1
|
Silva CS, Reis RL, Martins A, Neves NM. Recapitulation of Thymic Function by Tissue Engineering Strategies. Adv Healthc Mater 2021; 10:e2100773. [PMID: 34197034 DOI: 10.1002/adhm.202100773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Indexed: 11/06/2022]
Abstract
The thymus is responsible for the development and selection of T lymphocytes, which in turn also participate in the maturation of thymic epithelial cells. These events occur through the close interactions between hematopoietic stem cells and developing thymocytes with the thymic stromal cells within an intricate 3D network. The complex thymic microenvironment and function, and the current therapies to induce thymic regeneration or to overcome the lack of a functional thymus are herein reviewed. The recapitulation of the thymic function using tissue engineering strategies has been explored as a way to control the body's tolerance to external grafts and to generate ex vivo T cells for transplantation. In this review, the main advances in the thymus tissue engineering field are disclosed, including both scaffold- and cell-based strategies. In light of the current gaps and limitations of the developed systems, the design of novel biomaterials for this purpose with unique features is also discussed.
Collapse
Affiliation(s)
- Catarina S. Silva
- 3B's Research Group I3Bs – Research Institute on Biomaterials Biodegradables and Biomimetics University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine ICVS/3B's – PT Government Associate Laboratory AvePark, Parque da Ciência e Tecnologia, Zona Industrial da Gandra 4805‐017 Barco Guimarães Portugal
| | - Rui L. Reis
- 3B's Research Group I3Bs – Research Institute on Biomaterials Biodegradables and Biomimetics University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine ICVS/3B's – PT Government Associate Laboratory AvePark, Parque da Ciência e Tecnologia, Zona Industrial da Gandra 4805‐017 Barco Guimarães Portugal
| | - Albino Martins
- 3B's Research Group I3Bs – Research Institute on Biomaterials Biodegradables and Biomimetics University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine ICVS/3B's – PT Government Associate Laboratory AvePark, Parque da Ciência e Tecnologia, Zona Industrial da Gandra 4805‐017 Barco Guimarães Portugal
| | - Nuno M. Neves
- 3B's Research Group I3Bs – Research Institute on Biomaterials Biodegradables and Biomimetics University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine ICVS/3B's – PT Government Associate Laboratory AvePark, Parque da Ciência e Tecnologia, Zona Industrial da Gandra 4805‐017 Barco Guimarães Portugal
| |
Collapse
|
2
|
Espinosa G, Collado JA, Scholz E, Mestre-Ferrer A, Kuse N, Takiguchi M, Carrascal M, Canals F, Pujol-Borrell R, Jaraquemada D, Alvarez I. Peptides presented by HLA class I molecules in the human thymus. J Proteomics 2013; 94:23-36. [PMID: 24029068 DOI: 10.1016/j.jprot.2013.08.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 08/26/2013] [Accepted: 08/28/2013] [Indexed: 12/31/2022]
Abstract
UNLABELLED The thymus is the organ in which T lymphocytes mature. Thymocytes undergo exhaustive selection processes that require interactions between the TCRs and peptide-HLA complexes on thymus antigen-presenting cells. The thymic peptide repertoire associated with HLA molecules must mirror the peptidome that mature T cells will encounter at the periphery, including peptides that arise from tissue-restricted antigens. The transcriptome of specific thymus cell populations has been widely studied, but there are no data on the HLA-I peptidome of the human thymus. Here, we describe the HLA-I-bound peptide repertoire from thymus samples, showing that it is mostly composed of high-affinity ligands from cytosolic and nuclear proteins. Several proteins generated more than one peptide, and some redundant peptides were found in different samples, suggesting the existence of antigen immunodominance during the processes that lead to central tolerance. Three HLA-I ligands were found to be derived from proteins expressed by stromal cells, including one from the protein TBATA (or SPATIAL), which is present in the thymus, brain and testis. The expression of TBATA in medullary thymic epithelial cells has been reported to be AIRE dependent. Thus, this report describes the first identification of a thymus HLA-I natural ligand derived from an AIRE-dependent protein with restricted tissue expression. BIOLOGICAL SIGNIFICANCE We present the first description of the HLA-I-bound peptide repertoire from ex vivo thymus samples. This repertoire is composed of standard ligands from cytosolic and nuclear proteins. Some peptides seem to be dominantly presented to thymocytes in the thymus. Most importantly, some HLA-I associated ligands derived from proteins expressed by stromal cells, including one peptide, restricted by HLA-A*31:01, arising from an AIRE-dependent protein with restricted tissue expression.
Collapse
Affiliation(s)
- Gabriel Espinosa
- Immunology Unit, Department of Cell Biology, Physiology and Immunology and Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Sun L, Luo H, Li H, Zhao Y. Thymic epithelial cell development and differentiation: cellular and molecular regulation. Protein Cell 2013; 4:342-55. [PMID: 23589020 DOI: 10.1007/s13238-013-3014-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 03/11/2013] [Indexed: 11/26/2022] Open
Abstract
Thymic epithelial cells (TECs) are one of the most important components in thymic microenvironment supporting thymocyte development and maturation. TECs, composed of cortical and medullary TECs, are derived from a common bipotent progenitor, mediating thymocyte positive and negative selections. Multiple levels of signals including intracellular signaling networks and cell-cell interaction are required for TEC development and differentiation. Transcription factors Foxn1 and autoimmune regulator (Aire) are powerful regulators promoting TEC development and differentiation. Crosstalks with thymocytes and other stromal cells for extrinsic signals like RANKL, CD40L, lymphotoxin, fibroblast growth factor (FGF) and Wnt are also definitely required to establish a functional thymic microenvironment. In this review, we will summarize our current understanding about TEC development and differentiation, and its underlying multiple signal pathways.
Collapse
Affiliation(s)
- Lina Sun
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | |
Collapse
|
4
|
The thymic epithelial microRNA network elevates the threshold for infection-associated thymic involution via miR-29a mediated suppression of the IFN-α receptor. Nat Immunol 2011; 13:181-7. [PMID: 22179202 DOI: 10.1038/ni.2193] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 11/21/2011] [Indexed: 11/08/2022]
Abstract
Thymic output is a dynamic process, with high activity at birth punctuated by transient periods of involution during infection. Interferon-α (IFN-α) is a critical molecular mediator of pathogen-induced thymic involution, yet despite the importance of thymic involution, relatively little is known about the molecular integrators that establish sensitivity. Here we found that the microRNA network dependent on the endoribonuclease Dicer, and specifically microRNA miR-29a, was critical for diminishing the sensitivity of the thymic epithelium to simulated infection signals, protecting the thymus against inappropriate involution. In the absence of Dicer or the miR-29a cluster in the thymic epithelium, expression of the IFN-α receptor by the thymic epithelium was higher, which allowed suboptimal signals to trigger rapid loss of thymic cellularity.
Collapse
|
5
|
Flomerfelt FA, El Kassar N, Gurunathan C, Chua KS, League SC, Schmitz S, Gershon TR, Kapoor V, Yan XY, Schwartz RH, Gress RE. Tbata modulates thymic stromal cell proliferation and thymus function. ACTA ACUST UNITED AC 2010; 207:2521-32. [PMID: 20937703 PMCID: PMC2964569 DOI: 10.1084/jem.20092759] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Niche availability provided by stromal cells is critical to thymus function. Thymi with diminished function contain fewer stromal cells, whereas thymi with robust function contain proliferating stromal cell populations. Here, we show that the thymus, brain, and testes-associated gene (Tbata; also known as SPATIAL) regulates thymic epithelial cell (TEC) proliferation and thymus size. Tbata is expressed in thymic stromal cells and interacts with the enzyme Uba3, thereby inhibiting the Nedd8 pathway and cell proliferation. Thymi from aged Tbata-deficient mice are larger and contain more dividing TECs than wild-type littermate controls. In addition, thymic reconstitution after bone marrow transplantation occurred more rapidly in Rag2(-/-)Tbata(-/-) mice than in Rag2(-/-)Tbata(+/+) littermate controls. These findings suggest that Tbata modulates thymus function by regulating stromal cell proliferation via the Nedd8 pathway.
Collapse
Affiliation(s)
- Francis A Flomerfelt
- Experimental Transplantation Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Saade M, Irla M, Yammine M, Boulanger N, Victorero G, Vincentelli R, Penninger JM, Holländer GA, Chauvet S, Nguyen C. Spatial (Tbata) expression in mature medullary thymic epithelial cells. Eur J Immunol 2010; 40:530-8. [PMID: 19918778 DOI: 10.1002/eji.200939605] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The Spatial gene is expressed in highly polarized cell types such as testis germ cells, brain neurons and thymic epithelial cells (TEC). Its expression was documented in testis and brain but poorly characterized in thymus. Here, we characterize for the first time Spatial-expressing TEC throughout ontogeny and adult mouse thymus. Spatial is expressed in thymic-fated domain by embryonic day E10.5 and persists in subcapsular, cortical, medullary epithelial cells and in MTS24(+) progenitor TEC. Using mouse strains in which thymocyte development is blocked at various stages, we show that Spatial expression is independent of thymocyte-derived signals during thymus organogenesis. Analyses on purified thymic cell subsets show that Spatial short isoforms are expressed in cortical TEC (cTEC) and mature medullary TEC (mTEC). Spatial long isoforms were detected in the same TEC population. Spatial presents a nuclear distribution specific to mature mTEC expressing UEA1 and Aire. Aire- and RANKL-deficient mice revealed that Spatial expression is drastically reduced in the thymus of these mutants. These findings reveal a critical function of Aire in regulating Spatial expression, which is compatible with promiscuous Spatial gene expression.
Collapse
Affiliation(s)
- Murielle Saade
- INSERM U928, Technologies Avancées pour le Génome et la Clinique, Université de la Méditerranée, Parc Scientifique de Luminy, Marseille Cedex, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Wegrzyn JL, Drudge TM, Valafar F, Hook V. Bioinformatic analyses of mammalian 5'-UTR sequence properties of mRNAs predicts alternative translation initiation sites. BMC Bioinformatics 2008; 9:232. [PMID: 18466625 PMCID: PMC2396638 DOI: 10.1186/1471-2105-9-232] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2007] [Accepted: 05/08/2008] [Indexed: 12/19/2022] Open
Abstract
Background Utilization of alternative initiation sites for protein translation directed by non-AUG codons in mammalian mRNAs is observed with increasing frequency. Alternative initiation sites are utilized for the synthesis of important regulatory proteins that control distinct biological functions. It is, therefore, of high significance to define the parameters that allow accurate bioinformatic prediction of alternative translation initiation sites (aTIS). This study has investigated 5'-UTR regions of mRNAs to define consensus sequence properties and structural features that allow identification of alternative initiation sites for protein translation. Results Bioinformatic evaluation of 5'-UTR sequences of mammalian mRNAs was conducted for classification and identification of alternative translation initiation sites for a group of mRNA sequences that have been experimentally demonstrated to utilize alternative non-AUG initiation sites for protein translation. These are represented by the codons CUG, GUG, UUG, AUA, and ACG for aTIS. The first phase of this bioinformatic analysis implements a classification tree that evaluated 5'-UTRs for unique consensus sequence features near the initiation codon, characteristics of 5'-UTR nucleotide sequences, and secondary structural features in a decision tree that categorizes mRNAs into those with potential aTIS, and those without. The second phase addresses identification of the aTIS codon and its location. Critical parameters of 5'-UTRs were assessed by an Artificial Neural Network (ANN) for identification of the aTIS codon and its location. ANNs have previously been used for the purpose of AUG start site prediction and are applicable in complex. ANN analyses demonstrated that multiple properties were required for predicting aTIS codons; these properties included unique consensus nucleotide sequences at positions -7 and -6 combined with positions -3 and +4, 5'-UTR length, ORF length, predicted secondary structures, free energy features, upstream AUGs, and G/C ratio. Importantly, combined results of the classification tree and the ANN analyses provided highly accurate bioinformatic predictions of alternative translation initiation sites. Conclusion This study has defined the unique properties of 5'-UTR sequences of mRNAs for successful bioinformatic prediction of alternative initiation sites utilized in protein translation. The ability to define aTIS through the described bioinformatic analyses can be of high importance for genomic analyses to provide full predictions of translated mammalian and human gene products required for cellular functions in health and disease.
Collapse
Affiliation(s)
- Jill L Wegrzyn
- Computational Science Research Center, San Diego State University, San Diego, USA.
| | | | | | | |
Collapse
|
8
|
Wada S, Hamada M, Kobayashi K, Satoh N. Novel genes involved in canonical Wnt/beta-catenin signaling pathway in early Ciona intestinalis embryos. Dev Growth Differ 2008; 50:215-27. [PMID: 18336583 DOI: 10.1111/j.1440-169x.2008.01012.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report here characterization of five genes for novel components of the canonical Wnt/beta-catenin signaling pathway. These genes were identified in the ascidian Ciona intestinalis through a loss-of-function screening for genes required for embryogenesis with morpholinos, and four of them have counterparts in vertebrates. The five genes we studied are as follows: Ci-PGAP1, a Ciona orthologue of human PGAP1, which encodes GPI (glycosylphosphatidylinositol) inositol-deacylase, Ci-ZF278, a gene encoding a C2H2 zinc-finger protein, Ci-C10orf11, a Ciona orthologue of human C10orf11 that encodes a protein with leucine-rich repeats, Ci-Spatial/C4orf17, a single counterpart for two human genes Spatial and C4orf17, and Ci-FLJ10634, a Ciona orthologue of human FLJ10634 that encodes a member of the J-protein family. Knockdown of each of the genes mimicked beta-catenin knockdown and resulted in suppression of the expression of beta-catenin downstream genes (Ci-FoxD, Ci-Lhx3, Ci-Otx and Ci-Fgf9/16/20) and subsequent endoderm formation. For every gene, defects in knockdown embryos were rescued by overexpression of a constitutively active form, but not wild-type, of Ci-beta-catenin. Dosage-sensitive interactions were found between Ci-beta-catenin and each of the genes. These results suggest that these five genes act upstream of or parallel to Ci-beta-catenin in the Wnt/beta-catenin signaling pathway in early Ciona embryos.
Collapse
Affiliation(s)
- Shuichi Wada
- CREST (Core Research for Evolutional Science and Technology), Japan Science Technology Agency, Kawaguchi, Saitama 333-0012, Japan
| | | | | | | |
Collapse
|
9
|
Irla M, Saade M, Fernandez C, Chasson L, Victorero G, Dahmane N, Chazal G, Nguyen C. Neuronal distribution of Spatial in the developing cerebellum and hippocampus and its somatodendritic association with the kinesin motor KIF17. Exp Cell Res 2007; 313:4107-19. [DOI: 10.1016/j.yexcr.2007.09.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2007] [Revised: 09/03/2007] [Accepted: 09/05/2007] [Indexed: 11/28/2022]
|
10
|
Saade M, Irla M, Govin J, Victorero G, Samson M, Nguyen C. Dynamic distribution of Spatial during mouse spermatogenesis and its interaction with the kinesin KIF17b. Exp Cell Res 2006; 313:614-26. [PMID: 17196196 DOI: 10.1016/j.yexcr.2006.11.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2006] [Revised: 10/06/2006] [Accepted: 11/07/2006] [Indexed: 01/06/2023]
Abstract
The Spatial gene is expressed in highly polarized cell types, such as epithelial cells in the thymus, neurons in the brain and germ cells in the testis. In this study, we report the characterization and distribution of Spatial proteins during mouse spermatogenesis. Besides Spatial-epsilon and -delta, we show that the newly described short isoform Spatial-beta is expressed specifically in round spermatids. Using indirect immunofluorescence, we detected Spatial in the cytosol of the early round spermatid. By the end stages of round spermatids, Spatial is concentrated at the opposite face of the acrosome near the nascent flagellum and in the manchette during the elongation process. Finally in mature sperm, Spatial persists in the principal piece of the tail. Moreover, we found that Spatial colocalizes with KIF17b, a testis-specific isoform of the brain kinesin-2 motor KIF17. This colocalization is restricted to the manchette and the principal piece of the sperm tail. Further, coimmunoprecipitation experiments of native proteins from testis lysates confirmed Spatial-KIF17b association through the long Spatial-epsilon isoform. Together, these findings imply a function of Spatial in spermatid differentiation as a new cargo of kinesin KIF17b, in a microtubule-dependent mechanism specific to the manchette and the principal piece of the sperm tail.
Collapse
Affiliation(s)
- Murielle Saade
- INSERM, ERM 206, Laboratoire tagc Case 928, Parc Scientifique de Luminy, 13288 Marseille Cedex 9, France
| | | | | | | | | | | |
Collapse
|
11
|
Nohara K, Pan X, Tsukumo SI, Hida A, Ito T, Nagai H, Inouye K, Motohashi H, Yamamoto M, Fujii-Kuriyama Y, Tohyama C. Constitutively Active Aryl Hydrocarbon Receptor Expressed Specifically in T-Lineage Cells Causes Thymus Involution and Suppresses the Immunization-Induced Increase in Splenocytes. THE JOURNAL OF IMMUNOLOGY 2005; 174:2770-7. [PMID: 15728486 DOI: 10.4049/jimmunol.174.5.2770] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The aryl hydrocarbon receptor (AhR) is a transcription factor belonging to the basic helix-loop-helix-PER-ARNT-SIM superfamily. Xenobiotics, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin, bind the receptor and trigger diverse biological reactions. Thymocyte development and T cell-dependent immune reactions are sensitive targets of AhR-dependent 2,3,7,8-tetrachlorodibenzo-p-dioxin toxicity. However, the exact role of the AhR in T cells in animals exposed to exogenous ligands has not been clarified because indirect effects of activated AhR in other cell types cannot be excluded. In this study, we generated transgenic (Tg) mice expressing a constitutively active mutant of AhR under the regulation of a T cell-specific CD2 promoter to examine AhR function in T cells. The mRNAs of the constitutively active mutant of AhR and an AhR-induced gene, CYP1A1, were expressed in the thymus and spleen of the Tg mice. The transgene expression was clearly detected in the thymocytes, CD4, and CD8 T cells, but not in the B cells or thymus stromal cells. These Tg mice had a decreased number of thymocytes and an increased percentage of CD8 single-positive thymocytes, but their splenocytes were much less affected. By contrast, the increase in number of T cells and B cells taking place in the spleen after immunization was significantly suppressed in the Tg mice. These results clearly show that AhR activation in the T-lineage cells is directly involved in thymocyte loss and skewed differentiation. They also indicate that AhR activation in T cells and not in B cells suppresses the immunization-induced increase in both T cells and B cells.
Collapse
MESH Headings
- Animals
- Cell Lineage/immunology
- Down-Regulation/genetics
- Down-Regulation/immunology
- Epitopes, T-Lymphocyte/immunology
- Humans
- Lymphocyte Count
- Mice
- Mice, Inbred C57BL
- Mice, Inbred DBA
- Mice, Transgenic
- Organ Size/genetics
- Organ Size/immunology
- Polychlorinated Dibenzodioxins/administration & dosage
- Polychlorinated Dibenzodioxins/immunology
- RNA, Messenger/biosynthesis
- Receptors, Aryl Hydrocarbon/biosynthesis
- Receptors, Aryl Hydrocarbon/genetics
- Receptors, Aryl Hydrocarbon/physiology
- Spleen/cytology
- Spleen/immunology
- Suppressor Factors, Immunologic/biosynthesis
- Suppressor Factors, Immunologic/physiology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- Thymus Gland/immunology
- Thymus Gland/pathology
- Up-Regulation/genetics
- Up-Regulation/immunology
Collapse
Affiliation(s)
- Keiko Nohara
- Environmental Health Sciences Division, National Institute for Environmental Studies, University of Tsukuba, Tsukuba, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Irla M, Puthier D, Granjeaud S, Saade M, Victorero G, Mattei MG, Nguyen C. Genomic organization and the tissue distribution of alternatively spliced isoforms of the mouse Spatial gene. BMC Genomics 2004; 5:41. [PMID: 15236666 PMCID: PMC481062 DOI: 10.1186/1471-2164-5-41] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2004] [Accepted: 07/05/2004] [Indexed: 11/18/2022] Open
Abstract
Background The stromal component of the thymic microenvironment is critical for T lymphocyte generation. Thymocyte differentiation involves a cascade of coordinated stromal genes controlling thymocyte survival, lineage commitment and selection. The "Stromal Protein Associated with Thymii And Lymph-node" (Spatial) gene encodes a putative transcription factor which may be involved in T-cell development. In the testis, the Spatial gene is also expressed by round spermatids during spermatogenesis. Results The Spatial gene maps to the B3-B4 region of murine chromosome 10 corresponding to the human syntenic region 10q22.1. The mouse Spatial genomic DNA is organised into 10 exons and is alternatively spliced to generate two short isoforms (Spatial-α and -γ) and two other long isoforms (Spatial-δ and -ε) comprising 5 additional exons on the 3' site. Here, we report the cloning of a new short isoform, Spatial-β, which differs from other isoforms by an additional alternative exon of 69 bases. This new exon encodes an interesting proline-rich signature that could confer to the 34 kDa Spatial-β protein a particular function. By quantitative TaqMan RT-PCR, we have shown that the short isoforms are highly expressed in the thymus while the long isoforms are highly expressed in the testis. We further examined the inter-species conservation of Spatial between several mammals and identified that the protein which is rich in proline and positive amino acids, is highly conserved. Conclusions The Spatial gene generates at least five alternative spliced variants: three short isoforms (Spatial-α, -β and -γ) highly expressed in the thymus and two long isoforms (Spatial-δ and -ε) highly expressed in the testis. These alternative spliced variants could have a tissue specific function.
Collapse
Affiliation(s)
- Magali Irla
- ERM 0206 INSERM, Case 928, Parc Scientifique de Luminy, F-13288 Marseille Cedex 9, Université de la méditerranée, faculté de science de Luminy, Marseille, France
| | - Denis Puthier
- ERM 0206 INSERM, Case 928, Parc Scientifique de Luminy, F-13288 Marseille Cedex 9, Université de la méditerranée, faculté de science de Luminy, Marseille, France
| | - Samuel Granjeaud
- ERM 0206 INSERM, Case 928, Parc Scientifique de Luminy, F-13288 Marseille Cedex 9, Université de la méditerranée, faculté de science de Luminy, Marseille, France
| | - Murielle Saade
- ERM 0206 INSERM, Case 928, Parc Scientifique de Luminy, F-13288 Marseille Cedex 9, Université de la méditerranée, faculté de science de Luminy, Marseille, France
| | - Geneviève Victorero
- ERM 0206 INSERM, Case 928, Parc Scientifique de Luminy, F-13288 Marseille Cedex 9, Université de la méditerranée, faculté de science de Luminy, Marseille, France
| | | | - Catherine Nguyen
- ERM 0206 INSERM, Case 928, Parc Scientifique de Luminy, F-13288 Marseille Cedex 9, Université de la méditerranée, faculté de science de Luminy, Marseille, France
| |
Collapse
|
13
|
Irla M, Puthier D, Le Goffic R, Victorero G, Freeman T, Naquet P, Samson M, Nguyen C. Spatial, a new nuclear factor tightly regulated during mouse spermatogenesis. Gene Expr Patterns 2003; 3:135-8. [PMID: 12711538 DOI: 10.1016/s1567-133x(03)00024-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In order to clarify general mechanisms of T cell development, we used array technology to identify genes differentially expressed between wild type and mutant mice thymuses. This quantitative differential screening leads to the isolation of Spatial, a putative transcription factor, expressed at high level in thymic cortical stromal cells. We report here, by RT-PCR on 48 distinct tissues that Spatial is also highly expressed in testis. Interestingly, the testicular expression is developmentally regulated, since it only appears in adult mice around 7-8 weeks of age. Analysis of purified testicular cell types show that Spatial expression is restricted to haploid round spermatids during spermiogenesis and the expression sites were further localized by in situ hybridization to step 2-10 spermatids. Thus, this recently described nuclear factor constitutes a new marker of the round spermatid stage that may play a key role in the control of male germ cell development.
Collapse
Affiliation(s)
- Magali Irla
- ERM 206 INSERM, Faculté de Science de Luminy, Université de la Méditerranée, Case 906, Parc Scientifique de Luminy, F-13288 Marseille Cedex 9, IFR57, France
| | | | | | | | | | | | | | | |
Collapse
|