1
|
Gerber M, Suppanz I, Oeljeklaus S, Niemann M, Käser S, Warscheid B, Schneider A, Dewar CE. A Msp1-containing complex removes orphaned proteins in the mitochondrial outer membrane of T. brucei. Life Sci Alliance 2023; 6:e202302004. [PMID: 37586887 PMCID: PMC10432679 DOI: 10.26508/lsa.202302004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 08/18/2023] Open
Abstract
The AAA-ATPase Msp1 extracts mislocalised outer membrane proteins and thus contributes to mitochondrial proteostasis. Using pulldown experiments, we show that trypanosomal Msp1 localises to both glycosomes and the mitochondrial outer membrane, where it forms a complex with four outer membrane proteins. The trypanosome-specific pATOM36 mediates complex assembly of α-helically anchored mitochondrial outer membrane proteins such as protein translocase subunits. Inhibition of their assembly triggers a pathway that results in the proteasomal digestion of unassembled substrates. Using inducible single, double, and triple RNAi cell lines combined with proteomic analyses, we demonstrate that not only Msp1 but also the trypanosomal homolog of the AAA-ATPase VCP are implicated in this quality control pathway. Moreover, in the absence of VCP three out of the four Msp1-interacting mitochondrial proteins are required for efficient proteasomal digestion of pATOM36 substrates, suggesting they act in concert with Msp1. pATOM36 is a functional analog of the yeast mitochondrial import complex complex and possibly of human mitochondrial animal-specific carrier homolog 2, suggesting that similar mitochondrial quality control pathways linked to Msp1 might also exist in yeast and humans.
Collapse
Affiliation(s)
- Markus Gerber
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Ida Suppanz
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Silke Oeljeklaus
- Faculty of Chemistry and Pharmacy, Biochemistry II, Theodor Boveri-Institute, University of Würzburg, Würzburg, Germany
| | - Moritz Niemann
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Sandro Käser
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Bettina Warscheid
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
- Faculty of Chemistry and Pharmacy, Biochemistry II, Theodor Boveri-Institute, University of Würzburg, Würzburg, Germany
| | - André Schneider
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
- Institute for Advanced Study (Wissenschaftskolleg) Berlin, Berlin, Germany
| | - Caroline E Dewar
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| |
Collapse
|
2
|
Dewar CE, Oeljeklaus S, Mani J, Mühlhäuser WWD, von Känel C, Zimmermann J, Ochsenreiter T, Warscheid B, Schneider A. Mistargeting of aggregation prone mitochondrial proteins activates a nucleus-mediated posttranscriptional quality control pathway in trypanosomes. Nat Commun 2022; 13:3084. [PMID: 35654893 PMCID: PMC9163028 DOI: 10.1038/s41467-022-30748-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 05/02/2022] [Indexed: 12/25/2022] Open
Abstract
Mitochondrial protein import in the parasitic protozoan Trypanosoma brucei is mediated by the atypical outer membrane translocase, ATOM. It consists of seven subunits including ATOM69, the import receptor for hydrophobic proteins. Ablation of ATOM69, but not of any other subunit, triggers a unique quality control pathway resulting in the proteasomal degradation of non-imported mitochondrial proteins. The process requires a protein of unknown function, an E3 ubiquitin ligase and the ubiquitin-like protein (TbUbL1), which all are recruited to the mitochondrion upon ATOM69 depletion. TbUbL1 is a nuclear protein, a fraction of which is released to the cytosol upon triggering of the pathway. Nuclear release is essential as cytosolic TbUbL1 can bind mislocalised mitochondrial proteins and likely transfers them to the proteasome. Mitochondrial quality control has previously been studied in yeast and metazoans. Finding such a pathway in the highly diverged trypanosomes suggests such pathways are an obligate feature of all eukaryotes. Mitochondria import most of their proteins posttranslationally. Here, Dewar et al. characterize the mitochondrial quality control mechanism of Trypanosoma brucei. Through proteomics and functional studies, they show that only ablation of ATOM69, one of the seven subunits of its mitochondrial protein translocase, triggers a unique quality control pathway resulting in TbUbL1 release from the nucleus and subsequent proteasomal degradation of non-imported mitochondrial proteins.
Collapse
Affiliation(s)
- Caroline E Dewar
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, Bern, CH-3012, Switzerland
| | - Silke Oeljeklaus
- Faculty of Chemistry and Pharmacy, Department of Biochemistry, Theodor Boveri-Institute, University of Würzburg, 97074, Würzburg, Germany.,Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Jan Mani
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, Bern, CH-3012, Switzerland
| | - Wignand W D Mühlhäuser
- Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Corinne von Känel
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, Bern, CH-3012, Switzerland
| | - Johannes Zimmermann
- Faculty of Chemistry and Pharmacy, Department of Biochemistry, Theodor Boveri-Institute, University of Würzburg, 97074, Würzburg, Germany
| | - Torsten Ochsenreiter
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, Bern, CH-3012, Switzerland
| | - Bettina Warscheid
- Faculty of Chemistry and Pharmacy, Department of Biochemistry, Theodor Boveri-Institute, University of Würzburg, 97074, Würzburg, Germany. .,Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany. .,CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany.
| | - André Schneider
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, Bern, CH-3012, Switzerland.
| |
Collapse
|
3
|
Aghaei M, Khanahmad H, Jalali A, Aghaei S, Narimani M, Hosseini SM, Namdar F, Hejazi SH. Effect of transgenic Leishmania major expressing mLLO-Bax-Smac fusion gene in the apoptosis of the infected macrophages. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:1666-1675. [PMID: 35432807 PMCID: PMC8976903 DOI: 10.22038/ijbms.2021.56960.12701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 10/31/2021] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Leishmaniasis is a complex infection against which no confirmed vaccine has been reported so far. Transgenic expression of proteins involved in macrophage apoptosis-like BAX through the parasite itself accelerates infected macrophage apoptosis and prevents Leishmania differentiation. So, in the present research, the impact of the transgenic Leishmania major including mLLO-BAX-SMAC proapoptotic proteins was assayed in macrophage apoptosis acceleration. MATERIALS AND METHODS The coding sequence mLLO-Bax-Smac was designed and integrated into the pLexyNeo2 plasmid. The designed sequence was inserted under the 18srRNA locus into the L. major genome using homologous recombination. Then, mLLO-BAX-SMAC expression was studied using the Western blot, and the transgenic parasite pathogenesis was investigated compared with wild-type L. major in vitro and also in vivo. RESULTS Western blot and PCR results approved mLLO-BAX-SMAC expression and proper integration of the mLLO-Bax-Smac fragment under the 18srRNA locus of L. major, respectively. The flow cytometry results revealed faster apoptosis of transgenic Leishmania-infected macrophages compared with wild-type parasite-infected macrophages. Also, the mild lesion with the less parasitic burden of the spleen was observed only in transgenic Leishmania-infected mice. The delayed progression of leishmaniasis was obtained in transgenic strain-injected mice after challenging with wild-type Leishmania. CONCLUSION This study recommended transgenic L. major including mLLO-BAX-SMAC construct as a pilot model for providing a protective vaccine against leishmaniasis.
Collapse
Affiliation(s)
- Maryam Aghaei
- Skin Diseases and Leishmaniasis Research Centre, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Khanahmad
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Akram Jalali
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Shahrzad Aghaei
- Department of Molecular Medicine, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Manizheh Narimani
- Department of Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sayed Mohsen Hosseini
- Department of Biostatistics & Epidemiology, School of Public Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatemeh Namdar
- Department of Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seyed Hossein Hejazi
- Skin Diseases and Leishmaniasis Research Centre, Isfahan University of Medical Sciences, Isfahan, Iran,Skin Diseases and Leishmaniasis Research Center, Department of Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran,Corresponding author: Seyed Hossein Hejazi. Skin Diseases and Leishmaniasis Research Center, Department of Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
4
|
Ultsch M, Holliday MJ, Gerhardy S, Moran P, Scales SJ, Gupta N, Oltrabella F, Chiu C, Fairbrother W, Eigenbrot C, Kirchhofer D. Structures of the ApoL1 and ApoL2 N-terminal domains reveal a non-classical four-helix bundle motif. Commun Biol 2021; 4:916. [PMID: 34316015 PMCID: PMC8316464 DOI: 10.1038/s42003-021-02387-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 06/23/2021] [Indexed: 02/07/2023] Open
Abstract
Apolipoprotein L1 (ApoL1) is a circulating innate immunity protein protecting against trypanosome infection. However, two ApoL1 coding variants are associated with a highly increased risk of chronic kidney disease. Here we present X-ray and NMR structures of the N-terminal domain (NTD) of ApoL1 and of its closest relative ApoL2. In both proteins, four of the five NTD helices form a four-helix core structure which is different from the classical four-helix bundle and from the pore-forming domain of colicin A. The reactivity with a conformation-specific antibody and structural models predict that this four-helix motif is also present in the NTDs of ApoL3 and ApoL4, suggesting related functions within the small ApoL family. The long helix 5 of ApoL1 is conformationally flexible and contains the BH3-like region. This BH3-like α-helix resembles true BH3 domains only in sequence and structure but not in function, since it does not bind to the pro-survival members of the Bcl-2 family, suggesting a Bcl-2-independent role in cytotoxicity. These findings should expedite a more comprehensive structural and functional understanding of the ApoL immune protein family.
Collapse
Affiliation(s)
- Mark Ultsch
- Department of Structural Biology, Genentech Inc., South San Francisco, CA, USA
| | - Michael J Holliday
- Department of Early Discovery Biochemistry, Genentech Inc., South San Francisco, CA, USA
| | - Stefan Gerhardy
- Department of Early Discovery Biochemistry, Genentech Inc., South San Francisco, CA, USA
| | - Paul Moran
- Department of Early Discovery Biochemistry, Genentech Inc., South San Francisco, CA, USA
| | - Suzie J Scales
- Department of Immunology, Genentech Inc., South San Francisco, CA, USA
| | - Nidhi Gupta
- Department of Immunology, Genentech Inc., South San Francisco, CA, USA
| | | | - Cecilia Chiu
- Department of Antibody Engineering, Genentech Inc., South San Francisco, CA, USA
| | - Wayne Fairbrother
- Department of Early Discovery Biochemistry, Genentech Inc., South San Francisco, CA, USA
| | - Charles Eigenbrot
- Department of Structural Biology, Genentech Inc., South San Francisco, CA, USA
| | - Daniel Kirchhofer
- Department of Early Discovery Biochemistry, Genentech Inc., South San Francisco, CA, USA.
| |
Collapse
|
5
|
Aghaei M, Khanahmad H, Aghaei S, Hosseini SM, Farahmand M, Hejazi SH. Evaluation of transgenic Leishmania infantum expressing mLLO-BAX-SMAC in the apoptosis of the infected macrophages in vitro and in vivo. Parasite Immunol 2020; 42:e12726. [PMID: 32367588 DOI: 10.1111/pim.12726] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 03/31/2020] [Accepted: 04/28/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND Leishmaniasis is an important infectious disease that develops because of escaping parasite from the host immune system or preventing host macrophages apoptosis. Recently, the development of transgenic methods and the manipulation of the parasite genome has provided many advantages. So, in this study, the effect of the transgenic Leishmania infantum expressing mLLO-BAX-SMAC proteins was examined in accelerating host cell apoptosis. METHOD The entire coding sequence of designed codon-optimized mLLO-Bax-Smac was cloned in the pLexyNeo2 vector and integrated downstream of the 18srRNA locus of L infantum genome by homologous recombination. Next, the expression of mLLO-BAX-SMAC fusion protein was evaluated by the Western blotting technique and the pathogenesis of transgenic parasite was surveyed in vitro and in vivo. RESULTS The results of PCR and Western blot confirmed proper integration and expression of mLLO-Bax-Smac sequence into the 18srRNA locus of L infantum. Flow cytometry showed accelerating apoptosis of transgenic Leishmania-infected macrophages compared to wild-type parasite. Also, transgenic parasites were less virulent as a fewer parasitic burden was found in the spleen and liver of transgenic-infected mice compared to the control. CONCLUSION The data suggested that the transgenic L infantum expressing BAX-SMAC can be used as an experimental model for developing vaccination against leishmaniasis.
Collapse
Affiliation(s)
- Maryam Aghaei
- Skin Diseases and Leishmaniasis Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Khanahmad
- Department of Genetics and molecular biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shahrzad Aghaei
- Department of Molecular Medicine, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Sayed Mohsen Hosseini
- Department of Biostatistics & Epidemiology, School of Public Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahin Farahmand
- Department of Parasitology, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Hossein Hejazi
- Skin Diseases and Leishmaniasis Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.,Skin Diseases and Leishmaniasis Research Center, Department of Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
6
|
Aghaei M, KhanAhmad H, Aghaei S, Ali Nilforoushzadeh M, Mohaghegh MA, Hejazi SH. The role of Bax in the apoptosis of Leishmania-infected macrophages. Microb Pathog 2019; 139:103892. [PMID: 31778755 DOI: 10.1016/j.micpath.2019.103892] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 10/30/2019] [Accepted: 11/23/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND Leishmania is a protozoan parasite that nests in macrophages and is responsible for the Leishmaniasis disease. In spite of different defense pathways, last strategy of macrophage for killing parasite is apoptosis process. By permeableizing the mitochondrial outer membrane (MOM). As breaching MOM releases apoptogenic factors like cytochrome-c which activate caspases that result in the destruction of the cell. In this review, we summarized the appropriate manuscripts regarding the bax includes, its different types and the effect of bax on the apoptosis of Leishmania and parasite-infected macrophages. METHODS Information about the role of BAX in the apoptosis of parasite-infected macrophage of recent articles were surveyed by searching computerized bibliographic database PubMed and Google Scholar entering the keywords BAX and leishmaniasis. RESULTS The common studies revealed Leishmania use different survival strategies for inhibiting macrophage apoptosis. As Leishmania by preventing homooligomerization or upregulating the anti-apoptotic molecule Bcl-2 can prohibits proteins of host-cell apoptosis such as Bax that is required for mitochondrial permeabilisation during apoptosis. CONCLUSION With regard to the supportive role of bax in apoptosis and the preventive role of Leishmania in its function, it seems that expression of bax gene in parasite by technologies like transgenic or down regulating of anti-apoptotic molecule Bcl-2 by miRNA could be prompted the apoptosis process of infected-macrophages and inhibited extensive spread of Leishmania and the resulting lesions.
Collapse
Affiliation(s)
- Maryam Aghaei
- Skin Diseases and Leishmaniasis Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein KhanAhmad
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shahrzad Aghaei
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | | | - Mohammad-Ali Mohaghegh
- Department of Laboratory Sciences, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran; Health Sciences Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Seyed Hossein Hejazi
- Skin Diseases and Leishmaniasis Research Center, Isfahan University of Medical Sciences, Isfahan, Iran; Skin Disease and Leishmaniasis Research Center, Department of Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
7
|
Abstract
The shape and number of mitochondria respond to the metabolic needs during the cell cycle of the eukaryotic cell. In the best-studied model systems of animals and fungi, the cells contain many mitochondria, each carrying its own nucleoid. The organelles, however, mostly exist as a dynamic network, which undergoes constant cycles of division and fusion. These mitochondrial dynamics are driven by intricate protein machineries centered around dynamin-related proteins (DRPs). Here, we review recent advances on the dynamics of mitochondria and mitochondrion-related organelles (MROs) of parasitic protists. In contrast to animals and fungi, many parasitic protists from groups of Apicomplexa or Kinetoplastida carry only a single mitochondrion with a single nucleoid. In these groups, mitochondrial division is strictly coupled to the cell cycle, and the morphology of the organelle responds to the cell differentiation during the parasite life cycle. On the other hand, anaerobic parasitic protists such as Giardia, Entamoeba, and Trichomonas contain multiple MROs that have lost their organellar genomes. We discuss the function of DRPs, the occurrence of mitochondrial fusion, and mitophagy in the parasitic protists from the perspective of eukaryote evolution.
Collapse
Affiliation(s)
- Luboš Voleman
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Prague, Czech Republic
| | - Pavel Doležal
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Prague, Czech Republic
- * E-mail:
| |
Collapse
|
8
|
Maes ME, Grosser JA, Fehrman RL, Schlamp CL, Nickells RW. Completion of BAX recruitment correlates with mitochondrial fission during apoptosis. Sci Rep 2019; 9:16565. [PMID: 31719602 PMCID: PMC6851089 DOI: 10.1038/s41598-019-53049-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 10/23/2019] [Indexed: 12/30/2022] Open
Abstract
BAX, a member of the BCL2 gene family, controls the committed step of the intrinsic apoptotic program. Mitochondrial fragmentation is a commonly observed feature of apoptosis, which occurs through the process of mitochondrial fission. BAX has consistently been associated with mitochondrial fission, yet how BAX participates in the process of mitochondrial fragmentation during apoptosis remains to be tested. Time-lapse imaging of BAX recruitment and mitochondrial fragmentation demonstrates that rapid mitochondrial fragmentation during apoptosis occurs after the complete recruitment of BAX to the mitochondrial outer membrane (MOM). The requirement of a fully functioning BAX protein for the fission process was demonstrated further in BAX/BAK-deficient HCT116 cells expressing a P168A mutant of BAX. The mutant performed fusion to restore the mitochondrial network. but was not demonstrably recruited to the MOM after apoptosis induction. Under these conditions, mitochondrial fragmentation was blocked. Additionally, we show that loss of the fission protein, dynamin-like protein 1 (DRP1), does not temporally affect the initiation time or rate of BAX recruitment, but does reduce the final level of BAX recruited to the MOM during the late phase of BAX recruitment. These correlative observations suggest a model where late-stage BAX oligomers play a functional part of the mitochondrial fragmentation machinery in apoptotic cells.
Collapse
Affiliation(s)
- M E Maes
- Department of Ophthalmology and Visual Sciences, University of Wisconsin - Madison, Madison, WI, USA.,Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - J A Grosser
- Department of Ophthalmology and Visual Sciences, University of Wisconsin - Madison, Madison, WI, USA
| | - R L Fehrman
- Department of Ophthalmology and Visual Sciences, University of Wisconsin - Madison, Madison, WI, USA
| | - C L Schlamp
- Department of Ophthalmology and Visual Sciences, University of Wisconsin - Madison, Madison, WI, USA
| | - R W Nickells
- Department of Ophthalmology and Visual Sciences, University of Wisconsin - Madison, Madison, WI, USA.
| |
Collapse
|
9
|
DiMaio J, Ruthel G, Cannon JJ, Malfara MF, Povelones ML. The single mitochondrion of the kinetoplastid parasite Crithidia fasciculata is a dynamic network. PLoS One 2018; 13:e0202711. [PMID: 30592713 PMCID: PMC6310254 DOI: 10.1371/journal.pone.0202711] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 12/11/2018] [Indexed: 11/18/2022] Open
Abstract
Mitochondria are central organelles in cellular metabolism. Their structure is highly dynamic, allowing them to adapt to different energy requirements, to be partitioned during cell division, and to maintain functionality. Mitochondrial dynamics, including membrane fusion and fission reactions, are well studied in yeast and mammals but it is not known if these processes are conserved throughout eukaryotic evolution. Kinetoplastid parasites are some of the earliest-diverging eukaryotes to retain a mitochondrion. Each cell has only a single mitochondrial organelle, making them an interesting model for the role of dynamics in controlling mitochondrial architecture. We have investigated the mitochondrial division cycle in the kinetoplastid Crithidia fasciculata. The majority of mitochondrial biogenesis occurs during the G1 phase of the cell cycle, and the mitochondrion is divided symmetrically in a process coincident with cytokinesis. Live cell imaging revealed that the mitochondrion is highly dynamic, with frequent changes in the topology of the branched network. These remodeling reactions include tubule fission, fusion, and sliding, as well as new tubule formation. We hypothesize that the function of this dynamic remodeling is to homogenize mitochondrial contents and to facilitate rapid transport of mitochondria-encoded gene products from the area containing the mitochondrial nucleoid to other parts of the organelle.
Collapse
Affiliation(s)
- John DiMaio
- Sciences Division, Brandywine Campus, The Pennsylvania State University, Media, Pennsylvania, United States of America
| | - Gordon Ruthel
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| | - Joshua J. Cannon
- Sciences Division, Brandywine Campus, The Pennsylvania State University, Media, Pennsylvania, United States of America
| | - Madeline F. Malfara
- Sciences Division, Brandywine Campus, The Pennsylvania State University, Media, Pennsylvania, United States of America
| | - Megan L. Povelones
- Sciences Division, Brandywine Campus, The Pennsylvania State University, Media, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
10
|
Hughes L, Borrett S, Towers K, Starborg T, Vaughan S. Patterns of organelle ontogeny through a cell cycle revealed by whole-cell reconstructions using 3D electron microscopy. J Cell Sci 2017; 130:637-647. [PMID: 28049718 DOI: 10.1242/jcs.198887] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 12/01/2016] [Indexed: 12/29/2022] Open
Abstract
The major mammalian bloodstream form of the African sleeping sickness parasite Trypanosoma brucei multiplies rapidly, and it is important to understand how these cells divide. Organelle inheritance involves complex spatiotemporal re-arrangements to ensure correct distribution to daughter cells. Here, serial block face scanning electron microscopy (SBF-SEM) was used to reconstruct whole individual cells at different stages of the cell cycle to give an unprecedented temporal, spatial and quantitative view of organelle division, inheritance and abscission in a eukaryotic cell. Extensive mitochondrial branching occurred only along the ventral surface of the parasite, but the mitochondria returned to a tubular form during cytokinesis. Fission of the mitochondrion occurred within the cytoplasmic bridge during the final stage of cell division, correlating with cell abscission. The nuclei were located underneath each flagellum at mitosis and the mitotic spindle was located along the ventral surface, further demonstrating the asymmetric arrangement of cell cleavage in trypanosomes. Finally, measurements demonstrated that multiple Golgi bodies were accurately positioned along the flagellum attachment zone, suggesting a mechanism for determining the location of Golgi bodies along each flagellum during the cell cycle.
Collapse
Affiliation(s)
- Louise Hughes
- Department of Biological and Medical Sciences, Faculty of Health and Life Science, Oxford Brookes University, Oxford OX3 0BP, UK
| | - Samantha Borrett
- Department of Biological and Medical Sciences, Faculty of Health and Life Science, Oxford Brookes University, Oxford OX3 0BP, UK
| | - Katie Towers
- Department of Biological and Medical Sciences, Faculty of Health and Life Science, Oxford Brookes University, Oxford OX3 0BP, UK
| | - Tobias Starborg
- Wellcome Centre for Cell Matrix Research, University of Manchester, Michael Smith Building, Manchester M13 9PT, UK
| | - Sue Vaughan
- Department of Biological and Medical Sciences, Faculty of Health and Life Science, Oxford Brookes University, Oxford OX3 0BP, UK
| |
Collapse
|
11
|
Mitochondrial growth during the cell cycle of Trypanosoma brucei bloodstream forms. Sci Rep 2016; 6:36565. [PMID: 27874016 PMCID: PMC5118809 DOI: 10.1038/srep36565] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 09/30/2016] [Indexed: 01/11/2023] Open
Abstract
Mitochondrial organelles need to be replicated during cell division. Many aspects of this process have been studied in great detail, however the actual size increase and the position of organelle growth are less well understood. We use the protozoan parasite Trypanosoma brucei that contains a single mitochondrion to study organelle biogenesis by fluorescence microscopy. From the analysis of more than 1000 T. brucei bloodstream form cells of a nonsynchronous population we conclude that the mitochondrial network mostly grows from two areas along the main organelle axis, posterior and anterior of the nucleus. Loops and branches from these two areas eventually fuse to build a complex network. Together with the appearance of the division fold in the posterior part of the cell, pruning of the mitochondrial network and finally separation into the two daughter cells occurs. Overall organelle biogenesis is not continuous during cell growth and occurs mostly in the last part of the cell cycle. Furthermore, using 3D STED super resolution microscopy we reconstruct the volume of the organelle and characterize the region where the mitochondrial genome is positioned by serial block face scanning electron microscopy.
Collapse
|
12
|
Outer membrane protein functions as integrator of protein import and DNA inheritance in mitochondria. Proc Natl Acad Sci U S A 2016; 113:E4467-75. [PMID: 27436903 DOI: 10.1073/pnas.1605497113] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Trypanosomatids are one of the earliest diverging eukaryotes that have fully functional mitochondria. pATOM36 is a trypanosomatid-specific essential mitochondrial outer membrane protein that has been implicated in protein import. Changes in the mitochondrial proteome induced by ablation of pATOM36 and in vitro assays show that pATOM36 is required for the assembly of the archaic translocase of the outer membrane (ATOM), the functional analog of the TOM complex in other organisms. Reciprocal pull-down experiments and immunofluorescence analyses demonstrate that a fraction of pATOM36 interacts and colocalizes with TAC65, a previously uncharacterized essential component of the tripartite attachment complex (TAC). The TAC links the single-unit mitochondrial genome to the basal body of the flagellum and mediates the segregation of the replicated mitochondrial genomes. RNAi experiments show that pATOM36, in line with its dual localization, is not only essential for ATOM complex assembly but also for segregation of the replicated mitochondrial genomes. However, the two functions are distinct, as a truncated version of pATOM36 lacking the 75 C-terminal amino acids can rescue kinetoplast DNA missegregation but not the lack of ATOM complex assembly. Thus, pATOM36 has a dual function and integrates mitochondrial protein import with mitochondrial DNA inheritance.
Collapse
|
13
|
Vanwalleghem G, Fontaine F, Lecordier L, Tebabi P, Klewe K, Nolan DP, Yamaryo-Botté Y, Botté C, Kremer A, Burkard GS, Rassow J, Roditi I, Pérez-Morga D, Pays E. Coupling of lysosomal and mitochondrial membrane permeabilization in trypanolysis by APOL1. Nat Commun 2015; 6:8078. [PMID: 26307671 PMCID: PMC4560804 DOI: 10.1038/ncomms9078] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 07/15/2015] [Indexed: 12/21/2022] Open
Abstract
Humans resist infection by the African parasite Trypanosoma brucei owing to the trypanolytic activity of the serum apolipoprotein L1 (APOL1). Following uptake by endocytosis in the parasite, APOL1 forms pores in endolysosomal membranes and triggers lysosome swelling. Here we show that APOL1 induces both lysosomal and mitochondrial membrane permeabilization (LMP and MMP). Trypanolysis coincides with MMP and consecutive release of the mitochondrial TbEndoG endonuclease to the nucleus. APOL1 is associated with the kinesin TbKIFC1, of which both the motor and vesicular trafficking VHS domains are required for MMP, but not for LMP. The presence of APOL1 in the mitochondrion is accompanied by mitochondrial membrane fenestration, which can be mimicked by knockdown of a mitochondrial mitofusin-like protein (TbMFNL). The BH3-like peptide of APOL1 is required for LMP, MMP and trypanolysis. Thus, trypanolysis by APOL1 is linked to apoptosis-like MMP occurring together with TbKIFC1-mediated transport of APOL1 from endolysosomal membranes to the mitochondrion. The human serum protein apolipoprotein L1 (APOL1) is taken up by trypanosomes where it triggers cell death, forming pores in endolysosomal membranes. Vanwalleghem et al. show that APOL1 triggers both lysosomal and mitochondrial membrane permeabilization, and that the latter is responsible for trypanolysis.
Collapse
Affiliation(s)
- Gilles Vanwalleghem
- Laboratory of Molecular Parasitology, IBMM, Université Libre de Bruxelles (ULB), 12 rue des Prof Jeener et Brachet, B-6041 Gosselies, Belgium
| | - Frédéric Fontaine
- Laboratory of Molecular Parasitology, IBMM, Université Libre de Bruxelles (ULB), 12 rue des Prof Jeener et Brachet, B-6041 Gosselies, Belgium
| | - Laurence Lecordier
- Laboratory of Molecular Parasitology, IBMM, Université Libre de Bruxelles (ULB), 12 rue des Prof Jeener et Brachet, B-6041 Gosselies, Belgium
| | - Patricia Tebabi
- Laboratory of Molecular Parasitology, IBMM, Université Libre de Bruxelles (ULB), 12 rue des Prof Jeener et Brachet, B-6041 Gosselies, Belgium
| | - Kristoffer Klewe
- Institute of Biochemistry and Pathobiochemistry, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| | - Derek P Nolan
- Molecular Parasitology Group, School of Biochemistry and Immunology, Trinity College Dublin, Dublin 2, Ireland
| | - Yoshiki Yamaryo-Botté
- Apicolipid Group, CNRS, Laboratoire Adaptation et Pathogénie des Microorganismes UMR5163/ Institut Albert Bonniot CRI Inserm/UJF U823, CNRS, Institut Jean Roget, 38700 La Tronche, France
| | - Cyrille Botté
- Apicolipid Group, CNRS, Laboratoire Adaptation et Pathogénie des Microorganismes UMR5163/ Institut Albert Bonniot CRI Inserm/UJF U823, CNRS, Institut Jean Roget, 38700 La Tronche, France
| | - Anneke Kremer
- IRC/VIB Bio Imaging Core, Gent, Technologiepark 927, B-9052 Gent, Belgium
| | | | - Joachim Rassow
- Institute of Biochemistry and Pathobiochemistry, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| | - Isabel Roditi
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, CH-3012 Bern, Switzerland
| | - David Pérez-Morga
- Laboratory of Molecular Parasitology, IBMM, Université Libre de Bruxelles (ULB), 12 rue des Prof Jeener et Brachet, B-6041 Gosselies, Belgium.,Center for Microscopy and Molecular Imaging (CMMI), Université Libre de Bruxelles (ULB), 8 rue Adrienne Bolland, B-6041 Gosselies, Belgium
| | - Etienne Pays
- Laboratory of Molecular Parasitology, IBMM, Université Libre de Bruxelles (ULB), 12 rue des Prof Jeener et Brachet, B-6041 Gosselies, Belgium.,Walloon Excellence in Life sciences and Biotechnology (WELBIO), Wavre, Belgium
| |
Collapse
|
14
|
Singha UK, Hamilton V, Chaudhuri M. Tim62, a Novel Mitochondrial Protein in Trypanosoma brucei, Is Essential for Assembly and Stability of the TbTim17 Protein Complex. J Biol Chem 2015; 290:23226-39. [PMID: 26240144 DOI: 10.1074/jbc.m115.663492] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Indexed: 11/06/2022] Open
Abstract
Trypanosoma brucei, the causative agent of human African trypanosomiasis, possesses non-canonical mitochondrial protein import machinery. Previously, we characterized the essential translocase of the mitochondrial inner membrane (TIM) consisting of Tim17 in T. brucei. TbTim17 is associated with TbTim62. Here we show that TbTim62, a novel protein, is localized in the mitochondrial inner membrane, and its import into mitochondria depends on TbTim17. Knockdown (KD) of TbTim62 decreased the steady-state levels of TbTim17 post-transcriptionally. Further analysis showed that import of TbTim17 into mitochondria was not inhibited, but its half-life was reduced >4-fold due to TbTim62 KD. Blue-native gel electrophoresis revealed that TbTim62 is present primarily in ∼150-kDa and also in ∼1100-kDa protein complexes, whereas TbTim17 is present in multiple complexes within the range of ∼300 to ∼1100 kDa. TbTim62 KD reduced the levels of both TbTim62 as well as TbTim17 protein complexes. Interestingly, TbTim17 was accumulated as lower molecular mass complexes in TbTim62 KD mitochondria. Furthermore, depletion of TbTim62 hampered the assembly of the ectopically expressed TbTim17-2X-myc into TbTim17 protein complex. Co-immunoprecipitation analysis revealed that association of TbTim17 with mHSP70 was markedly reduced in TbTim62 KD mitochondria. All together our results demonstrate that TbTim62, a unique mitochondrial protein in T. brucei, is required for the formation of a stable TbTim17 protein complex. TbTim62 KD destabilizes this complex, and unassembled TbTim17 degrades. Therefore, TbTim62 acts as a novel regulatory factor to maintain the levels of TIM in T. brucei mitochondria.
Collapse
Affiliation(s)
- Ujjal K Singha
- From the Department of Microbiology and Immunology, Meharry Medical College, Nashville, Tennessee 37208
| | - VaNae Hamilton
- From the Department of Microbiology and Immunology, Meharry Medical College, Nashville, Tennessee 37208
| | - Minu Chaudhuri
- From the Department of Microbiology and Immunology, Meharry Medical College, Nashville, Tennessee 37208
| |
Collapse
|
15
|
Fullerton M, Singha UK, Duncan M, Chaudhuri M. Down regulation of Tim50 in Trypanosoma brucei increases tolerance to oxidative stress. Mol Biochem Parasitol 2015; 199:9-18. [PMID: 25791316 DOI: 10.1016/j.molbiopara.2015.03.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 03/06/2015] [Accepted: 03/08/2015] [Indexed: 12/15/2022]
Abstract
Trypanosoma brucei, the causative agent for African trypanosomiasis, possesses a single mitochondrion that imports hundreds of proteins from the cytosol. However, the parasite only possesses a few homologs of the canonical protein translocases found in fungi and animals. We recently characterized a homolog of the translocase of the mitochondrial inner membrane, Tim50, in T. brucei. TbTim50 knockdown (KD) moderately reduced cell growth, decreased the mitochondrial membrane potential, and inhibited import of proteins into mitochondria. In contrast to Tim50 KD, we show here that TbTim50 overexpression (OE) increased the mitochondrial membrane potential as well as increased the production of cellular reactive oxygen species (ROS). Therefore, TbTim50 OE also inhibits cell growth. In addition, TbTim50 OE and KD cells showed different responses upon treatment with H2O2. Surprisingly, TbTim50 KD cells showed a greater tolerance to oxidative stress. Further analysis revealed that TbTim50 KD inhibits transition of cells from an early to late apoptotic stage upon exposure to increasing concentrations of H2O2. On the other hand TbTim50 OE caused cells to be in a pro-apoptotic stage and thus they underwent increased cell death upon H2O2 treatment. However, externally added H2O2 similarly increased the levels of cellular ROS and decreased the mitochondrial membrane potential in both cell types, indicating that tolerance to ROS is mediated through induction of the stress-response pathway due to TbTim50 KD. Together, these results suggest that TbTim50 acts as a stress sensor and that down regulation of Tim50 could be a survival mechanism for T. brucei exposed to oxidative stress.
Collapse
Affiliation(s)
- Marjorie Fullerton
- Department of Microbiology and Immunology, Meharry Medical College, Nashville, TN, USA
| | - Ujjal K Singha
- Department of Microbiology and Immunology, Meharry Medical College, Nashville, TN, USA
| | | | - Minu Chaudhuri
- Department of Microbiology and Immunology, Meharry Medical College, Nashville, TN, USA.
| |
Collapse
|
16
|
Verner Z, Basu S, Benz C, Dixit S, Dobáková E, Faktorová D, Hashimi H, Horáková E, Huang Z, Paris Z, Peña-Diaz P, Ridlon L, Týč J, Wildridge D, Zíková A, Lukeš J. Malleable mitochondrion of Trypanosoma brucei. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 315:73-151. [PMID: 25708462 DOI: 10.1016/bs.ircmb.2014.11.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The importance of mitochondria for a typical aerobic eukaryotic cell is undeniable, as the list of necessary mitochondrial processes is steadily growing. Here, we summarize the current knowledge of mitochondrial biology of an early-branching parasitic protist, Trypanosoma brucei, a causative agent of serious human and cattle diseases. We present a comprehensive survey of its mitochondrial pathways including kinetoplast DNA replication and maintenance, gene expression, protein and metabolite import, major metabolic pathways, Fe-S cluster synthesis, ion homeostasis, organellar dynamics, and other processes. As we describe in this chapter, the single mitochondrion of T. brucei is everything but simple and as such rivals mitochondria of multicellular organisms.
Collapse
Affiliation(s)
- Zdeněk Verner
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic; Present address: Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia; Present address: Faculty of Sciences, Charles University, Prague, Czech Republic
| | - Somsuvro Basu
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic; Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic; Present address: Institut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, Germany
| | - Corinna Benz
- Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Sameer Dixit
- Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Eva Dobáková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic; Present address: Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Drahomíra Faktorová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic; Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Hassan Hashimi
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic; Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Eva Horáková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic
| | - Zhenqiu Huang
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic; Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Zdeněk Paris
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic
| | - Priscila Peña-Diaz
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic
| | - Lucie Ridlon
- Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic; Present address: Salk Institute, La Jolla, San Diego, USA
| | - Jiří Týč
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic; Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - David Wildridge
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic
| | - Alena Zíková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic; Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Czech Republic; Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| |
Collapse
|
17
|
Márquez VE, Arias DG, Chiribao ML, Faral-Tello P, Robello C, Iglesias AA, Guerrero SA. Redox metabolism in Trypanosoma cruzi. Biochemical characterization of dithiol glutaredoxin dependent cellular pathways. Biochimie 2014; 106:56-67. [PMID: 25110158 DOI: 10.1016/j.biochi.2014.07.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 07/29/2014] [Indexed: 01/15/2023]
Abstract
In Trypanosoma cruzi, the modification of thiols by glutathionylation-deglutathionylation and its potential relation to protective, regulatory or signaling functions have been scarcely explored. Herein we characterize a dithiolic glutaredoxin (TcrGrx), a redox protein with deglutathionylating activity, having potential functionality to control intracellular homeostasis of protein and non-protein thiols. The catalytic mechanism followed by TcrGrx was found dependent on thiol concentration. Results suggest that TcrGrx operates as a dithiolic or a monothiolic Grx, depending on GSH concentration. TcrGrx functionality to mediate reduction of protein and non-protein disulfides was studied. TcrGrx showed a preference for glutathionylated substrates respect to protein disulfides. From in vivo assays involving TcrGrx overexpressing parasites, we observed the contribution of the protein to increase the general resistance against oxidative damage and intracellular replication of the amastigote stage. Also, studies performed with epimastigotes overexpressing TcrGrx strongly suggest the involvement of the protein in a cellular pathway connecting an apoptotic stimulus and apoptotic-like cell death. Novel information is presented about the participation of this glutaredoxin not only in redox metabolism but also in redox signaling pathways in T. cruzi. The influence of TcrGrx in several parasite physiological processes suggests novel insights about the protein involvement in redox signaling.
Collapse
Affiliation(s)
- Vanina E Márquez
- Instituto de Agrobiotecnología del Litoral, Facultad de Bioquímica y Ciencias Biológicas, CONICET-UNL, Santa Fe, Argentina
| | - Diego G Arias
- Instituto de Agrobiotecnología del Litoral, Facultad de Bioquímica y Ciencias Biológicas, CONICET-UNL, Santa Fe, Argentina
| | - Maria L Chiribao
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay; Unidad de Biología Molecular, Institut Pasteur, Montevideo, Uruguay
| | | | - Carlos Robello
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay; Unidad de Biología Molecular, Institut Pasteur, Montevideo, Uruguay
| | - Alberto A Iglesias
- Instituto de Agrobiotecnología del Litoral, Facultad de Bioquímica y Ciencias Biológicas, CONICET-UNL, Santa Fe, Argentina
| | - Sergio A Guerrero
- Instituto de Agrobiotecnología del Litoral, Facultad de Bioquímica y Ciencias Biológicas, CONICET-UNL, Santa Fe, Argentina.
| |
Collapse
|
18
|
Povelones ML, Tiengwe C, Gluenz E, Gull K, Englund PT, Jensen RE. Mitochondrial shape and function in trypanosomes requires the outer membrane protein, TbLOK1. Mol Microbiol 2013; 87:713-29. [PMID: 23336702 DOI: 10.1111/mmi.12089] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2012] [Indexed: 01/01/2023]
Abstract
In an RNAi library screen for loss of kinetoplast DNA (kDNA), we identified an uncharacterized Trypanosoma brucei protein, named TbLOK1, required for maintenance of mitochondrial shape and function. We found the TbLOK1 protein located in discrete patches in the mitochondrial outer membrane. Knock-down of TbLOK1 in procyclic trypanosomes caused the highly interconnected mitochondrial structure to collapse, forming an unbranched tubule remarkably similar to the streamlined organelle seen in the bloodstream form. Following RNAi, defects in mitochondrial respiration, inner membrane potential and mitochondrial transcription were observed. At later times following TbLOK1 depletion, kDNA was lost and a more drastic alteration in mitochondrial structure was found. Our results demonstrate the close relationship between organelle structure and function in trypanosomes.
Collapse
Affiliation(s)
- Megan L Povelones
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | | | | | |
Collapse
|
19
|
Niemann M, Wiese S, Mani J, Chanfon A, Jackson C, Meisinger C, Warscheid B, Schneider A. Mitochondrial outer membrane proteome of Trypanosoma brucei reveals novel factors required to maintain mitochondrial morphology. Mol Cell Proteomics 2012; 12:515-28. [PMID: 23221899 DOI: 10.1074/mcp.m112.023093] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Trypanosoma brucei is a unicellular parasite that causes devastating diseases in humans and animals. It diverged from most other eukaryotes very early in evolution and, as a consequence, has an unusual mitochondrial biology. Moreover, mitochondrial functions and morphology are highly regulated throughout the life cycle of the parasite. The outer mitochondrial membrane defines the boundary of the organelle. Its properties are therefore key for understanding how the cytosol and mitochondria communicate and how the organelle is integrated into the metabolism of the whole cell. We have purified the mitochondrial outer membrane of T. brucei and characterized its proteome using label-free quantitative mass spectrometry for protein abundance profiling in combination with statistical analysis. Our results show that the trypanosomal outer membrane proteome consists of 82 proteins, two-thirds of which have never been associated with mitochondria before. 40 proteins share homology with proteins of known functions. The function of 42 proteins, 33 of which are specific to trypanosomatids, remains unknown. 11 proteins are essential for the disease-causing bloodstream form of T. brucei and therefore may be exploited as novel drug targets. A comparison with the outer membrane proteome of yeast defines a set of 17 common proteins that are likely present in the mitochondrial outer membrane of all eukaryotes. Known factors involved in the regulation of mitochondrial morphology are virtually absent in T. brucei. Interestingly, RNAi-mediated ablation of three outer membrane proteins of unknown function resulted in a collapse of the network-like mitochondrion of procyclic cells and for the first time identified factors that control mitochondrial shape in T. brucei.
Collapse
Affiliation(s)
- Moritz Niemann
- Department of Chemistry and Biochemistry, University of Bern, CH-3012 Bern, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Gannavaram S, Debrabant A. Programmed cell death in Leishmania: biochemical evidence and role in parasite infectivity. Front Cell Infect Microbiol 2012; 2:95. [PMID: 22919685 PMCID: PMC3417670 DOI: 10.3389/fcimb.2012.00095] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 06/21/2012] [Indexed: 11/13/2022] Open
Abstract
Demonstration of features of a programmed cell death (PCD) pathway in protozoan parasites initiated a great deal of interest and debate in the field of molecular parasitology. Several of the markers typical of mammalian apoptosis have been shown in Leishmania which suggested the existence of an apoptosis like death in these organisms. However, studies to elucidate the downstream events associated with phosphotidyl serine exposure, loss of mitochondrial membrane potential, cytochrome c release, and caspase-like activities in cells undergoing such cell death remain an ongoing challenge. Recent advances in genome sequencing, chemical biology should help to solve some of these challenges. Leishmania genetic mutants that lack putative regulators/effectors of PCD pathway should not only help to demonstrate the mechanisms of PCD but also provide tools to better understand the putative role for this pathway in population control and in the establishment of a successful infection of the host.
Collapse
Affiliation(s)
- Sreenivas Gannavaram
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration Bethesda, MD, USA
| | | |
Collapse
|
21
|
Smirlis D, Duszenko M, Ruiz AJ, Scoulica E, Bastien P, Fasel N, Soteriadou K. Targeting essential pathways in trypanosomatids gives insights into protozoan mechanisms of cell death. Parasit Vectors 2010; 3:107. [PMID: 21083891 PMCID: PMC3136144 DOI: 10.1186/1756-3305-3-107] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 11/17/2010] [Indexed: 11/25/2022] Open
Abstract
Apoptosis is a normal component of the development and health of multicellular organisms. However, apoptosis is now considered a prerogative of unicellular organisms, including the trypanosomatids of the genera Trypanosoma spp. and Leishmania spp., causative agents of some of the most important neglected human diseases. Trypanosomatids show typical hallmarks of apoptosis, although they lack some of the key molecules contributing to this process in metazoans, like caspase genes, Bcl-2 family genes and the TNF-related family of receptors. Despite the lack of these molecules, trypanosomatids appear to have the basic machinery to commit suicide. The components of the apoptotic execution machinery of these parasites are slowly coming into light, by targeting essential processes and pathways with different apoptogenic agents and inhibitors. This review will be confined to the events known to drive trypanosomatid parasites to apoptosis.
Collapse
Affiliation(s)
- Despina Smirlis
- Laboratory of Molecular Parasitology, Department of Microbiology, Hellenic Pasteur Institute, 127 Bas, Sofias Ave,, 11521 Athens, Greece.
| | | | | | | | | | | | | |
Collapse
|
22
|
Jiménez-Ruiz A, Alzate JF, Macleod ET, Lüder CGK, Fasel N, Hurd H. Apoptotic markers in protozoan parasites. Parasit Vectors 2010; 3:104. [PMID: 21062457 PMCID: PMC2993696 DOI: 10.1186/1756-3305-3-104] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Accepted: 11/09/2010] [Indexed: 12/25/2022] Open
Abstract
The execution of the apoptotic death program in metazoans is characterized by a sequence of morphological and biochemical changes that include cell shrinkage, presentation of phosphatidylserine at the cell surface, mitochondrial alterations, chromatin condensation, nuclear fragmentation, membrane blebbing and the formation of apoptotic bodies. Methodologies for measuring apoptosis are based on these markers. Except for membrane blebbing and formation of apoptotic bodies, all other events have been observed in most protozoan parasites undergoing cell death. However, while techniques exist to detect these markers, they are often optimised for metazoan cells and therefore may not pick up subtle differences between the events occurring in unicellular organisms and multi-cellular organisms. In this review we discuss the markers most frequently used to analyze cell death in protozoan parasites, paying special attention to changes in cell morphology, mitochondrial activity, chromatin structure and plasma membrane structure/permeability. Regarding classical regulators/executors of apoptosis, we have reviewed the present knowledge of caspase-like and nuclease activities.
Collapse
Affiliation(s)
- Antonio Jiménez-Ruiz
- Departamento de Bioquímica y Biología Molecular, Universidad de Alcalá, 28871 Alcalá de Henares, Madrid, Spain.
| | | | | | | | | | | |
Collapse
|
23
|
Sharma S, Singha UK, Chaudhuri M. Role of Tob55 on mitochondrial protein biogenesis in Trypanosoma brucei. Mol Biochem Parasitol 2010; 174:89-100. [PMID: 20659504 DOI: 10.1016/j.molbiopara.2010.07.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Revised: 07/02/2010] [Accepted: 07/10/2010] [Indexed: 10/19/2022]
Abstract
Mitochondrial outer membrane (MOM) proteins in parasitic protozoa like Trypanosoma brucei are poorly characterized. In fungi and higher eukaryotes, Tob55 is responsible for the assembly of β-barrel proteins in the MOM. Here we show that T. brucei Tob55 (TbTob55) has considerable similarity in its primary and secondary structure to Tob55 from other species. TbTob55 is localized in T. brucei MOM and is essential for procyclic cell survival. Induction of Tob55 RNAi decreased the level of the voltage-dependent anion channel (VDAC) within 48 h. Although the primary effect is on VDAC, induction of TbTob55 RNAi for 96 h or more also decreased the levels of other nucleus encoded mitochondrial proteins. In addition, the mitochondrial membrane potential was reduced at this later time point possibly due to a reduction in the level of the proteins involved in oxidative phosphorylation. However, mitochondrial structure was not altered due to depletion of Tob55. In vitro protein import of VDAC into mitochondria with a 50-60% reduction of TbTob55 was reduced about 40% in comparison to uninduced control. In addition, the import of presequence-containing proteins such as, cytochrome oxidase subunit 4 (COIV) and trypanosome alternative oxidase (TAO) was affected by about 20% under this condition. Depletion of VDAC levels by RNAi did not affect the import of either COIV or TAO. Furthermore, TbTob55 over expression increased the steady state level of VDAC as well as the level of the assembled protein complex of VDAC, suggesting that similar to other eukaryotes TbTob55 is involved in assembly of MOM β-barrel proteins and plays an indirect role in the biogenesis of mitochondrial preproteins destined for the mitochondrial inner membrane.
Collapse
Affiliation(s)
- Shvetank Sharma
- Department of Microbiology and Immunology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA
| | | | | |
Collapse
|
24
|
Acestor N, Panigrahi AK, Ogata Y, Anupama A, Stuart KD. Protein composition of Trypanosoma brucei mitochondrial membranes. Proteomics 2010; 9:5497-508. [PMID: 19834910 DOI: 10.1002/pmic.200900354] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Mitochondria consist of four compartments, outer membrane, intermembrane space, inner membrane, and matrix; each harboring specific functions and structures. In this study, we used LC-MS/MS to characterize the protein composition of Trypanosoma brucei mitochondrial (mt) membranes, which were enriched by different biochemical fractionation techniques. The analyses identified 202 proteins that contain one or more transmembrane domain(s) and/or positive GRAVY scores. Of these, various criteria were used to assign 72 proteins to mt membranes with high confidence, and 106 with moderate-to-low confidence. The sub-cellular localization of a selected subset of 13 membrane assigned proteins was confirmed by tagging and immunofluorescence analysis. While most proteins assigned to mt membrane have putative roles in metabolic, energy generating, and transport processes, approximately 50% have no known function. These studies result in a comprehensive profile of the composition and sub-organellar location of proteins in the T. brucei mitochondrion thus, providing useful information on mt functions.
Collapse
|
25
|
Chantangsi C, Esson HJ, Leander BS. Morphology and molecular phylogeny of a marine interstitial tetraflagellate with putative endosymbionts: Auranticordis quadriverberis n. gen. et sp. (Cercozoa). BMC Microbiol 2008; 8:123. [PMID: 18647416 PMCID: PMC2500021 DOI: 10.1186/1471-2180-8-123] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Accepted: 07/22/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Comparative morphological studies and environmental sequencing surveys indicate that marine benthic environments contain a diverse assortment of microorganisms that are just beginning to be explored and characterized. The most conspicuous predatory flagellates in these habitats range from about 20-150 mum in size and fall into three major groups of eukaryotes that are very distantly related to one another: dinoflagellates, euglenids and cercozoans. The Cercozoa is a diverse group of amoeboflagellates that cluster together in molecular phylogenies inferred mainly from ribosomal gene sequences. These molecular phylogenetic studies have demonstrated that several enigmatic taxa, previously treated as Eukaryota insertae sedis, fall within the Cercozoa, and suggest that the actual diversity of this group is largely unknown. Improved knowledge of cercozoan diversity is expected to help resolve major branches in the tree of eukaryotes and demonstrate important cellular innovations for understanding eukaryote evolution. RESULTS A rare tetraflagellate, Auranticordis quadriverberis n. gen. et sp., was isolated from marine sand samples. Uncultured cells were in low abundance and were individually prepared for electron microscopy and DNA sequencing. These flagellates possessed several novel features, such as (1) gliding motility associated with four bundled recurrent flagella, (2) heart-shaped cells about 35-75 microm in diam., and (3) bright orange coloration caused by linear arrays of muciferous bodies. Each cell also possessed about 2-30 pale orange bodies (usually 4-5 microm in diam.) that were enveloped by two membranes and sac-like vesicles. The innermost membrane invaginated to form unstacked thylakoids that extended towards a central pyrenoid containing tailed viral particles. Although to our knowledge, these bodies have never been described in any other eukaryote, the ultrastructure was most consistent with photosynthetic endosymbionts of cyanobacterial origin. This combination of morphological features did not allow us to assign A. quadriverberis to any known eukaryotic supergroup. Thus, we sequenced the small subunit rDNA sequence from two different isolates and demonstrated that this lineage evolved from within the Cercozoa. CONCLUSION Our discovery and characterization of A. quadriverberis underscores how poorly we understand the diversity of cercozoans and, potentially, represents one of the few independent cases of primary endosymbiosis within the Cercozoa and beyond.
Collapse
Affiliation(s)
- Chitchai Chantangsi
- Canadian Institute for Advanced Research, Program in Integrated Microbial Biodiversity, Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
| | | | | |
Collapse
|
26
|
Han SI, Kim YS, Kim TH. Role of apoptotic and necrotic cell death under physiologic conditions. BMB Rep 2008; 41:1-10. [DOI: 10.5483/bmbrep.2008.41.1.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
27
|
Abstract
Mitochondria undergo continuous fission and fusion events in physiological situations. Fragmentation of mitochondria during cell death has been shown to play a key role in cell death progression, including release of the mitochondrial apoptotic proteins. Ultrastructural changes in mitochondria, such as cristae remodeling, is also involved in cell death initiation. Here, we emphasize the important role of mitochondrial fission/fusion machinery in neuronal cell death. Unlike many other cell types such as immortalized cell lines, neurons are distinct morphologically and functionally. We will discuss how this uniqueness presents special challenges in the cellular response to neurotoxic stresses, and how this affects the mitochondrial dynamics in the regulation of cell death in neurons.
Collapse
Affiliation(s)
- Eric C C Cheung
- University of Ottawa, Department of Cellular Molecular Medicine, Ottawa Health Research Institute, 451 Smyth Road, Ottawa, Ontario, Canada
| | | | | |
Collapse
|
28
|
Hehl AB, Regos A, Schraner E, Schneider A. Bax function in the absence of mitochondria in the primitive protozoan Giardia lamblia. PLoS One 2007; 2:e488. [PMID: 17534438 PMCID: PMC1871612 DOI: 10.1371/journal.pone.0000488] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2007] [Accepted: 05/05/2007] [Indexed: 11/18/2022] Open
Abstract
Bax-induced permeabilization of the mitochondrial outer membrane and release of cytochrome c are key events in apoptosis. Although Bax can compromise mitochondria in primitive unicellular organisms that lack a classical apoptotic machinery, it is still unclear if Bax alone is sufficient for this, or whether additional mitochondrial components are required. The protozoan parasite Giardia lamblia is one of the earliest branching eukaryotes and harbors highly degenerated mitochondrial remnant organelles (mitosomes) that lack a genome. Here we tested whether human Bax expressed in Giardia can be used to ablate mitosomes. We demonstrate that these organelles are neither targeted, nor compromised, by Bax. However, specialized compartments of the regulated secretory pathway are completely ablated by Bax. As a consequence, maturing cyst wall proteins that are sorted into these organelles are released into the cytoplasm, causing a developmental arrest and cell death. Interestingly, this ectopic cargo release is dependent on the carboxy-terminal 22 amino acids of Bax, and can be prevented by the Bax-inhibiting peptide Ku70. A C-terminally truncated Bax variant still localizes to secretory organelles, but is unable to permeabilize these membranes, uncoupling membrane targeting and cargo release. Even though mitosomes are too diverged to be recognized by Bax, off-target membrane permeabilization appears to be conserved and leads to cell death completely independently of mitochondria.
Collapse
Affiliation(s)
- Adrian B Hehl
- Institute of Parasitology, University of Zürich, Zurich, Switzerland.
| | | | | | | |
Collapse
|
29
|
Piacenza L, Irigoín F, Alvarez M, Peluffo G, Taylor M, Kelly J, Wilkinson S, Radi R. Mitochondrial superoxide radicals mediate programmed cell death in Trypanosoma cruzi: cytoprotective action of mitochondrial iron superoxide dismutase overexpression. Biochem J 2007; 403:323-34. [PMID: 17168856 PMCID: PMC1874241 DOI: 10.1042/bj20061281] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Trypanosoma cruzi undergo PCD (programmed cell death) under appropriate stimuli, the mechanisms of which remain to be established. In the present study, we show that stimulation of PCD in T. cruzi epimastigotes by FHS (fresh human serum) results in rapid (<1 h) externalization of phosphatidylserine and depletion of the low molecular mass thiols dihydrotrypanothione and glutathione. Concomitantly, enhanced generation of oxidants was established by EPR and immuno-spin trapping of radicals using DMPO (5,5-dimethylpyrroline-N-oxide) and augmentation of the glucose flux through the pentose phosphate pathway. In the early period (<20 min), changes in mitochondrial membrane potential and inhibition of respiration, probably due to the impairment of ADP/ATP exchange with the cytosol, were observed, conditions that favour the generation of O2*-. Accelerated rates of mitochondrial O2*- production were detected by the inactivation of the redox-sensitive mitochondrial aconitase and by oxidation of a mitochondrial-targeted probe (MitoSOX). Importantly, parasites overexpressing mitochondrial FeSOD (iron superoxide dismutase) were more resistant to the PCD stimulus, unambiguously indicating the participation of mitochondrial O2*- in the signalling process. In summary, FHS-induced PCD in T. cruzi involves mitochondrial dysfunction that causes enhanced O(2)(*-) formation, which leads to cellular oxidative stress conditions that trigger the initiation of PCD cascades; moreover, overexpression of mitochondrial FeSOD, which is also observed during metacyclogenesis, resulted in cytoprotective effects.
Collapse
Affiliation(s)
- Lucía Piacenza
- *Departamento de Bioquímica, Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Florencia Irigoín
- †Departamento de Histología y Embriología, Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - María Noel Alvarez
- *Departamento de Bioquímica, Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Gonzalo Peluffo
- *Departamento de Bioquímica, Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Martin C. Taylor
- ‡Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, U.K
| | - John M. Kelly
- ‡Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, U.K
| | - Shane R. Wilkinson
- ‡Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, U.K
| | - Rafael Radi
- *Departamento de Bioquímica, Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
- To whom correspondence should be addressed (email )
| |
Collapse
|
30
|
Estaquier J, Arnoult D. Inhibiting Drp1-mediated mitochondrial fission selectively prevents the release of cytochrome c during apoptosis. Cell Death Differ 2007; 14:1086-94. [PMID: 17332775 DOI: 10.1038/sj.cdd.4402107] [Citation(s) in RCA: 254] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Most cell death stimuli trigger the mitochondrial release of cytochrome c and other cofactors that induce caspase activation and ensuing apoptosis. Apoptosis is also associated with massive mitochondrial fragmentation and cristae remodeling. Dynamin-related protein 1 (Drp1), a protein of the mitochondrial fission machinery, has been reported to participate in apoptotic mitochondrial fragmentation. Several theories explaining the mechanisms of cytochrome c release have been proposed. One suggests that it relies on the activation of Drp1-mediated mitochondrial fission. Here, we report that downregulation of Drp1 inhibits fragmentation of the mitochondrial network and partially prevents the release of cytochrome c but fails to prevent the release of other mitochondrial factors such as second mitochondria-derived activator of caspase/direct IAP-binding protein with low pI, Omi/HtrA2, adenylate kinase 2 and deafness dystonia peptide/TIMM8a. An explanation for the prevention of cytochrome c release is provided by our observation that inhibiting Drp1-mediated mitochondrial fission prevents the mitochondrial release of soluble OPA1 that was proposed to regulate cristae remodeling and complete cytochrome c release during apoptosis. Finally, we observed that downregulation of Drp1 delays but does not inhibit apoptosis, suggesting that mitochondrial fragmentation is not a prerequisite for apoptosis.
Collapse
Affiliation(s)
- J Estaquier
- Unité de Physiopathologie des Infections Lentivirales, Institut Pasteur, 28 rue du Dr. Roux, 75724 Paris cedex 15, France
| | | |
Collapse
|
31
|
Uboldi AD, Lueder FB, Walsh P, Spurck T, McFadden GI, Curtis J, Likic VA, Perugini MA, Barson M, Lithgow T, Handman E. A mitochondrial protein affects cell morphology, mitochondrial segregation and virulence in Leishmania. Int J Parasitol 2006; 36:1499-514. [PMID: 17011565 DOI: 10.1016/j.ijpara.2006.08.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2006] [Revised: 08/21/2006] [Accepted: 08/22/2006] [Indexed: 11/24/2022]
Abstract
The single mitochondrion of kinetoplastids divides in synchrony with the nucleus and plays a crucial role in cell division. However, despite its importance and potential as a drug target, the mechanism of mitochondrial division and segregation and the molecules involved are only partly understood. In our quest to identify novel mitochondrial proteins in Leishmania, we constructed a hidden Markov model from the targeting motifs of known mitochondrial proteins as a tool to search the Leishmania major genome. We show here that one of the 17 proteins of unknown function that we identified, designated mitochondrial protein X (MIX), is an oligomeric protein probably located in the inner membrane and expressed throughout the Leishmania life cycle. The MIX gene appears to be essential. Moreover, even deletion of one allele from L. major led to abnormalities in cell morphology, mitochondrial segregation and, importantly, to loss of virulence. MIX is unique to kinetoplastids but its heterologous expression in Saccharomyces cerevisiae produced defects in mitochondrial morphology. Our data show that a number of mitochondrial proteins are unique to kinetoplastids and some, like MIX, play a central role in mitochondrial segregation and cell division, as well as virulence.
Collapse
|
32
|
Abstract
Mitochondrial outer membrane permeabilization (MOMP) is associated with most pro-apoptotic stimuli. MOMP results in the release of cytochrome c from the mitochondria into the cytosol, triggering caspase activation and subsequent apoptosis. Several theories explaining the mechanisms of MOMP have been proposed, one of which suggests that MOMP relies on the activation of the molecular machinery involved in fission, resulting in mitochondrial fragmentation. By contrast, several recent studies suggest that mitochondrial fragmentation occurs following MOMP. Moreover, under some conditions. MOMP occurs without mitochondrial fragmentation and, in fact, fragmentation even inhibits MOMP. Here, I discuss the apparently conflicting data and conclude that mitochondrial fragmentation is probably not a prerequisite for MOMP and cytochrome c release.
Collapse
|
33
|
Parone PA, James DI, Da Cruz S, Mattenberger Y, Donzé O, Barja F, Martinou JC. Inhibiting the mitochondrial fission machinery does not prevent Bax/Bak-dependent apoptosis. Mol Cell Biol 2006; 26:7397-408. [PMID: 17015472 PMCID: PMC1636857 DOI: 10.1128/mcb.02282-05] [Citation(s) in RCA: 191] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2005] [Revised: 01/03/2006] [Accepted: 07/17/2006] [Indexed: 11/20/2022] Open
Abstract
Apoptosis, induced by a number of death stimuli, is associated with a fragmentation of the mitochondrial network. These morphological changes in mitochondria have been shown to require proteins, such as Drp1 or hFis1, which are involved in regulating the fission of mitochondria. However, the precise role of mitochondrial fission during apoptosis remains elusive. Here we report that inhibiting the fission machinery in Bax/Bak-mediated apoptosis, by down-regulating of Drp1 or hFis1, prevents the fragmentation of the mitochondrial network and partially inhibits the release of cytochrome c from the mitochondria but fails to block the efflux of Smac/DIABLO. In addition, preventing mitochondrial fragmentation does not inhibit cell death induced by Bax/Bak-dependent death stimuli, in contrast to the effects of Bcl-xL or caspase inhibition. Therefore, the fission of mitochondria is a dispensable event in Bax/Bak-dependent apoptosis.
Collapse
Affiliation(s)
- Philippe A Parone
- Department of Cell Biology, University of Geneva, Quai Ernest-Ansermet 30, 1211 Geneva 4, Switzerland
| | | | | | | | | | | | | |
Collapse
|
34
|
Arnoult D, Rismanchi N, Grodet A, Roberts RG, Seeburg DP, Estaquier J, Sheng M, Blackstone C. Bax/Bak-dependent release of DDP/TIMM8a promotes Drp1-mediated mitochondrial fission and mitoptosis during programmed cell death. Curr Biol 2006; 15:2112-8. [PMID: 16332536 DOI: 10.1016/j.cub.2005.10.041] [Citation(s) in RCA: 174] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2005] [Revised: 10/10/2005] [Accepted: 10/12/2005] [Indexed: 12/19/2022]
Abstract
Mitochondrial morphology within cells is controlled by precisely regulated rates of fusion and fission . During programmed cell death (PCD), mitochondria undergo extensive fragmentation and ultimately caspase-independent elimination through a process known as mitoptosis . Though this increased fragmentation is due to increased fission through the recruitment of the dynamin-like GTPase Drp1 to mitochondria , as well as to a block in mitochondrial fusion , cellular mechanisms underlying these processes remain unclear. Here, we describe a mechanism for the increased mitochondrial Drp1 levels and subsequent stimulation of mitochondrial fission seen during PCD. We observed Bax/Bak-mediated release of DDP/TIMM8a, a mitochondrial intermembrane space (IMS) protein , into the cytoplasm, where it binds to and promotes the mitochondrial redistribution of Drp1, a mediator of mitochondrial fission. Using both loss- and gain-of-function assays, we also demonstrate that the Drp1- and DDP/TIMM8a-dependent mitochondrial fragmentation observed during PCD is an important step in mitoptosis, which in turn is involved in caspase-independent cell death. Thus, following Bax/Bak-mediated mitochondrial outer membrane permeabilization (MOMP), IMS proteins released comprise not only apoptogenic factors such as cytochrome c involved in caspase activation but also DDP/TIMM8a, which activates Drp1-mediated fission to promote mitochondrial fragmentation and subsequently elimination during PCD.
Collapse
Affiliation(s)
- Damien Arnoult
- Cellular Neurology Unit, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Chanez AL, Hehl AB, Engstler M, Schneider A. Ablation of the single dynamin of T. brucei blocks mitochondrial fission and endocytosis and leads to a precise cytokinesis arrest. J Cell Sci 2006; 119:2968-74. [PMID: 16787942 DOI: 10.1242/jcs.03023] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mitochondrial fission is mediated by dynamin-like proteins (DLPs). Trypanosoma brucei contains a single DLP, which is the only member of the dynamin superfamily. We have previously shown that expression of the human proapoptotic Bax in T. brucei induces extensive mitochondrial fragmentation. Here we report that Baxinduced mitochondrial fission is abolished in cell lines lacking functional DLP suggesting that the protein is also required for mitochondrial division during the cell cycle. Furthermore, DLP-ablated cells are deficient for endocytosis and as a consequence accumulate enlarged flagellar pockets. Thus, besides its expected role in mitochondrial fission the trypanosomal DLP is required for endocytosis, a function thought to be restricted to classical dynamins. In agreement with its dual function, the DLP localizes to both the mitochondrion and the flagellar pocket, the site where endocytosis occurs. Unexpectedly, ablation of DLP also causes an arrest of cytokinesis. The fact that no multinucleation is observed in the arrested cells argues for a precise cell-cycle block. Furthermore, analysis of a clathrin-knockdown cell line suggests that the cytokinesis arrest is not due to the endocytosis defect. Thus, our results support a working model in which mitochondrial fission triggers a checkpoint for cytokinesis.
Collapse
Affiliation(s)
- Anne-Laure Chanez
- Department of Biology/Cell and Developmental Biology, University of Fribourg, Chemin du Musée 10, CH-1700 Fribourg, Switzerland
| | | | | | | |
Collapse
|
36
|
Parone PA, Martinou JC. Mitochondrial fission and apoptosis: an ongoing trial. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:522-30. [PMID: 16762428 DOI: 10.1016/j.bbamcr.2006.04.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2006] [Revised: 04/11/2006] [Accepted: 04/13/2006] [Indexed: 12/26/2022]
Abstract
Apoptosis is a form of programmed cell death that is essential for the development and tissue homeostasis in all metazoan animals. Mitochondria play a critical role during apoptosis, since the release of pro-apoptogenic proteins from the organelle is a pivotal event in cell death triggered by many cytotoxic stimuli. A striking morphological change occurring during apoptosis is the disintegration of the semi-reticular mitochondrial network into small punctiform organelles. It is only recently that this event has been shown to require the activity of proteins involved in the physiological processes of mitochondrial fission and fusion. Here, we discuss how this mitochondrial morphological transition occurs during cell death and the role that it may have in apoptosis.
Collapse
Affiliation(s)
- Philippe A Parone
- Department of Cell Biology, University of Geneva, Quai Ernest-Ansermet 30, 1211 Geneva 4, Switzerland
| | | |
Collapse
|
37
|
Heath-Engel HM, Shore GC. Mitochondrial membrane dynamics, cristae remodelling and apoptosis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:549-60. [PMID: 16574258 DOI: 10.1016/j.bbamcr.2006.02.006] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2006] [Revised: 02/15/2006] [Accepted: 02/16/2006] [Indexed: 12/31/2022]
Abstract
Mitochondria form a highly dynamic reticular network in living cells, and undergo continuous fusion/fission events and changes in ultrastructural architecture. Although significant progress has been made in elucidating the molecular events underlying these processes, their relevance to normal cell function remains largely unexplored. Emerging evidence, however, suggests an important role for mitochondrial dynamics in cellular apoptosis. The mitochondria is at the core of the intrinsic apoptosis pathway, and provides a reservoir for protein factors that induce caspase activation and chromosome fragmentation. Additionally, mitochondria modulate Ca2+ homeostasis and are a source of various metabolites, including reactive oxygen species, that have the potential to function as second messengers in response to apoptotic stimuli. One of the mitochondrial factors required for activation of caspases in most intrinsic apoptotic pathways, cytochrome c, is largely sequestered within the intracristae compartment, and must migrate into the boundary intermembrane space in order to allow passage across the outer membrane to the cytosol. Recent evidence argues that inner mitochondrial membrane dynamics regulate this process. Here, we review the contribution of mitochondrial dynamics to the intrinsic apoptosis pathway, with emphasis on the inner membrane.
Collapse
Affiliation(s)
- Hannah M Heath-Engel
- Department of Biochemistry, McIntyre Medical Sciences Building, McGill University, Montreal, Quebec, 3655 Promenade Sir William Osler, Canada H3G 1Y6
| | | |
Collapse
|
38
|
Kiefel BR, Gilson PR, Beech PL. Cell biology of mitochondrial dynamics. INTERNATIONAL REVIEW OF CYTOLOGY 2006; 254:151-213. [PMID: 17147999 DOI: 10.1016/s0074-7696(06)54004-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Mitochondria are the product of an ancient endosymbiotic event between an alpha-proteobacterium and an archael host. An early barrier to overcome in this relationship was the control of the bacterium's proliferation within the host. Undoubtedly, the bacterium (or protomitochondrion) would have used its own cell division apparatus to divide at first and, today a remnant of this system remains in some "ancient" and diverse eukaryotes such as algae and amoebae, the most conserved and widespread of all bacterial division proteins, FtsZ. In many of the eukaryotes that still use FtsZ to constrict the mitochondria from the inside, the mitochondria still resemble bacteria in shape and size. Eukaryotes, however, have a mitochondrial morphology that is often highly fluid, and in their tubular networks of mitochondria, division is clearly complemented by mitochondrial fusion. FtsZ is no longer used by these complex eukaryotes, and may have been replaced by other proteins better suited to sustaining complex mitochondrial networks. Although proteins that divide mitochondria from the inside are just beginning to be characterized in higher eukaryotes, many division proteins are known to act on the outside of the organelle. The most widespread of these are the dynamin-like proteins, which appear to have been recruited very early in the evolution of mitochondria. The essential nature of mitochondria dictates that their loss is intolerable to human cells, and that mutations disrupting mitochondrial division are more likely to be fatal than result in disease. To date, only one disease (Charcot-Marie-Tooth disease 2A) has been mapped to a gene that is required for mitochondrial division, whereas two other diseases can be attributed to mutations in mitochondrial fusion genes. Apart from playing a role in regulating the morphology, which might be important for efficient ATP production, research has indicated that the mitochondrial division and fusion proteins can also be important during apoptosis; mitochondrial fragmentation is an early triggering (and under many stimuli, essential) step in the pathway to cell suicide.
Collapse
Affiliation(s)
- Ben R Kiefel
- Center for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin University, Melbourne, Australia
| | | | | |
Collapse
|
39
|
Tsuda A, Witola WH, Ohashi K, Onuma M. Expression of alternative oxidase inhibits programmed cell death-like phenomenon in bloodstream form of Trypanosoma brucei rhodesiense. Parasitol Int 2005; 54:243-51. [PMID: 16115792 DOI: 10.1016/j.parint.2005.06.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2005] [Accepted: 06/27/2005] [Indexed: 01/07/2023]
Abstract
Trypanosoma brucei rhodesiense is one of the causative agents of African Trypanosomiasis. Programmed cell death (PCD) is fundamental in the development, homeostasis and immune mechanisms of multicellular organisms. It has been shown that, other than occurring in multicellular organisms, the PCD phenomenon also takes place in unicellular organisms. In the present study, we have found that under high-density axenic culture conditions, bloodstream form of T. b. rhodesiense depicts a PCD-like phenomenon. We investigated the association of the PCD-like phenomenon with expression of trypanosome alternative oxidase (TAO) under low-temperature stress conditions. We observed that bloodstream form of T. b. rhodesiense did not show any PCD but had up-regulated expression of TAO. Inhibition of TAO by the addition of ascofranone caused the development of PCD in bloodstream T. b. rhodesiense under low-temperature stress, implying that expression of TAO may contribute to the inhibition of PCD.
Collapse
Affiliation(s)
- Akiko Tsuda
- Laboratory of Infectious Disease, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | | | | | | |
Collapse
|
40
|
Schnaufer A, Clark-Walker GD, Steinberg AG, Stuart K. The F1-ATP synthase complex in bloodstream stage trypanosomes has an unusual and essential function. EMBO J 2005; 24:4029-40. [PMID: 16270030 PMCID: PMC1356303 DOI: 10.1038/sj.emboj.7600862] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2005] [Accepted: 10/10/2005] [Indexed: 11/09/2022] Open
Abstract
Survival of bloodstream form Trypanosoma brucei, the agent of African sleeping sickness, normally requires mitochondrial gene expression, despite the absence of oxidative phosphorylation in this stage of the parasite's life cycle. Here we report that silencing expression of the alpha subunit of the mitochondrial F(1)-ATP synthase complex is lethal for bloodstream stage T. brucei as well as for T. evansi, a closely related species that lacks mitochondrial protein coding genes (i.e. is dyskinetoplastic). Our results suggest that the lethal effect is due to collapse of the mitochondrial membrane potential, which is required for mitochondrial function and biogenesis. We also identified a mutation in the gamma subunit of F(1) that is likely to be involved in circumventing the requirement for mitochondrial gene expression in another dyskinetoplastic form. Our data reveal that the mitochondrial ATP synthase complex functions in the bloodstream stage opposite to that in the insect stage and in most other eukaryotes, namely using ATP hydrolysis to generate the mitochondrial membrane potential.
Collapse
Affiliation(s)
- Achim Schnaufer
- Seattle Biomedical Research Institute, Seattle, WA, USA
- Seattle Biomedical Research Institute, 307 Westlake Ave N, Suite 500, Seattle, WA 98109-5219, USA. Tel.: +1 206 256 7488; Fax: +1 206 256 7229; E-mail:
| | - G Desmond Clark-Walker
- Molecular Genetics and Evolution, Research School of Biological Sciences, The Australian National University, Canberra, ACT, Australia
| | | | - Ken Stuart
- Seattle Biomedical Research Institute, Seattle, WA, USA
- Department of Pathobiology, University of Washington, Seattle, WA, USA
- Seattle Biomedical Research Institute, 307 Westlake Ave N, Suite 500, Seattle, WA 98109-5219, USA. Tel.: +1 206 256 7316; Fax: +1 206 256 7229; E-mail:
| |
Collapse
|
41
|
Arnoult D, Grodet A, Lee YJ, Estaquier J, Blackstone C. Release of OPA1 during apoptosis participates in the rapid and complete release of cytochrome c and subsequent mitochondrial fragmentation. J Biol Chem 2005; 280:35742-50. [PMID: 16115883 DOI: 10.1074/jbc.m505970200] [Citation(s) in RCA: 205] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Mitochondria are important participants in apoptosis, releasing cytochrome c into the cytoplasm and undergoing extensive fragmentation. However, mechanisms underlying these processes remain unclear. Here, we demonstrate that cytochrome c release during apoptosis precedes mitochondrial fragmentation. Unexpectedly, OPA1, a dynamin-like GTPase of the mitochondrial intermembrane space important for maintaining cristae structure, is co-released with cytochrome c. To mimic the loss of OPA1 occurring after its release, we knocked down OPA1 expression using RNA interference. This triggered structural changes in the mitochondrial cristae and caused increased fragmentation by blocking mitochondrial fusion. Because cytochrome c is mostly sequestered within cristae folds but released rapidly and completely during apoptosis, we examined the effect of OPA1 loss on cytochrome c release, demonstrating that it is accelerated. Thus, our results suggest that an initial mitochondrial leak of OPA1 leads to cristae structural alterations and exposure of previously sequestered protein pools, permitting continued release in a feed-forward manner to completion. Moreover, our findings indicate that the resulting OPA1 depletion causes a block in mitochondrial fusion, providing a compelling mechanism for the prominent increase in mitochondrial fragmentation seen during apoptosis.
Collapse
Affiliation(s)
- Damien Arnoult
- Cellular Neurology Unit, Surgical Neurology Branch, NINDS, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|