1
|
Ando N, Hirai N, Iima M, Senda K. Electromyography of Flight Muscles in Free-Flying Chestnut Tiger Butterfly, Parantica sita. Zoolog Sci 2024; 41:557-563. [PMID: 39636139 DOI: 10.2108/zs240039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 08/10/2024] [Indexed: 12/07/2024]
Abstract
The chestnut tiger butterfly, Parantica sita, can undertake long-distance migrations. They flap their wings for power flight and hold the wings for gliding; such repertoires of wing movements may be the key to explaining their excellent flight abilities. Measuring flight muscle activity using the electromyogram (EMG) is the first step toward understanding the neuromuscular mechanism of active flight control. Free-flight EMG measurements have, however, not been reported in butterflies. This study developed a method to acquire two-channel EMGs from free-flying P. sita. Stable EMG recordings were acquired using a monopolar electrode by attaching a small pre-amplifier to the dorsal mesonotum. The common-mode noise between channels was resolved by inserting a reference electrode into the mesonotum midline. The EMGs of five flight muscles were measured during free-flight and their activation phases were analyzed. The EMGs of all five muscles demonstrated a burst of spikes per stroke cycle, in contrast to the few spikes per cycle in the EMGs of hawkmoths, which would reflect the differences in wing kinematics and flight abilities. Further analyses, combining the technique developed in this study with high-speed videography, will clarify the neuromuscular mechanisms underlying the flight ability of P. sita.
Collapse
Affiliation(s)
- Noriyasu Ando
- Department of Life Engineering, Faculty of Engineering, Maebashi Institute of Technology, Maebashi, Gunma 371-0816, Japan,
| | - Norio Hirai
- Department of Environmental Sciences and Technology, Graduate School of Agriculture, Osaka Metropolitan University, Sakai, Osaka 599-8531, Japan
| | - Makoto Iima
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8521, Japan
| | - Kei Senda
- Department of Aeronautics and Astronautics, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8540, Japan
| |
Collapse
|
2
|
Bilinski T, Bylak A, Kukuła K, Zadrag-Tecza R. Senescence as a trade-off between successful land colonisation and longevity: critical review and analysis of a hypothesis. PeerJ 2021; 9:e12286. [PMID: 34760360 PMCID: PMC8570163 DOI: 10.7717/peerj.12286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 09/20/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Most common terrestrial animal clades exhibit senescence, suggesting strong adaptive value of this trait. However, there is little support for senescence correlated with specific adaptations. Nevertheless, insects, mammals, and birds, which are the most common terrestrial animal clades that show symptoms of senescence, evolved from clades that predominantly did not show symptoms of senescence. Thus, we aimed to examine senescence in the context of the ecology and life histories of the main clades of animals, including humans, and to formulate hypotheses to explain the causes and origin of senescence in the major clades of terrestrial animals. METHODOLOGY We reviewed literature from 1950 to 2020 concerning life expectancy, the existence of senescence, and the adaptive characteristics of the major groups of animals. We then proposed a relationship between senescence and environmental factors, considering the biology of these groups of animals. We constructed a model showing the phylogenetic relationships between animal clades in the context of the major stages of evolution, distinguishing between senescent and biologically 'immortal' clades of animals. Finally, we synthesised current data on senescence with the most important concepts and theories explaining the origin and mechanisms of senescence. Although this categorisation into different senescent phenotypes may be simplistic, we used this to propose a framework for understanding senescence. RESULTS We found that terrestrial mammals, insects, and birds show senescence, even though they likely evolved from non-senescent ancestors. Moreover, secondarily aquatic animals show lower rate of senescence than their terrestrial counterparts. Based on the possible life histories of these groups and the analysis of the most important factors affecting the transition from a non-senescent to senescent phenotype, we conclude that aging has evolved, not as a direct effect, but as a correlated response of selection on developmental strategies, and that this occurred separately within each clade. Adoption of specific life history strategies could thus have far-reaching effects in terms of senescence and lifespan. CONCLUSIONS Our analysis strongly suggests that senescence may have emerged as a side effect of the evolution of adaptive features that allowed the colonisation of land. Senescence in mammals may be a compromise between land colonisation and longevity. This hypothesis, is supported by palaeobiological and ecological evidence. We hope that the development of new research methodologies and the availability of more data could be used to test this hypothesis and shed greater light on the evolution of senescence.
Collapse
Affiliation(s)
- Tomasz Bilinski
- Department of Biochemistry and Cell Biology, Faculty of Biology and Agriculture, University of Rzeszów, Rzeszów, Poland
| | - Aneta Bylak
- Department of Ecology and Environmental Protection; Institute of Agricultural Sciences, Land Management and Environmental Protection, University of Rzeszów, Rzeszów, Poland
| | - Krzysztof Kukuła
- Department of Ecology and Environmental Protection; Institute of Agricultural Sciences, Land Management and Environmental Protection, University of Rzeszów, Rzeszów, Poland
| | - Renata Zadrag-Tecza
- Department of Biochemistry and Cell Biology, Institute of Biology and Biotechnology, University of Rzeszów, Rzeszów, Poland
| |
Collapse
|
3
|
Hennessy G, Harris C, Pirot L, Lefter A, Goulson D, Ratnieks FL. Wind slows play: increasing wind speed reduces flower visiting rate in honey bees. Anim Behav 2021. [DOI: 10.1016/j.anbehav.2021.05.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
4
|
Animal Venoms-Curse or Cure? Biomedicines 2021; 9:biomedicines9040413. [PMID: 33921205 PMCID: PMC8068803 DOI: 10.3390/biomedicines9040413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/09/2021] [Accepted: 04/09/2021] [Indexed: 12/16/2022] Open
Abstract
An estimated 15% of animals are venomous, with representatives spread across the majority of animal lineages. Animals use venoms for various purposes, such as prey capture and predator deterrence. Humans have always been fascinated by venomous animals in a Janus-faced way. On the one hand, humans have a deeply rooted fear of venomous animals. This is boosted by their largely negative image in public media and the fact that snakes alone cause an annual global death toll in the hundreds of thousands, with even more people being left disabled or disfigured. Consequently, snake envenomation has recently been reclassified by the World Health Organization as a neglected tropical disease. On the other hand, there has been a growth in recent decades in the global scene of enthusiasts keeping venomous snakes, spiders, scorpions, and centipedes in captivity as pets. Recent scientific research has focussed on utilising animal venoms and toxins for the benefit of humanity in the form of molecular research tools, novel diagnostics and therapeutics, biopesticides, or anti-parasitic treatments. Continued research into developing efficient and safe antivenoms and promising discoveries of beneficial effects of animal toxins is further tipping the scales in favour of the “cure” rather than the “curse” prospect of venoms.
Collapse
|
5
|
Cytochrome c Oxidase at Full Thrust: Regulation and Biological Consequences to Flying Insects. Cells 2021; 10:cells10020470. [PMID: 33671793 PMCID: PMC7931083 DOI: 10.3390/cells10020470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 01/24/2023] Open
Abstract
Flight dispersal represents a key aspect of the evolutionary and ecological success of insects, allowing escape from predators, mating, and colonization of new niches. The huge energy demand posed by flight activity is essentially met by oxidative phosphorylation (OXPHOS) in flight muscle mitochondria. In insects, mitochondrial ATP supply and oxidant production are regulated by several factors, including the energy demand exerted by changes in adenylate balance. Indeed, adenylate directly regulates OXPHOS by targeting both chemiosmotic ATP production and the activities of specific mitochondrial enzymes. In several organisms, cytochrome c oxidase (COX) is regulated at transcriptional, post-translational, and allosteric levels, impacting mitochondrial energy metabolism, and redox balance. This review will present the concepts on how COX function contributes to flying insect biology, focusing on the existing examples in the literature where its structure and activity are regulated not only by physiological and environmental factors but also how changes in its activity impacts insect biology. We also performed in silico sequence analyses and determined the structure models of three COX subunits (IV, VIa, and VIc) from different insect species to compare with mammalian orthologs. We observed that the sequences and structure models of COXIV, COXVIa, and COXVIc were quite similar to their mammalian counterparts. Remarkably, specific substitutions to phosphomimetic amino acids at critical phosphorylation sites emerge as hallmarks on insect COX sequences, suggesting a new regulatory mechanism of COX activity. Therefore, by providing a physiological and bioenergetic framework of COX regulation in such metabolically extreme models, we hope to expand the knowledge of this critical enzyme complex and the potential consequences for insect dispersal.
Collapse
|
6
|
Du G, Tian Y, Yao Z, Vu S, Zheng J, Chai L, Wang K, Yang S. A specialized pore turret in the mammalian cation channel TRPV1 is responsible for distinct and species-specific heat activation thresholds. J Biol Chem 2020; 295:9641-9649. [PMID: 32461255 DOI: 10.1074/jbc.ra120.013037] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/20/2020] [Indexed: 11/06/2022] Open
Abstract
The transient receptor potential vanilloid 1 (TRPV1) channel is a heat-activated cation channel that plays a crucial role in ambient temperature detection and thermal homeostasis. Although several structural features of TRPV1 have been shown to be involved in heat-induced activation of the gating process, the physiological significance of only a few of these key elements has been evaluated in an evolutionary context. Here, using transient expression in HEK293 cells, electrophysiological recordings, and molecular modeling, we show that the pore turret contains both structural and functional determinants that set the heat activation thresholds of distinct TRPV1 orthologs in mammals whose body temperatures fluctuate widely. We found that TRPV1 from the bat Carollia brevicauda exhibits a lower threshold temperature of channel activation than does its human ortholog and three bat-specific amino acid substitutions located in the pore turret are sufficient to determine this threshold temperature. Furthermore, the structure of the TRPV1 pore turret appears to be of physiological and evolutionary significance for differentiating the heat-activated threshold among species-specific TRPV1 orthologs. These findings support a role for the TRPV1 pore turret in tuning the heat-activated threshold, and they suggest that its evolution was driven by adaption to specific physiological traits among mammals exposed to variable temperatures.
Collapse
Affiliation(s)
- Guangxu Du
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao, Shandong, China
| | - Yuhua Tian
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao, Shandong, China
| | - Zhihao Yao
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao, Shandong, China.,Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of the Yunnan Province Kunming Institute of Zoology, Kunming, Yunnan China
| | - Simon Vu
- University of California Davis, School of Medicine, Davis, California, USA
| | - Jie Zheng
- University of California Davis, School of Medicine, Davis, California, USA
| | - Longhui Chai
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - KeWei Wang
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao, Shandong, China
| | - Shilong Yang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| |
Collapse
|
7
|
Luo Y, Li B, Jiang RD, Hu BJ, Luo DS, Zhu GJ, Hu B, Liu HZ, Zhang YZ, Yang XL, Shi ZL. Longitudinal Surveillance of Betacoronaviruses in Fruit Bats in Yunnan Province, China During 2009-2016. Virol Sin 2018; 33:87-95. [PMID: 29500692 PMCID: PMC6178081 DOI: 10.1007/s12250-018-0017-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 01/30/2018] [Indexed: 01/25/2023] Open
Abstract
Previous studies indicated that fruit bats carry two betacoronaviruses, BatCoV HKU9 and BatCoV GCCDC1. To investigate the epidemiology and genetic diversity of these coronaviruses, we conducted a longitudinal surveillance in fruit bats in Yunnan province, China during 2009–2016. A total of 59 (10.63%) bat samples were positive for the two betacorona-viruses, 46 (8.29%) for HKU9 and 13 (2.34%) for GCCDC1, or closely related viruses. We identified a novel HKU9 strain, tentatively designated as BatCoV HKU9-2202, by sequencing the full-length genome. The BatCoV HKU9-2202 shared 83% nucleotide identity with other BatCoV HKU9 stains based on whole genome sequences. The most divergent region is in the spike protein, which only shares 68% amino acid identity with BatCoV HKU9. Quantitative PCR revealed that the intestine was the primary infection organ of BatCoV HKU9 and GCCDC1, but some HKU9 was also detected in the heart, kidney, and lung tissues of bats. This study highlights the importance of virus surveillance in natural reservoirs and emphasizes the need for preparedness against the potential spill-over of these viruses to local residents living near bat caves.
Collapse
Affiliation(s)
- Yun Luo
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bei Li
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Ren-Di Jiang
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Bing-Jie Hu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Dong-Sheng Luo
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | | | - Ben Hu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Hai-Zhou Liu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Yun-Zhi Zhang
- Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Yunnan Institute of Endemic Diseases Control and Prevention, Dali, 671000, China
- School of Public Health, Dali University, Dali, 671000, China
| | - Xing-Lou Yang
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Zheng-Li Shi
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
| |
Collapse
|
8
|
Maina JN. Pivotal debates and controversies on the structure and function of the avian respiratory system: setting the record straight. Biol Rev Camb Philos Soc 2016; 92:1475-1504. [DOI: 10.1111/brv.12292] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 06/17/2016] [Accepted: 06/27/2016] [Indexed: 12/19/2022]
Affiliation(s)
- John N. Maina
- Department of Zoology; University of Johannesburg; P.O. Box, 524, Auckland Park, Kingsway Johannesburg 2006 South Africa
| |
Collapse
|
9
|
Li H, Zhu C, Tao Z, Xu W, Song W, Hu Y, Zhu W, Song C. MyoD and Myf6 gene expression patterns in skeletal muscle during embryonic and posthatch development in the domestic duck (Anas platyrhynchos domestica). J Anim Breed Genet 2013; 131:194-201. [PMID: 24180358 DOI: 10.1111/jbg.12057] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 09/12/2013] [Indexed: 11/27/2022]
Abstract
The MyoD and Myf6 genes, which are muscle regulatory factors (MRFs), play major roles in muscle growth and development and initiate muscle fibre formation via the regulation of muscle-specific gene translation. Therefore, MyoD and Myf6 are potential candidate genes for meat production traits in animals and poultry. The objective of this study was to evaluate MyoD and Myf6 gene expression patterns in the skeletal muscle during early developmental stage of ducks. Gene expression levels were detected using the quantitative RT-PCR method in the breast muscle (BM) and leg muscle (LM) at embryonic days 13, 17, 21, 25, 27, as well as at 1 week posthatching in Gaoyou and Jinding ducks (Anas platyrhynchos domestica). The MyoD and Myf6 gene profiles in the two duck breeds were consistent during early development, and MyoD gene expression showed a 'wave' trend in BM and an approximate 'anti-√' trend in LM. Myf6 gene expression in BM showed the highest level at embryonic day 21, which subsequently decreased, although remained relatively high, while levels at embryonic days 13, 17 and 21 were higher in LM. The results of correlation analysis showed that MyoD and Myf6 gene expression levels were more strongly correlated in LM than in BM in both duck breeds. These results indicated that different expression patterns of the MyoD and Myf6 genes in BM and LM may be related to muscle development and differentiation, suggesting that MyoD and Myf6 are integral to skeletal muscle development.
Collapse
Affiliation(s)
- H Li
- Jiangsu Institute of Poultry Science, Jiangsu provincial key lab for genetics and breeding of poultry, Yangzhou, China
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Liu HH, Wang JW, Li L, Han CC, Huang KL, Si JM, He H, Xu F. Molecular evolutionary analysis of the duck MYOD gene family and its differential expression pattern in breast muscle development. Br Poult Sci 2012; 52:423-31. [PMID: 21919569 DOI: 10.1080/00071668.2011.590795] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
1. The objective of the research was to investigate the molecular evolutionary relationships between the duck myogenic determination factors (MYOD) gene family members and their roles in muscle development. 2. The four members of the duck MYOD gene family were cloned using RT-PCR, and their relative mRNA expression during duck muscle development was measured using qRT-PCR. 3. The results showed that MyoD and Myf5 clustered together, as did MyoG and MRF4 based on their complete amino acid sequence and the basic helix-loop-helix domain. Results of the evolutionary level analysis were consistent with that of the differential expression patterns during duck breast muscle development. As determined by qRT-PCR, MyoD and Myf5 were highly expressed in 22-day embryos, while MyoG and MRF4 expression was high in 14-day embryos. 4. We conclude that the entire MYOD gene family in the duck originated from a common ancestral gene and evolved after two duplication events. The roles of the MYOD gene family members in duck muscle development are similar to those in mammals.
Collapse
Affiliation(s)
- He-He Liu
- Institute of Animal breeding & Genetic, Sichuan Agricultural University, Ya'an, Sichuan 625014, P R China
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Wang Z, Dong D, Ru B, Young RL, Han N, Guo T, Zhang S. Digital gene expression tag profiling of bat digits provides robust candidates contributing to wing formation. BMC Genomics 2010; 11:619. [PMID: 21054883 PMCID: PMC3017863 DOI: 10.1186/1471-2164-11-619] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Accepted: 11/06/2010] [Indexed: 12/02/2022] Open
Abstract
Background As the only truly flying mammals, bats use their unique wing - consisting of four elongated digits (digits II-V) connected by membranes - to power their flight. In addition to the elongated digits II-V, the forelimb contains one shorter digit (digit I) that is morphologically similar to the hindlimb digits. Here, we capitalized on the morphological variation among the bat forelimb digits to investigate the molecular mechanisms underlying digit elongation and wing formation. Using next generation sequencing technology, we performed digital gene expression tag profiling (DGE-tag profiling) of developing digits in a pooled sample of two Myotis ricketti and validated our sequencing results using real-time quantitative PCR (RT-qPCR) of gene expression in the developing digits of two Hipposideros armiger. Results Among hundreds of genes exhibiting significant differences in expression between the short and long digits, we highlight 14 genes most related to digit elongation. These genes include two Tbx genes (Tbx3 and Tbx15), five BMP pathway genes (Bmp3, RGMB, Smad1, Smad4 and Nog), four Homeobox genes (Hoxd8, Hoxd9, Hoxa1 and Satb1), and three other genes (Twist1, Tmeff2 and Enpp2) related to digit malformations or cell proliferation. In addition, our results suggest that Tbx4 and Pitx2 contribute to the morphological similarity and five genes (Acta1, Tnnc2, Atp2a1, Hrc and Myoz1) contribute to the functional similarity between the thumb and hindlimb digits. Conclusions Results of this study not only implicate many developmental genes as robust candidates underlying digit elongation and wing formation in bats, but also provide a better understanding of the genes involved in autopodial development in general.
Collapse
Affiliation(s)
- Zhe Wang
- Institute of Molecular Ecology and Evolution, iAIR, East China Normal University, Shanghai 200062, PR China
| | | | | | | | | | | | | |
Collapse
|