1
|
Janissen R, Barth R, Polinder M, van der Torre J, Dekker C. Single-molecule visualization of twin-supercoiled domains generated during transcription. Nucleic Acids Res 2024; 52:1677-1687. [PMID: 38084930 PMCID: PMC10899792 DOI: 10.1093/nar/gkad1181] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/13/2023] [Accepted: 11/30/2023] [Indexed: 02/29/2024] Open
Abstract
Transcription-coupled supercoiling of DNA is a key factor in chromosome compaction and the regulation of genetic processes in all domains of life. It has become common knowledge that, during transcription, the DNA-dependent RNA polymerase (RNAP) induces positive supercoiling ahead of it (downstream) and negative supercoils in its wake (upstream), as rotation of RNAP around the DNA axis upon tracking its helical groove gets constrained due to drag on its RNA transcript. Here, we experimentally validate this so-called twin-supercoiled-domain model with in vitro real-time visualization at the single-molecule scale. Upon binding to the promoter site on a supercoiled DNA molecule, RNAP merges all DNA supercoils into one large pinned plectoneme with RNAP residing at its apex. Transcription by RNAP in real time demonstrates that up- and downstream supercoils are generated simultaneously and in equal portions, in agreement with the twin-supercoiled-domain model. Experiments carried out in the presence of RNases A and H, revealed that an additional viscous drag of the RNA transcript is not necessary for the RNAP to induce supercoils. The latter results contrast the current consensus and simulations on the origin of the twin-supercoiled domains, pointing at an additional mechanistic cause underlying supercoil generation by RNAP in transcription.
Collapse
Affiliation(s)
- Richard Janissen
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, South-Holland 2629HZ, The Netherlands
| | - Roman Barth
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, South-Holland 2629HZ, The Netherlands
| | - Minco Polinder
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, South-Holland 2629HZ, The Netherlands
| | - Jaco van der Torre
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, South-Holland 2629HZ, The Netherlands
| | - Cees Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, South-Holland 2629HZ, The Netherlands
| |
Collapse
|
2
|
Shen L, Gao L, Swoboda AR, Ouellette SP. Targeted repression of topA by CRISPRi reveals a critical function for balanced DNA topoisomerase I activity in the Chlamydia trachomatis developmental cycle. mBio 2024; 15:e0258423. [PMID: 38265209 PMCID: PMC10865786 DOI: 10.1128/mbio.02584-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/06/2023] [Indexed: 01/25/2024] Open
Abstract
Chlamydia trachomatis is an obligate intracellular bacterium that is responsible for the most prevalent bacterial sexually transmitted infection. Changes in DNA topology in this pathogen have been linked to its pathogenicity-associated developmental cycle. Here, evidence is provided that the balanced activity of DNA topoisomerases contributes to controlling Chlamydia developmental processes. Utilizing catalytically inactivated Cas12 (dCas12)-based clustered regularly interspaced short palindromic repeats interference (CRISPRi) technology, we demonstrate targeted knockdown of chromosomal topA transcription in C. trachomatis without detected toxicity of dCas12. Repression of topA impaired the developmental cycle of C. trachomatis mostly through disruption of its differentiation from a replicative form to an infectious form. Consistent with this, expression of late developmental genes of C. trachomatis was downregulated, while early genes maintained their expression. Importantly, the developmental defect associated with topA knockdown was rescued by overexpressing topA at an appropriate degree and time, directly linking the growth patterns to the levels of topA expression. Interestingly, topA knockdown had effects on DNA gyrase expression, indicating a potential compensatory mechanism for survival to offset TopA deficiency. C. trachomatis with topA knocked down displayed hypersensitivity to moxifloxacin that targets DNA gyrase in comparison with the wild type. These data underscore the requirement of integrated topoisomerase actions to support the essential developmental and transcriptional processes of C. trachomatis.IMPORTANCEWe used genetic and chemical tools to demonstrate the relationship of topoisomerase activities and their obligatory role for the chlamydial developmental cycle. Successfully targeting the essential gene topA with a CRISPRi approach, using dCas12, in C. trachomatis indicates that this method will facilitate the characterization of the essential genome. These findings have an important impact on our understanding of the mechanisms by which well-balanced topoisomerase functions in adaptation of C. trachomatis to unfavorable growth conditions imposed by antibiotics.
Collapse
Affiliation(s)
- Li Shen
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Leiqiong Gao
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Abigail R. Swoboda
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Scot P. Ouellette
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
3
|
Hoareau M, Gerges E, Crémazy FGE. Shedding Light on Bacterial Chromosome Structure: Exploring the Significance of 3C-Based Approaches. Methods Mol Biol 2024; 2819:3-26. [PMID: 39028499 DOI: 10.1007/978-1-0716-3930-6_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The complex architecture of DNA within living organisms is essential for maintaining the genetic information that dictates their functions and characteristics. Among the many complexities of genetic material organization, the folding and arrangement of DNA into chromosomes play a critical role in regulating gene expression, replication, and other essential cellular processes. Bacteria, despite their apparently simple cellular structure, exhibit a remarkable level of chromosomal organization that influences their adaptability and survival in diverse environments. Understanding the three-dimensional arrangement of bacterial chromosomes has long been a challenge due to technical limitations, but the development of Chromosome Conformation Capture (3C) methods revolutionized our ability to explore the hierarchical structure and the dynamics of bacterial genomes. Here, we review the major advances in the field of bacterial chromosome structure using 3C technology over the past decade.
Collapse
Affiliation(s)
- Marion Hoareau
- Université Paris-Saclay, UVSQ, Inserm, Infection et inflammation, Montigny-Le-Bretonneux, France
| | - Elias Gerges
- Université Paris-Saclay, UVSQ, Inserm, Infection et inflammation, Montigny-Le-Bretonneux, France
| | - Frédéric G E Crémazy
- Université Paris-Saclay, UVSQ, Inserm, Infection et inflammation, Montigny-Le-Bretonneux, France.
| |
Collapse
|
4
|
Thani AB. DNA supercoiling and regulation of intrinsic β-lactamase in pathogenic Escherichia coli. Arch Microbiol 2023; 205:385. [PMID: 37980630 DOI: 10.1007/s00203-023-03716-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 11/21/2023]
Abstract
This review addresses the involvement of DNA supercoiling in the development of virulence and antibiotic profiles for uropathogenic Escherichia coli and the emergence of new pathotypes such as strain ST131 (serotype O25:H4). The mechanism suggests a role for topoisomerase enzymes and associated mutations in altering the chromosomal supercoiling state and introducing the required DNA twists for expression of intrinsic β-lactamase by ampC and certain virulence factors. In Escherichia coli, constitutive hyperexpression of intrinsic ampC is associated with specific mutations in the promoter and attenuator regions. However, many reports have documented the involvement of slow growth interventions in the expression of intrinsic resistance determinants. There is evidence that a stationary phase transcriptional switch protein, "BolA," is involved in the expression of the intrinsic ampC gene under starvation conditions. The process involves changes in the activity of the enzyme "gyrase," which leads to a change in the chromosomal DNA topology. Consequently, the DNA is relaxed, and the expression of the bolA gene is upregulated. The evolution of the extraintestinal pathogenic E. coli strain ST131 has demonstrated successful adaptability to various stress conditions and conferred compensatory mutations that endowed the microbe with resistance to fluoroquinolones and β-lactams. The results of this study provided new insights into the evidence for the influence of DNA topology in the expression of virulence genes and various determinants of antibiotic resistance (e.g., the intrinsic ampC gene) in Escherichia coli pathotypes.
Collapse
Affiliation(s)
- Ali Bin Thani
- Department of Biology, College of Science, University of Bahrain, Zallaq, Kingdom of Bahrain.
| |
Collapse
|
5
|
Yáñez-Cuna FO, Koszul R. Insights in bacterial genome folding. Curr Opin Struct Biol 2023; 82:102679. [PMID: 37604045 DOI: 10.1016/j.sbi.2023.102679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 08/23/2023]
Abstract
Chromosomes in all domains of life are well-defined structural entities with complex hierarchical organization. The regulation of this hierarchical organization and its functional interplay with gene expression or other chromosome metabolic processes such as repair, replication, or segregation is actively investigated in a variety of species, including prokaryotes. Bacterial chromosomes are typically gene-dense with few non-coding sequences and are organized into the nucleoid, a membrane-less compartment composed of DNA, RNA, and proteins (nucleoid-associated proteins or NAPs). The continuous improvement of imaging and genomic methods has put the organization of these Mb-long molecules at reach, allowing to disambiguate some of their highly dynamic properties and intertwined structural features. Here we review and discuss some of the recent advances in the field of bacterial chromosome organization.
Collapse
Affiliation(s)
- Fares Osam Yáñez-Cuna
- Institut Pasteur, CNRS UMR 3525, Université Paris Cité, Unité Régulation Spatiale des Génomes, 75015, Paris, France
| | - Romain Koszul
- Institut Pasteur, CNRS UMR 3525, Université Paris Cité, Unité Régulation Spatiale des Génomes, 75015, Paris, France.
| |
Collapse
|
6
|
Kohiyama M, Herrick J, Norris V. Open Questions about the Roles of DnaA, Related Proteins, and Hyperstructure Dynamics in the Cell Cycle. Life (Basel) 2023; 13:1890. [PMID: 37763294 PMCID: PMC10532879 DOI: 10.3390/life13091890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/29/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
The DnaA protein has long been considered to play the key role in the initiation of chromosome replication in modern bacteria. Many questions about this role, however, remain unanswered. Here, we raise these questions within a framework based on the dynamics of hyperstructures, alias large assemblies of molecules and macromolecules that perform a function. In these dynamics, hyperstructures can (1) emit and receive signals or (2) fuse and separate from one another. We ask whether the DnaA-based initiation hyperstructure acts as a logic gate receiving information from the membrane, the chromosome, and metabolism to trigger replication; we try to phrase some of these questions in terms of DNA supercoiling, strand opening, glycolytic enzymes, SeqA, ribonucleotide reductase, the macromolecular synthesis operon, post-translational modifications, and metabolic pools. Finally, we ask whether, underpinning the regulation of the cell cycle, there is a physico-chemical clock inherited from the first protocells, and whether this clock emits a single signal that triggers both chromosome replication and cell division.
Collapse
Affiliation(s)
- Masamichi Kohiyama
- Institut Jacques Monod, Université Paris Cité, CNRS, 75013 Paris, France;
| | - John Herrick
- Independent Researcher, 3 rue des Jeûneurs, 75002 Paris, France;
| | - Vic Norris
- CBSA UR 4312, University of Rouen Normandy, University of Caen Normandy, Normandy University, 76000 Rouen, France
| |
Collapse
|
7
|
Shen L, Gao L, Swoboda AR, Ouellette SP. Targeted repression of DNA topoisomerase I by CRISPRi reveals a critical function for it in the Chlamydia trachomatis developmental cycle. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.14.532001. [PMID: 36993624 PMCID: PMC10054935 DOI: 10.1101/2023.03.14.532001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Chlamydia trachomatis is an obligate intracellular bacterium that is responsible for the most prevalent bacterial sexually transmitted infections. Changes in DNA topology in this pathogen have been linked to its pathogenicity-associated developmental cycle. Here, evidence is provided that the balanced activity of DNA topoisomerases (Topos) contributes to Chlamydia developmental processes. Utilizing catalytically inactivated Cas12 (dCas12) based-clustered regularly interspaced short palindromic repeats interference (CRISPRi) technology, we demonstrate targeted knockdown of chromosomal topA transcription in C. trachomatis without detected toxicity of dCas12. Repression of topA impaired the growth of C. trachomatis mostly through disruption of its differentiation from a replicative form to an infectious form. Consistent with this, expression of late developmental genes of C. trachomatis was downregulated while early genes maintained their expression. Importantly, the growth defect associated with topA knockdown was rescued by overexpressing topA at an appropriate degree and time, directly linking the growth patterns to the levels of topA expression. Interestingly, topA knockdown had pleiotropic effects on DNA gyrase expression, indicating a potential compensatory mechanism for survival to offset TopA deficiency. C. trachomatis with topA knocked down displayed hypersensitivity to moxifloxacin that targets DNA gyrase in comparison with the wild type. These data underscore the requirement of integrated topoisomerase actions to support the essential development and transcriptional processes of C. trachomatis.
Collapse
Affiliation(s)
- Li Shen
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112
| | - Leiqiong Gao
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112
| | - Abigail R. Swoboda
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Scot P. Ouellette
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
8
|
Japaridze A, van Wee R, Gogou C, Kerssemakers JWJ, van den Berg DF, Dekker C. MukBEF-dependent chromosomal organization in widened Escherichia coli. Front Microbiol 2023; 14:1107093. [PMID: 36937278 PMCID: PMC10020239 DOI: 10.3389/fmicb.2023.1107093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/03/2023] [Indexed: 03/06/2023] Open
Abstract
The bacterial chromosome is spatially organized through protein-mediated compaction, supercoiling, and cell-boundary confinement. Structural Maintenance of Chromosomes (SMC) complexes are a major class of chromosome-organizing proteins present throughout all domains of life. Here, we study the role of the Escherichia coli SMC complex MukBEF in chromosome architecture and segregation. Using quantitative live-cell imaging of shape-manipulated cells, we show that MukBEF is crucial to preserve the toroidal topology of the Escherichia coli chromosome and that it is non-uniformly distributed along the chromosome: it prefers locations toward the origin and away from the terminus of replication, and it is unevenly distributed over the origin of replication along the two chromosome arms. Using an ATP hydrolysis-deficient MukB mutant, we confirm that MukBEF translocation along the chromosome is ATP-dependent, in contrast to its loading onto DNA. MukBEF and MatP are furthermore found to be essential for sister chromosome decatenation. We propose a model that explains how MukBEF, MatP, and their interacting partners organize the chromosome and contribute to sister segregation. The combination of bacterial cell-shape modification and quantitative fluorescence microscopy paves way to investigating chromosome-organization factors in vivo.
Collapse
|
9
|
Teufel M, Henkel W, Sobetzko P. The role of replication-induced chromosomal copy numbers in spatio-temporal gene regulation and evolutionary chromosome plasticity. Front Microbiol 2023; 14:1119878. [PMID: 37152747 PMCID: PMC10157177 DOI: 10.3389/fmicb.2023.1119878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/31/2023] [Indexed: 05/09/2023] Open
Abstract
For a coherent response to environmental changes, bacterial evolution has formed a complex transcriptional regulatory system comprising classical DNA binding proteins sigma factors and modulation of DNA topology. In this study, we investigate replication-induced gene copy numbers - a regulatory concept that is unlike the others not based on modulation of promoter activity but on replication dynamics. We show that a large fraction of genes are predominantly affected by transient copy numbers and identify cellular functions and central pathways governed by this mechanism in Escherichia coli. Furthermore, we show quantitatively that the previously observed spatio-temporal expression pattern between different growth phases mainly emerges from transient chromosomal copy numbers. We extend the analysis to the plant pathogen Dickeya dadantii and the biotechnologically relevant organism Vibrio natriegens. The analysis reveals a connection between growth phase dependent gene expression and evolutionary gene migration in these species. A further extension to the bacterial kingdom indicates that chromosome evolution is governed by growth rate related transient copy numbers.
Collapse
Affiliation(s)
- Marc Teufel
- Synthetic Microbiology Center Marburg (SYNMIKRO), Philipps Universität Marburg, Marburg, Germany
| | - Werner Henkel
- Transmission Systems Group, Jacobs University Bremen, Bremen, Germany
| | - Patrick Sobetzko
- Synthetic Microbiology Center Marburg (SYNMIKRO), Philipps Universität Marburg, Marburg, Germany
- DynAMic Department, Universitè de Lorraine, INRAE, Nancy, France
- *Correspondence: Patrick Sobetzko
| |
Collapse
|
10
|
Behle A, Dietsch M, Goldschmidt L, Murugathas W, Berwanger L, Burmester J, Yao L, Brandt D, Busche T, Kalinowski J, Hudson E, Ebenhöh O, Axmann I, Machné R. Manipulation of topoisomerase expression inhibits cell division but not growth and reveals a distinctive promoter structure in Synechocystis. Nucleic Acids Res 2022; 50:12790-12808. [PMID: 36533444 PMCID: PMC9825172 DOI: 10.1093/nar/gkac1132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/03/2022] [Accepted: 11/10/2022] [Indexed: 12/23/2022] Open
Abstract
In cyanobacteria DNA supercoiling varies over the diurnal cycle and is integrated with temporal programs of transcription and replication. We manipulated DNA supercoiling in Synechocystis sp. PCC 6803 by CRISPRi-based knockdown of gyrase subunits and overexpression of topoisomerase I (TopoI). Cell division was blocked but cell growth continued in all strains. The small endogenous plasmids were only transiently relaxed, then became strongly supercoiled in the TopoI overexpression strain. Transcript abundances showed a pronounced 5'/3' gradient along transcription units, incl. the rRNA genes, in the gyrase knockdown strains. These observations are consistent with the basic tenets of the homeostasis and twin-domain models of supercoiling in bacteria. TopoI induction initially led to downregulation of G+C-rich and upregulation of A+T-rich genes. The transcriptional response quickly bifurcated into six groups which overlap with diurnally co-expressed gene groups. Each group shows distinct deviations from a common core promoter structure, where helically phased A-tracts are in phase with the transcription start site. Together, our data show that major co-expression groups (regulons) in Synechocystis all respond differentially to DNA supercoiling, and suggest to re-evaluate the long-standing question of the role of A-tracts in bacterial promoters.
Collapse
Affiliation(s)
| | | | - Louis Goldschmidt
- Institut f. Quantitative u. Theoretische Biologie, Heinrich-Heine Universität Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Wandana Murugathas
- Institut f. Synthetische Mikrobiologie, Heinrich-Heine Universität Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Lutz C Berwanger
- Institut f. Synthetische Mikrobiologie, Heinrich-Heine Universität Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Jonas Burmester
- Institut f. Synthetische Mikrobiologie, Heinrich-Heine Universität Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Lun Yao
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Science for Life Laboratory, KTH – Royal Institute of Technology, Stockholm, Sweden
| | - David Brandt
- Centrum für Biotechnologie (CeBiTec), Universität Bielefeld, Universitätsstrasse 27, 33615 Bielefeld, Germany
| | - Tobias Busche
- Centrum für Biotechnologie (CeBiTec), Universität Bielefeld, Universitätsstrasse 27, 33615 Bielefeld, Germany
| | - Jörn Kalinowski
- Centrum für Biotechnologie (CeBiTec), Universität Bielefeld, Universitätsstrasse 27, 33615 Bielefeld, Germany
| | - Elton P Hudson
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Science for Life Laboratory, KTH – Royal Institute of Technology, Stockholm, Sweden
| | - Oliver Ebenhöh
- Institut f. Quantitative u. Theoretische Biologie, Heinrich-Heine Universität Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany,Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Ilka M Axmann
- Institut f. Synthetische Mikrobiologie, Heinrich-Heine Universität Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Rainer Machné
- To whom correspondence should be addressed. Tel: +49 211 81 12923;
| |
Collapse
|
11
|
Pineau M, Martis B. S, Forquet R, Baude J, Villard C, Grand L, Popowycz F, Soulère L, Hommais F, Nasser W, Reverchon S, Meyer S. What is a supercoiling-sensitive gene? Insights from topoisomerase I inhibition in the Gram-negative bacterium Dickeya dadantii. Nucleic Acids Res 2022; 50:9149-9161. [PMID: 35950487 PMCID: PMC9458453 DOI: 10.1093/nar/gkac679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/04/2022] [Accepted: 07/27/2022] [Indexed: 12/24/2022] Open
Abstract
DNA supercoiling is an essential mechanism of bacterial chromosome compaction, whose level is mainly regulated by topoisomerase I and DNA gyrase. Inhibiting either of these enzymes with antibiotics leads to global supercoiling modifications and subsequent changes in global gene expression. In previous studies, genes responding to DNA relaxation induced by DNA gyrase inhibition were categorised as 'supercoiling-sensitive'. Here, we studied the opposite variation of DNA supercoiling in the phytopathogen Dickeya dadantii using the non-marketed antibiotic seconeolitsine. We showed that the drug is active against topoisomerase I from this species, and analysed the first transcriptomic response of a Gram-negative bacterium to topoisomerase I inhibition. We find that the responding genes essentially differ from those observed after DNA relaxation, and further depend on the growth phase. We characterised these genes at the functional level, and also detected distinct patterns in terms of expression level, spatial and orientational organisation along the chromosome. Altogether, these results highlight that the supercoiling-sensitivity is a complex feature, which depends on the action of specific topoisomerases, on the physiological conditions, and on their genomic context. Based on previous in vitro expression data of several promoters, we propose a qualitative model of SC-dependent regulation that accounts for many of the contrasting transcriptomic features observed after DNA gyrase or topoisomerase I inhibition.
Collapse
Affiliation(s)
- Maïwenn Pineau
- Université de Lyon, INSA Lyon, Université Claude Bernard Lyon 1, CNRS UMR5240, Laboratoire de Microbiologie, Adaptation et Pathogénie, 69621 Villeurbanne, France
| | - Shiny Martis B.
- Université de Lyon, INSA Lyon, Université Claude Bernard Lyon 1, CNRS UMR5240, Laboratoire de Microbiologie, Adaptation et Pathogénie, 69621 Villeurbanne, France
| | - Raphaël Forquet
- Université de Lyon, INSA Lyon, Université Claude Bernard Lyon 1, CNRS UMR5240, Laboratoire de Microbiologie, Adaptation et Pathogénie, 69621 Villeurbanne, France
| | - Jessica Baude
- Université de Lyon, INSA Lyon, Université Claude Bernard Lyon 1, CNRS UMR5240, Laboratoire de Microbiologie, Adaptation et Pathogénie, 69621 Villeurbanne, France
| | - Camille Villard
- Université de Lyon, INSA Lyon, Université Claude Bernard Lyon 1, CNRS UMR5240, Laboratoire de Microbiologie, Adaptation et Pathogénie, 69621 Villeurbanne, France
| | - Lucie Grand
- Université de Lyon, INSA Lyon, Université Claude Bernard Lyon 1, CPE Lyon, CNRS UMR 5246, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, 69622 Villeurbanne, France
| | - Florence Popowycz
- Université de Lyon, INSA Lyon, Université Claude Bernard Lyon 1, CPE Lyon, CNRS UMR 5246, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, 69622 Villeurbanne, France
| | - Laurent Soulère
- Université de Lyon, INSA Lyon, Université Claude Bernard Lyon 1, CPE Lyon, CNRS UMR 5246, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, 69622 Villeurbanne, France
| | - Florence Hommais
- Université de Lyon, INSA Lyon, Université Claude Bernard Lyon 1, CNRS UMR5240, Laboratoire de Microbiologie, Adaptation et Pathogénie, 69621 Villeurbanne, France
| | - William Nasser
- Université de Lyon, INSA Lyon, Université Claude Bernard Lyon 1, CNRS UMR5240, Laboratoire de Microbiologie, Adaptation et Pathogénie, 69621 Villeurbanne, France
| | - Sylvie Reverchon
- Université de Lyon, INSA Lyon, Université Claude Bernard Lyon 1, CNRS UMR5240, Laboratoire de Microbiologie, Adaptation et Pathogénie, 69621 Villeurbanne, France
| | - Sam Meyer
- To whom correspondence should be addressed. Tel: +33 4 72 43 85 16;
| |
Collapse
|
12
|
Forquet R, Nasser W, Reverchon S, Meyer S. Quantitative contribution of the spacer length in the supercoiling-sensitivity of bacterial promoters. Nucleic Acids Res 2022; 50:7287-7297. [PMID: 35776118 PMCID: PMC9303308 DOI: 10.1093/nar/gkac579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 06/15/2022] [Accepted: 06/30/2022] [Indexed: 11/16/2022] Open
Abstract
DNA supercoiling acts as a global transcriptional regulator in bacteria, but the promoter sequence or structural determinants controlling its effect remain unclear. It was previously proposed to modulate the torsional angle between the -10 and -35 hexamers, and thereby regulate the formation of the closed-complex depending on the length of the 'spacer' between them. Here, we develop a thermodynamic model of this notion based on DNA elasticity, providing quantitative and parameter-free predictions of the relative activation of promoters containing a short versus long spacer when the DNA supercoiling level is varied. The model is tested through an analysis of in vitro and in vivo expression assays of mutant promoters with variable spacer lengths, confirming its accuracy for spacers ranging from 15 to 19 nucleotides, except those of 16 nucleotides where other regulatory mechanisms likely overcome the effect of this specific step. An analysis at the whole-genome scale in Escherichia coli then demonstrates a significant effect of the spacer length on the genomic expression after transient or inheritable superhelical variations, validating the model's predictions. Altogether, this study shows an example of mechanical constraints associated to promoter binding by RNA Polymerase underpinning a basal and global regulatory mechanism.
Collapse
Affiliation(s)
- Raphaël Forquet
- Université de Lyon, INSA Lyon, Université Claude Bernard Lyon 1, CNRS, UMR5240 MAP, F-69622, France
| | - William Nasser
- Université de Lyon, INSA Lyon, Université Claude Bernard Lyon 1, CNRS, UMR5240 MAP, F-69622, France
| | - Sylvie Reverchon
- Université de Lyon, INSA Lyon, Université Claude Bernard Lyon 1, CNRS, UMR5240 MAP, F-69622, France
| | - Sam Meyer
- Université de Lyon, INSA Lyon, Université Claude Bernard Lyon 1, CNRS, UMR5240 MAP, F-69622, France
| |
Collapse
|
13
|
Muskhelishvili G, Sobetzko P, Travers A. Spatiotemporal Coupling of DNA Supercoiling and Genomic Sequence Organization-A Timing Chain for the Bacterial Growth Cycle? Biomolecules 2022; 12:biom12060831. [PMID: 35740956 PMCID: PMC9221221 DOI: 10.3390/biom12060831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/08/2022] [Accepted: 06/08/2022] [Indexed: 01/25/2023] Open
Abstract
In this article we describe the bacterial growth cycle as a closed, self-reproducing, or autopoietic circuit, reestablishing the physiological state of stationary cells initially inoculated in the growth medium. In batch culture, this process of self-reproduction is associated with the gradual decline in available metabolic energy and corresponding change in the physiological state of the population as a function of "travelled distance" along the autopoietic path. We argue that this directional alteration of cell physiology is both reflected in and supported by sequential gene expression along the chromosomal OriC-Ter axis. We propose that during the E. coli growth cycle, the spatiotemporal order of gene expression is established by coupling the temporal gradient of supercoiling energy to the spatial gradient of DNA thermodynamic stability along the chromosomal OriC-Ter axis.
Collapse
Affiliation(s)
- Georgi Muskhelishvili
- School of Natural Sciences, Biology Program, Agricultural University of Georgia, 0159 Tbilisi, Georgia
- Correspondence:
| | - Patrick Sobetzko
- Synmikro, Loewe Center for Synthetic Microbiology, Philipps-Universität Marburg, 35043 Marburg, Germany;
| | - Andrew Travers
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK;
| |
Collapse
|
14
|
Relationship between the Chromosome Structural Dynamics and Gene Expression—A Chicken and Egg Dilemma? Microorganisms 2022; 10:microorganisms10050846. [PMID: 35630292 PMCID: PMC9144111 DOI: 10.3390/microorganisms10050846] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 04/14/2022] [Indexed: 02/06/2023] Open
Abstract
Prokaryotic transcription was extensively studied over the last half-century. A great deal of data has been accumulated regarding the control of gene expression by transcription factors regulating their target genes by binding at specific DNA sites. However, there is a significant gap between the mechanistic description of transcriptional control obtained from in vitro biochemical studies and the complexity of transcriptional regulation in the context of the living cell. Indeed, recent studies provide ample evidence for additional levels of complexity pertaining to the regulation of transcription in vivo, such as, for example, the role of the subcellular localization and spatial organization of different molecular components involved in the transcriptional control and, especially, the role of chromosome configurational dynamics. The question as to how the chromosome is dynamically reorganized under the changing environmental conditions and how this reorganization is related to gene expression is still far from being clear. In this article, we focus on the relationships between the chromosome structural dynamics and modulation of gene expression during bacterial adaptation. We argue that spatial organization of the bacterial chromosome is of central importance in the adaptation of gene expression to changing environmental conditions and vice versa, that gene expression affects chromosome dynamics.
Collapse
|
15
|
Tripathi S, Brahmachari S, Onuchic JN, Levine H. DNA supercoiling-mediated collective behavior of co-transcribing RNA polymerases. Nucleic Acids Res 2021; 50:1269-1279. [PMID: 34951454 PMCID: PMC8860607 DOI: 10.1093/nar/gkab1252] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 12/02/2021] [Accepted: 12/06/2021] [Indexed: 11/14/2022] Open
Abstract
Multiple RNA polymerases (RNAPs) transcribing a gene have been known to exhibit collective group behavior, causing the transcription elongation rate to increase with the rate of transcription initiation. Such behavior has long been believed to be driven by a physical interaction or ‘push’ between closely spaced RNAPs. However, recent studies have posited that RNAPs separated by longer distances may cooperate by modifying the DNA segment under transcription. Here, we present a theoretical model incorporating the mechanical coupling between RNAP translocation and the DNA torsional response. Using stochastic simulations, we demonstrate DNA supercoiling-mediated long-range cooperation between co-transcribing RNAPs. We find that inhibiting transcription initiation can slow down the already recruited RNAPs, in agreement with recent experimental observations, and predict that the average transcription elongation rate varies non-monotonically with the rate of transcription initiation. We further show that while RNAPs transcribing neighboring genes oriented in tandem can cooperate, those transcribing genes in divergent or convergent orientations can act antagonistically, and that such behavior holds over a large range of intergenic separations. Our model makes testable predictions, revealing how the mechanical interplay between RNAPs and the DNA they transcribe can govern transcriptional dynamics.
Collapse
Affiliation(s)
- Shubham Tripathi
- PhD Program in Systems, Synthetic, and Physical Biology, Rice University, Houston, TX, USA.,Center for Theoretical Biological Physics & Department of Physics, Northeastern University, Boston, MA, USA
| | | | - José N Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA.,Department of Physics and Astronomy, Department of Chemistry, & Department of Biosciences, Rice University, Houston, TX, USA
| | - Herbert Levine
- Center for Theoretical Biological Physics & Department of Physics, Northeastern University, Boston, MA, USA
| |
Collapse
|
16
|
The bacterial promoter spacer modulates promoter strength and timing by length, TG-motifs and DNA supercoiling sensitivity. Sci Rep 2021; 11:24399. [PMID: 34937877 PMCID: PMC8695583 DOI: 10.1038/s41598-021-03817-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 12/09/2021] [Indexed: 01/25/2023] Open
Abstract
Transcription, the first step to gene expression, is a central coordination process in all living matter. Besides a plethora of regulatory mechanisms, the promoter architecture sets the foundation of expression strength, timing and the potential for further regulatory modulation. In this study, we investigate the effects of promoter spacer length and sequence composition on strength and supercoiling sensitivity in bacteria. Combining transcriptomics data analysis and standardized synthetic promoter libraries, we exclude effects of specific promoter sequence contexts. Analysis of promoter activity shows a strong variance with spacer length and spacer sequence composition. A detailed study of the spacer sequence composition under selective conditions reveals an extension to the -10 region that enhances RNAP binding but damps promoter activity. Using physiological changes in DNA supercoiling levels, we link promoter supercoiling sensitivity to overall spacer GC-content. Time-resolved promoter activity screens, only possible with a novel mild treatment approach, reveal strong promoter timing potentials solely based on DNA supercoiling sensitivity in the absence of regulatory sites or alternative sigma factors.
Collapse
|
17
|
The economy of chromosomal distances in bacterial gene regulation. NPJ Syst Biol Appl 2021; 7:49. [PMID: 34911953 PMCID: PMC8674286 DOI: 10.1038/s41540-021-00209-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 11/12/2021] [Indexed: 12/04/2022] Open
Abstract
In the transcriptional regulatory network (TRN) of a bacterium, the nodes are genes and a directed edge represents the action of a transcription factor (TF), encoded by the source gene, on the target gene. It is a condensed representation of a large number of biological observations and facts. Nonrandom features of the network are structural evidence of requirements for a reliable systemic function. For the bacterium Escherichia coli we here investigate the (Euclidean) distances covered by the edges in the TRN when its nodes are embedded in the real space of the circular chromosome. Our work is motivated by 'wiring economy' research in Computational Neuroscience and starts from two contradictory hypotheses: (1) TFs are predominantly employed for long-distance regulation, while local regulation is exerted by chromosomal structure, locally coordinated by the action of structural proteins. Hence long distances should often occur. (2) A large distance between the regulator gene and its target requires a higher expression level of the regulator gene due to longer reaching times and ensuing increased degradation (proteolysis) of the TF and hence will be evolutionarily reduced. Our analysis supports the latter hypothesis.
Collapse
|
18
|
Forquet R, Pineau M, Nasser W, Reverchon S, Meyer S. Role of the Discriminator Sequence in the Supercoiling Sensitivity of Bacterial Promoters. mSystems 2021; 6:e0097821. [PMID: 34427530 PMCID: PMC8422995 DOI: 10.1128/msystems.00978-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 08/03/2021] [Indexed: 11/20/2022] Open
Abstract
DNA supercoiling acts as a global transcriptional regulator that contributes to the rapid transcriptional response of bacteria to many environmental changes. Although a large fraction of promoters from phylogenetically distant species respond to superhelical variations, the sequence or structural determinants of this behavior remain elusive. Here, we focus on the sequence of the "discriminator" element that was shown to modulate this response in several promoters. We develop a quantitative thermodynamic model of this regulatory effect, focusing on open complex formation during transcription initiation independently from promoter-specific regulatory proteins. We analyze previous and new expression data and show that the model predictions quantitatively match the in vitro and in vivo supercoiling response of selected promoters with mutated discriminator sequences. We then test the universality of this mechanism by a statistical analysis of promoter sequences from transcriptomes of phylogenetically distant bacteria under conditions of supercoiling variations (i) by gyrase inhibitors, (ii) by environmental stresses, or (iii) inherited in the longest-running evolution experiment. In all cases, we identify a robust and significant sequence signature in the discriminator region, suggesting that supercoiling-modulated promoter opening underpins a ubiquitous regulatory mechanism in the prokaryotic kingdom based on the fundamental mechanical properties of DNA and its basal interaction with RNA polymerase. IMPORTANCE In this study, we highlight the role of the discriminator as a global sensor of supercoiling variations and propose the first quantitative regulatory model of this principle, based on the specific step of promoter opening during transcription initiation. It defines the predictive rule by which DNA supercoiling quantitatively modulates the expression rate of bacterial promoters, depending on the G/C content of their discriminator and independently from promoter-specific regulatory proteins. This basal mechanism affects a wide range of species, which is tested by an extensive analysis of global high-throughput expression data. Altogether, ours results confirm and provide a quantitative framework for the long-proposed notion that the discriminator sequence is a significant determinant of promoter supercoiling sensitivity, underpinning the ubiquitous regulatory action of DNA supercoiling on the core transcriptional machinery, in particular in response to quick environmental changes.
Collapse
Affiliation(s)
- Raphaël Forquet
- Université de Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, CNRS, UMR5240, MAP, Lyon, France
| | - Maïwenn Pineau
- Université de Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, CNRS, UMR5240, MAP, Lyon, France
| | - William Nasser
- Université de Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, CNRS, UMR5240, MAP, Lyon, France
| | - Sylvie Reverchon
- Université de Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, CNRS, UMR5240, MAP, Lyon, France
| | - Sam Meyer
- Université de Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, CNRS, UMR5240, MAP, Lyon, France
| |
Collapse
|
19
|
Targeting Bacterial Gyrase with Cystobactamid, Fluoroquinolone, and Aminocoumarin Antibiotics Induces Distinct Molecular Signatures in Pseudomonas aeruginosa. mSystems 2021; 6:e0061021. [PMID: 34254824 PMCID: PMC8407119 DOI: 10.1128/msystems.00610-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The design of novel antibiotics relies on a profound understanding of their mechanism of action. While it has been shown that cellular effects of antibiotics cluster according to their molecular targets, we investigated whether compounds binding to different sites of the same target can be differentiated by their transcriptome or metabolome signatures. The effects of three fluoroquinolones, two aminocoumarins, and two cystobactamids, all inhibiting bacterial gyrase, on Pseudomonas aeruginosa at subinhibitory concentrations could be distinguished clearly by RNA sequencing as well as metabolomics. We observed a strong (2.8- to 212-fold) induction of autolysis-triggering pyocins in all gyrase inhibitors, which correlated with extracellular DNA (eDNA) release. Gyrase B-binding aminocoumarins induced the most pronounced changes, including a strong downregulation of phenazine and rhamnolipid virulence factors. Cystobactamids led to a downregulation of a glucose catabolism pathway. The study implies that clustering cellular mechanisms of action according to the primary target needs to take class-dependent variances into account. IMPORTANCE Novel antibiotics are urgently needed to tackle the growing worldwide problem of antimicrobial resistance. Bacterial pathogens possess few privileged targets for a successful therapy: the majority of existing antibiotics as well as current candidates in development target the complex bacterial machinery for cell wall synthesis, protein synthesis, or DNA replication. An important mechanistic question addressed by this study is whether inhibiting such a complex target at different sites with different compounds has similar or differentiated cellular consequences. Using transcriptomics and metabolomics, we demonstrate that three different classes of gyrase inhibitors can be distinguished by their molecular signatures in P. aeruginosa. We describe the cellular effects of a promising, recently identified gyrase inhibitor class, the cystobactamids, in comparison to those of the established gyrase A-binding fluoroquinolones and the gyrase B-binding aminocoumarins. The study results have implications for mode-of-action discovery approaches based on target-specific reference compounds, as they highlight the intraclass variability of cellular compound effects.
Collapse
|
20
|
Muskhelishvili G, Sobetzko P, Mehandziska S, Travers A. Composition of Transcription Machinery and Its Crosstalk with Nucleoid-Associated Proteins and Global Transcription Factors. Biomolecules 2021; 11:biom11070924. [PMID: 34206477 PMCID: PMC8301835 DOI: 10.3390/biom11070924] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 11/24/2022] Open
Abstract
The coordination of bacterial genomic transcription involves an intricate network of interdependent genes encoding nucleoid-associated proteins (NAPs), DNA topoisomerases, RNA polymerase subunits and modulators of transcription machinery. The central element of this homeostatic regulatory system, integrating the information on cellular physiological state and producing a corresponding transcriptional response, is the multi-subunit RNA polymerase (RNAP) holoenzyme. In this review article, we argue that recent observations revealing DNA topoisomerases and metabolic enzymes associated with RNAP supramolecular complex support the notion of structural coupling between transcription machinery, DNA topology and cellular metabolism as a fundamental device coordinating the spatiotemporal genomic transcription. We analyse the impacts of various combinations of RNAP holoenzymes and global transcriptional regulators such as abundant NAPs, on genomic transcription from this viewpoint, monitoring the spatiotemporal patterns of couplons—overlapping subsets of the regulons of NAPs and RNAP sigma factors. We show that the temporal expression of regulons is by and large, correlated with that of cognate regulatory genes, whereas both the spatial organization and temporal expression of couplons is distinctly impacted by the regulons of NAPs and sigma factors. We propose that the coordination of the growth phase-dependent concentration gradients of global regulators with chromosome configurational dynamics determines the spatiotemporal patterns of genomic expression.
Collapse
Affiliation(s)
- Georgi Muskhelishvili
- School of Natural Sciences, Agricultural University of Georgia, David Aghmashenebeli Alley 24, Tbilisi 0159, Georgia
- Correspondence:
| | - Patrick Sobetzko
- Department of Chromosome Biology, Philipps-Universität Marburg, LOEWE-Zentrum für Synthetische Mikrobiologie, Hans-Meerwein-Straße, 35043 Marburg, Germany;
| | - Sanja Mehandziska
- School of Engineering and Science, Campus Ring 1, Jacobs University Bremen, 28759 Bremen, Germany;
| | - Andrew Travers
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK;
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK
| |
Collapse
|
21
|
Japaridze A, Yang W, Dekker C, Nasser W, Muskhelishvili G. DNA sequence-directed cooperation between nucleoid-associated proteins. iScience 2021; 24:102408. [PMID: 33997690 PMCID: PMC8099737 DOI: 10.1016/j.isci.2021.102408] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/05/2021] [Accepted: 04/06/2021] [Indexed: 02/01/2023] Open
Abstract
Nucleoid-associated proteins (NAPs) are a class of highly abundant DNA-binding proteins in bacteria and archaea. While both the composition and relative abundance of the NAPs change during the bacterial growth cycle, surprisingly little is known about their crosstalk in mutually binding and stabilizing higher-order nucleoprotein complexes in the bacterial chromosome. Here, we use atomic force microscopy and solid-state nanopores to investigate long-range nucleoprotein structures formed by the binding of two major NAPs, FIS and H-NS, to DNA molecules with distinct binding site arrangements. We find that spatial organization of the protein binding sites can govern the higher-order architecture of the nucleoprotein complexes. Based on sequence arrangement the complexes differed in their global shape and compaction as well as the extent of FIS and H-NS binding. Our observations highlight the important role the DNA sequence plays in driving structural differentiation within the bacterial chromosome. The location of protein binding sites along DNA is important for 3D organization FIS protein forms DNA loops while H-NS forms compact DNA plectonemes FIS DNA loops inhibit H-NS from spreading over the DNA FIS and H-NS competition creates regions of ‘open’ and ‘closed’ DNA
Collapse
Affiliation(s)
- Aleksandre Japaridze
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Wayne Yang
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Cees Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - William Nasser
- Université de Lyon, INSA Lyon, Université Claude Bernard Lyon 1, CNRS UMR5240, Laboratoire de Microbiologie, Adaptation et Pathogénie, 69621 Villeurbanne, France
| | - Georgi Muskhelishvili
- School of Natural Sciences, Agricultural University of Georgia, Davit Aghmashenebeli Alley 240, 0159 Tbilisi, Georgia
| |
Collapse
|
22
|
Reverchon S, Meyer S, Forquet R, Hommais F, Muskhelishvili G, Nasser W. The nucleoid-associated protein IHF acts as a 'transcriptional domainin' protein coordinating the bacterial virulence traits with global transcription. Nucleic Acids Res 2021; 49:776-790. [PMID: 33337488 PMCID: PMC7826290 DOI: 10.1093/nar/gkaa1227] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 11/30/2020] [Accepted: 12/07/2020] [Indexed: 02/04/2023] Open
Abstract
Bacterial pathogenic growth requires a swift coordination of pathogenicity function with various kinds of environmental stress encountered in the course of host infection. Among the factors critical for bacterial adaptation are changes of DNA topology and binding effects of nucleoid-associated proteins transducing the environmental signals to the chromosome and coordinating the global transcriptional response to stress. In this study, we use the model phytopathogen Dickeya dadantii to analyse the organisation of transcription by the nucleoid-associated heterodimeric protein IHF. We inactivated the IHFα subunit of IHF thus precluding the IHFαβ heterodimer formation and determined both phenotypic effects of ihfA mutation on D. dadantii virulence and the transcriptional response under various conditions of growth. We show that ihfA mutation reorganises the genomic expression by modulating the distribution of chromosomal DNA supercoils at different length scales, thus affecting many virulence genes involved in both symptomatic and asymptomatic phases of infection, including those required for pectin catabolism. Altogether, we propose that IHF heterodimer is a 'transcriptional domainin' protein, the lack of which impairs the spatiotemporal organisation of transcriptional stress-response domains harbouring various virulence traits, thus abrogating the pathogenicity of D. dadantii.
Collapse
Affiliation(s)
- Sylvie Reverchon
- Univ Lyon, Université Claude Bernard Lyon 1, INSA-Lyon, CNRS, UMR5240 MAP, F-69622, France
| | - Sam Meyer
- Univ Lyon, Université Claude Bernard Lyon 1, INSA-Lyon, CNRS, UMR5240 MAP, F-69622, France
| | - Raphaël Forquet
- Univ Lyon, Université Claude Bernard Lyon 1, INSA-Lyon, CNRS, UMR5240 MAP, F-69622, France
| | - Florence Hommais
- Univ Lyon, Université Claude Bernard Lyon 1, INSA-Lyon, CNRS, UMR5240 MAP, F-69622, France
| | - Georgi Muskhelishvili
- Agricultural University of Georgia, School of Natural Sciences, 0159 Tbilisi, Georgia
| | - William Nasser
- Univ Lyon, Université Claude Bernard Lyon 1, INSA-Lyon, CNRS, UMR5240 MAP, F-69622, France
| |
Collapse
|
23
|
Sutormin DA, Galivondzhyan AK, Polkhovskiy AV, Kamalyan SO, Severinov KV, Dubiley SA. Diversity and Functions of Type II Topoisomerases. Acta Naturae 2021; 13:59-75. [PMID: 33959387 PMCID: PMC8084294 DOI: 10.32607/actanaturae.11058] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/09/2020] [Indexed: 11/29/2022] Open
Abstract
The DNA double helix provides a simple and elegant way to store and copy genetic information. However, the processes requiring the DNA helix strands separation, such as transcription and replication, induce a topological side-effect - supercoiling of the molecule. Topoisomerases comprise a specific group of enzymes that disentangle the topological challenges associated with DNA supercoiling. They relax DNA supercoils and resolve catenanes and knots. Here, we review the catalytic cycles, evolution, diversity, and functional roles of type II topoisomerases in organisms from all domains of life, as well as viruses and other mobile genetic elements.
Collapse
Affiliation(s)
- D. A. Sutormin
- Institute of Gene Biology RAS, Moscow, 119334 Russia
- Centre for Life Sciences, Skolkovo Institute of Science and Technology, Moscow, 121205 Russia
| | - A. K. Galivondzhyan
- Lomonosov Moscow State University, Moscow, 119991 Russia
- Institute of Molecular Genetics RAS, Moscow, 123182 Russia
| | - A. V. Polkhovskiy
- Institute of Gene Biology RAS, Moscow, 119334 Russia
- Centre for Life Sciences, Skolkovo Institute of Science and Technology, Moscow, 121205 Russia
| | - S. O. Kamalyan
- Institute of Gene Biology RAS, Moscow, 119334 Russia
- Centre for Life Sciences, Skolkovo Institute of Science and Technology, Moscow, 121205 Russia
| | - K. V. Severinov
- Centre for Life Sciences, Skolkovo Institute of Science and Technology, Moscow, 121205 Russia
- Centre for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology RAS, Moscow, 119334 Russia
- Waksman Institute for Microbiology, Piscataway, New Jersey, 08854 USA
| | - S. A. Dubiley
- Institute of Gene Biology RAS, Moscow, 119334 Russia
- Centre for Life Sciences, Skolkovo Institute of Science and Technology, Moscow, 121205 Russia
| |
Collapse
|
24
|
Mejía-Almonte C, Busby SJW, Wade JT, van Helden J, Arkin AP, Stormo GD, Eilbeck K, Palsson BO, Galagan JE, Collado-Vides J. Redefining fundamental concepts of transcription initiation in bacteria. Nat Rev Genet 2020; 21:699-714. [PMID: 32665585 PMCID: PMC7990032 DOI: 10.1038/s41576-020-0254-8] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2020] [Indexed: 12/15/2022]
Abstract
Despite enormous progress in understanding the fundamentals of bacterial gene regulation, our knowledge remains limited when compared with the number of bacterial genomes and regulatory systems to be discovered. Derived from a small number of initial studies, classic definitions for concepts of gene regulation have evolved as the number of characterized promoters has increased. Together with discoveries made using new technologies, this knowledge has led to revised generalizations and principles. In this Expert Recommendation, we suggest precise, updated definitions that support a logical, consistent conceptual framework of bacterial gene regulation, focusing on transcription initiation. The resulting concepts can be formalized by ontologies for computational modelling, laying the foundation for improved bioinformatics tools, knowledge-based resources and scientific communication. Thus, this work will help researchers construct better predictive models, with different formalisms, that will be useful in engineering, synthetic biology, microbiology and genetics.
Collapse
Affiliation(s)
- Citlalli Mejía-Almonte
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Morelos, Cuernavaca, México
| | | | - Joseph T Wade
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Jacques van Helden
- Aix-Marseille University, INSERM UMR S 1090, Theory and Approaches of Genome Complexity (TAGC), Marseille, France
- CNRS, Institut Français de Bioinformatique, IFB-core, UMS 3601, Evry, France
| | - Adam P Arkin
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
| | - Gary D Stormo
- Department of Genetics, Washington University School of Medicine, St Louis, MO, USA
| | - Karen Eilbeck
- Department of Biomedical Informatics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Bernhard O Palsson
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - James E Galagan
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Julio Collado-Vides
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Morelos, Cuernavaca, México.
- Department of Biomedical Engineering, Boston University, Boston, MA, USA.
| |
Collapse
|
25
|
Network Rewiring: Physiological Consequences of Reciprocally Exchanging the Physical Locations and Growth-Phase-Dependent Expression Patterns of the Salmonella fis and dps Genes. mBio 2020; 11:mBio.02128-20. [PMID: 32900812 PMCID: PMC7482072 DOI: 10.1128/mbio.02128-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We assessed the impact on Salmonella physiology of reciprocally translocating the genes encoding the Fis and Dps nucleoid-associated proteins (NAPs) and of inverting their growth-phase production patterns such that Fis was produced in stationary phase (like Dps) and Dps was produced in exponential phase (like Fis). Changes to peak binding of Fis were detected by ChIP-seq on the chromosome, as were widespread impacts on the transcriptome, especially when Fis production mimicked Dps production. Virulence gene expression and the expression of a virulence phenotype were altered. Overall, these radical changes to NAP gene expression were well tolerated, revealing the robust and well-buffered nature of global gene regulation networks in the bacterium. The Fis nucleoid-associated protein controls the expression of a large and diverse regulon of genes in Gram-negative bacteria. Fis production is normally maximal in bacteria during the early exponential phase of batch culture growth, becoming almost undetectable by the onset of stationary phase. We tested the effect on the Fis regulatory network in Salmonella of moving the complete fis gene from its usual location near the origin of chromosomal replication to the position normally occupied by the dps gene in the right macrodomain of the chromosome, and vice versa, creating the gene exchange (GX) strain. In a parallel experiment, we tested the effect of rewiring the Fis regulatory network by placing the fis open reading frame under the control of the stationary-phase-activated dps promoter at the dps genetic location within the right macrodomain, and vice versa, creating the open reading frame exchange (OX) strain. Chromatin immunoprecipitation sequencing (ChIP-seq) was used to measure global Fis protein binding levels and to determine gene expression patterns. Strain GX showed few changes compared with the wild type, although we did detect increased Fis binding at Ter, accompanied by reduced binding at Ori. Strain OX displayed a more pronounced version of this distorted Fis protein-binding pattern together with numerous alterations in the expression of genes in the Fis regulon. OX, but not GX, had a reduced ability to infect cultured mammalian cells. These findings illustrate the inherent robustness of the Fis regulatory network with respect to the effects of rewiring based on gene repositioning alone and emphasize the importance of fis expression signals in phenotypic determination.
Collapse
|
26
|
Krogh TJ, Franke A, Møller-Jensen J, Kaleta C. Elucidating the Influence of Chromosomal Architecture on Transcriptional Regulation in Prokaryotes - Observing Strong Local Effects of Nucleoid Structure on Gene Regulation. Front Microbiol 2020; 11:2002. [PMID: 32983020 PMCID: PMC7491251 DOI: 10.3389/fmicb.2020.02002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/29/2020] [Indexed: 11/13/2022] Open
Abstract
Both intrinsic and extrinsic mechanisms regulating bacterial expression have been elucidated and described, however, such studies have mainly focused on local effects on the two-dimensional structure of the prokaryote genome while long-range as well as spatial interactions influencing gene expression are still only poorly understood. In this paper, we investigate the association between co-expression and distance between genes, using RNA-seq data at multiple growth phases in order to illuminate whether such conserved patterns are an indication of a gene regulatory mechanism relevant for prokaryotic cell proliferation, adaption, and evolution. We observe recurrent sinusoidal patterns in correlation of pairwise expression as function of genomic distance and rule out that these are caused by transcription-induced supercoiling gradients, gene clustering in operons, or association with regulatory transcription factors (TFs). By comparing spatial proximity for pairs of genomic bins with their correlation of pairwise expression, we further observe a high co-expression proportional with the spatial proximity. Based on these observations, we propose that the observed patterns are related to nucleoid structure as a product of transcriptional spilling, where genes actively influence transcription of spatially proximal genes through increases within shared local pools of RNA polymerases (RNAP), and actively spilling transcription onto neighboring genes.
Collapse
Affiliation(s)
- Thøger Jensen Krogh
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Andre Franke
- Institute of Clinical Molecular Biology (IKMB), Christian-Albrechts-University Kiel, Kiel, Germany
| | - Jakob Møller-Jensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Christoph Kaleta
- Institute of Experimental Medicine, Christian-Albrechts-University Kiel, Kiel, Germany
| |
Collapse
|
27
|
Abstract
For bacteria, maintaining higher internal solute concentrations than those present in the environment allows cells to take up water. As a result, survival is challenging in high-osmolarity environments. To investigate how bacteria adapt to high-osmolarity environments, we maintained Escherichia coli in a variety of high-osmolarity solutions for hundreds of generations. We found that the evolved populations adopted different strategies to improve their growth rates depending on the osmotic passaging condition, either generally adapting to high-osmolarity conditions or better metabolizing the osmolyte as a carbon source. Single-cell imaging demonstrated that enhanced fitness was coupled to faster growth, and metagenomic sequencing revealed mutations that reflected growth trade-offs across osmolarities. Our study demonstrated the utility of long-term evolution experiments for probing adaptation occurring during environmental stress. Bacteria must maintain a cytosolic osmolarity higher than that of their environment in order to take up water. High-osmolarity environments therefore present formidable stress to bacteria. To explore the evolutionary mechanisms by which bacteria adapt to high-osmolarity environments, we selected Escherichia coli in media with a variety of osmolytes and concentrations for 250 generations. Adaptation was osmolyte dependent, with sorbitol stress generally resulting in increased fitness under conditions with higher osmolarity, while selection in high concentrations of proline resulted in increased fitness specifically on proline. Consistent with these phenotypes, sequencing of the evolved populations showed that passaging in proline resulted in specific mutations in an associated metabolic pathway that increased the ability to utilize proline for growth, while evolution in sorbitol resulted in mutations in many different genes that generally resulted in improved growth under high-osmolarity conditions at the expense of growth at low osmolarity. High osmolarity decreased the growth rate but increased the mean cell volume compared with growth on proline as the sole carbon source, demonstrating that osmolarity-induced changes in growth rate and cell size follow an orthogonal relationship from the classical Growth Law relating cell size and nutrient quality. Isolates from a sorbitol-evolved population that captured the likely temporal sequence of mutations revealed by metagenomic sequencing demonstrated a trade-off between growth at high osmolarity and growth at low osmolarity. Our report highlights the utility of experimental evolution for dissecting complex cellular networks and environmental interactions, particularly in the case of behaviors that can involve both specific and general metabolic stressors.
Collapse
|
28
|
Yousuf M, Iuliani I, Veetil RT, Seshasayee A, Sclavi B, Cosentino Lagomarsino M. Early fate of exogenous promoters in E. coli. Nucleic Acids Res 2020; 48:2348-2356. [PMID: 31960057 PMCID: PMC7049719 DOI: 10.1093/nar/gkz1196] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/05/2019] [Accepted: 12/20/2019] [Indexed: 01/12/2023] Open
Abstract
Gene gain by horizontal gene transfer is a major pathway of genome innovation in bacteria. The current view posits that acquired genes initially need to be silenced and that a bacterial chromatin protein, H-NS, plays a role in this silencing. However, we lack direct observation of the early fate of a horizontally transferred gene to prove this theory. We combine sequencing, flow cytometry and sorting, followed by microscopy to monitor gene expression and its variability after large-scale random insertions of a reporter gene in a population of Escherichia coli bacteria. We find that inserted promoters have a wide range of gene-expression variability related to their location. We find that high-expression clones carry insertions that are not correlated with H-NS binding. Conversely, binding of H-NS correlates with silencing. Finally, while most promoters show a common level of extrinsic noise, some insertions show higher noise levels. Analysis of these high-noise clones supports a scenario of switching due to transcriptional interference from divergent ribosomal promoters. Altogether, our findings point to evolutionary pathways where newly-acquired genes are not necessarily silenced, but may immediately explore a wide range of expression levels to probe the optimal ones.
Collapse
Affiliation(s)
- Malikmohamed Yousuf
- LBPA, UMR 8113, CNRS, ENS Paris-Saclay, 61 Avenue du President Wilson, 94235 Cachan, France
- Current Affiliation: Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Ilaria Iuliani
- LBPA, UMR 8113, CNRS, ENS Paris-Saclay, 61 Avenue du President Wilson, 94235 Cachan, France
- Current Affiliation: LCQB, UMR 7238, Sorbonne Université, 4 Place Jussieu, 75005 Paris, France
| | - Reshma T Veetil
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, Karnataka, India
- School of Life science, The University of Trans-Disciplinary Health Sciences and Technology (TDU), Bengaluru 560064, Karnataka, India
| | - Aswin Sai Narain Seshasayee
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, Karnataka, India
| | - Bianca Sclavi
- LBPA, UMR 8113, CNRS, ENS Paris-Saclay, 61 Avenue du President Wilson, 94235 Cachan, France
- Current Affiliation: LCQB, UMR 7238, Sorbonne Université, 4 Place Jussieu, 75005 Paris, France
| | - Marco Cosentino Lagomarsino
- Sorbonne Université, Campus Pierre and Marie Curie, 4 Place Jussieu, 75005 Paris, France
- CNRS, UMR7238, 4 Place Jussieu, 75005 Paris, France
- Current Affiliation: IFOM, FIRC Institute of Molecular Oncology, Via Adamello 16, 20143 Milan, Italy
- Current Affiliation: Physics Department, University of Milan, and I.N.F.N., Via Celoria 16, 20133 Milan, Italy
| |
Collapse
|
29
|
Dissecting the in vivo dynamics of transcription locking due to positive supercoiling buildup. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194515. [PMID: 32113983 DOI: 10.1016/j.bbagrm.2020.194515] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 02/07/2020] [Accepted: 02/20/2020] [Indexed: 01/04/2023]
Abstract
Positive supercoiling buildup (PSB) is a pervasive phenomenon in the transcriptional programs of Escherichia coli. After finding a range of Gyrase concentrations where the inverse of the transcription rate of a chromosome-integrated gene changes linearly with the inverse of Gyrase concentration, we apply a LineWeaver-Burk plot to dissect the expected in vivo transcription rate in absence of PSB. We validate the estimation by time-lapse microscopy of single-RNA production kinetics of the same gene when single-copy plasmid-borne, shown to be impervious to Gyrase inhibition. Next, we estimate the fraction of time in locked states and number of transcription events prior to locking, which we validate by measurements under Gyrase inhibition. Replacing the gene of interest by one with slower transcription rate decreases the fraction of time in locked states due to PSB. Finally, we combine data from both constructs to infer a range of possible transcription initiation locking kinetics in a chromosomal location, obtainable by tuning the transcription rate. We validate with measurements of transcription activity at different induction levels. This strategy for dissecting transcription initiation locking kinetics due to PSB can contribute to resolve the transcriptional programs of E. coli and in the engineering of synthetic genetic circuits.
Collapse
|
30
|
Travers A, Muskhelishvili G. Chromosomal Organization and Regulation of Genetic Function in Escherichia coli Integrates the DNA Analog and Digital Information. EcoSal Plus 2020; 9:10.1128/ecosalplus.ESP-0016-2019. [PMID: 32056535 PMCID: PMC11168577 DOI: 10.1128/ecosalplus.esp-0016-2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Indexed: 12/22/2022]
Abstract
In this article, we summarize our current understanding of the bacterial genetic regulation brought about by decades of studies using the Escherichia coli model. It became increasingly evident that the cellular genetic regulation system is organizationally closed, and a major challenge is to describe its circular operation in quantitative terms. We argue that integration of the DNA analog information (i.e., the probability distribution of the thermodynamic stability of base steps) and digital information (i.e., the probability distribution of unique triplets) in the genome provides a key to understanding the organizational logic of genetic control. During bacterial growth and adaptation, this integration is mediated by changes of DNA supercoiling contingent on environmentally induced shifts in intracellular ionic strength and energy charge. More specifically, coupling of dynamic alterations of the local intrinsic helical repeat in the structurally heterogeneous DNA polymer with structural-compositional changes of RNA polymerase holoenzyme emerges as a fundamental organizational principle of the genetic regulation system. We present a model of genetic regulation integrating the genomic pattern of DNA thermodynamic stability with the gene order and function along the chromosomal OriC-Ter axis, which acts as a principal coordinate system organizing the regulatory interactions in the genome.
Collapse
Affiliation(s)
- Andrew Travers
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | | |
Collapse
|
31
|
Muskhelishvili G, Forquet R, Reverchon S, Meyer S, Nasser W. Coherent Domains of Transcription Coordinate Gene Expression During Bacterial Growth and Adaptation. Microorganisms 2019; 7:microorganisms7120694. [PMID: 31847191 PMCID: PMC6956064 DOI: 10.3390/microorganisms7120694] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/28/2019] [Accepted: 12/09/2019] [Indexed: 01/07/2023] Open
Abstract
Recent studies strongly suggest that in bacteria, both the genomic pattern of DNA thermodynamic stability and the order of genes along the chromosomal origin-to-terminus axis are highly conserved and that this spatial organization plays a crucial role in coordinating genomic transcription. In this article, we explore the relationship between genomic sequence organization and transcription in the commensal bacterium Escherichia coli and the plant pathogen Dickeya. We argue that, while in E. coli the gradient of DNA thermodynamic stability and gene order along the origin-to-terminus axis represent major organizational features orchestrating temporal gene expression, the genomic sequence organization of Dickeya is more complex, demonstrating extended chromosomal domains of thermodynamically distinct DNA sequences eliciting specific transcriptional responses to various kinds of stress encountered during pathogenic growth. This feature of the Dickeya genome is likely an adaptation to the pathogenic lifestyle utilizing differences in genomic sequence organization for the selective expression of virulence traits. We propose that the coupling of DNA thermodynamic stability and genetic function provides a common organizational principle for the coordinated expression of genes during both normal and pathogenic bacterial growth.
Collapse
Affiliation(s)
| | - Raphaël Forquet
- INSA-Lyon, CNRS, UMR5240, Microbiologie, Adaptation, Pathogénie, Univ. Lyon, Université Lyon 1, F-69622 Villeurbanne, France; (R.F.); (S.R.); (S.M.)
| | - Sylvie Reverchon
- INSA-Lyon, CNRS, UMR5240, Microbiologie, Adaptation, Pathogénie, Univ. Lyon, Université Lyon 1, F-69622 Villeurbanne, France; (R.F.); (S.R.); (S.M.)
| | - Sam Meyer
- INSA-Lyon, CNRS, UMR5240, Microbiologie, Adaptation, Pathogénie, Univ. Lyon, Université Lyon 1, F-69622 Villeurbanne, France; (R.F.); (S.R.); (S.M.)
| | - William Nasser
- INSA-Lyon, CNRS, UMR5240, Microbiologie, Adaptation, Pathogénie, Univ. Lyon, Université Lyon 1, F-69622 Villeurbanne, France; (R.F.); (S.R.); (S.M.)
- Correspondence:
| |
Collapse
|
32
|
Qin L, Erkelens AM, Ben Bdira F, Dame RT. The architects of bacterial DNA bridges: a structurally and functionally conserved family of proteins. Open Biol 2019; 9:190223. [PMID: 31795918 PMCID: PMC6936261 DOI: 10.1098/rsob.190223] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 11/08/2019] [Indexed: 12/15/2022] Open
Abstract
Every organism across the tree of life compacts and organizes its genome with architectural chromatin proteins. While eukaryotes and archaea express histone proteins, the organization of bacterial chromosomes is dependent on nucleoid-associated proteins. In Escherichia coli and other proteobacteria, the histone-like nucleoid structuring protein (H-NS) acts as a global genome organizer and gene regulator. Functional analogues of H-NS have been found in other bacterial species: MvaT in Pseudomonas species, Lsr2 in actinomycetes and Rok in Bacillus species. These proteins complement hns- phenotypes and have similar DNA-binding properties, despite their lack of sequence homology. In this review, we focus on the structural and functional characteristics of these four architectural proteins. They are able to bridge DNA duplexes, which is key to genome compaction, gene regulation and their response to changing conditions in the environment. Structurally the domain organization and charge distribution of these proteins are conserved, which we suggest is at the basis of their conserved environment responsive behaviour. These observations could be used to find and validate new members of this protein family and to predict their response to environmental changes.
Collapse
Affiliation(s)
- L. Qin
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
| | - A. M. Erkelens
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
| | - F. Ben Bdira
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
| | - R. T. Dame
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
| |
Collapse
|
33
|
Martis B S, Forquet R, Reverchon S, Nasser W, Meyer S. DNA Supercoiling: an Ancestral Regulator of Gene Expression in Pathogenic Bacteria? Comput Struct Biotechnol J 2019; 17:1047-1055. [PMID: 31452857 PMCID: PMC6700405 DOI: 10.1016/j.csbj.2019.07.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/17/2019] [Accepted: 07/24/2019] [Indexed: 12/28/2022] Open
Abstract
DNA supercoiling acts as a global and ancestral regulator of bacterial gene expression. In this review, we advocate that it plays a pivotal role in host-pathogen interactions by transducing environmental signals to the bacterial chromosome and coordinating its transcriptional response. We present available evidence that DNA supercoiling is modulated by environmental stress conditions relevant to the infection process according to ancestral mechanisms, in zoopathogens as well as phytopathogens. We review the results of transcriptomics studies obtained in widely distant bacterial species, showing that such structural transitions of the chromosome are associated to a complex transcriptional response affecting a large fraction of the genome. Mechanisms and computational models of the transcriptional regulation by DNA supercoiling are then discussed, involving both basal interactions of RNA Polymerase with promoter DNA, and more specific interactions with regulatory proteins. A final part is specifically focused on the regulation of virulence genes within pathogenicity islands of several pathogenic bacterial species.
Collapse
Affiliation(s)
- Shiny Martis B
- Université de Lyon, INSA Lyon, Université Claude Bernard Lyon 1, CNRS UMR5240, Laboratoire de Microbiologie, Adaptation et Pathogénie, 11 avenue Jean Capelle, 69621 Villeurbanne, France
| | - Raphaël Forquet
- Université de Lyon, INSA Lyon, Université Claude Bernard Lyon 1, CNRS UMR5240, Laboratoire de Microbiologie, Adaptation et Pathogénie, 11 avenue Jean Capelle, 69621 Villeurbanne, France
| | - Sylvie Reverchon
- Université de Lyon, INSA Lyon, Université Claude Bernard Lyon 1, CNRS UMR5240, Laboratoire de Microbiologie, Adaptation et Pathogénie, 11 avenue Jean Capelle, 69621 Villeurbanne, France
| | - William Nasser
- Université de Lyon, INSA Lyon, Université Claude Bernard Lyon 1, CNRS UMR5240, Laboratoire de Microbiologie, Adaptation et Pathogénie, 11 avenue Jean Capelle, 69621 Villeurbanne, France
| | - Sam Meyer
- Université de Lyon, INSA Lyon, Université Claude Bernard Lyon 1, CNRS UMR5240, Laboratoire de Microbiologie, Adaptation et Pathogénie, 11 avenue Jean Capelle, 69621 Villeurbanne, France
| |
Collapse
|
34
|
Talbert PB, Meers MP, Henikoff S. Old cogs, new tricks: the evolution of gene expression in a chromatin context. Nat Rev Genet 2019; 20:283-297. [PMID: 30886348 DOI: 10.1038/s41576-019-0105-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Sophisticated gene-regulatory mechanisms probably evolved in prokaryotes billions of years before the emergence of modern eukaryotes, which inherited the same basic enzymatic machineries. However, the epigenomic landscapes of eukaryotes are dominated by nucleosomes, which have acquired roles in genome packaging, mitotic condensation and silencing parasitic genomic elements. Although the molecular mechanisms by which nucleosomes are displaced and modified have been described, just how transcription factors, histone variants and modifications and chromatin regulators act on nucleosomes to regulate transcription is the subject of considerable ongoing study. We explore the extent to which these transcriptional regulatory components function in the context of the evolutionarily ancient role of chromatin as a barrier to processes acting on DNA and how chromatin proteins have diversified to carry out evolutionarily recent functions that accompanied the emergence of differentiation and development in multicellular eukaryotes.
Collapse
Affiliation(s)
- Paul B Talbert
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Michael P Meers
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Steven Henikoff
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.
| |
Collapse
|
35
|
Dorman CJ. DNA supercoiling and transcription in bacteria: a two-way street. BMC Mol Cell Biol 2019; 20:26. [PMID: 31319794 PMCID: PMC6639932 DOI: 10.1186/s12860-019-0211-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 07/09/2019] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND The processes of DNA supercoiling and transcription are interdependent because the movement of a transcription elongation complex simultaneously induces under- and overwinding of the DNA duplex and because the initiation, elongation and termination steps of transcription are all sensitive to the topological state of the DNA. RESULTS Policing of the local and global supercoiling of DNA by topoisomerases helps to sustain the major DNA-based transactions by eliminating barriers to the movement of transcription complexes and replisomes. Recent data from whole-genome and single-molecule studies have provided new insights into how interactions between transcription and the supercoiling of DNA influence the architecture of the chromosome and how they create cell-to-cell diversity at the level of gene expression through transcription bursting. CONCLUSIONS These insights into fundamental molecular processes reveal mechanisms by which bacteria can prevail in unpredictable and often hostile environments by becoming unpredictable themselves.
Collapse
Affiliation(s)
- Charles J Dorman
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
36
|
El Houdaigui B, Forquet R, Hindré T, Schneider D, Nasser W, Reverchon S, Meyer S. Bacterial genome architecture shapes global transcriptional regulation by DNA supercoiling. Nucleic Acids Res 2019; 47:5648-5657. [PMID: 31216038 PMCID: PMC6582348 DOI: 10.1093/nar/gkz300] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/15/2019] [Accepted: 04/16/2019] [Indexed: 01/20/2023] Open
Abstract
DNA supercoiling acts as a global transcriptional regulator in bacteria, that plays an important role in adapting their expression programme to environmental changes, but for which no quantitative or even qualitative regulatory model is available. Here, we focus on spatial supercoiling heterogeneities caused by the transcription process itself, which strongly contribute to this regulation mode. We propose a new mechanistic modeling of the transcription-supercoiling dynamical coupling along a genome, which allows simulating and quantitatively reproducing in vitro and in vivo transcription assays, and highlights the role of genes' local orientation in their supercoiling sensitivity. Consistently with predictions, we show that chromosomal relaxation artificially induced by gyrase inhibitors selectively activates convergent genes in several enterobacteria, while conversely, an increase in DNA supercoiling naturally selected in a long-term evolution experiment with Escherichia coli favours divergent genes. Simulations show that these global expression responses to changes in DNA supercoiling result from fundamental mechanical constraints imposed by transcription, independently from more specific regulation of each promoter. These constraints underpin a significant and predictable contribution to the complex rules by which bacteria use DNA supercoiling as a global but fine-tuned transcriptional regulator.
Collapse
Affiliation(s)
- Bilal El Houdaigui
- Université de Lyon, INSA Lyon, Université Claude Bernard Lyon 1, CNRS UMR5240, Laboratoire de Microbiologie, Adaptation et Pathogénie, 69621 Villeurbanne, France
| | - Raphaël Forquet
- Université de Lyon, INSA Lyon, Université Claude Bernard Lyon 1, CNRS UMR5240, Laboratoire de Microbiologie, Adaptation et Pathogénie, 69621 Villeurbanne, France
| | - Thomas Hindré
- Université Grenoble-Alpes, CNRS, Grenoble INP, TIMC-IMAG, 38000 Grenoble, France
| | - Dominique Schneider
- Université Grenoble-Alpes, CNRS, Grenoble INP, TIMC-IMAG, 38000 Grenoble, France
| | - William Nasser
- Université de Lyon, INSA Lyon, Université Claude Bernard Lyon 1, CNRS UMR5240, Laboratoire de Microbiologie, Adaptation et Pathogénie, 69621 Villeurbanne, France
| | - Sylvie Reverchon
- Université de Lyon, INSA Lyon, Université Claude Bernard Lyon 1, CNRS UMR5240, Laboratoire de Microbiologie, Adaptation et Pathogénie, 69621 Villeurbanne, France
| | - Sam Meyer
- Université de Lyon, INSA Lyon, Université Claude Bernard Lyon 1, CNRS UMR5240, Laboratoire de Microbiologie, Adaptation et Pathogénie, 69621 Villeurbanne, France
| |
Collapse
|
37
|
Wu F, Japaridze A, Zheng X, Wiktor J, Kerssemakers JWJ, Dekker C. Direct imaging of the circular chromosome in a live bacterium. Nat Commun 2019; 10:2194. [PMID: 31097704 PMCID: PMC6522522 DOI: 10.1038/s41467-019-10221-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 04/26/2019] [Indexed: 01/08/2023] Open
Abstract
Although the physical properties of chromosomes, including their morphology, mechanics, and dynamics are crucial for their biological function, many basic questions remain unresolved. Here we directly image the circular chromosome in live E. coli with a broadened cell shape. We find that it exhibits a torus topology with, on average, a lower-density origin of replication and an ultrathin flexible string of DNA at the terminus of replication. At the single-cell level, the torus is strikingly heterogeneous, with blob-like Mbp-size domains that undergo major dynamic rearrangements, splitting and merging at a minute timescale. Our data show a domain organization underlying the chromosome structure of E. coli, where MatP proteins induce site-specific persistent domain boundaries at Ori/Ter, while transcription regulators HU and Fis induce weaker transient domain boundaries throughout the genome. These findings provide an architectural basis for the understanding of the dynamic spatial organization of bacterial genomes in live cells.
Collapse
MESH Headings
- Chromosomal Proteins, Non-Histone/metabolism
- Chromosomes, Bacterial/chemistry
- Chromosomes, Bacterial/metabolism
- DNA Replication
- DNA, Bacterial/chemistry
- DNA, Bacterial/metabolism
- DNA, Circular/chemistry
- DNA, Circular/metabolism
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Escherichia coli Proteins/metabolism
- Genome, Bacterial
- Intravital Microscopy/instrumentation
- Intravital Microscopy/methods
- Microscopy, Fluorescence/instrumentation
- Microscopy, Fluorescence/methods
- Nucleic Acid Conformation
- Single-Cell Analysis/instrumentation
- Single-Cell Analysis/methods
Collapse
Affiliation(s)
- Fabai Wu
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
- Division of Geological and Planetary Sciences, California Institute of Technology, 1200 E California Blvd, Pasadena, CA, 91125, USA
| | - Aleksandre Japaridze
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Xuan Zheng
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Jakub Wiktor
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Jacob W J Kerssemakers
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Cees Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands.
| |
Collapse
|
38
|
Oliveira SMD, Goncalves NSM, Kandavalli VK, Martins L, Neeli-Venkata R, Reyelt J, Fonseca JM, Lloyd-Price J, Kranz H, Ribeiro AS. Chromosome and plasmid-borne P LacO3O1 promoters differ in sensitivity to critically low temperatures. Sci Rep 2019; 9:4486. [PMID: 30872616 PMCID: PMC6418193 DOI: 10.1038/s41598-019-39618-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 01/28/2019] [Indexed: 12/31/2022] Open
Abstract
Temperature shifts trigger genome-wide changes in Escherichia coli's gene expression. We studied if chromosome integration impacts on a gene's sensitivity to these shifts, by comparing the single-RNA production kinetics of a PLacO3O1 promoter, when chromosomally-integrated and when single-copy plasmid-borne. At suboptimal temperatures their induction range, fold change, and response to decreasing temperatures are similar. At critically low temperatures, the chromosome-integrated promoter becomes weaker and noisier. Dissection of its initiation kinetics reveals longer lasting states preceding open complex formation, suggesting enhanced supercoiling buildup. Measurements with Gyrase and Topoisomerase I inhibitors suggest hindrance to escape supercoiling buildup at low temperatures. Consistently, similar phenomena occur in energy-depleted cells by DNP at 30 °C. Transient, critically-low temperatures have no long-term consequences, as raising temperature quickly restores transcription rates. We conclude that the chromosomally-integrated PLacO3O1 has higher sensitivity to low temperatures, due to longer-lasting super-coiled states. A lesser active, chromosome-integrated native lac is shown to be insensitive to Gyrase overexpression, even at critically low temperatures, indicating that the rate of escaping positive supercoiling buildup is temperature and transcription rate dependent. A genome-wide analysis supports this, since cold-shock genes exhibit atypical supercoiling-sensitivities. This phenomenon might partially explain the temperature-sensitivity of some transcriptional programs of E. coli.
Collapse
Affiliation(s)
- Samuel M D Oliveira
- Laboratory of Biosystem Dynamics and Multi-Scaled Biodata Analysis and Modelling Research Community, Faculty of Medicine and Health Technology, Tampere University, Korkeakoulunkatu 7, 33720, Tampere, Finland
| | - Nadia S M Goncalves
- Laboratory of Biosystem Dynamics and Multi-Scaled Biodata Analysis and Modelling Research Community, Faculty of Medicine and Health Technology, Tampere University, Korkeakoulunkatu 7, 33720, Tampere, Finland
| | - Vinodh K Kandavalli
- Laboratory of Biosystem Dynamics and Multi-Scaled Biodata Analysis and Modelling Research Community, Faculty of Medicine and Health Technology, Tampere University, Korkeakoulunkatu 7, 33720, Tampere, Finland
| | - Leonardo Martins
- Laboratory of Biosystem Dynamics and Multi-Scaled Biodata Analysis and Modelling Research Community, Faculty of Medicine and Health Technology, Tampere University, Korkeakoulunkatu 7, 33720, Tampere, Finland
- CA3 CTS/UNINOVA. Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, 2829-516, Caparica, Portugal
| | - Ramakanth Neeli-Venkata
- Laboratory of Biosystem Dynamics and Multi-Scaled Biodata Analysis and Modelling Research Community, Faculty of Medicine and Health Technology, Tampere University, Korkeakoulunkatu 7, 33720, Tampere, Finland
| | - Jan Reyelt
- Gene Bridges, Im Neuenheimer Feld 584, 69120, Heidelberg, Germany
| | - Jose M Fonseca
- CA3 CTS/UNINOVA. Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, 2829-516, Caparica, Portugal
| | - Jason Lloyd-Price
- Biostatistics Department, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
- Infectious Disease and Microbiome Program, Broad Institute, Cambridge, MA, 02142, USA
| | - Harald Kranz
- Gene Bridges, Im Neuenheimer Feld 584, 69120, Heidelberg, Germany
| | - Andre S Ribeiro
- Laboratory of Biosystem Dynamics and Multi-Scaled Biodata Analysis and Modelling Research Community, Faculty of Medicine and Health Technology, Tampere University, Korkeakoulunkatu 7, 33720, Tampere, Finland.
- CA3 CTS/UNINOVA. Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, 2829-516, Caparica, Portugal.
| |
Collapse
|
39
|
Inhibition of the gyrA promoter by transcription-coupled DNA supercoiling in Escherichia coli. Sci Rep 2018; 8:14759. [PMID: 30282997 PMCID: PMC6170449 DOI: 10.1038/s41598-018-33089-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 09/19/2018] [Indexed: 11/13/2022] Open
Abstract
The E. coli gyrA promoter (PgyrA) is a DNA supercoiling sensitive promoter, stimulated by relaxation of DNA templates, and inhibited by (−) DNA supercoiling in bacteria. However, whether PgyrA can be inhibited by transient and localized transcription-coupled DNA supercoiling (TCDS) has not been fully examined. In this paper, using different DNA templates including the E. coli chromosome, we show that transient and localized TCDS strongly inhibits PgyrA in E. coli. This result can be explained by a twin-supercoiled domain model of transcription in which (+) and (−) supercoiled domains are generated around the transcribing RNA polymerase. We also find that fluoroquinolones, such as ciprofloxacin, can substantially increase the expression of the firefly luciferase under the control of the PgyrA coupled to a divergent IPTG-inducible promoter in the presence of IPTG. This stimulation of PgyrA by fluoroquinolones can be also explained by the twin-supercoiled domain model of transcription. This unique property of TCDS may be configured into a high throughput-screening (HTS) assay to identify antimicrobial compounds targeting bacterial DNA gyrase.
Collapse
|
40
|
Lesne A, Victor JM, Bertrand E, Basyuk E, Barbi M. The Role of Supercoiling in the Motor Activity of RNA Polymerases. Methods Mol Biol 2018; 1805:215-232. [PMID: 29971720 DOI: 10.1007/978-1-4939-8556-2_11] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
RNA polymerase (RNAP) is, in its elongation phase, an emblematic example of a molecular motor whose activity is highly sensitive to DNA supercoiling. After a review of DNA supercoiling basic features, we discuss how supercoiling controls polymerase velocity, while being itself modified by polymerase activity. This coupling is supported by single-molecule measurements. Physical modeling allows us to describe quantitatively how supercoiling and torsional constraints mediate a mechanical coupling between adjacent polymerases. On this basis, we obtain a description that may explain the existence and functioning of RNAP convoys.
Collapse
Affiliation(s)
- Annick Lesne
- Laboratoire de Physique Théorique de la Matière Condensée (LPTMC), UMR 7600 CNRS, Sorbonne Université, Paris, France.,Institut de Génétique Moléculaire de Montpellier, UMR 5535 CNRS, Montpellier, France.,Université de Montpellier, Montpellier, France.,GDR 3536 CNRS, Sorbonne Université, Paris, France
| | - Jean-Marc Victor
- Laboratoire de Physique Théorique de la Matière Condensée (LPTMC), UMR 7600 CNRS, Sorbonne Université, Paris, France. .,Institut de Génétique Moléculaire de Montpellier, UMR 5535 CNRS, Montpellier, France. .,Université de Montpellier, Montpellier, France. .,GDR 3536 CNRS, Sorbonne Université, Paris, France.
| | - Edouard Bertrand
- Institut de Génétique Moléculaire de Montpellier, UMR 5535 CNRS, Montpellier, France.,Université de Montpellier, Montpellier, France
| | - Eugenia Basyuk
- Institut de Génétique Moléculaire de Montpellier, UMR 5535 CNRS, Montpellier, France.,Université de Montpellier, Montpellier, France
| | - Maria Barbi
- Laboratoire de Physique Théorique de la Matière Condensée (LPTMC), UMR 7600 CNRS, Sorbonne Université, Paris, France.,GDR 3536 CNRS, Sorbonne Université, Paris, France
| |
Collapse
|
41
|
Chromosomal organization of transcription: in a nutshell. Curr Genet 2017; 64:555-565. [PMID: 29184972 DOI: 10.1007/s00294-017-0785-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 11/20/2017] [Accepted: 11/20/2017] [Indexed: 01/25/2023]
Abstract
Early studies of transcriptional regulation focused on individual gene promoters defined specific transcription factors as central agents of genetic control. However, recent genome-wide data propelled a different view by linking spatially organized gene expression patterns to chromosomal dynamics. Therefore, the major problem in contemporary molecular genetics concerned with transcriptional gene regulation is to establish a unifying model that reconciles these two views. This problem, situated at the interface of polymer physics and network theory, requires development of an integrative methodology. In this review, we discuss recent achievements in classical model organism E. coli and provide some novel insights gained from studies of a bacterial plant pathogen, D. dadantii. We consider DNA topology and the basal transcription machinery as key actors of regulation, in which activation of functionally relevant genes is coupled to and coordinated with the establishment of extended chromosomal domains of coherent transcription. We argue that the spatial organization of genome plays a fundamental role in its own regulation.
Collapse
|
42
|
de la Campa AG, Ferrándiz MJ, Martín-Galiano AJ, García MT, Tirado-Vélez JM. The Transcriptome of Streptococcus pneumoniae Induced by Local and Global Changes in Supercoiling. Front Microbiol 2017; 8:1447. [PMID: 28824578 PMCID: PMC5534458 DOI: 10.3389/fmicb.2017.01447] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 07/17/2017] [Indexed: 01/28/2023] Open
Abstract
The bacterial chromosome is compacted in a manner optimal for DNA transactions to occur. The degree of compaction results from the level of DNA-supercoiling and the presence of nucleoid-binding proteins. DNA-supercoiling is homeostatically maintained by the opposing activities of relaxing DNA topoisomerases and negative supercoil-inducing DNA gyrase. DNA-supercoiling acts as a general cis regulator of transcription, which can be superimposed upon other types of more specific trans regulatory mechanism. Transcriptomic studies on the human pathogen Streptococcus pneumoniae, which has a relatively small genome (∼2 Mb) and few nucleoid-binding proteins, have been performed under conditions of local and global changes in supercoiling. The response to local changes induced by fluoroquinolone antibiotics, which target DNA gyrase subunit A and/or topoisomerase IV, involves an increase in oxygen radicals which reduces cell viability, while the induction of global supercoiling changes by novobiocin (a DNA gyrase subunit B inhibitor), or by seconeolitsine (a topoisomerase I inhibitor), has revealed the existence of topological domains that specifically respond to such changes. The control of DNA-supercoiling in S. pneumoniae occurs mainly via the regulation of topoisomerase gene transcription: relaxation triggers the up-regulation of gyrase and the down-regulation of topoisomerases I and IV, while hypernegative supercoiling down-regulates the expression of topoisomerase I. Relaxation affects 13% of the genome, with the majority of the genes affected located in 15 domains. Hypernegative supercoiling affects 10% of the genome, with one quarter of the genes affected located in 12 domains. However, all the above domains overlap, suggesting that the chromosome is organized into topological domains with fixed locations. Based on its response to relaxation, the pneumococcal chromosome can be said to be organized into five types of domain: up-regulated, down-regulated, position-conserved non-regulated, position-variable non-regulated, and AT-rich. The AT content is higher in the up-regulated than in the down-regulated domains. Genes within the different domains share structural and functional characteristics. It would seem that a topology-driven selection pressure has defined the chromosomal location of the metabolism, virulence and competence genes, which suggests the existence of topological rules that aim to improve bacterial fitness.
Collapse
Affiliation(s)
- Adela G de la Campa
- Unidad de Genética Bacteriana, Centro Nacional de Microbiología, Instituto de Salud Carlos IIIMadrid, Spain.,Presidencia, Consejo Superior de Investigaciones CientíficasMadrid, Spain
| | - María J Ferrándiz
- Unidad de Genética Bacteriana, Centro Nacional de Microbiología, Instituto de Salud Carlos IIIMadrid, Spain
| | - Antonio J Martín-Galiano
- Unidad de Genética Bacteriana, Centro Nacional de Microbiología, Instituto de Salud Carlos IIIMadrid, Spain
| | - María T García
- Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad ComplutenseMadrid, Spain
| | - Jose M Tirado-Vélez
- Unidad de Genética Bacteriana, Centro Nacional de Microbiología, Instituto de Salud Carlos IIIMadrid, Spain
| |
Collapse
|
43
|
Zhi X, Dages S, Dages K, Liu Y, Hua ZC, Makemson J, Leng F. Transient and dynamic DNA supercoiling potently stimulates the leu-500 promoter in Escherichia coli. J Biol Chem 2017; 292:14566-14575. [PMID: 28696257 DOI: 10.1074/jbc.m117.794628] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 06/23/2017] [Indexed: 01/11/2023] Open
Abstract
The inactive prokaryotic leu-500 promoter (Pleu-500) contains a single A-to-G point mutation in the -10 region of the leucine operon promoter, which causes leucine auxotrophy. This promoter can be activated by (-) DNA supercoiling in Escherichia coli topA strains. However, whether this activation arises from global, permanent, or transient, dynamic supercoiling is still not fully understood. In this article, using a newly established in vivo system carrying a pair of divergently coupled promoters, i.e. an IPTG-inducible promoter and Pleu-500 that control the expression of lacZ and luc (the firefly luciferase gene), respectively, we demonstrate that transient, dynamic (-) DNA supercoiling provided by divergent transcription in both wild-type and topA strains can potently activate Pleu-500 We found that this activation depended on the promoter strength and the length of RNA transcripts, which are functional characteristics of transcription-coupled DNA supercoiling (TCDS) precisely predicted by the twin-supercoiled domain model of transcription in which a (+) supercoiled domain is produced ahead of the RNA polymerase and a (-) supercoiled domain behind it. We also demonstrate that TCDS can be generated on topologically open DNA molecules, i.e. linear DNA molecules, in Escherichia coli, suggesting that topological boundaries or barriers are not required for the production of TCDS in vivo This work demonstrates that transient, dynamic TCDS by RNA polymerases is a major chromosome remodeling force in E. coli and greatly influences the nearby, coupled promoters/transcription.
Collapse
Affiliation(s)
- Xiaoduo Zhi
- From the Biomolecular Sciences Institute and.,Departments of Chemistry & Biochemistry and
| | - Samantha Dages
- From the Biomolecular Sciences Institute and.,Departments of Chemistry & Biochemistry and
| | - Kelley Dages
- From the Biomolecular Sciences Institute and.,Departments of Chemistry & Biochemistry and
| | - Yingting Liu
- From the Biomolecular Sciences Institute and.,Departments of Chemistry & Biochemistry and.,the School of Life Sciences, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Zi-Chun Hua
- the School of Life Sciences, Nanjing University, Nanjing 210023, Jiangsu, China
| | - John Makemson
- Biological Sciences, Florida International University, Miami, Florida 33199 and
| | - Fenfei Leng
- From the Biomolecular Sciences Institute and .,Departments of Chemistry & Biochemistry and
| |
Collapse
|
44
|
Suppression of the Escherichia coli dnaA46 mutation by changes in the activities of the pyruvate-acetate node links DNA replication regulation to central carbon metabolism. PLoS One 2017; 12:e0176050. [PMID: 28448512 PMCID: PMC5407757 DOI: 10.1371/journal.pone.0176050] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 04/04/2017] [Indexed: 02/06/2023] Open
Abstract
To ensure faithful transmission of genetic material to progeny cells, DNA replication is tightly regulated, mainly at the initiation step. Escherichia coli cells regulate the frequency of initiation according to growth conditions. Results of the classical, as well as the latest studies, suggest that the DNA replication in E. coli starts at a predefined, constant cell volume per chromosome but the mechanisms coordinating DNA replication with cell growth are still not fully understood. Results of recent investigations have revealed a role of metabolic pathway proteins in the control of cell division and a direct link between metabolism and DNA replication has also been suggested both in Bacillus subtilis and E. coli cells. In this work we show that defects in the acetate overflow pathway suppress the temperature-sensitivity of a defective replication initiator–DnaA under acetogenic growth conditions. Transcriptomic and metabolic analyses imply that this suppression is correlated with pyruvate accumulation, resulting from alterations in the pyruvate dehydrogenase (PDH) activity. Consequently, deletion of genes encoding the pyruvate dehydrogenase subunits likewise resulted in suppression of the thermal-sensitive growth of the dnaA46 strain. We propose that the suppressor effect may be directly related to the PDH complex activity, providing a link between an enzyme of the central carbon metabolism and DNA replication.
Collapse
|
45
|
Japaridze A, Renevey S, Sobetzko P, Stoliar L, Nasser W, Dietler G, Muskhelishvili G. Spatial organization of DNA sequences directs the assembly of bacterial chromatin by a nucleoid-associated protein. J Biol Chem 2017; 292:7607-7618. [PMID: 28316324 PMCID: PMC5418058 DOI: 10.1074/jbc.m117.780239] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 03/11/2017] [Indexed: 11/28/2022] Open
Abstract
Structural differentiation of bacterial chromatin depends on cooperative binding of abundant nucleoid-associated proteins at numerous genomic DNA sites and stabilization of distinct long-range nucleoprotein structures. Histone-like nucleoid-structuring protein (H-NS) is an abundant DNA-bridging, nucleoid-associated protein that binds to an AT-rich conserved DNA sequence motif and regulates both the shape and the genetic expression of the bacterial chromosome. Although there is ample evidence that the mode of H-NS binding depends on environmental conditions, the role of the spatial organization of H-NS-binding sequences in the assembly of long-range nucleoprotein structures remains unknown. In this study, by using high-resolution atomic force microscopy combined with biochemical assays, we explored the formation of H-NS nucleoprotein complexes on circular DNA molecules having different arrangements of identical sequences containing high-affinity H-NS-binding sites. We provide the first experimental evidence that variable sequence arrangements result in various three-dimensional nucleoprotein structures that differ in their shape and the capacity to constrain supercoils and compact the DNA. We believe that the DNA sequence-directed versatile assembly of periodic higher-order structures reveals a general organizational principle that can be exploited for knowledge-based design of long-range nucleoprotein complexes and purposeful manipulation of the bacterial chromatin architecture.
Collapse
Affiliation(s)
- Aleksandre Japaridze
- From the Laboratory of Physics of Living Matter, EPFL (École Polytechnique Fédérale de Lausanne), CE 3 316 Lausanne, Switzerland
| | - Sylvain Renevey
- From the Laboratory of Physics of Living Matter, EPFL (École Polytechnique Fédérale de Lausanne), CE 3 316 Lausanne, Switzerland
| | | | | | - William Nasser
- UMR5240 CNRS/INSA/UCB, Université de Lyon, F-69003 INSA Lyon, Villeurbanne F-69621, France, and
| | - Giovanni Dietler
- From the Laboratory of Physics of Living Matter, EPFL (École Polytechnique Fédérale de Lausanne), CE 3 316 Lausanne, Switzerland,
| | - Georgi Muskhelishvili
- Jacobs University, D-28759 Bremen, Germany, .,Agricultural University of Georgia, 240 David Aghmashenebeli Alley, 0159 Tbilisi, Republik of Georgia
| |
Collapse
|
46
|
Lepage T, Junier I. Modeling Bacterial DNA: Simulation of Self-Avoiding Supercoiled Worm-Like Chains Including Structural Transitions of the Helix. Methods Mol Biol 2017; 1624:323-337. [PMID: 28842893 DOI: 10.1007/978-1-4939-7098-8_23] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Under supercoiling constraints, naked DNA, such as a large part of bacterial DNA, folds into braided structures called plectonemes. The double-helix can also undergo local structural transitions, leading to the formation of denaturation bubbles and other alternative structures. Various polymer models have been developed to capture these properties, with Monte-Carlo (MC) approaches dedicated to the inference of thermodynamic properties. In this chapter, we explain how to perform such Monte-Carlo simulations, following two objectives. On one hand, we present the self-avoiding supercoiled Worm-Like Chain (ssWLC) model, which is known to capture the folding properties of supercoiled DNA, and provide a detailed explanation of a standard MC simulation method. On the other hand, we explain how to extend this ssWLC model to include structural transitions of the helix.
Collapse
Affiliation(s)
- Thibaut Lepage
- CNRS, TIMC-IMAG, F-38000, Grenoble, France.,University of Grenoble Alpes, TIMC-IMAG, F-38000, Grenoble, France
| | - Ivan Junier
- CNRS, TIMC-IMAG, F-38000, Grenoble, France. .,University of Grenoble Alpes, TIMC-IMAG, F-38000, Grenoble, France.
| |
Collapse
|
47
|
Cheng B, Zhou Q, Weng L, Leszyk JD, Greenberg MM, Tse-Dinh YC. Identification of proximal sites for unwound DNA substrate in Escherichia coli topoisomerase I with oxidative crosslinking. FEBS Lett 2016; 591:28-38. [PMID: 27926785 DOI: 10.1002/1873-3468.12517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 11/21/2016] [Accepted: 11/22/2016] [Indexed: 11/11/2022]
Abstract
Topoisomerases catalyze changes in DNA topology by directing the movement of DNA strands through consecutive cleavage-rejoining reactions of the DNA backbone. We describe the use of a phenylselenyl-modified thymidine incorporated into a specific position of a partially unwound DNA substrate in crosslinking studies of Escherichia coli topoisomerase I to gain new insights into its catalytic mechanism. Crosslinking of the phenylselenyl-modified thymidine to the topoisomerase protein was achieved by the addition of a mild oxidant. Following nuclease and trypsin digestion, lysine residues on topoisomerase I crosslinked to the modified thymidine were identified by mass spectrometry. The crosslinked sites may correspond to proximal sites for the unwound DNA strand as it interacts with enzyme in the different stages of the catalytic cycle.
Collapse
Affiliation(s)
- Bokun Cheng
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY, USA
| | - Qingxuan Zhou
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, USA.,Biomolecular Sciences Institute, Florida International University, Miami, FL, USA
| | - Liwei Weng
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, USA
| | - John D Leszyk
- Department of Biochemistry and Molecular Pharmacology and Proteomics and Mass Spectrometry Facility, University of Massachusetts Medical School, Worcester, MA, USA
| | - Marc M Greenberg
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, USA
| | - Yuk-Ching Tse-Dinh
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, USA.,Biomolecular Sciences Institute, Florida International University, Miami, FL, USA
| |
Collapse
|
48
|
Kasho K, Tanaka H, Sakai R, Katayama T. Cooperative DnaA Binding to the Negatively Supercoiled datA Locus Stimulates DnaA-ATP Hydrolysis. J Biol Chem 2016; 292:1251-1266. [PMID: 27941026 DOI: 10.1074/jbc.m116.762815] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/07/2016] [Indexed: 11/06/2022] Open
Abstract
Timely initiation of replication in Escherichia coli requires functional regulation of the replication initiator, ATP-DnaA. The cellular level of ATP-DnaA increases just before initiation, after which its level decreases through hydrolysis of DnaA-bound ATP, yielding initiation-inactive ADP-DnaA. Previously, we reported a novel DnaA-ATP hydrolysis system involving the chromosomal locus datA and named it datA-dependent DnaA-ATP hydrolysis (DDAH). The datA locus contains a binding site for a nucleoid-associating factor integration host factor (IHF) and a cluster of three known DnaA-binding sites, which are important for DDAH. However, the mechanisms underlying the formation and regulation of the datA-IHF·DnaA complex remain unclear. We now demonstrate that a novel DnaA box within datA is essential for ATP-DnaA complex formation and DnaA-ATP hydrolysis. Specific DnaA residues, which are important for interaction with bound ATP and for head-to-tail inter-DnaA interaction, were also required for ATP-DnaA-specific oligomer formation on datA Furthermore, we show that negative DNA supercoiling of datA stabilizes ATP-DnaA oligomers, and stimulates datA-IHF interaction and DnaA-ATP hydrolysis. Relaxation of DNA supercoiling by the addition of novobiocin, a DNA gyrase inhibitor, inhibits datA function in cells. On the basis of these results, we propose a mechanistic model of datA-IHF·DnaA complex formation and DNA supercoiling-dependent regulation for DDAH.
Collapse
Affiliation(s)
- Kazutoshi Kasho
- From the Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Hiroyuki Tanaka
- From the Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Ryuji Sakai
- From the Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Tsutomu Katayama
- From the Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
49
|
Muskhelishvili G, Travers A. The regulatory role of DNA supercoiling in nucleoprotein complex assembly and genetic activity. Biophys Rev 2016; 8:5-22. [PMID: 28510220 PMCID: PMC5425797 DOI: 10.1007/s12551-016-0237-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 10/21/2016] [Indexed: 01/06/2023] Open
Abstract
We argue that dynamic changes in DNA supercoiling in vivo determine both how DNA is packaged and how it is accessed for transcription and for other manipulations such as recombination. In both bacteria and eukaryotes, the principal generators of DNA superhelicity are DNA translocases, supplemented in bacteria by DNA gyrase. By generating gradients of superhelicity upstream and downstream of their site of activity, translocases enable the differential binding of proteins which preferentially interact with respectively more untwisted or more writhed DNA. Such preferences enable, in principle, the sequential binding of different classes of protein and so constitute an essential driver of chromatin organization.
Collapse
Affiliation(s)
| | - Andrew Travers
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK.
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, UK.
| |
Collapse
|
50
|
Junier I, Rivoire O. Conserved Units of Co-Expression in Bacterial Genomes: An Evolutionary Insight into Transcriptional Regulation. PLoS One 2016; 11:e0155740. [PMID: 27195891 PMCID: PMC4873041 DOI: 10.1371/journal.pone.0155740] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 05/03/2016] [Indexed: 12/18/2022] Open
Abstract
Genome-wide measurements of transcriptional activity in bacteria indicate that the transcription of successive genes is strongly correlated beyond the scale of operons. Here, we analyze hundreds of bacterial genomes to identify supra-operonic segments of genes that are proximal in a large number of genomes. We show that these synteny segments correspond to genomic units of strong transcriptional co-expression. Structurally, the segments contain operons with specific relative orientations (co-directional or divergent) and nucleoid-associated proteins are found to bind at their boundaries. Functionally, operons inside a same segment are highly co-expressed even in the apparent absence of regulatory factors at their promoter regions. Remote operons along DNA can also be co-expressed if their corresponding segments share a transcriptional or sigma factor, without requiring these factors to bind directly to the promoters of the operons. As evidence that these results apply across the bacterial kingdom, we demonstrate them both in the Gram-negative bacterium Escherichia coli and in the Gram-positive bacterium Bacillus subtilis. The underlying process that we propose involves only RNA-polymerases and DNA: it implies that the transcription of an operon mechanically enhances the transcription of adjacent operons. In support of a primary role of this regulation by facilitated co-transcription, we show that the transcription en bloc of successive operons as a result of transcriptional read-through is strongly and specifically enhanced in synteny segments. Finally, our analysis indicates that facilitated co-transcription may be evolutionary primitive and may apply beyond bacteria.
Collapse
Affiliation(s)
- Ivan Junier
- CNRS, TIMC-IMAG, F-38000 Grenoble, France.,Univ. Grenoble Alpes, TIMC-IMAG, F-38000 Grenoble, France
| | - Olivier Rivoire
- CNRS, LIPhy, F-38000 Grenoble, France.,Univ. Grenoble Alpes, LIPhy, F-38000 Grenoble, France
| |
Collapse
|