1
|
Lou B, Zeng L, Gao X, Qian X, Li JJ, Gu X, Liu Z, Liu K, Chen X, Lin X, Zhang F. A single-cell transcriptomic atlas of the human ciliary body. Cell Mol Life Sci 2022; 79:528. [PMID: 36163311 PMCID: PMC9512889 DOI: 10.1007/s00018-022-04559-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/08/2022] [Accepted: 09/12/2022] [Indexed: 12/02/2022]
Abstract
The ciliary body critically contributes to the ocular physiology with multiple responsibilities in the production of aqueous humor, vision accommodation and intraocular immunity. Comparatively little work, however, has revealed the single-cell molecular taxonomy of the human ciliary body required for studying these functionalities. In this study, we report a comprehensive atlas of the cellular and molecular components of human ciliary body as well as their interactions using single-cell RNA sequencing (scRNAseq). Cluster analysis of the transcriptome of 14,563 individual ciliary cells from the eyes of 3 human donors identified 14 distinct cell types, including the ciliary epithelium, smooth muscle, vascular endothelial cell, immune cell and other stromal cell populations. Cell-type discriminative gene markers were also revealed. Unique gene expression patterns essential for ciliary epithelium-mediated aqueous humor inflow and ciliary smooth muscle contractility were identified. Importantly, we discovered the transitional states that probably contribute to the transition of ciliary macrophage into retina microglia and verified no lymphatics in the ciliary body. Moreover, the utilization of CellPhoneDB allowed us to systemically infer cell–cell interactions among diverse ciliary cells including those that potentially participate in the pathogenesis of glaucoma and uveitis. Altogether, these new findings provide insights into the regulation of intraocular pressure, accommodation reflex and immune homeostasis under physiological and pathological conditions.
Collapse
Affiliation(s)
- Bingsheng Lou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Lei Zeng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Xinbo Gao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Xiaobing Qian
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Jing Jing Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Xinyu Gu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Zheng Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Keli Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Xun Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Xiaofeng Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou, 510060, China.
| | - Feng Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou, 510060, China.
| |
Collapse
|
2
|
Ohta M, Wakuta M, Sakuma A, Hasegawa M, Hamada W, Higashijima F, Yoshimoto T, Ogata T, Kobayashi Y, Kimura K. Evaluation of corneal hysteresis after pars plana vitrectomy combined phacoemulsification and intraocular lens implantation. Sci Rep 2022; 12:14630. [PMID: 36028519 PMCID: PMC9418308 DOI: 10.1038/s41598-022-18299-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 08/09/2022] [Indexed: 11/12/2022] Open
Abstract
We evaluated the early effects of pars plana vitrectomy (PPV) on corneal biomechanics by comparing corneal hysteresis (CH) after cataract surgery (phacoemulsification and aspiration with intraocular lens implantation; PEA + IOL) alone and PPV combined with cataract surgery. This study included 20 eyes (18 patients), who underwent cataract surgery alone (PEA + IOL group), and 28 eyes (27 patients) who underwent PPV combined with cataract surgery (PPV triple group). The CH was 11.1 ± 1.1, 10.4 ± 1.1, and 11.0 ± 1.0 mmHg in the PEA + IOL group and 11.0 ± 1.4, 9.8 ± 1.4, and 10.6 ± 1.6 mmHg in the PPV triple group, preoperatively, at 2 weeks, and 3 months after surgery, respectively. The CH was not significantly different after surgery in the PEA + IOL group, but decreased significantly in the PPV triple group 2 weeks following surgery (p < 0.01). Intraocular pressure (IOP) and central corneal thickness (CCT) did not change significantly after surgery in either group. Preoperatively, there was a positive correlation between CH and CCT in the PPV triple group, but the correlation disappeared postoperatively. In PPV combined with cataract surgery, CH temporarily decreased postoperatively, independent of IOP and CCT. Removal of the vitreous may reduce the elasticity and rigidity of the entire eye.
Collapse
Affiliation(s)
- Manami Ohta
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, 755-8505, Japan
| | - Makiko Wakuta
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, 755-8505, Japan.,Clinical Research Center, Yamaguchi University Hospital, Ube, Yamaguchi, 755-8505, Japan
| | - Ayano Sakuma
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, 755-8505, Japan
| | - Mina Hasegawa
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, 755-8505, Japan
| | - Waka Hamada
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, 755-8505, Japan
| | - Fumiaki Higashijima
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, 755-8505, Japan
| | - Takuya Yoshimoto
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, 755-8505, Japan
| | - Tadahiko Ogata
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, 755-8505, Japan
| | - Yuka Kobayashi
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, 755-8505, Japan
| | - Kazuhiro Kimura
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, 755-8505, Japan.
| |
Collapse
|
3
|
Klaska IP, White A, Villacampa P, Hoke J, Hervás LA, Maswood RN, Ali RR, Bunce C, Unwin RD, Cooper GJS, Bishop PN, Bainbridge JW. Intravitreal administration of recombinant human opticin protects against hyperoxia-induced pre-retinal neovascularization. Exp Eye Res 2021; 215:108908. [PMID: 34954204 PMCID: PMC8935380 DOI: 10.1016/j.exer.2021.108908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/29/2021] [Accepted: 12/20/2021] [Indexed: 01/01/2023]
Abstract
Opticin is an extracellular glycoprotein present in the vitreous. Its antiangiogenic properties offer the potential for therapeutic intervention in conditions such as proliferative diabetic retinopathy and retinopathy of prematurity. Here, we investigated the hypothesis that intravitreal administration of recombinant human opticin can safely protect against the development of pathological angiogenesis and promote its regression. We generated and purified recombinant human opticin and investigated its impact on the development and regression of pathological retinal neovascularization following intravitreal administration in murine oxygen-induced retinopathy. We also investigated its effect on normal retinal vascular development and function, following intravitreal injection in neonatal mice, by histological examination and electroretinography. In oxygen-induced retinopathy, intravitreal administration of human recombinant opticin protected against the development of retinal neovascularization to similar extent as aflibercept, which targets VEGF. Opticin also accelerated regression of established retinal neovascularization, though the effect at 18 h was less than that of aflibercept. Intravitreal administration of human recombinant opticin in neonatal mice caused no detectable perturbation of subsequent retinal vascular development or function. In summary we found that intraocular administration of recombinant human opticin protects against the development of pathological angiogenesis in mice and promotes its regression.
Collapse
Affiliation(s)
- Izabela P Klaska
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK; KCL Centre for Cell and Gene Therapy, Tower Wing, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK
| | - Anne White
- Division of Evolution & Genomic Sciences, School of Biological Sciences, FBMH, University of Manchester, Manchester, UK
| | - Pilar Villacampa
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK; Josep Carreras Leukaemia Research Institute, Ctra de Can Ruti, Barcelona, Spain
| | - Justin Hoke
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK
| | - Laura A Hervás
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK
| | - Ryea N Maswood
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK
| | - Robin R Ali
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK; KCL Centre for Cell and Gene Therapy, Tower Wing, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK
| | - Catey Bunce
- School of Population Health and Environmental Sciences, Faculty of Life Sciences and Medicine, King's College London, Addison House, London, SE1 1UL, UK
| | - Richard D Unwin
- Division of Cardiovascular Sciences, School of Medical Sciences, FBMH, University of Manchester, Manchester, UK; Stoller Biomarker Discovery Centre and Division of Cancer Sciences, School of Medical Sciences, FBMH, University of Manchester, Manchester, UK
| | - Garth J S Cooper
- Division of Cardiovascular Sciences, School of Medical Sciences, FBMH, University of Manchester, Manchester, UK
| | - Paul N Bishop
- Division of Evolution & Genomic Sciences, School of Biological Sciences, FBMH, University of Manchester, Manchester, UK; Manchester Royal Eye Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - James W Bainbridge
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK.
| |
Collapse
|
4
|
Youkilis JC, Bassnett S. Single-cell RNA-sequencing analysis of the ciliary epithelium and contiguous tissues in the mouse eye. Exp Eye Res 2021; 213:108811. [PMID: 34717927 PMCID: PMC8860325 DOI: 10.1016/j.exer.2021.108811] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/08/2021] [Accepted: 10/24/2021] [Indexed: 12/12/2022]
Abstract
The ciliary epithelium plays a central role in ocular homeostasis but cells of the pigmented and non-pigmented layers are difficult to isolate physically and study. Here we used single-cell RNA-sequencing (scRNA-seq) to analyze the transcriptional signatures of cells harvested from the ciliary body and contiguous tissues. Microdissected tissue was dissociated by collagenase digestion and the transcriptomes of individual cells were obtained using a droplet-based scRNA-seq approach. In situ hybridization was used to verify the expression patterns of selected differentially-expressed genes. High quality transcriptomes were obtained from 10,024 cells and unsupervised clustering distinguished 22 cell types. Although efforts were made to specifically isolate the ciliary body, approximately half of the sequenced cells were derived from the adjacent retina. Cluster identities were assigned using expression of canonical markers or cluster-specific genes. The transcriptional signature of cells in the PCE and NPCE were distinct from each other and from cells in contiguous tissues. PCE cell transcriptomes were characterized by genes involved in melanin synthesis and transport proteins such as Slc4a4. Among the most differentially expressed genes in NPCE cells were those encoding members of the Zic family of transcription factors (Zic1, 2, 4), collagen XVIII (Col18a1), and corticotrophin-releasing hormone-binding protein (Crhbp). The ocular melanocyte population was distinguished by expression of the gap junction genes Gjb2 and Gjb6. Two fibroblast signatures were detected in the ciliary body preparation and shown by in situ hybridization to correspond to uveal and scleral populations. This cell atlas for the ciliary body and contiguous layers represents a useful resource that may facilitate studies into the development of the ciliary epithelium, the production of the aqueous and vitreous humors, and the synthesis of the ciliary zonule.
Collapse
Affiliation(s)
- J C Youkilis
- Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - S Bassnett
- Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
5
|
Small Leucine-Rich Proteoglycans (SLRPs) in the Retina. Int J Mol Sci 2021; 22:ijms22147293. [PMID: 34298915 PMCID: PMC8305803 DOI: 10.3390/ijms22147293] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 01/17/2023] Open
Abstract
Retinal diseases such as age-related macular degeneration (AMD), retinopathy of prematurity (ROP), and diabetic retinopathy (DR) are the leading causes of visual impairment worldwide. There is a critical need to understand the structural and cellular components that play a vital role in the pathophysiology of retinal diseases. One potential component is the family of structural proteins called small leucine-rich proteoglycans (SLRPs). SLRPs are crucial in many fundamental biological processes involved in the maintenance of retinal homeostasis. They are present within the extracellular matrix (ECM) of connective and vascular tissues and contribute to tissue organization and modulation of cell growth. They play a vital role in cell–matrix interactions in many upstream signaling pathways involved in fibrillogenesis and angiogenesis. In this comprehensive review, we describe the expression patterns and function of SLRPs in the retina, including Biglycan and Decorin from class I; Fibromodulin, Lumican, and a Proline/arginine-rich end leucine-rich repeat protein (PRELP) from class II; Opticin and Osteoglycin/Mimecan from class III; and Chondroadherin (CHAD), Tsukushi and Nyctalopin from class IV.
Collapse
|
6
|
Pang J, Le L, Zhou Y, Tu R, Hou Q, Tsuchiya D, Thomas N, Wang Y, Yu Z, Alexander R, Thexton M, Lewis B, Corbin T, Durnin M, Li H, Ashery-Padan R, Yan D, Xie T. NOTCH Signaling Controls Ciliary Body Morphogenesis and Secretion by Directly Regulating Nectin Protein Expression. Cell Rep 2021; 34:108603. [PMID: 33440163 DOI: 10.1016/j.celrep.2020.108603] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 11/20/2020] [Accepted: 12/14/2020] [Indexed: 11/29/2022] Open
Abstract
Anterior segment dysgenesis is often associated with cornea diseases, cataracts, and glaucoma. In the anterior segment, the ciliary body (CB) containing inner and outer ciliary epithelia (ICE and OCE) secretes aqueous humor that maintains intraocular pressure (IOP). However, CB development and function remain poorly understood. Here, this study shows that NOTCH signaling in the CB maintains the vitreous, IOP, and eye structures by regulating CB morphogenesis, aqueous humor secretion, and vitreous protein expression. Notch2 and Notch3 function via RBPJ in the CB to control ICE-OCE adhesion, CB morphogenesis, aqueous humor secretion, and protein expression, thus maintaining IOP and eye structures. Mechanistically, NOTCH signaling transcriptionally controls Nectin1 expression in the OCE to promote cell adhesion for driving CB morphogenesis and to directly stabilize Cx43 for controlling aqueous humor secretion. Finally, NOTCH signaling directly controls vitreous protein secretion in the ICE. Therefore, this study provides important insight into CB functions and involvement in eye diseases.
Collapse
Affiliation(s)
- Ji Pang
- Stowers Institute for Medical Research, 1000 East 50(th) Street, Kansas City, MO 64110, USA; School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Liang Le
- Stowers Institute for Medical Research, 1000 East 50(th) Street, Kansas City, MO 64110, USA
| | - Yi Zhou
- Stowers Institute for Medical Research, 1000 East 50(th) Street, Kansas City, MO 64110, USA; Department of Anatomy and Cell Biology, University of Kansas School of Medicine, 3901 Rainbow Blvd, Kansas City, KS 66160, USA
| | - Renjun Tu
- Stowers Institute for Medical Research, 1000 East 50(th) Street, Kansas City, MO 64110, USA
| | - Qiang Hou
- Stowers Institute for Medical Research, 1000 East 50(th) Street, Kansas City, MO 64110, USA; State Key Laboratory and Key Laboratory of Vision Science, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Dai Tsuchiya
- Stowers Institute for Medical Research, 1000 East 50(th) Street, Kansas City, MO 64110, USA
| | - Nancy Thomas
- Stowers Institute for Medical Research, 1000 East 50(th) Street, Kansas City, MO 64110, USA
| | - Yongfu Wang
- Stowers Institute for Medical Research, 1000 East 50(th) Street, Kansas City, MO 64110, USA
| | - Zulin Yu
- Stowers Institute for Medical Research, 1000 East 50(th) Street, Kansas City, MO 64110, USA
| | - Richard Alexander
- Stowers Institute for Medical Research, 1000 East 50(th) Street, Kansas City, MO 64110, USA
| | - Marina Thexton
- Stowers Institute for Medical Research, 1000 East 50(th) Street, Kansas City, MO 64110, USA
| | - Brandy Lewis
- Stowers Institute for Medical Research, 1000 East 50(th) Street, Kansas City, MO 64110, USA
| | - Timothy Corbin
- Stowers Institute for Medical Research, 1000 East 50(th) Street, Kansas City, MO 64110, USA
| | - Michael Durnin
- Stowers Institute for Medical Research, 1000 East 50(th) Street, Kansas City, MO 64110, USA
| | - Hua Li
- Stowers Institute for Medical Research, 1000 East 50(th) Street, Kansas City, MO 64110, USA
| | - Ruth Ashery-Padan
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Deyue Yan
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Ting Xie
- Stowers Institute for Medical Research, 1000 East 50(th) Street, Kansas City, MO 64110, USA; Department of Anatomy and Cell Biology, University of Kansas School of Medicine, 3901 Rainbow Blvd, Kansas City, KS 66160, USA.
| |
Collapse
|
7
|
Del Amo EM, Griffiths JR, Klaska IP, Hoke J, White A, Aarons L, Cooper GJS, Bainbridge JWB, Bishop PN, Unwin RD. Intravitreal Pharmacokinetic Study of the Antiangiogenic Glycoprotein Opticin. Mol Pharm 2020; 17:2390-2397. [PMID: 32437164 PMCID: PMC7341526 DOI: 10.1021/acs.molpharmaceut.0c00151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Opticin is an endogenous vitreous
glycoprotein that may have therapeutic
potential as it has been shown that supranormal concentrations suppress
preretinal neovascularization. Herein we investigated the pharmacokinetics
of opticin following intravitreal injection in rabbits. To measure
simultaneously concentrations of human and rabbit opticin, a selected
reaction monitoring mass spectrometry assay was developed. The mean
concentration of endogenous rabbit opticin in 7 uninjected eyes was
measured and found to be 19.2 nM or 0.62 μg/mL. When the vitreous
was separated by centrifugation into a supernatant and collagen-containing
pellet, 94% of the rabbit opticin was in the supernatant. Intravitreal
injection of human opticin (40 μg) into both eyes of rabbits
was followed by enucleation at 5, 24, and 72 h and 7, 14, and 28 days
postinjection (n = 6 at each time point) and measurement
of vitreous human and rabbit opticin concentrations in the supernatant
and collagen-containing pellet following centrifugation. The volume
of distribution of human opticin was calculated to be 3.31 mL, and
the vitreous half-life was 4.2 days. Assuming that rabbit and human
opticin are cleared from rabbit vitreous at the same rate, opticin
is secreted into the vitreous at a rate of 0.14 μg/day. We conclude
that intravitreally injected opticin has a vitreous half-life that
is similar to currently available antiangiogenic therapeutics. While
opticin was first identified bound to vitreous collagen fibrils, here
we demonstrate that >90% of endogenous opticin is not bound to
collagen.
Endogenous opticin is secreted by the nonpigmented ciliary epithelium
into the rabbit vitreous at a remarkably high rate, and the turnover
in vitreous is approximately 15% per day.
Collapse
Affiliation(s)
- Eva M Del Amo
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine & Health (FBMH), University of Manchester, Manchester M13 9PT, United Kingdom
| | - John R Griffiths
- Division of Cardiovascular Sciences, School of Medical Sciences, FBMH, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Izabela P Klaska
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, United Kingdom
| | - Justin Hoke
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, United Kingdom
| | - Anne White
- Division of Evolution & Genomic Sciences, School of Biological Sciences, FBMH, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Leon Aarons
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine & Health (FBMH), University of Manchester, Manchester M13 9PT, United Kingdom
| | - Garth J S Cooper
- Division of Cardiovascular Sciences, School of Medical Sciences, FBMH, University of Manchester, Manchester M13 9PT, United Kingdom
| | - James W B Bainbridge
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, United Kingdom
| | - Paul N Bishop
- Division of Evolution & Genomic Sciences, School of Biological Sciences, FBMH, University of Manchester, Manchester M13 9PL, United Kingdom.,Manchester Royal Eye Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9WL, United Kingdom
| | - Richard D Unwin
- Division of Cardiovascular Sciences, School of Medical Sciences, FBMH, University of Manchester, Manchester M13 9PT, United Kingdom.,Stoller Biomarker Discovery Centre and Division of Cancer Sciences, School of Medical Sciences, FBMH, University of Manchester, Manchester M13 9PL, United Kingdom
| |
Collapse
|
8
|
Sebag J. Vitreous and Vision Degrading Myodesopsia. Prog Retin Eye Res 2020; 79:100847. [PMID: 32151758 DOI: 10.1016/j.preteyeres.2020.100847] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 03/01/2020] [Accepted: 03/03/2020] [Indexed: 12/16/2022]
Abstract
Macromolecules comprise only 2% of vitreous, yet are responsible for its gel state, transparency, and physiologic function(s) within the eye. Myopia and aging alter collagen and hyaluronan association causing concurrent gel liquefaction and fibrous degeneration. The resulting vitreous opacities and collapse of the vitreous body during posterior vitreous detachment are the most common causes for the visual phenomenon of vitreous floaters. Previously considered innocuous, the vitreous opacities that cause floaters sometimes impact vision by profoundly degrading contrast sensitivity function and impairing quality-of-life. While many people adapt to vitreous floaters, clinically significant cases can be diagnosed with Vision Degrading Myodesopsia based upon echographic assessment of vitreous structure and by measuring contrast sensitivity function. Perhaps due to the ubiquity of floaters, the medical profession has to date largely ignored the plight of those with Vision Degrading Myodesopsia. Improved diagnostics will enable better disease staging and more accurate identification of severe cases that merit therapy. YAG laser treatments may occasionally be slightly effective, but vitrectomy is currently the definitive cure. Future developments will usher in more informative diagnostic approaches as well as safer and more effective therapeutic strategies. Improved laser treatments, new pharmacotherapies, and possibly non-invasive optical corrections are exciting new approaches to pursue. Ultimately, enhanced understanding of the underlying pathogenesis of Vision Degrading Myodesopsia should result in prevention, the ultimate goal of modern Medicine.
Collapse
Affiliation(s)
- J Sebag
- VMR Institute for Vitreous Macula Retina, Huntington Beach, CA, USA; Doheny Eye Institute, Pasadena, CA, USA; Department of Ophthalmology, Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| |
Collapse
|
9
|
Cleaved Cochlin Sequesters Pseudomonas aeruginosa and Activates Innate Immunity in the Inner Ear. Cell Host Microbe 2019; 25:513-525.e6. [DOI: 10.1016/j.chom.2019.02.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 12/14/2018] [Accepted: 02/05/2019] [Indexed: 02/06/2023]
|
10
|
Abstract
This chapter provides an overview of the early developmental origins of six ocular tissues: the cornea, lens, ciliary body, iris, neural retina, and retina pigment epithelium. Many of these tissue types are concurrently specified and undergo a complex set of morphogenetic movements that facilitate their structural interconnection. Within the context of vertebrate eye organogenesis, we also discuss the genetic hierarchies of transcription factors and signaling pathways that regulate growth, patterning, cell type specification and differentiation.
Collapse
Affiliation(s)
- Joel B Miesfeld
- Department of Cell Biology & Human Anatomy, University of California Davis School of Medicine, Davis, CA, United States
| | - Nadean L Brown
- Department of Cell Biology & Human Anatomy, University of California Davis School of Medicine, Davis, CA, United States.
| |
Collapse
|
11
|
Smith JN, Walker HM, Thompson H, Collinson JM, Vargesson N, Erskine L. Lens-regulated retinoic acid signalling controls expansion of the developing eye. Development 2018; 145:145/19/dev167171. [PMID: 30305274 DOI: 10.1242/dev.167171] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 09/14/2018] [Indexed: 12/21/2022]
Abstract
Absence of the developing lens results in severe eye defects, including substantial reductions in eye size. How the lens controls eye expansion and the underlying signalling pathways are very poorly defined. We identified RDH10, a gene crucial for retinoic acid synthesis during embryogenesis, as a key factor downregulated in the peripheral retina (presumptive ciliary body region) of lens-removed embryonic chicken eyes prior to overt reductions in eye size. This is associated with a significant decrease in retinoic acid synthesis by lens-removed eyes. Restoring retinoic acid signalling in lens-removed eyes by implanting beads soaked in retinoic acid or retinal, but not vitamin A, rescued eye size. Conversely, blocking retinoic acid synthesis decreased eye size in lens-containing eyes. Production of collagen II and collagen IX, which are major vitreal proteins, is also regulated by the lens and retinoic acid signalling. These data mechanistically link the known roles of both the lens and retinoic acid in normal eye development, and support a model whereby retinoic acid production by the peripheral retina acts downstream of the lens to support vitreous production and eye expansion.
Collapse
Affiliation(s)
- Jonathan N Smith
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Heather M Walker
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Hannah Thompson
- Department of Craniofacial Development and Stem Cell Biology, Kings College, London WC2R 2LS, UK
| | - J Martin Collinson
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Neil Vargesson
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Lynda Erskine
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| |
Collapse
|
12
|
Ashok A, Karmakar S, Chandel R, Ravikumar R, Dalal S, Kong Q, Singh N. Prion protein modulates iron transport in the anterior segment: Implications for ocular iron homeostasis and prion transmission. Exp Eye Res 2018; 175:1-13. [PMID: 29859760 PMCID: PMC6167182 DOI: 10.1016/j.exer.2018.05.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/17/2018] [Accepted: 05/30/2018] [Indexed: 12/14/2022]
Abstract
Iron is an essential biometal in the aqueous humor, the principal source of nutrients for the avascular cornea and the lens. Here, we explored whether the ciliary body (CB), the source of aqueous humor, transports iron, and if the prion protein (PrPC) facilitates this process as in the outer retina. Using a combination of human, bovine, and mouse eyes as models, we report the expression of iron export proteins ferroportin and ceruloplasmin, and major iron uptake and storage proteins transferrin, transferrin receptor, and ferritin in the ciliary epithelium, indicating active exchange of iron at this site. Ferroportin and transferrin receptor are also expressed in the corneal endothelium. However, the relative expression of iron export and uptake proteins suggests export from the ciliary epithelium and import by corneal endothelium. In addition, abundant expression of PrPC, a ferrireductase that facilitates iron transport, is noted in pigmented and non-pigmented epithelium of the CB, posterior pigmented epithelium of the iris, corneal endothelium and epithelium, and lens epithelium. Notably, majority of PrPC in the ciliary epithelium is cleaved at the β-site as in retinal pigment epithelial cells, suggesting a role in iron transport. Most of the PrPC in the cornea, however, is full-length, and susceptible to aggregation by intracerebrally inoculated PrP-scrapie, an infectious conformation of PrPC responsible for human and animal prion disorders. Soluble PrPC is present in the aqueous and vitreous humor, a provocative observation with significant implications. Together, these observations suggest independent cycling of iron in the anterior segment, and a prominent role of PrPC in this process. Aggregation of PrPC in the cornea of PrP-scrapie-infected animals raises the alarming possibility of transmission of animal prions through corneal abrasions.
Collapse
Affiliation(s)
- Ajay Ashok
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Shilpita Karmakar
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Rajeev Chandel
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Ranjana Ravikumar
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Stuti Dalal
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Qingzhong Kong
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Neena Singh
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
13
|
Hendee KE, Sorokina EA, Muheisen SS, Reis LM, Tyler RC, Markovic V, Cuturilo G, Link BA, Semina EV. PITX2 deficiency and associated human disease: insights from the zebrafish model. Hum Mol Genet 2018; 27:1675-1695. [PMID: 29506241 PMCID: PMC5932568 DOI: 10.1093/hmg/ddy074] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/30/2018] [Accepted: 02/26/2018] [Indexed: 02/06/2023] Open
Abstract
The PITX2 (paired-like homeodomain 2) gene encodes a bicoid-like homeodomain transcription factor linked with several human disorders. The main associated congenital phenotype is Axenfeld-Rieger syndrome, type 1, an autosomal dominant condition characterized by variable defects in the anterior segment of the eye, an increased risk of glaucoma, craniofacial dysmorphism and dental and umbilical anomalies; in addition to this, one report implicated PITX2 in ring dermoid of the cornea and a few others described cardiac phenotypes. We report three novel PITX2 mutations-c.271C > T, p.(Arg91Trp); c.259T > C, p.(Phe87Leu); and c.356delA, p.(Gln119Argfs*36)-identified in independent families with typical Axenfeld-Rieger syndrome characteristics and some unusual features such as corneal guttata, Wolf-Parkinson-White syndrome, and hyperextensibility. To gain further insight into the diverse roles of PITX2/pitx2 in vertebrate development, we generated various genetic lesions in the pitx2 gene via TALEN-mediated genome editing. Affected homozygous zebrafish demonstrated congenital defects consistent with the range of PITX2-associated human phenotypes: abnormal development of the cornea, iris and iridocorneal angle; corneal dermoids; and craniofacial dysmorphism. In addition, via comparison of pitx2M64* and wild-type embryonic ocular transcriptomes we defined molecular changes associated with pitx2 deficiency, thereby implicating processes potentially underlying disease pathology. This analysis identified numerous affected factors including several members of the Wnt pathway and collagen types I and V gene families. These data further support the link between PITX2 and the WNT pathway and suggest a new role in regulation of collagen gene expression during development.
Collapse
Affiliation(s)
- Kathryn E Hendee
- Department of Pediatrics and Children’s Research Institute Medical College of Wisconsin and Children's Hospital of Wisconsin, Milwaukee, WI 53226, USA
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Elena A Sorokina
- Department of Pediatrics and Children’s Research Institute Medical College of Wisconsin and Children's Hospital of Wisconsin, Milwaukee, WI 53226, USA
| | - Sanaa S Muheisen
- Department of Pediatrics and Children’s Research Institute Medical College of Wisconsin and Children's Hospital of Wisconsin, Milwaukee, WI 53226, USA
| | - Linda M Reis
- Department of Pediatrics and Children’s Research Institute Medical College of Wisconsin and Children's Hospital of Wisconsin, Milwaukee, WI 53226, USA
| | - Rebecca C Tyler
- Department of Pediatrics and Children’s Research Institute Medical College of Wisconsin and Children's Hospital of Wisconsin, Milwaukee, WI 53226, USA
| | - Vujica Markovic
- Faculty of Medicine, University of Belgrade, Serbia
- Clinical Centre of Serbia, University Eye Hospital, Belgrade, Serbia
| | - Goran Cuturilo
- Faculty of Medicine, University of Belgrade, Serbia
- Department of Medical Genetics, University Children’s Hospital, Belgrade, Serbia
| | - Brian A Link
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Ophthalmology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Elena V Semina
- Department of Pediatrics and Children’s Research Institute Medical College of Wisconsin and Children's Hospital of Wisconsin, Milwaukee, WI 53226, USA
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Ophthalmology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
14
|
Postnatal evolution of the ciliary processes in the gerbil (Meriones unguiculatus): a structural, ultrastructural and morphometric study. ZOOMORPHOLOGY 2017. [DOI: 10.1007/s00435-017-0378-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
Schnepf A, Yappert MC, Borchman D. Regional distribution of phospholipids in porcine vitreous humor. Exp Eye Res 2017; 160:116-125. [PMID: 28552385 DOI: 10.1016/j.exer.2017.05.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 04/27/2017] [Accepted: 05/18/2017] [Indexed: 01/08/2023]
Abstract
This project explores the regional phospholipid distribution in porcine vitreous humor, retina, and lens. Matrix-assisted laser desorption mass spectrometry has been used previously to image lipids, proteins, and other metabolites in retinas and lenses. However, the regional composition of phospholipids in vitreous humors is not known. To address this issue, we have applied this mass spectral method to explore the regional phospholipid distribution in porcine vitreous humor both ex-situ and in-vitro. To establish the possible source(s) of phospholipids in the vitreous humor, compositional studies of the lens and retina were also pursued. Due to the overall low levels of phospholipids in vitreous humor, it was necessary to optimize the experimental approaches for ex-situ and in-vitro studies. The sensitivity observed in the spectra of methanol extracts from the lens and retina was higher than that for methanol:chloroform extracts, but the compositional trends were the same. A fourfold improvement in sensitivity was observed in the analysis of vitreous humor extracts obtained with the Bligh and Dyer protocol relative to the other two extraction methods. For ex-situ studies, the 'stamp method' with para-nitroaniline as the matrix was chosen. Throughout the vitreous humor, phosphatidylcholines were the most abundant phospholipids. In-vitro results showed higher relative levels of phospholipids compared to the 'stamp' method. However, more details in the regional phospholipid distribution were provided by the ex-situ approach. Both in-vitro and ex-situ results indicated higher levels of phospholipids in the posterior vitreous region, followed by the anterior and central regions. The posterior region contained more unsaturated species whereas more saturated phospholipids were detected in the anterior region. The observed trends suggest that the phospholipids detected in the posterior vitreous humor migrate from the retina and associated vasculature while those present in the anterior regions are likely to derive from the lens. Not all species found in the lens were observed in the vitreous humor. For example, whereas cholesterol was present in lens extracts, it was not detected in the vitreous humor. Overall, the higher relative abundance of unsaturated species in the posterior vitreous humor and also present in the retina suggests that these species may be able to disrupt the water-collagen-hyaluronan network and contribute to vitreous liquefaction.
Collapse
Affiliation(s)
- Abigail Schnepf
- Department of Chemistry, University of Louisville, Louisville KY, USA
| | | | - Douglas Borchman
- Department of Ophthalmology and Visual Sciences, University of Louisville, Louisville KY, USA
| |
Collapse
|
16
|
Lumi X, Hawlina M, Glavač D, Facskó A, Moe MC, Kaarniranta K, Petrovski G. Ageing of the vitreous: From acute onset floaters and flashes to retinal detachment. Ageing Res Rev 2015; 21:71-7. [PMID: 25841656 DOI: 10.1016/j.arr.2015.03.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Revised: 03/23/2015] [Accepted: 03/30/2015] [Indexed: 01/29/2023]
Abstract
Floaters and flashes are most commonly symptoms of age-related degenerative changes in the vitreous body and posterior vitreous detachment. The etiology and pathogenesis of floaters' formation is still not well understood. Patients with acute-onset floaters, flashes and defects in their visual field, represent a medical emergency with the need for same day referral to an ophthalmologist. Indirect ophthalmoscopy with scleral indentation is needed in order to find possible retinal break(s), on-time treatment and prevention of retinal detachment. The molecular and genetic pathogenesis, as well as the epidemiology of the ageing changes of the vitreous is summarized here, with view on the several treatment modalities in relation to their success rate and side-effects.
Collapse
Affiliation(s)
- Xhevat Lumi
- Eye Hospital, University Medical Centre, Ljubljana, Slovenia.
| | - Marko Hawlina
- Eye Hospital, University Medical Centre, Ljubljana, Slovenia.
| | - Damjan Glavač
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Slovenia.
| | - Andrea Facskó
- Department of Ophthalmology, Faculty of Medicine, University of Szeged, Hungary.
| | - Morten C Moe
- Center for Eye Research, Department of Ophthalmology, Oslo University Hospital and University of Oslo, and Norwegian Center for Stem Cell Research, Norway.
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine and Kuopio University Hospital, University of Eastern Finland, Finland.
| | - Goran Petrovski
- Department of Ophthalmology, Faculty of Medicine, University of Szeged, Hungary; Center for Eye Research, Department of Ophthalmology, Oslo University Hospital and University of Oslo, and Norwegian Center for Stem Cell Research, Norway.
| |
Collapse
|
17
|
Rainger J, Keighren M, Keene DR, Charbonneau NL, Rainger JK, Fisher M, Mella S, Huang JTJ, Rose L, van't Hof R, Sakai LY, Jackson IJ, FitzPatrick DR. A trans-acting protein effect causes severe eye malformation in the Mp mouse. PLoS Genet 2013; 9:e1003998. [PMID: 24348270 PMCID: PMC3861116 DOI: 10.1371/journal.pgen.1003998] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 10/18/2013] [Indexed: 12/18/2022] Open
Abstract
Mp is an irradiation-induced mouse mutation associated with microphthalmia, micropinna and hind limb syndactyly. We show that Mp is caused by a 660 kb balanced inversion on chromosome 18 producing reciprocal 3-prime gene fusion events involving Fbn2 and Isoc1. The Isoc1-Fbn2 fusion gene (Isoc1Mp) mRNA has a frameshift and early stop codon resulting in nonsense mediated decay. Homozygous deletions of Isoc1 do not support a significant developmental role for this gene. The Fbn2-Isoc1 fusion gene (Fbn2Mp) predicted protein consists of the N-terminal Fibrillin-2 (amino acids 1–2646, exons 1–62) lacking the C-terminal furin-cleavage site with a short out-of-frame extension encoded by the final exon of Isoc1. The Mp limb phenotype is consistent with that reported in Fbn2 null embryos. However, severe eye malformations, a defining feature of Mp, are not seen in Fbn2 null animals. Fibrillin-2Mp forms large fibrillar structures within the rough endoplasmic reticulum (rER) associated with an unfolded protein response and quantitative mass spectrometry shows a generalised defect in protein secretion in conditioned media from mutant cells. In the embryonic eye Fbn2 is expressed within the peripheral ciliary margin (CM). Mp embryos show reduced canonical Wnt-signalling in the CM – known to be essential for ciliary body development - and show subsequent aplasia of CM-derived structures. We propose that the Mp “worse-than-null” eye phenotype plausibly results from a failure in normal trafficking of proteins that are co-expressed with Fbn2 within the CM. The prediction of similar trans-acting protein effects will be an important challenge in the medical interpretation of human mutations from whole exome sequencing. With the current increase in large-scale sequencing efforts, correct interpretation of mutation consequences has never been more important. Here, we present evidence for a trans-acting protein effect in a novel mutation of Fbn2, associated with severe developmental eye defects not found in loss of function Fibrillin-2 alleles. The mutant protein is expressed in the developing eye but is unable to exit the cells, instead forming large protein aggregates within the endoplasmic reticulum. We observed ER-stress in mutant eyes, and detected a general reduction to secretion of co-expressed proteins in cell cultures. We propose that similar effects could be caused by mutations to other proteins that are trafficked through the ER, highlighting a disease mechanism that results in different clinical outcomes than observed, or predicted, from loss-off-function alleles.
Collapse
Affiliation(s)
- Joe Rainger
- The MRC Human Genetics Unit, MRC Institute of Genetic and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | - Margaret Keighren
- The MRC Human Genetics Unit, MRC Institute of Genetic and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | - Douglas R. Keene
- Shriners Hospital for Children, Portland, Oregon, United States of America
| | - Noe L. Charbonneau
- Shriners Hospital for Children, Portland, Oregon, United States of America
| | - Jacqueline K. Rainger
- The MRC Human Genetics Unit, MRC Institute of Genetic and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | - Malcolm Fisher
- The MRC Human Genetics Unit, MRC Institute of Genetic and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | - Sebastien Mella
- The MRC Human Genetics Unit, MRC Institute of Genetic and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | - Jeffrey T-J. Huang
- Biomarker and Drug Analysis Core Facility, Medical Research Institute, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Lorraine Rose
- Molecular Medicine Centre, MRC Institute of Genetic and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | - Rob van't Hof
- Molecular Medicine Centre, MRC Institute of Genetic and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | - Lynne Y. Sakai
- Shriners Hospital for Children, Portland, Oregon, United States of America
| | - Ian J. Jackson
- The MRC Human Genetics Unit, MRC Institute of Genetic and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
- * E-mail: (IJJ); (DRF)
| | - David R. FitzPatrick
- The MRC Human Genetics Unit, MRC Institute of Genetic and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
- * E-mail: (IJJ); (DRF)
| |
Collapse
|
18
|
Janssen SF, Gorgels TG, Ramdas WD, Klaver CC, van Duijn CM, Jansonius NM, Bergen AA. The vast complexity of primary open angle glaucoma: Disease genes, risks, molecular mechanisms and pathobiology. Prog Retin Eye Res 2013; 37:31-67. [DOI: 10.1016/j.preteyeres.2013.09.001] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 07/26/2013] [Accepted: 09/03/2013] [Indexed: 12/21/2022]
|
19
|
Goel R, Murthy KR, Srikanth SM, Pinto SM, Bhattacharjee M, Kelkar DS, Madugundu AK, Dey G, Mohan SS, Krishna V, Prasad TK, Chakravarti S, Harsha HC, Pandey A. Characterizing the normal proteome of human ciliary body. Clin Proteomics 2013; 10:9. [PMID: 23914977 PMCID: PMC3750387 DOI: 10.1186/1559-0275-10-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 07/16/2013] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The ciliary body is the circumferential muscular tissue located just behind the iris in the anterior chamber of the eye. It plays a pivotal role in the production of aqueous humor, maintenance of the lens zonules and accommodation by changing the shape of the crystalline lens. The ciliary body is the major target of drugs against glaucoma as its inhibition leads to a drop in intraocular pressure. A molecular study of the ciliary body could provide a better understanding about the pathophysiological processes that occur in glaucoma. Thus far, no large-scale proteomic investigation has been reported for the human ciliary body. RESULTS In this study, we have carried out an in-depth LC-MS/MS-based proteomic analysis of normal human ciliary body and have identified 2,815 proteins. We identified a number of proteins that were previously not described in the ciliary body including importin 5 (IPO5), atlastin-2 (ATL2), B-cell receptor associated protein 29 (BCAP29), basigin (BSG), calpain-1 (CAPN1), copine 6 (CPNE6), fibulin 1 (FBLN1) and galectin 1 (LGALS1). We compared the plasma proteome with the ciliary body proteome and found that the large majority of proteins in the ciliary body were also detectable in the plasma while 896 proteins were unique to the ciliary body. We also classified proteins using pathway enrichment analysis and found most of proteins associated with ubiquitin pathway, EIF2 signaling, glycolysis and gluconeogenesis. CONCLUSIONS More than 95% of the identified proteins have not been previously described in the ciliary body proteome. This is the largest catalogue of proteins reported thus far in the ciliary body that should provide new insights into our understanding of the factors involved in maintaining the secretion of aqueous humor. The identification of these proteins will aid in understanding various eye diseases of the anterior segment such as glaucoma and presbyopia.
Collapse
Affiliation(s)
- Renu Goel
- Institute of Bioinformatics, International Technology Park, Bangalore 560 066, India.,Department of Biotechnology, Kuvempu University, Shankaraghatta, Shimoga 577 451, Karnataka, India
| | - Krishna R Murthy
- Institute of Bioinformatics, International Technology Park, Bangalore 560 066, India.,Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690 525, Kerala, India.,Vittala International Institute Of Ophthalmology, Bangalore 560 085, Karnataka, India
| | - Srinivas M Srikanth
- Institute of Bioinformatics, International Technology Park, Bangalore 560 066, India.,Centre of Excellence in Bioinformatics, Bioinformatics Centre, School of Life Sciences, Pondicherry University, Puducherry 605 014, India
| | - Sneha M Pinto
- Institute of Bioinformatics, International Technology Park, Bangalore 560 066, India.,Manipal University, Madhav Nagar, Manipal 576104, Karnataka, India
| | - Mitali Bhattacharjee
- Institute of Bioinformatics, International Technology Park, Bangalore 560 066, India.,Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690 525, Kerala, India
| | - Dhanashree S Kelkar
- Institute of Bioinformatics, International Technology Park, Bangalore 560 066, India.,Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690 525, Kerala, India
| | - Anil K Madugundu
- Institute of Bioinformatics, International Technology Park, Bangalore 560 066, India
| | - Gourav Dey
- Institute of Bioinformatics, International Technology Park, Bangalore 560 066, India
| | - Sujatha S Mohan
- Institute of Bioinformatics, International Technology Park, Bangalore 560 066, India.,Department of Biotechnology, Kuvempu University, Shankaraghatta, Shimoga 577 451, Karnataka, India.,Research Unit for Immunoinformatics, RIKEN Research Center for Allergy and Immunology, RIKEN Yokohama Institute, Kanagawa 230 0045, Japan
| | - Venkatarangaiah Krishna
- Department of Biotechnology, Kuvempu University, Shankaraghatta, Shimoga 577 451, Karnataka, India
| | - Ts Keshava Prasad
- Institute of Bioinformatics, International Technology Park, Bangalore 560 066, India.,Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690 525, Kerala, India.,Manipal University, Madhav Nagar, Manipal 576104, Karnataka, India
| | - Shukti Chakravarti
- Johns Hopkins University School of Medicine, Baltimore 21205, MD, USA.,Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, MD, USA.,Department of Ophthalmology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - H C Harsha
- Institute of Bioinformatics, International Technology Park, Bangalore 560 066, India
| | - Akhilesh Pandey
- Johns Hopkins University School of Medicine, Baltimore 21205, MD, USA.,McKusick-Nathans Institute of Genetic Medicine, Departments of Biological Chemistry, Oncology and Pathology, Johns Hopkins University School of Medicine, Baltimore 21205, MD, USA
| |
Collapse
|
20
|
Rikitake Y, Mandai K, Takai Y. The role of nectins in different types of cell-cell adhesion. J Cell Sci 2013; 125:3713-22. [PMID: 23027581 DOI: 10.1242/jcs.099572] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Mammalian tissues and organs are composed of different types of cells that adhere to each other homotypically (i.e. interactions between cells of the same cell type) or heterotypically (i.e. interactions between different cell types), forming a variety of cellular patterns, including mosaic patterns. At least three types of cell-cell adhesion have been observed: symmetric homotypic, asymmetric homotypic and heterotypic cell adhesions. Cadherins and nectins, which are known cell-cell adhesion molecules, mediate these cell adhesions. Cadherins comprise a family of more than 100 members, but they are primarily involved in homophilic trans-interactions (i.e. interactions between the same cadherin members) between opposing cells. By contrast, the nectin family comprises only four members, and these proteins form both homophilic and heterophilic trans-interactions (i.e. interactions between the same and different nectin members on opposing cells). In addition, heterophilic trans-interactions between nectins are much stronger than homophilic trans-interactions. Because of these unique properties, nectins have crucial roles in asymmetric homotypic cell-cell adhesion at neuronal synapses and in various types of heterotypic cell-cell adhesions. We summarize recent progress in our understanding of the biology of nectins and discuss their roles in heterotypic cell-cell adhesions, whose formation cannot be solely explained by the action of cadherins.
Collapse
Affiliation(s)
- Yoshiyuki Rikitake
- Division of Molecular and Cellular Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | | | | |
Collapse
|
21
|
Bemelmans AP, Duqué S, Rivière C, Astord S, Desrosiers M, Marais T, Sahel JA, Voit T, Barkats M. A single intravenous AAV9 injection mediates bilateral gene transfer to the adult mouse retina. PLoS One 2013; 8:e61618. [PMID: 23613884 PMCID: PMC3626698 DOI: 10.1371/journal.pone.0061618] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 03/15/2013] [Indexed: 11/25/2022] Open
Abstract
Widespread gene delivery to the retina is an important challenge for the treatment of retinal diseases, such as retinal dystrophies. We and others have recently shown that the intravenous injection of a self-complementary (sc) AAV9 vector can direct efficient cell transduction in the central nervous system, in both neonatal and adult animals. We show here that the intravenous injection of scAAV9 encoding green fluorescent protein (GFP) resulted in gene transfer to all layers of the retina in adult mice, despite the presence of a mature blood-eye barrier. Cell morphology studies and double-labeling with retinal cell-specific markers showed that GFP was expressed in retinal pigment epithelium cells, photoreceptors, bipolar cells, Müller cells and retinal ganglion cells. The cells on the inner side of the retina, including retinal ganglion cells in particular, were transduced with the highest efficiency. Quantification of the cell population co-expressing GFP and Brn-3a showed that 45% of the retinal ganglion cells were efficiently transduced after intravenous scAAV9-GFP injection in adult mice. This study provides the first demonstration that a single intravenous scAAV9 injection can deliver transgenes to the retinas of both eyes in adult mice, suggesting that this vector serotype is able to cross mature blood-eye barriers. This intravascular gene transfer approach, by eliminating the potential invasiveness of ocular surgery, could constitute an alternative when fragility of the retina precludes subretinal or intravitreal injections of viral vectors, opening up new possibilities for gene therapy for retinal diseases.
Collapse
Affiliation(s)
- Alexis-Pierre Bemelmans
- INSERM, U968, Paris, France
- Institut de la Vision, Université Pierre et Marie Curie Paris 6 - UM80, Paris, France
- UMR_7210, CNRS, Paris, France
- Molecular Imaging Research Center (MIRCen) and CNRS URA2210, Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Département des Sciences du Vivant (DSV), Institut d’Imagerie Biomédicale (I2BM), Fontenay-aux-Roses, France
| | - Sandra Duqué
- UM76 UPMC-AIM UMR S974, INSERM U 974, CNRS UMR 7215, Institut de Myologie, Université Pierre et Marie Curie Paris 6, Paris, France
| | | | - Stéphanie Astord
- UM76 UPMC-AIM UMR S974, INSERM U 974, CNRS UMR 7215, Institut de Myologie, Université Pierre et Marie Curie Paris 6, Paris, France
| | - Mélissa Desrosiers
- INSERM, U968, Paris, France
- Institut de la Vision, Université Pierre et Marie Curie Paris 6 - UM80, Paris, France
- UMR_7210, CNRS, Paris, France
| | - Thibault Marais
- UM76 UPMC-AIM UMR S974, INSERM U 974, CNRS UMR 7215, Institut de Myologie, Université Pierre et Marie Curie Paris 6, Paris, France
| | - José-Alain Sahel
- INSERM, U968, Paris, France
- Institut de la Vision, Université Pierre et Marie Curie Paris 6 - UM80, Paris, France
- UMR_7210, CNRS, Paris, France
- INSERM-DHOS CIC 503, Centre Hospitalier National d’Ophtalmologie des Quinze-Vingts, Paris, France
| | - Thomas Voit
- UM76 UPMC-AIM UMR S974, INSERM U 974, CNRS UMR 7215, Institut de Myologie, Université Pierre et Marie Curie Paris 6, Paris, France
| | - Martine Barkats
- UM76 UPMC-AIM UMR S974, INSERM U 974, CNRS UMR 7215, Institut de Myologie, Université Pierre et Marie Curie Paris 6, Paris, France
- * E-mail:
| |
Collapse
|
22
|
Keenan TDL, Clark SJ, Unwin RD, Ridge LA, Day AJ, Bishop PN. Mapping the differential distribution of proteoglycan core proteins in the adult human retina, choroid, and sclera. Invest Ophthalmol Vis Sci 2012; 53:7528-38. [PMID: 23074202 DOI: 10.1167/iovs.12-10797] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
PURPOSE To examine the presence and distribution of proteoglycan (PG) core proteins in the adult human retina, choroid, and sclera. METHODS Postmortem human eye tissue was dissected into Bruch's membrane/choroid complex, isolated Bruch's membrane, or neurosensory retina. PGs were extracted and partially purified by anion exchange chromatography. Trypsinized peptides were analyzed by tandem mass spectrometry and PG core proteins identified by database search. The distribution of PGs was examined by immunofluorescence microscopy on human macular tissue sections. RESULTS The basement membrane PGs perlecan, agrin, and collagen-XVIII were identified in the human retina, and were present in the internal limiting membrane, blood vessel walls, and Bruch's membrane. The hyalectans versican and aggrecan were also detected. Versican was identified in Bruch's membrane, while aggrecan was distributed throughout the retina, choroid, and sclera. The cartilage link protein HAPLN1 was abundant in the interphotoreceptor matrix and sclera, while HAPLN4 (brain link protein 2) was found throughout the retina and choroid. The small leucine-rich repeat PG (SLRP) family members biglycan, decorin, fibromodulin, lumican, mimecan, opticin, and prolargin were present, with different patterns of distribution in the retina, choroid, and sclera. CONCLUSIONS A combination of proteomics and immunohistochemistry approaches has provided for the first time a comprehensive analysis of the presence and distribution of PG core proteins throughout the human retina, choroid, and sclera. This complements our knowledge of glycosaminoglycan chain distribution in the human eye, and has important implications for understanding the structure and functional regulation of the eye in health and disease.
Collapse
Affiliation(s)
- Tiarnan D L Keenan
- Centre for Ophthalmology and Vision Research, Institute of Human Development, Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | | | | | | | | | | |
Collapse
|
23
|
Janssen SF, Gorgels TGMF, Bossers K, ten Brink JB, Essing AHW, Nagtegaal M, van der Spek PJ, Jansonius NM, Bergen AAB. Gene expression and functional annotation of the human ciliary body epithelia. PLoS One 2012; 7:e44973. [PMID: 23028713 PMCID: PMC3445623 DOI: 10.1371/journal.pone.0044973] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 08/15/2012] [Indexed: 12/01/2022] Open
Abstract
Purpose The ciliary body (CB) of the human eye consists of the non-pigmented (NPE) and pigmented (PE) neuro-epithelia. We investigated the gene expression of NPE and PE, to shed light on the molecular mechanisms underlying the most important functions of the CB. We also developed molecular signatures for the NPE and PE and studied possible new clues for glaucoma. Methods We isolated NPE and PE cells from seven healthy human donor eyes using laser dissection microscopy. Next, we performed RNA isolation, amplification, labeling and hybridization against 44×k Agilent microarrays. For microarray conformations, we used a literature study, RT-PCRs, and immunohistochemical stainings. We analyzed the gene expression data with R and with the knowledge database Ingenuity. Results The gene expression profiles and functional annotations of the NPE and PE were highly similar. We found that the most important functionalities of the NPE and PE were related to developmental processes, neural nature of the tissue, endocrine and metabolic signaling, and immunological functions. In total 1576 genes differed statistically significantly between NPE and PE. From these genes, at least 3 were cell-specific for the NPE and 143 for the PE. Finally, we observed high expression in the (N)PE of 35 genes previously implicated in molecular mechanisms related to glaucoma. Conclusion Our gene expression analysis suggested that the NPE and PE of the CB were quite similar. Nonetheless, cell-type specific differences were found. The molecular machineries of the human NPE and PE are involved in a range of neuro-endocrinological, developmental and immunological functions, and perhaps glaucoma.
Collapse
Affiliation(s)
- Sarah F. Janssen
- Department of Clinical and Molecular Ophthalmogenetics, the Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Theo G. M. F. Gorgels
- Department of Clinical and Molecular Ophthalmogenetics, the Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Koen Bossers
- Laboratory for Neuroregeneration, the Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Jacoline B. ten Brink
- Department of Clinical and Molecular Ophthalmogenetics, the Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Anke H. W. Essing
- Department of Clinical and Molecular Ophthalmogenetics, the Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Martijn Nagtegaal
- Department of Clinical and Molecular Ophthalmogenetics, the Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Peter J. van der Spek
- Department of Bioinformatics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Nomdo M. Jansonius
- Department of Ophthalmology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Arthur A. B. Bergen
- Department of Clinical and Molecular Ophthalmogenetics, the Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
- Department of Ophthalmology, Academic Medical Centre, Amsterdam, The Netherlands
- Department of Clinical Genetics, Academic Medical Centre, Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|
24
|
Proteomic analyses of the vitreous humour. Mediators Inflamm 2012; 2012:148039. [PMID: 22973072 PMCID: PMC3437669 DOI: 10.1155/2012/148039] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2012] [Accepted: 08/03/2012] [Indexed: 11/17/2022] Open
Abstract
The human vitreous humour (VH) is a transparent, highly hydrated gel, which occupies the posterior segment of the eye between the lens and the retina. Physiological and pathological conditions of the retina are reflected in the protein composition of the VH, which can be sampled as part of routine surgical procedures. Historically, many studies have investigated levels of individual proteins in VH from healthy and diseased eyes. In the last decade, proteomics analyses have been performed to characterise the proteome of the human VH and explore networks of functionally related proteins, providing insight into the aetiology of diabetic retinopathy and proliferative vitreoretinopathy. Recent proteomic studies on the VH from animal models of autoimmune uveitis have identified new signalling pathways associated to autoimmune triggers and intravitreal inflammation. This paper aims to guide biological scientists through the different proteomic techniques that have been used to analyse the VH and present future perspectives for the study of intravitreal inflammation using proteomic analyses.
Collapse
|
25
|
Dellett M, Hu W, Papadaki V, Ohnuma SI. Small leucine rich proteoglycan family regulates multiple signalling pathways in neural development and maintenance. Dev Growth Differ 2012; 54:327-40. [DOI: 10.1111/j.1440-169x.2012.01339.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Margaret Dellett
- University College London (UCL) Institute of Ophthalmology; UCL; London; UK
| | - Wanzhou Hu
- University College London (UCL) Institute of Ophthalmology; UCL; London; UK
| | - Vasiliki Papadaki
- University College London (UCL) Institute of Ophthalmology; UCL; London; UK
| | - Shin-ichi Ohnuma
- University College London (UCL) Institute of Ophthalmology; UCL; London; UK
| |
Collapse
|
26
|
Ma J, Zhu TP, Moe MC, Ye P, Yao K. Opticin production is reduced by hypoxia and VEGF in human retinal pigment epithelium via MMP-2 activation. Cytokine 2012; 59:100-7. [PMID: 22534113 DOI: 10.1016/j.cyto.2012.03.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2011] [Accepted: 03/29/2012] [Indexed: 01/17/2023]
Abstract
Opticin, a small leucine rich repeat protein (SLRP) contributes to vitreoretinal adhesion. This study was conducted to investigate the effects of hypoxia and vascular endothelial growth factor (VEGF) on matrix metalloproteinase (MMP) mediated opticin production in retinal pigment epithelium (RPE) cells. Primary cultured human RPE cells were treated with hypoxia (low oxygen and cobalt chloride) or VEGF (0-100 ng/mL). The mRNA levels of opticin and the protein levels of intra and extracellular opticin in RPE cells were examined by RT-PCR and Western blot assay, respectively. Furthermore, the MMP activity was analyzed by zymography, and EDTA was used as an MMP inhibitor. Analysis of the effect of MMP-2 on opticin was performed by recombinant human (rh) MMP-2 stimulation in RPE cultures and by human vitreous sample digestion with activated rhMMP-2. Our results showed that opticin was expressed by primary cultured human RPE cells. Hypoxia and VEGF stimulation did not alter opticin mRNA and protein expression in RPE cells, but markedly decreased the protein levels of extracellular opticin following increased latent MMP-2 activity. The VEGF- and hypoxia induced opticin degradation in the culture medium was blocked by EDTA. Together, opticin levels in the culture medium were also reduced after rhMMP-2 treatment. In addition, opticin in human vitreous samples could be cleaved by rhMMP-2. These results reveal that VEGF and hypoxia could decrease opticin protein levels in the human RPE secretome, and that opticin may be an enzymatic substrate for MMP-2.
Collapse
Affiliation(s)
- Jin Ma
- Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jifang Road, Hangzhou 310009, China.
| | | | | | | | | |
Collapse
|
27
|
Le Goff MM, Lu H, Ugarte M, Henry S, Takanosu M, Mayne R, Bishop PN. The vitreous glycoprotein opticin inhibits preretinal neovascularization. Invest Ophthalmol Vis Sci 2012; 53:228-34. [PMID: 22159013 DOI: 10.1167/iovs.11-8514] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
PURPOSE Opticin is an extracellular matrix glycoprotein that the authors discovered in the vitreous humor of the eye. It is synthesized by the nonpigmented ciliary epithelium and secreted into the vitreous cavity and, unusually for an extracellular matrix molecule, high-level synthesis is maintained into adult life. Here the authors investigated the hypothesis that opticin influences vascular development in the posterior segment of the eye and pathologic angiogenesis into the normally avascular, mature (secondary) vitreous. METHODS Opticin was localized in murine eyes by immunohistochemistry. An opticin knockout mouse was established and vascular development was compared between knockout and wild-type mice. Wild-type and opticin null mice were compared in the oxygen-induced retinopathy model, a model of pathologic angiogenesis, and this model was also used to assess the effects of intravitreal injection of recombinant opticin into eyes of wild-type mice. RESULTS Opticin colocalizes with the collagen type II-rich fibrillar network of the vitreous, the inner limiting lamina, the lens capsule, the trabecular meshwork, and the iris. Analyses of the hyaloid and retinal vasculature showed that opticin has no effect on hyaloid vascular regression or developmental retinal vascularization. However, using the oxygen-induced retinopathy model, the authors demonstrated that opticin knockout mice produce significantly more preretinal neovascularization than wild-type mice, and the intravitreal delivery of excess opticin inhibited the formation of neovessels in wild-type mice. CONCLUSIONS A lack of opticin does not influence vascular development, but opticin is antiangiogenic and inhibits preretinal neovascularization.
Collapse
|
28
|
Bouhenni RA, Al Shahwan S, Morales J, Wakim BT, Chomyk AM, Alkuraya FS, Edward DP. Identification of differentially expressed proteins in the aqueous humor of primary congenital glaucoma. Exp Eye Res 2010; 92:67-75. [PMID: 21078314 DOI: 10.1016/j.exer.2010.11.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 10/13/2010] [Accepted: 11/05/2010] [Indexed: 01/06/2023]
Abstract
Primary Congenital Glaucoma (PCG) is an autosomal recessive disease caused by an abnormal development of the anterior chamber angle. Although, PCG has been linked to several genetic loci, the role that the genes at these loci or their encoded proteins play in the pathophysiology of PCG and development of the anterior chamber is not known. To identify proteins that may be altered in PCG and that may help in understanding the underlying pathophysiology of the disease, we took a global proteomics approach. Tryptic digests of the complex mixtures of proteins in aqueous humor were analyzed using Liquid Chromatography/Mass Spectrometry (LC-MS/MS). Proteins were identified by searching the data against the human subset of the UniProt database. The proteomes of aqueous humor in PCG (n = 7) and patients undergoing cataract surgery as control (n = 4) were compared based on the scan counts of comparable proteins. Using stringent filtering criteria, Apolipoprotein A-IV (APOA-IV), Albumin and Antithrombin 3 (ANT3) were detected at significantly higher levels in PCG AH compared to control, whereas Transthyretin (TTR), Prostaglandin-H2 D-isomerase (PTGDS), Opticin (OPT) and Interphotoreceptor Retinoid Binding Protein (IRBP) were detected at significantly lower levels. Many of these proteins play a role in retinoic acid (RA) binding/transport and have been implicated in the pathogenesis of neurodegenerative diseases such as Alzheimer's (AD). It is possible that similar to AD, the pathologic changes in PCG during development could be influenced by the availability of RA in the anterior chamber.
Collapse
|
29
|
Ponsioen TL, Hooymans JM, Los LI. Remodelling of the human vitreous and vitreoretinal interface – A dynamic process. Prog Retin Eye Res 2010; 29:580-95. [DOI: 10.1016/j.preteyeres.2010.07.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
30
|
Bertazolli-Filho R, Coca-Prados M, Haddad A, Laicine EM. Molecular Analysis of Neurolysin Expression in the Rat and Bovine Ciliary Body. Curr Eye Res 2009; 32:751-6. [PMID: 17882707 DOI: 10.1080/02713680701573381] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
PURPOSE This paper deals with the capability of the ciliary epithelium to express neurolysin, involved in the inactivation of numerous neuropeptides. METHODS Total RNAs from ciliary body (CB) were processed for RT-PCR, and the amplification products were sequenced. The whole-protein extracts of CBs were analyzed using the Western blot. The CBs were processed for neurolysin immunolocalization. RESULTS The RT-PCR detected the presence of neurolysin mRNA in the ciliary body. The Western blot assays demonstrated immunochemical cross-reactivity with neurolysin. The immunoreactivity to neurolysin was observed in ciliary epithelium. CONCLUSIONS These results indicate that the ciliary epithelium expresses neurolysin.
Collapse
Affiliation(s)
- Rubens Bertazolli-Filho
- Departamento de Biologia Celular e Molecular e Bioagentes Patogêcos, Faculdade de Medicina de Ribeirão Preto/USP, 14049-900 Ribeirão Preto, SP, Brazil.
| | | | | | | |
Collapse
|
31
|
Sosa C, Abecia E, Casalod Y, Baeta M, Núñez C, Luna A, Pérez-Cárceles MD, Martínez-Jarreta B. A preliminary study on the incidence of heteroplasmy in mitochondrial DNA from vitreous humour. Leg Med (Tokyo) 2009; 11 Suppl 1:S460-2. [PMID: 19261523 DOI: 10.1016/j.legalmed.2009.01.087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Accepted: 01/14/2009] [Indexed: 10/21/2022]
Abstract
Vitreous humour is routinely sampled in Forensic Medicine as several post-mortem analyses can be performed. However, it is not used for DNA analyses probably due to its scarce cellularity. In these samples, in which the study of nuclear DNA is difficult, the analysis of mtDNA is an alternative approach. The aim of this study was to investigate the utility of vitreous humour for forensic identification purposes. Samples were collected during vitrectomy from retinopathy patients, in collection bags with saline solution. Blood samples were also obtained in order to contrast results. Before DNA organic extraction, several centrifugation steps were needed to concentrate the vitreous humour samples. Unlike blood, direct amplification of 400-bp fragments of the hipervariable regions I and II (HVI and HVII) was not successful, possibly due to damage to the DNA strand caused by the surgery conditions (UV radiation, oxidative stress). Therefore, amplification of two overlapping fragments for each control region was performed in vitreous humour. In order to eliminate undesired products, all samples were purified by an enzymatic method. Thereafter, mtDNA fragments were sequenced using dye terminators in a MegaBACE 500 capillary sequencer. Sequences of HVI and HVII of approximately 400 bp were obtained from all samples. The sequences obtained from each patient matched almost perfectly those from blood. In summary, herein we describe for the first time a methodology suitable for the mtDNA analysis of vitreous humour samples.
Collapse
Affiliation(s)
- C Sosa
- Department of Forensic Medicine, Faculty of Medicine, University of Zaragoza, C/Domingo Miral s/n, Zaragoza 50.009, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
AbstractMany diverse retinal disorders are characterized by retinal edema; yet, little experimental attention has been given to understanding the fundamental mechanisms underlying and contributing to these fluid-based disorders. Water transport in and out of cells is achieved by specialized membrane channels, with most rapid water transport regulated by transmembrane water channels known as aquaporins (AQPs). The predominant AQP in the mammalian retina is AQP4, which is expressed on the Müller glial cells. Müller cells have previously been shown to modulate neuronal activity by modifying the concentrations of ions, neurotransmitters, and other neuroactive substances within the extracellular space between the inner and the outer limiting membrane. In doing so, Müller cells maintain extracellular homeostasis, especially with regard to the spatial buffering of extracellular potassium (K+) via inward rectifying K+ channels (Kir channels). Recent studies of water transport and the spatial buffering of K+ through glial cells have highlighted the involvement of both AQP4 and Kir channels in regulating the extracellular environment in the brain and retina. As both glial functions are associated with neuronal activation, controversy exists in the literature as to whether the relationship is functionally dependent. It is argued in this review that as AQP4 channels are likely to be the conduit for facilitating fluid homeostasis in the inner retina during light activation, AQP4 channels are also likely to play a consequent role in the regulation of ocular volume and growth. Recent research has already shown that the level of AQP4 expression is associated with environmentally driven manipulations of light activity on the retina and the development of myopia.
Collapse
|
33
|
Yokoi T, Koide R, Matsuoka K, Nakagawa A, Azuma N. Analysis of the vitreous membrane in a case of type 1 Stickler syndrome. Graefes Arch Clin Exp Ophthalmol 2008; 247:715-8. [DOI: 10.1007/s00417-008-1016-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2008] [Revised: 11/12/2008] [Accepted: 11/17/2008] [Indexed: 11/28/2022] Open
|
34
|
Characterization of the composition of the aqueous humor and the vitreous body of the eye of the frog Rana temporaria L. Comp Biochem Physiol A Mol Integr Physiol 2008; 151:676-81. [DOI: 10.1016/j.cbpa.2008.08.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Revised: 08/14/2008] [Accepted: 08/15/2008] [Indexed: 11/17/2022]
|
35
|
Romand R, Kondo T, Cammas L, Hashino E, Dollé P. Dynamic expression of the retinoic acid-synthesizing enzyme retinol dehydrogenase 10 (rdh10) in the developing mouse brain and sensory organs. J Comp Neurol 2008; 508:879-92. [PMID: 18399539 DOI: 10.1002/cne.21707] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Organs develop through many tissue interactions during embryogenesis, involving numerous signaling cascades and gene products. One of these signaling molecules is retinoic acid (RA), an active vitamin A derivative, which in mammalian embryos is synthesized from maternal retinol by two oxidative reactions involving alcohol/retinol dehydrogenases (ADH/RDHs) and retinaldehyde dehydrogenases (RALDHs), respectively. The activity of RALDHs is known to be crucial for RA synthesis; however, recently a retinol dehydrogenase (RDH10) has been shown to represent a new limiting factor in this synthesis. We investigated the spatiotemporal distribution of Rdh10 gene transcripts by in situ hybridization and quantitative polymerase chain reaction (PCR) during development of the brain and sensory organs. Although Rdh10 relative mRNA levels decline throughout brain development, we show a strong and lasting expression in the meninges and choroid plexuses. Rdh10 expression is also specifically seen in the striatum, a known site of retinoid signaling. In the eye, regional expression is observed both in the prospective pigmented epithelium and neural retina. In the inner ear Rdh10 expression is specific to the endolymphatic system and later the stria vascularis, both organs being involved in endolymph homeostasis. Furthermore, in the peripheral olfactory system and the vibrissae follicles, expression is present from early stages in regions where sensory receptors appear and mesenchymal/epithelial interactions take place. The distribution of Rdh10 transcripts during brain and sensory organ development is consistent with a role of this enzyme in generating region-specific pools of retinaldehyde that will be used by the various RALDHs to refine the patterns of RA synthesis.
Collapse
Affiliation(s)
- Raymond Romand
- IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), BP 10142, Illkirch, F-67400 France.
| | | | | | | | | |
Collapse
|
36
|
Monfort J, Tardif G, Roughley P, Reboul P, Boileau C, Bishop PN, Pelletier JP, Martel-Pelletier J. Identification of opticin, a member of the small leucine-rich repeat proteoglycan family, in human articular tissues: a novel target for MMP-13 in osteoarthritis. Osteoarthritis Cartilage 2008; 16:749-55. [PMID: 18164633 DOI: 10.1016/j.joca.2007.11.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2007] [Accepted: 11/17/2007] [Indexed: 02/02/2023]
Abstract
OBJECTIVE One of the proteoglycan families is the small leucine-rich proteoglycans (SLRPs) that are characterized by their association with collagen fibrils and/or some glycosaminoglycans. Opticin is a glycoprotein and class III member of the SLRP family, which was initially identified in the vitreous humour of the eye. In this study, we first investigated whether opticin is expressed and produced in normal and OA human articular tissues/cells. Further, we investigated the ability of the key metalloprotease involved in cartilage pathology, MMP-13, to cleave human cartilage opticin. METHODS Opticin gene expression was investigated in normal and OA human chondrocytes, synovial fibroblasts, and subchondral bone osteoblasts by reverse transcriptase-polymerase chain reaction (RT-PCR). Opticin protein production was determined in normal and OA synovial membrane and cartilage by immunohistochemistry. Opticin was isolated from human cartilage using guanidinium chloride extraction, and human MMP-13-induced opticin degradation analyzed by Western blotting. Finally, the opticin MMP-13 cleavage site was determined. RESULTS Opticin was expressed in human chondrocytes, synovial fibroblasts and subchondral osteoblasts, and the protein identified in synovial membrane and cartilage. At the protein level, OA cartilage showed a slightly higher level of opticin positive stained chondrocytes than normal cartilage; this did not reach statistical significance. However, in contrast with OA, normal cartilage demonstrated a high level of matrix staining in the superficial zone of the tissue, suggesting that in the OA cartilage matrix, opticin is degraded. Data also showed that cartilage opticin could be cleaved by MMP-13 after only 2h of incubation, indicating a preferential substrate compared to other SLRPs for this enzyme. Microsequencing revealed a major cleavage site at the G(104)/L(105)LAAP and a minor at P(109)/A(110)NHPG upon MMP-13 exposure. CONCLUSION We demonstrated, for the first time, that opticin is expressed and produced in human articular tissues. Our data also showed that opticin in OA cartilage is degraded in a process that could be mediated by MMP-13. As opticin may contribute towards the structural stability of cartilage, its cleavage by MMP-13 may predispose cartilage to degeneration, particularly at the surface.
Collapse
Affiliation(s)
- J Monfort
- Department of Rheumatology, Universitat Autonoma de Barcelona, Hospital del Mar, Passeig del Mar, Barcelona 08003, Spain
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Decanini A, Karunadharma PP, Nordgaard CL, Feng X, Olsen TW, Ferrington DA. Human retinal pigment epithelium proteome changes in early diabetes. Diabetologia 2008; 51:1051-61. [PMID: 18414830 PMCID: PMC4397501 DOI: 10.1007/s00125-008-0991-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Accepted: 02/21/2008] [Indexed: 02/07/2023]
Abstract
AIMS/HYPOTHESIS Diabetic retinopathy is the most common complication of diabetes and a leading cause of blindness among working-age adults. Anatomical and functional changes occur in the retina and retinal pigment epithelium (RPE) prior to clinical symptoms of the disease. However, the molecular mechanisms responsible for these early changes, particularly in the RPE, remain unclear. To begin defining the molecular changes associated with pre-retinopathic diabetes, we conducted a comparative proteomics study of human donor RPE. METHODS The RPE was dissected from diabetic human donor eyes with no clinically apparent diabetic retinopathy (n=6) and from eyes of age-matched control donors (n=17). Soluble proteins were separated based upon their mass and charge using two-dimensional (2-D) gel electrophoresis. Protein spots were visualised with a fluorescent dye and spot densities were compared between diabetic and control gels. Proteins from spots with significant disease-related changes in density were identified using mass spectrometry. RESULTS Analysis of 325 spots on 2-D gels identified 31 spots that were either up- or downregulated relative to those from age-matched control donors. The protein identity of 18 spots was determined by mass spectrometry. A majority of altered proteins belonged to two major functional groups, metabolism and chaperones, while other affected categories included protein degradation, synthesis and transport, oxidoreductases, cytoskeletal structure and retinoid metabolism. CONCLUSIONS/INTERPRETATION Changes identified in the RPE proteome of pre-retinopathic diabetic donor eyes compared with age-matched controls suggest specific cellular alterations that may contribute to diabetic retinopathy. Defining the pre-retinopathic changes affecting the RPE could provide important insight into the molecular events that lead to this disease.
Collapse
Affiliation(s)
- A. Decanini
- Department of Ophthalmology, University of Minnesota Twin Cities, Minneapolis, MN 55455
| | - P. P. Karunadharma
- Department of Ophthalmology, University of Minnesota Twin Cities, Minneapolis, MN 55455
- Department of Graduate Program in Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Twin Cities, Minneapolis, MN 55455
| | - C. L. Nordgaard
- Department of Ophthalmology, University of Minnesota Twin Cities, Minneapolis, MN 55455
| | - X. Feng
- Department of Ophthalmology, University of Minnesota Twin Cities, Minneapolis, MN 55455
| | - T. W. Olsen
- Department of Ophthalmology, University of Minnesota Twin Cities, Minneapolis, MN 55455
| | - D. A. Ferrington
- Department of Ophthalmology, University of Minnesota Twin Cities, Minneapolis, MN 55455
- Department of Graduate Program in Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Twin Cities, Minneapolis, MN 55455
- Corresponding Author: University of Minnesota, 380 Lions Research Bldg., 2001 6 St SE, Minneapolis MN 55455 Telephone: (612) 624-8267. Fax (612) 626-0781,
| |
Collapse
|
38
|
Sommer F, Pollinger K, Brandl F, Weiser B, Teßmar J, Blunk T, Göpferich A. Hyalocyte proliferation and ECM accumulation modulated by bFGF and TGF-β1. Graefes Arch Clin Exp Ophthalmol 2008; 246:1275-84. [DOI: 10.1007/s00417-008-0846-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2008] [Revised: 04/01/2008] [Accepted: 04/03/2008] [Indexed: 11/28/2022] Open
|
39
|
Origin and turnover of ECM proteins from the inner limiting membrane and vitreous body. Eye (Lond) 2008; 22:1207-13. [PMID: 18344966 DOI: 10.1038/eye.2008.19] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The inner limiting membrane (ILM) and the vitreous body (VB) are two major extracellular matrix (ECM) structures that are essential for early eye development. The ILM is considered to be the basement membrane of the retinal neuroepithelium, yet in situ hybridization and chick/quail transplant experiments in organ-cultured eyes showed that all components critical for ILM assembly, such as laminin or collagen IV, are not synthesized by the retina. Rather, ILM proteins, with the exception of agrin, originate from the lens or (and) ciliary body and are shed into the vitreous. The VB serves as a reservoir providing high concentrations of ILM proteins for the instant assembly of new ILM during rapid embryonic eye growth. The function of the retina in ILM assembly is to provide the cellular receptor proteins for the binding of the ILM proteins from the vitreous. The VB is a gelatinous ECM structure that fills the vitreous cavity of the eye. Its major structural proteins, collagen II and fibrillin, originate primarily from the ciliary body. Reverse transcription-PCR and western blotting show that the rate of synthesis of structural, monomeric ILM and VB proteins, such as laminin, collagen IV and II is very high during embryogenesis and very low in the adult. The downregulation of ILM and VB protein synthesis occurs during early postnatal life, and both ILM and VB are from then on maintained throughout life with minimum turnover. Our data explain why ILM and VB do not regenerate after vitrectomy and ILM peeling.
Collapse
|
40
|
The rabbit as an animal model for post-natal vitreous matrix differentiation and degeneration. Eye (Lond) 2008; 22:1223-32. [PMID: 18327158 DOI: 10.1038/eye.2008.39] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
PURPOSE This study evaluates whether rabbits are a suitable animal model to study post-natal vitreous differentiation and degeneration. METHODS Human and rabbit eyes of various ages were studied by complementary anatomical techniques, light microscopy, and transmission electron microscopy. RESULTS The global vitreous matrix organization is similar in human and rabbit eyes, lamellae are an important aspect thereof and show striking morphological changes with increasing age. In humans, liquefaction is more conspicuous than in rabbits but changes in matrix histology consistent with liquefaction can also be observed in the latter. CONCLUSIONS Lamellar development is consistent with vitreous differentiation, while increasing liquefaction is consistent with matrix degeneration. At the anatomical and histological levels, human and rabbit vitreous matrices are sufficiently similar to make the rabbit a promising animal model for the study of the pathogenesis of vitreous matrix differentiation and degeneration in more detail.
Collapse
|
41
|
Ooi EH, Ng EYK. Simulation of aqueous humor hydrodynamics in human eye heat transfer. Comput Biol Med 2008; 38:252-62. [DOI: 10.1016/j.compbiomed.2007.10.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2007] [Revised: 10/03/2007] [Accepted: 10/18/2007] [Indexed: 10/22/2022]
|
42
|
Majava M, Bishop PN, Hägg P, Scott PG, Rice A, Inglehearn C, Hammond CJ, Spector TD, Ala-Kokko L, Männikkö M. Novel mutations in the small leucine-rich repeat protein/proteoglycan (SLRP) genes in high myopia. Hum Mutat 2007; 28:336-44. [PMID: 17117407 DOI: 10.1002/humu.20444] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The importance of the genetic component in high myopia has been well established in population and family studies, but only a few candidate genes have been explored to date. The extracellular matrix small leucine-rich repeat proteins/proteoglycans (SLRPs) regulate collagen fibril diameter and spacing. Given their role in extracellular matrix assembly and expression in the eye, they are likely to regulate its shape and size. Analysis of 85 English and 40 Finnish subjects with high myopia (refractive error of -6 diopters [D] or greater) resulted in 23 sequence variations in four SLRP genes, LUM, FMOD, PRELP, and OPTC. We observed higher number of variations in OPTC in English patients than in controls (p=0.042), and a possibly protective variation in LUM (c.893-105G>A) with p-value of 0.0043. Two intronic variations, six nonsynonymous and one synonymous amino acid changes, were not found in any of the nonmyopic controls. Five changes were detected in opticin, Thr177Arg, Arg229His, Arg325Trp, Gly329Ser, and Arg330His, and all but one (Arg229His) were shown to cosegregate with high myopia in families with incomplete penetrance. A homology model for opticin revealed that Arg229His and Arg325Trp are likely to disrupt the protein structure, and PolyPhen analysis suggested that Thr177Arg, Arg325Trp, and Gly329Ser changes may be damaging. A Leu199Pro change in lumican and Gly147Asp and Arg324Thr variations in fibromodulin are located in the highly conserved leucine-rich repeat (LRR) domains. This study provides new insight into the genetics of high myopia, suggesting that sequence variations in the SLRP genes expressed in the eye may be among the genetic risk factors underlying the pathogenesis of high myopia.
Collapse
Affiliation(s)
- Marja Majava
- Collagen Research Unit, Biocenter and Department of Medical Biochemistry and Molecular Biology, University of Oulu, Oulu, Finland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Assheton DC, Guerin EP, Sheridan CM, Bishop PN, Hiscott PS. Neoplastic transformation of ciliary body epithelium is associated with loss of opticin expression. Br J Ophthalmol 2006; 91:230-2. [PMID: 17005546 PMCID: PMC1857628 DOI: 10.1136/bjo.2006.102582] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Opticin is a recently discovered glycoprotein present predominantly in the vitreous humour. It is synthesised and secreted by the ciliary body epithelium (CBE) from the initiation of CBE development in the embryo, and production continues throughout life. AIM To determine whether a variety of ciliary body tumours synthesise opticin to characterise further its role in ciliary body health and disease. METHODS Immunohistochemistry was used to determine the distribution of opticin in normal human CBE, and in hyperplastic and neoplastic CBE lesions. RESULTS Opticin was immunolocalised to the basal cell surface and basement membrane material of the non-pigmented CBE in nine donor eyes as well as four hyperplastic lesions of the CBE (Fuchs's adenoma). By contrast, none of eight neoplastic lesions (two adenoma and six adenocarcinoma) of CBE stained for opticin. CONCLUSION The present series supports the theory that opticin is produced by the non-pigmented CBE throughout adult life. Loss of opticin expression by this tissue is associated with and could contribute towards neoplastic transformation.
Collapse
Affiliation(s)
- David C Assheton
- Unit of Ophthalmology, Department of Medicine, University Clinical Departments, Duncan Building, Daulby Street, Liverpool L69 3GA, UK.
| | | | | | | | | |
Collapse
|
44
|
Napier HRL, Kidson SH. Molecular events in early development of the ciliary body: a question of folding. Exp Eye Res 2006; 84:615-25. [PMID: 16959249 DOI: 10.1016/j.exer.2006.07.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2005] [Revised: 05/26/2006] [Accepted: 07/19/2006] [Indexed: 11/17/2022]
Abstract
Ciliary body morphogenesis is a complicated, multi-step process requiring coordinated changes in cell shape, flexure of epithelial sheets and dynamic shifts in mitotic rates. Very little is known of how these cellular events are triggered or regulated. This review summarises current models of ciliary body morphogenesis. The role of intraocular pressure as a driver of morphogenesis is re-evaluated in the light of new information. An update on the role of the lens in ciliary body morphogenesis is presented. In the second part of the review current gene expression data is related to ciliary body morphogenesis. In particular the role of Bmp4 and its downstream target genes are discussed, with novel gene expression patterns of Bmp4 and Tgfbeta1i4 being presented.
Collapse
Affiliation(s)
- H R L Napier
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory 7925, South Africa
| | | |
Collapse
|
45
|
Seth A, Culverwell J, Walkowicz M, Toro S, Rick JM, Neuhauss SCF, Varga ZM, Karlstrom RO. belladonna/(Ihx2) is required for neural patterning and midline axon guidance in the zebrafish forebrain. Development 2006; 133:725-35. [PMID: 16436624 DOI: 10.1242/dev.02244] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Some of the earliest axon pathways to form in the vertebrate forebrain are established as commissural and retinal axons cross the midline of the diencephalon and telencephalon. To better understand axon guidance in the forebrain, we characterized the zebrafish belladonna (bel) mutation, which disrupts commissural and retinal axon guidance in the forebrain. Using a positional cloning strategy, we determined that the bel locus encodes zebrafish Lhx2, a lim-homeodomain transcription factor expressed in the brain, eye and fin buds. We show that bel(Ihx2) function is required for patterning in the ventral forebrain and eye, and that loss of bel function leads to alterations in regulatory gene expression, perturbations in axon guidance factors, and the absence of an optic chiasm and forebrain commissures. Our analysis reveals new roles for Ihx2 in midline axon guidance, forebrain patterning and eye morphogenesis.
Collapse
Affiliation(s)
- Anandita Seth
- Biology Department, University of Massachusetts, Amherst, MA 01003-9297, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Bertazolli-Filho R, Laicine EM, Haddad A, Rodrigues MLP. Molecular and biochemical analysis of ceruloplasmin expression in rabbit and rat ciliary body. Curr Eye Res 2006; 31:155-61. [PMID: 16500766 DOI: 10.1080/02713680500507234] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
PURPOSE To verify the capability of rabbit and rat ciliary body to synthesize and secrete ceruloplasmin. METHODS Isolated ciliary body (CB) was cultured in the presence of [35S]-methionine, and the incubation medium was processed for immunoprecipitation. Total RNA from CB was processed for RT-PCR, and the amplification products were sequenced. Also, sections of CB were immunostained for the localization of ceruloplasmin. RESULTS A labeled peptide, having a molecular weight of about 135 kDa, the expected size of ceruloplasmin, was immunopurified in the incubation media from both animal species. The RT-PCR and sequencing experiments detected the presence of ceruloplasmin mRNA in rat samples. Both layers of rabbit and rat ciliary epithelium (CE) exhibited ceruloplasmin reactivity after immunohistochemical processing. CONCLUSIONS Taken altogether, these results indicate the CB, particularly its epithelium, as one of the possible sources of the ocular intrinsic ceruloplasmin.
Collapse
Affiliation(s)
- Rubens Bertazolli-Filho
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, USP, Ribeirão Preto, Brazil
| | | | | | | |
Collapse
|
47
|
Bhattacharya SK, Peachey NS, Crabb JW. Cochlin and glaucoma: a mini-review. Vis Neurosci 2006; 22:605-13. [PMID: 16332271 PMCID: PMC1483214 DOI: 10.1017/s0952523805225099] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2005] [Accepted: 07/12/2005] [Indexed: 11/07/2022]
Abstract
Primary open angle glaucoma (POAG) is a leading cause of late onset, progressive, irreversible blindness and, although its etiology is poorly understood, elevated intraocular pressure (IOP) often appears to be a contributory factor. Proteomic and Western analyses of trabecular meshwork (TM) from patients with POAG and age-matched controls originally implicated cochlin as possibly contributing to glaucoma pathogenesis. Cochlin deposits were subsequently detected in glaucomatous but not in control TM and older glaucomatous TM was found to contain higher levels of cochlin and significantly lower amounts of collagen type II. More recently, similar results were reported in DBA/2J mice, which at older ages develop elevated IOP, retinal ganglion cell degeneration, and optic nerve damage. Notably, cochlin was absent in TM from C57BL/6J, CD1, and BALBc/ByJ mice, which do not exhibit elevated IOP or glaucoma. Cochlin was found in the TM of very young DBA/2J mice, prior to elevated IOP, suggesting that over time the protein may contribute to the events leading to increased IOP and optic nerve damage. Here we review these findings and describe how future studies in DBA/2J mice can help resolve whether cochlin plays a causal role in mechanisms of POAG and elevated IOP.
Collapse
|
48
|
Napier HRL, Kidson SH. Proliferation and cell shape changes during ciliary body morphogenesis in the mouse. Dev Dyn 2005; 233:213-23. [PMID: 15759268 DOI: 10.1002/dvdy.20302] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Very little is known about the structure and development of the ciliary processes in the mouse eye. Our scanning electron microscope (SEM) studies reveal that, unlike other mammals, the ciliary processes form an irregular pattern, crossing over and interweaving rather than lying parallel to one another. Histological and SEM studies from embryonic day (E) 14.5 to postnatal day (P) 7 reveal that the first morphological sign of the ciliary zone is an annular bulge; this is then gradually molded to form discrete ciliary processes. The striking similarity between the developing capillary network and the adult ciliary folds suggests that the patterning template for the ciliary processes could be the underlying capillary network. Cell proliferation measurements and cell height assessments indicated that one of the first events occurring during the morphogenesis of ciliary processes is a proliferative surge around P0 in the outer ciliary epithelium. It is likely that this surge together with increasing cell heights leads to a bulging of this layer. After a slight delay, the inner ciliary epithelium responds by proliferating and extending inward toward the lens. Final shaping of the ciliary processes is achieved through cell height reductions in the inner ciliary epithelium. Thus, in the mouse, the temporal correlation between mitotic and cell height changes during ciliary body morphogenesis suggests that these processes play an integral role in the shaping of ciliary processes.
Collapse
Affiliation(s)
- H R L Napier
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, South Africa
| | | |
Collapse
|
49
|
Hyer J. Looking at an oft-overlooked part of the eye: a new perspective on ciliary body development in chick. Dev Neurosci 2005; 26:456-65. [PMID: 15855774 DOI: 10.1159/000082287] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2004] [Accepted: 09/13/2004] [Indexed: 11/19/2022] Open
Abstract
The ciliary body is an essential tissue for the development and homeostasis of the vertebrate eye. Embryonically, the epithelial portion of the ciliary body derives from the neuroepithelium of the optic cup, however, it differentiates into a secretory tissue and produces an aqueous humor that sustains the lens and cornea, and maintains the requisite pressure within the orb. The unique differentiation of this portion of the optic cup is little understood. This article reviews what is known about the development of the ciliary body and presents some preliminary findings that may lead to a new model for the formation of the ciliary body.
Collapse
Affiliation(s)
- Jeanette Hyer
- Department of Neurosurgical Research, Box 0520, University of California, San Francisco, CA 94143, USA.
| |
Collapse
|
50
|
Itakura H, Kishi S, Kotajima N, Murakami M. Vitreous collagen metabolism before and after vitrectomy. Graefes Arch Clin Exp Ophthalmol 2005; 243:994-8. [PMID: 15900480 DOI: 10.1007/s00417-005-1150-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2004] [Revised: 01/06/2005] [Accepted: 01/14/2005] [Indexed: 11/25/2022] Open
Abstract
PURPOSE To assess vitreous metabolism by measuring C-propeptide levels of type II procollagen (pCOL-II-C) and hyaluronan levels in the vitreous and in the vitreous fluid after vitrectomy for macular hole. METHODS We obtained 1-ml vitreous samples during vitrectomy from 34 patients (34 eyes) with a macular hole (age range 50-77 years, mean 64 years). After vitrectomy, we performed fluid-air exchange in six eyes because of unresolved macular holes and collected 4-ml fluid samples. Gel-filtration high-performance liquid chromatography (HPLC) was used to determine the molecular weight of pCOL-II-C in the samples. The pCOL-II-C level was measured by sandwich enzyme immunoassay and hyaluronan by sandwich binding protein assay. RESULTS HPLC showed that pCOL-II-C in the vitreous samples corresponded to purified pCOL-II-C from cartilage. The vitreous pCOL-II-C level (4.7+/-0.3 ng/ml) was similar to reported synovial fluid levels. In six eyes that underwent fluid-air exchange, pCOL-II-C in the fluid samples remained at a level similar to that in the vitreous samples, while hyaluronan levels in the fluid samples were significantly lower than in the vitreous samples. CONCLUSIONS The molecular weight and concentrations of pCOL-II-C in the vitreous are similar to those in joint fluid. In patients with a macular hole, type II procollagen may be secreted persistently into the vitreous cavity before and after vitrectomy.
Collapse
Affiliation(s)
- Hirotaka Itakura
- Department of Ophthalmology, Gunma University School of Medicine, 3-39-15 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | | | | | | |
Collapse
|