in the processing of stalled or blocked replication forks as a part of post-replication repair as well as homologous recombination (HR).
Collapse
Affiliation(s)
- Victoria Marini
- Department of Biology, Masaryk University, Kamenice, Brno, Czech Republic
| | | |
Collapse
|
43
|
Trovesi C, Falcettoni M, Lucchini G, Clerici M, Longhese MP. Distinct Cdk1 requirements during single-strand annealing, noncrossover, and crossover recombination. PLoS Genet 2011; 7:e1002263. [PMID: 21901114 PMCID: PMC3161966 DOI: 10.1371/journal.pgen.1002263] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 07/08/2011] [Indexed: 11/18/2022] Open
Abstract
Repair of DNA double-strand breaks (DSBs) by homologous recombination (HR) in haploid cells is generally restricted to S/G2 cell cycle phases, when DNA has been replicated and a sister chromatid is available as a repair template. This cell cycle specificity depends on cyclin-dependent protein kinases (Cdk1 in Saccharomyces cerevisiae), which initiate HR by promoting 5′–3′ nucleolytic degradation of the DSB ends. Whether Cdk1 regulates other HR steps is unknown. Here we show that yku70Δ cells, which accumulate single-stranded DNA (ssDNA) at the DSB ends independently of Cdk1 activity, are able to repair a DSB by single-strand annealing (SSA) in the G1 cell cycle phase, when Cdk1 activity is low. This ability to perform SSA depends on DSB resection, because both resection and SSA are enhanced by the lack of Rad9 in yku70Δ G1 cells. Furthermore, we found that interchromosomal noncrossover recombinants are generated in yku70Δ and yku70Δ rad9Δ G1 cells, indicating that DSB resection bypasses Cdk1 requirement also for carrying out these recombination events. By contrast, yku70Δ and yku70Δ rad9Δ cells are specifically defective in interchromosomal crossover recombination when Cdk1 activity is low. Thus, Cdk1 promotes DSB repair by single-strand annealing and noncrossover recombination by acting mostly at the resection level, whereas additional events require Cdk1-dependent regulation in order to generate crossover outcomes. Homologous recombination (HR) provides an important mechanism to eliminate deleterious lesions, such as DNA double-strand breaks (DSBs). DSB repair by HR uses homologous DNA sequences as a template to form recombinants that are either crossover or noncrossover with regard to flanking parental sequences. Furthermore, a DSB flanked by direct DNA repeats can be repaired by another HR pathway called single-strand annealing (SSA). HR is generally confined to the S and G2 phases of the cell cycle, when DNA has been replicated and a sister chromatid is available as repair template. This cell cycle specificity depends on the activity of cyclin-dependent kinases (Cdks), which regulate initiation of HR by promoting nucleolytic degradation (resection) of the DSB ends. Whether Cdks regulate other HR steps is unknown. Here, we show that Saccharomyces cerevisiae Cdk1 has a dual function in HR: it promotes SSA and noncrossover recombination by regulating primarily the resection step, whereas it plays additional functions in allowing recombination accompanied by crossovers. As crossovers during mitotic cell growth have the potential for deleterious genome rearrangements when the sister chromatid is not used as repair template, this additional function of Cdk1 in promoting crossovers can provide another safety mechanism to ensure genome stability.
Collapse
Affiliation(s)
- Camilla Trovesi
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milano, Italy
| | - Marco Falcettoni
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milano, Italy
| | - Giovanna Lucchini
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milano, Italy
| | - Michela Clerici
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milano, Italy
- * E-mail: (MC); (MPL)
| | - Maria Pia Longhese
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milano, Italy
- * E-mail: (MC); (MPL)
| |
Collapse
|
44
|
León Ortiz AM, Reid RJD, Dittmar JC, Rothstein R, Nicolas A. Srs2 overexpression reveals a helicase-independent role at replication forks that requires diverse cell functions. DNA Repair (Amst) 2011; 10:506-17. [PMID: 21459050 PMCID: PMC3084345 DOI: 10.1016/j.dnarep.2011.02.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 02/18/2011] [Accepted: 02/20/2011] [Indexed: 10/18/2022]
Abstract
Srs2 is a 3'-5' DNA helicase that regulates many aspects of DNA metabolism in Saccharomyces cerevisiae. It is best known for its ability to counteract homologous recombination by dismantling Rad51 filaments, but is also involved in checkpoint activation, adaptation and recovery, and in resolution of late recombination intermediates. To further address its biological roles and uncover new genetic interactions, we examined the consequences of overexpressing SRS2 as well as two helicase-dead mutants, srs2-K41A and srs2-K41R, in the collection of 4827 yeast haploid deletion mutants. We identified 274 genes affecting a large variety of cellular functions that are required for cell growth when SRS2 or its mutants are overexpressed. Further analysis of these interactions reveals that Srs2 acts independently of its helicase function at replication forks likely through its recruitment by the sumoylated PCNA replication clamp. This helicase-independent function is responsible for the negative interactions with DNA metabolism genes and for the toxicity of SRS2 overexpression in many of the diverse cellular pathways revealed in our screens.
Collapse
Affiliation(s)
- Ana María León Ortiz
- Recombinaison and Genome Instability, Institut Curie Centre de Recherche, CNRS UMR3244, Université Pierre et Marie Curie, 26 rue d’Ulm, 75248 Paris Cedex 05, France
| | - Robert J. D. Reid
- Columbia University Medical Center, Department of Genetics & Development, 701 West 168th Street, New York, NY 10032-2704, USA
| | - John C. Dittmar
- Columbia University Medical Center, Department of Genetics & Development, 701 West 168th Street, New York, NY 10032-2704, USA
| | - Rodney Rothstein
- Columbia University Medical Center, Department of Genetics & Development, 701 West 168th Street, New York, NY 10032-2704, USA
| | - Alain Nicolas
- Recombinaison and Genome Instability, Institut Curie Centre de Recherche, CNRS UMR3244, Université Pierre et Marie Curie, 26 rue d’Ulm, 75248 Paris Cedex 05, France
| |
Collapse
|
45
|
Robert T, Vanoli F, Chiolo I, Shubassi G, Bernstein KA, Rothstein R, Botrugno OA, Parazzoli D, Oldani A, Minucci S, Foiani M. HDACs link the DNA damage response, processing of double-strand breaks and autophagy. Nature 2011; 471:74-79. [PMID: 21368826 DOI: 10.1038/nature09803] [Citation(s) in RCA: 318] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Accepted: 01/11/2011] [Indexed: 11/09/2022]
Abstract
Protein acetylation is mediated by histone acetyltransferases (HATs) and deacetylases (HDACs), which influence chromatin dynamics, protein turnover and the DNA damage response. ATM and ATR mediate DNA damage checkpoints by sensing double-strand breaks and single-strand-DNA-RFA nucleofilaments, respectively. However, it is unclear how acetylation modulates the DNA damage response. Here we show that HDAC inhibition/ablation specifically counteracts yeast Mec1 (orthologue of human ATR) activation, double-strand-break processing and single-strand-DNA-RFA nucleofilament formation. Moreover, the recombination protein Sae2 (human CtIP) is acetylated and degraded after HDAC inhibition. Two HDACs, Hda1 and Rpd3, and one HAT, Gcn5, have key roles in these processes. We also find that HDAC inhibition triggers Sae2 degradation by promoting autophagy that affects the DNA damage sensitivity of hda1 and rpd3 mutants. Rapamycin, which stimulates autophagy by inhibiting Tor, also causes Sae2 degradation. We propose that Rpd3, Hda1 and Gcn5 control chromosome stability by coordinating the ATR checkpoint and double-strand-break processing with autophagy.
Collapse
Affiliation(s)
- Thomas Robert
- Fondazione IFOM (Istituto FIRC di Oncologia Molecolare), IFOM-IEO Campus, via Adamello 16, Milan 20139, Italy
| | - Fabio Vanoli
- Fondazione IFOM (Istituto FIRC di Oncologia Molecolare), IFOM-IEO Campus, via Adamello 16, Milan 20139, Italy
| | - Irene Chiolo
- Fondazione IFOM (Istituto FIRC di Oncologia Molecolare), IFOM-IEO Campus, via Adamello 16, Milan 20139, Italy.,LBNL, Department of Genome Biology, Berkeley, California 94710-2722, USA
| | - Ghadeer Shubassi
- Fondazione IFOM (Istituto FIRC di Oncologia Molecolare), IFOM-IEO Campus, via Adamello 16, Milan 20139, Italy
| | - Kara A Bernstein
- Department of Genetics and Development, Columbia University Medical Center, New York, New York 10032-2704, USA
| | - Rodney Rothstein
- Department of Genetics and Development, Columbia University Medical Center, New York, New York 10032-2704, USA
| | | | | | | | - Saverio Minucci
- European Institute of Oncology, IFOM-IEO campus, Milan 20139, Italy.,DSBB-Università degli Studi di Milano, Milan 20139, Italy
| | - Marco Foiani
- Fondazione IFOM (Istituto FIRC di Oncologia Molecolare), IFOM-IEO Campus, via Adamello 16, Milan 20139, Italy.,DSBB-Università degli Studi di Milano, Milan 20139, Italy
| |
Collapse
|
46
|
Ho CK, Mazón G, Lam AF, Symington LS. Mus81 and Yen1 promote reciprocal exchange during mitotic recombination to maintain genome integrity in budding yeast. Mol Cell 2011; 40:988-1000. [PMID: 21172663 DOI: 10.1016/j.molcel.2010.11.016] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 09/08/2010] [Accepted: 09/22/2010] [Indexed: 01/30/2023]
Abstract
Holliday junction (HJ) resolution is required for segregation of chromosomes and for formation of crossovers during homologous recombination. The identity of the resolvase(s) that functions in vivo has yet to be established, although several proteins able to cut HJs in vitro have been identified as candidates in yeasts and mammals. Using an assay to detect unselected products of mitotic recombination, we found a significant decrease in crossovers in the Saccharomyces cerevisiae mus81Δ mutant. Yen1 serves a backup function responsible for resolving intermediates in mus81Δ mutants, or when conversion tracts are short. In the absence of both Mus81 and Yen1, intermediates are not channeled exclusively to noncrossover recombinants, but instead are processed by Pol32-dependent break-induced replication (BIR). The channeling of recombination from reciprocal exchange to BIR results in greatly increased spontaneous loss of heterozygosity (LOH) and chromosome mis-segregation in the mus81Δ yen1Δ mutant, typical of the genomic instability found in tumor cells.
Collapse
Affiliation(s)
- Chu Kwen Ho
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA
| | | | | | | |
Collapse
|
47
|
Abstract
The RecQ helicases are conserved from bacteria to humans and play a critical role in genome stability. In humans, loss of RecQ gene function is associated with cancer predisposition and/or premature aging. Recent experiments have shown that the RecQ helicases function during distinct steps during DNA repair; DNA end resection, displacement-loop (D-loop) processing, branch migration, and resolution of double Holliday junctions (dHJs). RecQ function in these different processing steps has important implications for its role in repair of double-strand breaks (DSBs) that occur during DNA replication and meiosis, as well as at specific genomic loci such as telomeres.
Collapse
Affiliation(s)
- Kara A Bernstein
- Columbia University Medical Center, Department of Genetics & Development, New York, New York 10032, USA.
| | | | | |
Collapse
|
48
|
Andersen SL, Sekelsky J. Meiotic versus mitotic recombination: two different routes for double-strand break repair: the different functions of meiotic versus mitotic DSB repair are reflected in different pathway usage and different outcomes. Bioessays 2010; 32:1058-66. [PMID: 20967781 PMCID: PMC3090628 DOI: 10.1002/bies.201000087] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Studies in the yeast Saccharomyces cerevisiae have validated the major features of the double-strand break repair (DSBR) model as an accurate representation of the pathway through which meiotic crossovers (COs) are produced. This success has led to this model being invoked to explain double-strand break (DSB) repair in other contexts. However, most non-crossover (NCO) recombinants generated during S. cerevisiae meiosis do not arise via a DSBR pathway. Furthermore, it is becoming increasingly clear that DSBR is a minor pathway for recombinational repair of DSBs that occur in mitotically-proliferating cells and that the synthesis-dependent strand annealing (SDSA) model appears to describe mitotic DSB repair more accurately. Fundamental dissimilarities between meiotic and mitotic recombination are not unexpected, since meiotic recombination serves a very different purpose (accurate chromosome segregation, which requires COs) than mitotic recombination (repair of DNA damage, which typically generates NCOs).
Collapse
Affiliation(s)
- Sabrina L. Andersen
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel, Chapel Hill, NC 27599
| | - Jeff Sekelsky
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel, Chapel Hill, NC 27599
- Department of Biology, University of North Carolina at Chapel, Chapel Hill, NC 27599
| |
Collapse
|
49
|
Feser J, Truong D, Das C, Carson JJ, Kieft J, Harkness T, Tyler JK. Elevated histone expression promotes life span extension. Mol Cell 2010; 39:724-35. [PMID: 20832724 DOI: 10.1016/j.molcel.2010.08.015] [Citation(s) in RCA: 301] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 05/04/2010] [Accepted: 07/20/2010] [Indexed: 02/05/2023]
Abstract
Changes to the chromatin structure accompany aging, but the molecular mechanisms underlying aging and the accompanying changes to the chromatin are unclear. Here, we report a mechanism whereby altering chromatin structure regulates life span. We show that normal aging is accompanied by a profound loss of histone proteins from the genome. Indeed, yeast lacking the histone chaperone Asf1 or acetylation of histone H3 on lysine 56 are short lived, and this appears to be at least partly due to their having decreased histone levels. Conversely, increasing the histone supply by inactivation of the histone information regulator (Hir) complex or overexpression of histones dramatically extends life span via a pathway that is distinct from previously known pathways of life span extension. This study indicates that maintenance of the fundamental chromatin structure is critical for slowing down the aging process and reveals that increasing the histone supply extends life span.
Collapse
Affiliation(s)
- Jason Feser
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80010, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Srs2 plays a critical role in reversible G2 arrest upon chronic and low doses of UV irradiation via two distinct homologous recombination-dependent mechanisms in postreplication repair-deficient cells. Mol Cell Biol 2010; 30:4840-50. [PMID: 20713444 DOI: 10.1128/mcb.00453-10] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Differential posttranslational modification of proliferating cell nuclear antigen (PCNA) by ubiquitin or SUMO plays an important role in coordinating the processes of DNA replication and DNA damage tolerance. Previously it was shown that the loss of RAD6-dependent error-free postreplication repair (PRR) results in DNA damage checkpoint-mediated G(2) arrest in cells exposed to chronic low-dose UV radiation (CLUV), whereas wild-type and nucleotide excision repair-deficient cells are largely unaffected. In this study, we report that suppression of homologous recombination (HR) in PRR-deficient cells by Srs2 and PCNA sumoylation is required for checkpoint activation and checkpoint maintenance during CLUV irradiation. Cyclin-dependent kinase (CDK1)-dependent phosphorylation of Srs2 did not influence checkpoint-mediated G(2) arrest or maintenance in PRR-deficient cells but was critical for HR-dependent checkpoint recovery following release from CLUV exposure. These results indicate that Srs2 plays an important role in checkpoint-mediated reversible G(2) arrest in PRR-deficient cells via two separate HR-dependent mechanisms. The first (required to suppress HR during PRR) is regulated by PCNA sumoylation, whereas the second (required for HR-dependent recovery following CLUV exposure) is regulated by CDK1-dependent phosphorylation.
Collapse
|