1
|
Perrone B, Ruffo P, Augimeri G, Sisci D, Sinicropi MS, Tripepi G, Mammì C, Bonofiglio D, Conforti FL. Association between HMGCR, CRP, and CETP gene polymorphisms and metabolic/inflammatory serum profile in healthy adolescents. J Transl Med 2023; 21:718. [PMID: 37833739 PMCID: PMC10576320 DOI: 10.1186/s12967-023-04571-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
BACKGROUND The complex interplay between health, lifestyle and genetics represents a critical area of research for understanding and promoting human well-being. Importantly, genetics plays a key role in determining individual susceptibility to disease and response to lifestyle. The aim of the present study was to identify genetic factors related to the metabolic/inflammatory profile of adolescents providing new insights into the individual predisposition to the different effects of the substances from the environment. METHODS Association analysis of genetic variants and biochemical parameters was performed in a total of 77 healthy adolescents recruited in the context of the DIMENU study. RESULTS Polymorphisms of 3-hydroxy-3-methylglutaril coenzyme A reductase (HMGCR; rs142563098), C-reactive protein gene (CRP; rs1417938, rs1130864), cholesteryl ester transfer protein (CETP; rs5030708), interleukin (IL)-10 (IL-10; rs3024509) genes were significantly associated (p < 0.05) with various serum metabolic parameters. Of particular interest were also the correlations between the HMGCRpolymorphism (rs3846663) and tumor necrosis factor (TNF)-α levels, as well Fatty-acid desaturase (FADS) polymorphism (rs7481842) and IL-10 level opening a new link between lipidic metabolism genes and inflammation. CONCLUSION In this study, we highlighted associations between single nucleotide polymorphisms (SNPs) and serum levels of metabolic and inflammatory parameters in healthy young individuals, suggesting the importance of genetic profiling in the prevention and management of chronic disease.
Collapse
Affiliation(s)
- Benedetta Perrone
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, Rende, CS, Italy
| | - Paola Ruffo
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, Rende, CS, Italy
| | - Giuseppina Augimeri
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, Rende, CS, Italy
| | - Diego Sisci
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, Rende, CS, Italy
- Centro Sanitario, University of Calabria, Via P Bucci, Rende, CS, Italy
| | - Maria Stefania Sinicropi
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, Rende, CS, Italy
| | - Giovanni Tripepi
- Institute of Clinical Physiology of Reggio Calabria, IFC-CNR, Reggio Calabria, Italy
| | - Corrado Mammì
- Great Metropolitan Hospital BMM, Reggio Calabria, Italy.
| | - Daniela Bonofiglio
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, Rende, CS, Italy
- Centro Sanitario, University of Calabria, Via P Bucci, Rende, CS, Italy
| | - Francesca Luisa Conforti
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, Rende, CS, Italy.
- Centro Sanitario, University of Calabria, Via P Bucci, Rende, CS, Italy.
| |
Collapse
|
2
|
Siebert S, Sweet KM, Ritchlin CT, Hsia EC, Kollmeier AP, Xu XL, Seridi L, Song Q, Gao S, Chen W, Miron M. Guselkumab Modulates Differentially Expressed Genes in Blood of Patients With Psoriatic Arthritis: Results from Two Phase 3, Randomized, Placebo-Controlled Trials. ACR Open Rheumatol 2023; 5:490-498. [PMID: 37553909 PMCID: PMC10502816 DOI: 10.1002/acr2.11589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 08/10/2023] Open
Abstract
OBJECTIVE To evaluate gene expression in blood of patients with psoriatic arthritis (PsA) versus healthy controls and identify changes associated with guselkumab treatment. METHODS Whole blood transcriptome profiling via paired-end RNA sequencing was conducted using samples from DISCOVER-1 and DISCOVER-2 at baseline (n = 673) and at weeks 4 and 24 from a representative subgroup that received placebo or guselkumab (n = 227 [longitudinal PsA cohort]). Baseline samples were compared with demographically matched healthy controls (n = 21). Guselkumab-mediated changes in gene expression were assessed in participants from the longitudinal PsA cohort who did versus did not achieve at least 20% improvement in American College of Rheumatology response criteria (ACR20) or at least 75% improvement in Psoriasis Area and Severity Index (PASI75). Differential gene expression was analyzed using edgeR. RESULTS At baseline, 355 upregulated and 314 downregulated genes (PsA-associated genes) were identified in patients with PsA versus healthy controls. Upregulated genes were related to neutrophil, mononuclear cell, and CD11b+ gene sets. No cell type-specific gene sets were identified among downregulated genes. Most PsA-associated genes were modulated by guselkumab treatment. At week 24, genes downregulated by guselkumab were enriched with neutrophil, monocyte, eosinophil, and macrophage gene sets; genes upregulated by guselkumab were enriched with B cell, T cell, and natural killer cell gene sets. Reductions in expression of upregulated PsA-associated gene sets were more pronounced in ACR20 and PASI75 responders than in nonresponders. CONCLUSION These findings suggest a dysregulation of immune cell profiles in blood from patients in the baseline PsA cohort that approached levels in healthy controls after guselkumab treatment.
Collapse
Affiliation(s)
| | | | | | - Elizabeth C. Hsia
- Janssen Research & Development, LLCSpring HousePennsylvaniaUSA
- University of Pennsylvania School of MedicinePhiladelphiaPennsylvaniaUSA
| | | | - Xie L. Xu
- Janssen Research & Development, LLCSan DiegoCaliforniaUSA
| | - Loqmane Seridi
- Janssen Research & Development, LLCSpring HousePennsylvaniaUSA
| | - Qingxuan Song
- Janssen Research & Development, LLCSpring HousePennsylvaniaUSA
| | - Sheng Gao
- Janssen Research & Development, LLCSpring HousePennsylvaniaUSA
| | - Warner Chen
- Janssen Research & Development, LLCSpring HousePennsylvaniaUSA
| | - Michelle Miron
- Janssen Research & Development, LLCSpring HousePennsylvaniaUSA
| |
Collapse
|
3
|
Wirth T, Balandraud N, Boyer L, Lafforgue P, Pham T. Biomarkers in psoriatic arthritis: A meta-analysis and systematic review. Front Immunol 2022; 13:1054539. [PMID: 36532039 PMCID: PMC9749424 DOI: 10.3389/fimmu.2022.1054539] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/07/2022] [Indexed: 12/03/2022] Open
Abstract
Introduction Psoriatic arthritis (PsA) is a chronic inflammatory disease that frequently develops in patients with psoriasis (PsO) but can also occur spontaneously. As a result, PsA diagnosis and treatment is commonly delayed, or even missed outright due to the manifold of clinical presentations that patients often experience. This inevitably results in progressive articular damage to axial and peripheral joints and entheses. As such, patients with PsA frequently experience reduced expectancy and quality of life due to disability. More recently, research has aimed to improve PsA diagnosis and prognosis by identifying novel disease biomarkers. Methods Here, we conducted a systematic review of the published literature on candidate biomarkers for PsA diagnosis and prognosis in MEDLINE(Pubmed), EMBase and the Cochrane library with the goal to identify clinically applicable PsA biomarkers. Meta-analyses were performed when a diagnostic bone and cartilage turnover biomarker was reported in 2 or moredifferent cohorts of PsA and control. Results We identified 1444 publications and 124 studies met eligibility criteria. We highlighted bone and cartilage turnover biomarkers, genetic markers, and autoantibodies used for diagnostic purposes of PsA, as well as acute phase reactant markers and bone and cartilage turnover biomarkers for activity or prognostic severity purposes. Serum cartilage oligometrix metalloproteinase levels were significantly increased in the PsA sera compared to Healthy Control (HC) with a standardized mean difference (SMD) of 2.305 (95%CI 0.795-3.816, p=0.003) and compared to osteoarthritis (OA) with a SMD of 0.783 (95%CI 0.015-1.551, p=0.046). The pooled serum MMP-3 levels were significantly higher in PsA patients than in PsO patients with a SMD of 0.419 (95%CI 0.119-0.719; p=0.006), but no significant difference was highlighted when PsA were compared to HC. While we did not identify any new genetic biomarkers that would be useful in the diagnosis of PsA, recent data with autoantibodies appear to be promising in diagnosis, but no replication studies have been published. Conclusion In summary, no specific diagnostic biomarkers for PsA were identified and further studies are needed to assess the performance of potential biomarkers that can distinguish PsA from OA and other chronic inflammatory diseases.
Collapse
Affiliation(s)
- Theo Wirth
- Rheumatology Department, Sainte Marguerite Hospital, Aix-Marseille University, APHM, Marseille, France,*Correspondence: Theo Wirth,
| | - Nathalie Balandraud
- Rheumatology Department, Sainte Marguerite Hospital, Aix-Marseille University, APHM, Marseille, France,Autoimmune Arthritis Laboratory, INSERM UMRs1097, Aix Marseille University, Marseille, France
| | - Laurent Boyer
- School of Medicine, EA 3279, CEReSS, Research Center on Health Services and Quality of Life, Aix Marseille University, Marseille, France
| | - Pierre Lafforgue
- Rheumatology Department, Sainte Marguerite Hospital, Aix-Marseille University, APHM, Marseille, France
| | - Thao Pham
- Rheumatology Department, Sainte Marguerite Hospital, Aix-Marseille University, APHM, Marseille, France
| |
Collapse
|
4
|
Zhu Q, Chen N, Tian X, Zhou Y, You Q, Xu X. Hematopoietic Progenitor Kinase 1 in Tumor Immunology: A Medicinal Chemistry Perspective. J Med Chem 2022; 65:8065-8090. [PMID: 35696642 DOI: 10.1021/acs.jmedchem.2c00172] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hematopoietic progenitor kinase 1 (HPK1), a hematopoietic cell-restricted member of the serine/threonine Ste20-related protein kinases, is a negative regulator of the T cell receptor, B cell receptor, and dendritic cells. Loss of HPK1 kinase function increases cytokine secretion and enhances T cell signaling, virus clearance, and tumor growth inhibition. Therefore, HPK1 is considered a promising target for tumor immunotherapy. Several HPK1 inhibitors have been reported to regulate T cell function. In addition, HPK1-targeting PROTACs, which can induce the degradation of HPK1, have also been developed. Here, we provide an overview of research concerning HPK1 protein structure, function, and inhibitors and propose perspectives and insights for the future development of agents targeting HPK1.
Collapse
Affiliation(s)
- Qiangsheng Zhu
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Nannan Chen
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xinjian Tian
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yeling Zhou
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - QiDong You
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaoli Xu
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
5
|
Laborde CM, Larzabal L, González-Cantero Á, Castro-Santos P, Díaz-Peña R. Advances of Genomic Medicine in Psoriatic Arthritis. J Pers Med 2022; 12:jpm12010035. [PMID: 35055350 PMCID: PMC8780979 DOI: 10.3390/jpm12010035] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/16/2021] [Accepted: 12/28/2021] [Indexed: 12/13/2022] Open
Abstract
Psoriatic arthritis (PsA) is a common type of inflammatory arthritis found in up to 40% of patients with psoriasis. Although early diagnosis is important for reducing the risk of irreversible structural damage, there are no adequate screening tools for this purpose, and there are no clear markers of predisposition to the disease. Much evidence indicates that PsA disorder is complex and heterogeneous, where genetic and environmental factors converge to trigger inflammatory events and the development of the disease. Nevertheless, the etiologic events that underlie PsA are complex and not completely understood. In this review, we describe the existing data in PsA in order to highlight the need for further research in this disease to progress in the knowledge of its pathobiology and to obtain early diagnosis tools for these patients.
Collapse
Affiliation(s)
| | | | - Álvaro González-Cantero
- Department of Dermatology, Hospital Universitario Ramon y Cajal, 28034 Madrid, Spain;
- Faculty of Medicine, Universidad Francisco de Vitoria, Ctra. Pozuelo-Majadahonda, 28223 Pozuelo de Alarcón, 28034 Madrid, Spain
| | - Patricia Castro-Santos
- Immunology, Centro de Investigaciones Biomédicas (CINBIO), Universidad de Vigo, 36310 Vigo, Spain;
| | - Roberto Díaz-Peña
- Faculty of Health Sciences, Universidad Autónoma de Chile, Talca 3460000, Chile
- Correspondence: or ; Tel.: +34-981-955-073
| |
Collapse
|
6
|
Grivas A, Fragoulis G, Garantziotis P, Banos A, Nikiphorou E, Boumpas D. Unraveling the complexities of psoriatic arthritis by the use of -Omics and their relevance for clinical care. Autoimmun Rev 2021; 20:102949. [PMID: 34509654 DOI: 10.1016/j.autrev.2021.102949] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 06/30/2021] [Indexed: 12/30/2022]
Abstract
-Omic technologies represent a novel approach to unravel ill-defined aspects of psoriatic arthritis (PsA). Large-scale information can be acquired from analysis of affected tissues in PsA via high-throughput studies in the domains of genomics, transcriptomics, epigenetics, proteomics and metabolomics. This is a critical overview of the current knowledge of -omics in PsA, with emphasis on the pathophysiological insights of diagnostic and therapeutic relevance, the advent of novel biomarkers and their potential use for precision medicine in PsA.
Collapse
Affiliation(s)
- Alexandros Grivas
- National and Kapodistrian University of Athens, Faculty of medicine, Athens, Greece; Inflammation & Autoimmunity Lab, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece.
| | - George Fragoulis
- First Department of Propaedeutic Internal Medicine, National and Kapodistrian University of Athens, "Laiko" General Hospital, Athens, Greece
| | - Panagiotis Garantziotis
- Inflammation & Autoimmunity Lab, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece; Division of Immunology and Rheumatology, Hannover Medical University, 30,625 Hannover, Germany
| | - Aggelos Banos
- Inflammation & Autoimmunity Lab, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece
| | - Elena Nikiphorou
- Centre for Rheumatic Diseases, School of Immunology and Microbial Sciences, King's College London, King's Hospital, London, United Kingdom
| | - Dimitrios Boumpas
- National and Kapodistrian University of Athens, Faculty of medicine, Athens, Greece; Inflammation & Autoimmunity Lab, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece
| |
Collapse
|
7
|
He J, Liu K, Hou X, Lu J. Comprehensive analysis of DNA methylation and gene expression profiles in gestational diabetes mellitus. Medicine (Baltimore) 2021; 100:e26497. [PMID: 34190178 PMCID: PMC8257864 DOI: 10.1097/md.0000000000026497] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 05/26/2021] [Accepted: 05/30/2021] [Indexed: 01/04/2023] Open
Abstract
ABSTRACT Gestational diabetes mellitus (GDM) has a high prevalence during pregnancy. This research aims to identify genes and their pathways related to GDM by combining bioinformatics analysis.The DNA methylation and gene expression profiles data set was obtained from Gene Expression Omnibus. Differentially expressed genes (DEG) and differentially methylated genes (DMG) were screened by R package limma. The methylation-regulated differentially expressed genes (MeDEGs) were obtained by overlapping the DEGs and DMGs. A protein-protein interaction network was constructed using the search tool for searching interacting genes. The results are visualized in Cytoscape. Disease-related miRNAs and pathways were retrieved from Human MicroRNA Disease Database and Comparative Toxic Genome Database. Real-time quantitative PCR further verified the expression changes of these genes in GDM tissues and normal tissues.After overlapping DEGs and DMGs, 138 MeDEGs were identified. These genes were mainly enriched in the biological processes of the "immune response," "defense response," and "response to wounding." Pathway enrichment shows that these genes are involved in "Antigen processing and presentation," "Graft-versus-host disease," "Type I diabetes mellitus," and "Allograft rejection." Six mRNAs (including superoxide dismutase 2 (SOD2), mitogen-activated protein kinase kinase kinase kinase 3 (MAP4K3), dual specificity phosphatase 5 (DUSP5), p21-activated kinases 2 (PAK2), serine protease inhibitor clade E member 1 (SERPINE1), and protein phosphatase 1 regulatory subunit 15B (PPP1R15B)) were identified as being related to GDM. The results obtained by real-time quantitative PCR are consistent with the results of the microarray analysis.This study identified new types of MeDEGs and discovered their related pathways and functions in GDM, which may be used as molecular targets and diagnostic biomarkers for the precise diagnosis and treatment of GDM.
Collapse
Affiliation(s)
- Jing He
- Department of Obstetrics and Gynecology, Shanxi Bethune Hospital, Shanxi Medical University, Taiyuan, Shanxi
| | - Kang Liu
- Department of Obstetrics and Gynecology, Shanxi Bethune Hospital, Shanxi Medical University, Taiyuan, Shanxi
| | - Xiaohong Hou
- Department of Obstetrics and Gynecology, The 2nd Affiliated Hospital of Wenzhou Medical University, Zhejiang, P. R. China
| | - Jieqiang Lu
- Department of Obstetrics and Gynecology, The 2nd Affiliated Hospital of Wenzhou Medical University, Zhejiang, P. R. China
| |
Collapse
|
8
|
Sawasdikosol S, Burakoff S. A perspective on HPK1 as a novel immuno-oncology drug target. eLife 2020; 9:55122. [PMID: 32896273 PMCID: PMC7478889 DOI: 10.7554/elife.55122] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 08/28/2020] [Indexed: 12/11/2022] Open
Abstract
In this perspective review, the role Hematopoietic Progenitor Kinase 1 (HPK1) in tumor immunity will be reviewed, with special emphasis on how T cells are negatively-regulated at different junctures of cancer-immunity cycle by this regulatory kinase. The review will highlight the strengths and weaknesses of HPK1 as a candidate target for novel immuno-oncology (IO) drug development that is centered on the use of small molecule kinase inhibitor to modulate the immune response against cancer. Such a therapeutic approach, if proven successful, could supplement the cancer cell-centric standard of care therapies in order to fully meet the therapeutic needs of cancer patients.
Collapse
Affiliation(s)
- Sansana Sawasdikosol
- Tisch Cancer Institute, Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, Hess Center for Science and Medicine, New York, United States
| | - Steven Burakoff
- Tisch Cancer Institute, Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, Hess Center for Science and Medicine, New York, United States
| |
Collapse
|
9
|
Lacey BM, Xu Z, Chai X, Laskey J, Fradera X, Mittal P, Mishra S, Piesvaux J, Saradjian P, Shaffer L, Vassileva G, Gerdt C, Wang Y, Ferguson H, Smith DM, Ballard J, Wells S, Jain R, Mueller U, Addona G, Kariv I, Methot JL, Bittinger M, Ranganath S, Mcleod R, Pasternak A, Miller JR, Xu H. Development of High-Throughput Assays for Evaluation of Hematopoietic Progenitor Kinase 1 Inhibitors. SLAS DISCOVERY 2020; 26:88-99. [PMID: 32844715 DOI: 10.1177/2472555220952071] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Hematopoietic progenitor kinase 1 (HPK1), also referred to as mitogen-activated protein kinase kinase kinase kinase 1 (MAP4K1), is a serine/threonine kinase that negatively regulates T-cell signaling by phosphorylating Ser376 of Src homology 2 (SH2) domain-containing leukocyte protein of 76 kDa (SLP-76), a critical mediator of T-cell receptor activation. HPK1 loss of function mouse models demonstrated enhanced immune cell activation and beneficial antitumor activity. To enable discovery and functional characterization of high-affinity small-molecule HPK1 inhibitors, we have established high-throughput biochemical, cell-based, and novel pharmacodynamic (PD) assays. Kinase activity-based time-resolved fluorescence energy transfer (TR-FRET) assays were established as the primary biochemical approach to screen for potent inhibitors and assess selectivity against members of MAP4K and other closely related kinases. A proximal target engagement (TE) assay quantifying pSLP-76 levels as a readout and a distal assay measuring IL-2 secretion as a functional response were established using human peripheral blood mononuclear cells (PBMCs) from two healthy donors. Significant correlations between biochemical and cellular assays as well as excellent correlation between the two donors for the cellular assays were observed. pSLP-76 levels were further used as a PD marker in the preclinical murine model. This effort required the development of a novel ultrasensitive single-molecule array (SiMoA) assay to monitor pSLP-76 changes in mouse spleen.
Collapse
Affiliation(s)
- Brian M Lacey
- Department of Quantitative Biosciences, Merck & Co., Inc., Boston, MA, USA
| | - Zangwei Xu
- Department of Quantitative Biosciences, Merck & Co., Inc., Boston, MA, USA
| | - Xiaomei Chai
- Department of Quantitative Biosciences, Merck & Co., Inc., Boston, MA, USA
| | - Jason Laskey
- Department of Quantitative Biosciences, Merck & Co., Inc., Boston, MA, USA
| | - Xavier Fradera
- Department of Computational and Structural Chemistry, Merck & Co., Inc., Boston, MA, USA
| | - Payal Mittal
- Department of Oncology Early Discovery, Merck & Co., Inc., Boston, MA, USA
| | - Sasmita Mishra
- Department of Quantitative Biosciences, Merck & Co., Inc., Boston, MA, USA
| | - Jennifer Piesvaux
- Department of Quantitative Biosciences, Merck & Co., Inc., Boston, MA, USA
| | - Peter Saradjian
- Department of Quantitative Biosciences, Merck & Co., Inc., Boston, MA, USA
| | - Lynsey Shaffer
- Department of Quantitative Biosciences, Merck & Co., Inc., Boston, MA, USA
| | - Galya Vassileva
- Department of Genetics and Pharmacogenomics, Merck & Co., Inc., Boston, MA, USA
| | - Catherine Gerdt
- Department of Quantitative Biosciences, Merck & Co., Inc., Boston, MA, USA
| | - Yun Wang
- Department of Oncology Early Discovery, Merck & Co., Inc., Boston, MA, USA
| | - Heidi Ferguson
- Department of Preclinical Development, Merck & Co., Inc., Boston, MA, USA
| | | | | | - Steven Wells
- Department of Oncology Early Discovery, Merck & Co., Inc., Boston, MA, USA
| | - Rishabh Jain
- Department of Quantitative Biosciences, Merck & Co., Inc., Boston, MA, USA
| | - Uwe Mueller
- Department of Quantitative Biosciences, Merck & Co., Inc., Boston, MA, USA
| | - George Addona
- Department of Quantitative Biosciences, Merck & Co., Inc., Boston, MA, USA
| | - Ilona Kariv
- Department of Quantitative Biosciences, Merck & Co., Inc., Boston, MA, USA
| | - Joey L Methot
- Department of Discovery Chemistry, Merck & Co., Inc., Boston, MA, USA
| | - Mark Bittinger
- Department of Oncology Early Discovery, Merck & Co., Inc., Boston, MA, USA
| | - Sheila Ranganath
- Department of Oncology Early Discovery, Merck & Co., Inc., Boston, MA, USA
| | - Robbie Mcleod
- Department of Quantitative Biosciences, Merck & Co., Inc., Boston, MA, USA
| | | | - J Richard Miller
- Department of Quantitative Biosciences, Merck & Co., Inc., Boston, MA, USA
| | - Haiyan Xu
- Department of Quantitative Biosciences, Merck & Co., Inc., Boston, MA, USA
| |
Collapse
|
10
|
Chuang HC, Tan TH. MAP4K Family Kinases and DUSP Family Phosphatases in T-Cell Signaling and Systemic Lupus Erythematosus. Cells 2019; 8:cells8111433. [PMID: 31766293 PMCID: PMC6912701 DOI: 10.3390/cells8111433] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/08/2019] [Accepted: 11/11/2019] [Indexed: 12/21/2022] Open
Abstract
T cells play a critical role in the pathogenesis of systemic lupus erythematosus (SLE), which is a severe autoimmune disease. In the past 60 years, only one new therapeutic agent with limited efficacy has been approved for SLE treatment; therefore, the development of early diagnostic biomarkers and therapeutic targets for SLE is desirable. Mitogen-activated protein kinase kinase kinase kinases (MAP4Ks) and dual-specificity phosphatases (DUSPs) are regulators of MAP kinases. Several MAP4Ks and DUSPs are involved in T-cell signaling and autoimmune responses. HPK1 (MAP4K1), DUSP22 (JKAP), and DUSP14 are negative regulators of T-cell activation. Consistently, HPK1 and DUSP22 are downregulated in the T cells of human SLE patients. In contrast, MAP4K3 (GLK) is a positive regulator of T-cell signaling and T-cell-mediated immune responses. MAP4K3 overexpression-induced RORγt–AhR complex specifically controls interleukin 17A (IL-17A) production in T cells, leading to autoimmune responses. Consistently, MAP4K3 and the RORγt–AhR complex are overexpressed in the T cells of human SLE patients, as are DUSP4 and DUSP23. In addition, DUSPs are also involved in either human autoimmune diseases (DUSP2, DUSP7, DUSP10, and DUSP12) or T-cell activation (DUSP1, DUSP5, and DUSP14). In this review, we summarize the MAP4Ks and DUSPs that are potential biomarkers and/or therapeutic targets for SLE.
Collapse
|
11
|
Yue T, Ji M, Qu H, Guo M, Bai F, Zhang Z, Wang W, Gong X, Zhang Z. Comprehensive analyses of long non-coding RNA expression profiles by RNA sequencing and exploration of their potency as biomarkers in psoriatic arthritis patients. BMC Immunol 2019; 20:28. [PMID: 31390976 PMCID: PMC6686418 DOI: 10.1186/s12865-019-0297-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 05/21/2019] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND The aim of the current study was to investigate the long non-coding RNA (lncRNA) expression profiles in psoriatic arthritis (PSA) patients by RNA sequencing, and to further explore potential biomarkers that were able to predict PSA risk and activity. METHODS LncRNA and mRNA expression profiles in peripheral blood mononuclear cells (PBMC) of 4 PSA patients and 4 normal controls (NCs) were detected by RNA sequencing, followed by comprehensive bioinformatic analyses. Subsequently, 3 top upregulated and 2 top downregulated lncRNAs were chosen for further validation in 93 PSA patients and 93 NCs by quantitative polymerase chain reaction (qPCR) assay. RESULTS Totally 76 upregulated and 54 downregulated lncRNAs, as well as 231 upregulated and 102 downregulated mRNAs were discovered in PSA patients compared with NCs. Enrichment analyses revealed that they were mostly associated with nucleosome, extracellular exosome and extracellular matrix, and the top enriched pathways were systemic lupus erythematosus (SLE), alcoholism and viral carcinogenesis. qPCR assay showed that lnc-RP11-701H24.7 and lnc-RNU12 were upregulated in PSA patients compared with NCs, and they could predict PSA risk with high area under curves. Besides, lnc-RP11-701H24.7 was positively associated with ESR, SJC, TJC and pain VAS score while lnc-RNU12 was positively correlated with PASI score, CRP and PGA score, implying that both of them were positively correlated with disease activity. CONCLUSION Our study facilitates comprehensive understanding of lncRNA expression profiles in PSA pathogenesis, and discovers that lnc-RP11-701H24.7 and lnc-RNU12 might be served as novel biomarkers for PSA risk and activity.
Collapse
Affiliation(s)
- Tao Yue
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrated Traditional Chinese and Western Medicine, 540 Xinhua Road, Shanghai, 200052, China.
| | - Mei Ji
- Department of Dermatology, Skin Disease Prevention and Treatment of Fengxian District of Shanghai, Shanghai, China
| | - Huanru Qu
- Department of Rheumatology, Longhua Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mengru Guo
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrated Traditional Chinese and Western Medicine, 540 Xinhua Road, Shanghai, 200052, China
| | - Fengmin Bai
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrated Traditional Chinese and Western Medicine, 540 Xinhua Road, Shanghai, 200052, China
| | - Zhanming Zhang
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrated Traditional Chinese and Western Medicine, 540 Xinhua Road, Shanghai, 200052, China
| | - Weifeng Wang
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrated Traditional Chinese and Western Medicine, 540 Xinhua Road, Shanghai, 200052, China
| | - Xuming Gong
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrated Traditional Chinese and Western Medicine, 540 Xinhua Road, Shanghai, 200052, China
| | - Zhenghua Zhang
- Department of Dermatology, Huashan Hospital, Fudan University, 12 Wulumuqi Zhong Road, Shanghai, 200040, China.
| |
Collapse
|
12
|
Zhang Q, Ding S, Zhang H. Interactions between hematopoietic progenitor kinase 1 and its adaptor proteins. Mol Med Rep 2017; 16:6472-6482. [DOI: 10.3892/mmr.2017.7494] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 07/31/2017] [Indexed: 11/06/2022] Open
|
13
|
High-density genotyping of immune-related loci identifies new SLE risk variants in individuals with Asian ancestry. Nat Genet 2016; 48:323-30. [PMID: 26808113 PMCID: PMC4767573 DOI: 10.1038/ng.3496] [Citation(s) in RCA: 185] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 12/23/2015] [Indexed: 01/04/2023]
Abstract
Systemic lupus erythematosus (SLE) has a strong but incompletely understood genetic architecture. We conducted an association study with replication in 4,478 SLE cases and 12,656 controls from six East Asian cohorts to identify new SLE susceptibility loci and better localize known loci. We identified ten new loci and confirmed 20 known loci with genome-wide significance. Among the new loci, the most significant locus was GTF2IRD1-GTF2I at 7q11.23 (rs73366469, Pmeta = 3.75 × 10(-117), odds ratio (OR) = 2.38), followed by DEF6, IL12B, TCF7, TERT, CD226, PCNXL3, RASGRP1, SYNGR1 and SIGLEC6. We identified the most likely functional variants at each locus by analyzing epigenetic marks and gene expression data. Ten candidate variants are known to alter gene expression in cis or in trans. Enrichment analysis highlights the importance of these loci in B cell and T cell biology. The new loci, together with previously known loci, increase the explained heritability of SLE to 24%. The new loci share functional and ontological characteristics with previously reported loci and are possible drug targets for SLE therapeutics.
Collapse
|
14
|
|
15
|
Distinct genetic profile in peripheral blood mononuclear cells of psoriatic arthritis patients treated with methotrexate and TNF-inhibitors. Clin Rheumatol 2014; 33:1815-21. [DOI: 10.1007/s10067-014-2807-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 09/02/2014] [Accepted: 10/15/2014] [Indexed: 11/25/2022]
|
16
|
Rosenberg A, Fan H, Chiu YG, Bolce R, Tabechian D, Barrett R, Moorehead S, Baribaud F, Liu H, Peffer N, Shealy D, Schwarz EM, Ritchlin CT. Divergent gene activation in peripheral blood and tissues of patients with rheumatoid arthritis, psoriatic arthritis and psoriasis following infliximab therapy. PLoS One 2014; 9:e110657. [PMID: 25333715 PMCID: PMC4204991 DOI: 10.1371/journal.pone.0110657] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 09/23/2014] [Indexed: 12/24/2022] Open
Abstract
Objective The immune inflammatory disorders rheumatoid arthritis (RA), psoriatic arthritis (PsA) and psoriasis (Ps) share common pathologic features and show responsiveness to anti-tumor necrosis factor (TNF) agents yet they are phenotypically distinct. The aim of this study was to examine if anti-TNF therapy is associated with divergent gene expression profiles in circulating cells and target tissues of patients with these diseases. Methods Peripheral blood CD14+ and CD14− cells were isolated from 9 RA, 12 PsA and 10 Ps patients before and after infliximab (IFX) treatment. Paired synovial (n = 3, RA, PsA) and skin biopsies (n = 5, Ps) were also collected. Gene expression was analyzed by microarrays. Results 26 out of 31 subjects responded to IFX. The transcriptional response of CD14+ cells to IFX was unique for the three diseases, with little overlap (<25%) in significantly changed gene lists (with PsA having the largest number of changed genes). In Ps, altered gene expression was more pronounced in lesional skin (relative to paired, healthy skin) compared to blood (relative to healthy controls). Marked suppression of up-regulated genes in affected skin was noted 2 weeks after therapy but the expression patterns differed from uninvolved skin. Divergent patterns of expression were noted between the blood cells and skin or synovial tissues in individual patients. Functions that promote cell differentiation, proliferation and apoptosis in all three diseases were enriched. RA was enriched in functions in CD14− cells, PsA in CD14+ cells and Ps in both CD14+ and CD14− cells, however, the specific functions showed little overlap in the 3 disorders. Conclusion Divergent patterns of altered gene expression are observed in RA, PsA and Ps patients in blood cells and target organs in IFX responders. Differential gene expression profiles in the blood do not correlate with those in target organs.
Collapse
Affiliation(s)
- Alexander Rosenberg
- Division of Allergy, Immunology and Rheumatology, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Hongtao Fan
- Janssen Research and Development LLC, Spring House, PA, United States of America
| | - Yahui G. Chiu
- Division of Allergy, Immunology and Rheumatology, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Rebecca Bolce
- Janssen Research and Development LLC, Spring House, PA, United States of America
| | - Darren Tabechian
- Division of Allergy, Immunology and Rheumatology, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Rick Barrett
- Division of Allergy, Immunology and Rheumatology, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Sharon Moorehead
- Division of Allergy, Immunology and Rheumatology, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Frédéric Baribaud
- Janssen Research and Development LLC, Spring House, PA, United States of America
| | - Hao Liu
- Janssen Research and Development LLC, Spring House, PA, United States of America
| | - Nancy Peffer
- Janssen Research and Development LLC, Spring House, PA, United States of America
| | - David Shealy
- Janssen Research and Development LLC, Spring House, PA, United States of America
| | - Edward M. Schwarz
- The Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Christopher T. Ritchlin
- Division of Allergy, Immunology and Rheumatology, University of Rochester Medical Center, Rochester, NY, United States of America
- The Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States of America
- * E-mail:
| |
Collapse
|
17
|
Expression and functional studies on the noncoding RNA, PRINS. Int J Mol Sci 2012; 14:205-25. [PMID: 23344029 PMCID: PMC3565259 DOI: 10.3390/ijms14010205] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 11/30/2012] [Accepted: 12/10/2012] [Indexed: 02/05/2023] Open
Abstract
PRINS, a noncoding RNA identified earlier by our research group, contributes to psoriasis susceptibility and cellular stress response. We have now studied the cellular and histological distribution of PRINS by using in situ hybridization and demonstrated variable expressions in different human tissues and a consistent staining pattern in epidermal keratinocytes and in vitro cultured keratinocytes. To identify the cellular function(s) of PRINS, we searched for a direct interacting partner(s) of this stress-induced molecule. In HaCaT and NHEK cell lysates, the protein proved to be nucleophosmin (NPM) protein as a potential physical interactor with PRINS. Immunohistochemical experiments revealed an elevated expression of NPM in the dividing cells of the basal layers of psoriatic involved skin samples as compared with healthy and psoriatic uninvolved samples. Others have previously shown that NPM is a ubiquitously expressed nucleolar phosphoprotein which shuttles to the nucleoplasm after UV-B irradiation in fibroblasts and cancer cells. We detected a similar translocation of NPM in UV-B-irradiated cultured keratinocytes. The gene-specific silencing of PRINS resulted in the retention of NPM in the nucleolus of UV-B-irradiated keratinocytes; suggesting that PRINS may play a role in the NPM-mediated cellular stress response in the skin.
Collapse
|
18
|
Levy H, Wang X, Kaldunski M, Jia S, Kramer J, Pavletich SJ, Reske M, Gessel T, Yassai M, Quasney MW, Dahmer MK, Gorski J, Hessner MJ. Transcriptional signatures as a disease-specific and predictive inflammatory biomarker for type 1 diabetes. Genes Immun 2012; 13:593-604. [PMID: 22972474 PMCID: PMC4265236 DOI: 10.1038/gene.2012.41] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The complex milieu of inflammatory mediators associated with many diseases is often too dilute to directly measure in the periphery, necessitating development of more sensitive measurements suitable for mechanistic studies, earlier diagnosis, guiding therapeutic decisions and monitoring interventions. We previously demonstrated that plasma samples from recent-onset type 1 diabetes (RO T1D) patients induce a proinflammatory transcriptional signature in freshly drawn peripheral blood mononuclear cells (PBMCs) relative to that of unrelated healthy controls (HC). Here, using cryopreserved PBMC, we analyzed larger RO T1D and HC cohorts, examined T1D progression in pre-onset samples, and compared the RO T1D signature to those associated with three disorders characterized by airway infection and inflammation. The RO T1D signature, consisting of interleukin-1 cytokine family members, chemokines involved in immunocyte chemotaxis, immune receptors and signaling molecules, was detected during early pre-diabetes and found to resolve post-onset. The signatures associated with cystic fibrosis patients chronically infected with Pseudomonas aeruginosa, patients with confirmed bacterial pneumonia, and subjects with H1N1 influenza all reflected immunological activation, yet each were distinct from one another and negatively correlated with that of T1D. This study highlights the remarkable capacity of cells to serve as biosensors capable of sensitively and comprehensively differentiating immunological states.
Collapse
Affiliation(s)
- H Levy
- The Department of Pediatrics, The Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Ryan C, Menter A, Warren RB. The Latest Advances in Pharmacogenetics and Pharmacogenomics in the Treatment of Psoriasis. Mol Diagn Ther 2012; 14:81-93. [DOI: 10.1007/bf03256357] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
20
|
Wang X, Li JP, Kuo HK, Chiu LL, Dement GA, Lan JL, Chen DY, Yang CY, Hu H, Tan TH. Down-regulation of B cell receptor signaling by hematopoietic progenitor kinase 1 (HPK1)-mediated phosphorylation and ubiquitination of activated B cell linker protein (BLNK). J Biol Chem 2012; 287:11037-48. [PMID: 22334673 DOI: 10.1074/jbc.m111.310946] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Hematopoietic progenitor kinase 1 (HPK1) is a Ste20-like serine/threonine kinase that suppresses immune responses and autoimmunity. B cell receptor (BCR) signaling activates HPK1 by inducing BLNK/HPK1 interaction. Whether HPK1 can reciprocally regulate BLNK during BCR signaling is unknown. Here, we show that HPK1-deficient B cells display hyper-proliferation and hyper-activation of IκB kinase and MAPKs (ERK, p38, and JNK) upon the ligation of BCR. HPK1 attenuates BCR-induced cell activation via inducing BLNK threonine 152 phosphorylation, which mediates BLNK/14-3-3 binding. Furthermore, threonine 152-phosphorylated BLNK is ubiquitinated at lysine residues 37, 38, and 42, leading to attenuation of MAPK and IκB kinase activation in B cells during BCR signaling. These results reveal a novel negative feedback regulation of BCR signaling by HPK1-mediated phosphorylation, ubiquitination, and subsequent degradation of the activated BLNK.
Collapse
Affiliation(s)
- Xiaohong Wang
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
RITCHLIN CHRISTOPHERT. Strategies for Biomarker Development in Psoriatic Disease: A Report from the GRAPPA 2010 Annual Meeting. J Rheumatol 2012; 39:423-6. [DOI: 10.3899/jrheum.111240] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Psoriatic disease includes psoriasis and associated comorbidities (arthritis, uveitis, inflammatory bowel disease, cardiovascular disease, metabolic syndrome, and anxiety/depression) and is remarkably diverse in disease presentation and course. The marked heterogeneity of musculoskeletal involvement in psoriatic arthritis (PsA) presents major challenges to clinicians regarding diagnosis, risk stratification, and management. Members of the Group for Research and Assessment of Psoriasis and Psoriatic Arthritis (GRAPPA) have begun collaborative efforts to develop biomarkers that can assist in the diagnosis and management of patients with psoriasis and related comorbidities. This brief review provides a rationale for biomarker research in PsA, consideration of types and sources of biomarkers, and examples of important biomarker studies in PsA, followed by a review of trial designs for biomarker research and a discussion of potential funding sources.
Collapse
|
22
|
Mesko B, Poliska S, Nagy L. Gene expression profiles in peripheral blood for the diagnosis of autoimmune diseases. Trends Mol Med 2011; 17:223-33. [PMID: 21388884 DOI: 10.1016/j.molmed.2010.12.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Revised: 12/11/2010] [Accepted: 12/13/2010] [Indexed: 11/28/2022]
Abstract
Gene expression profiling in clinical genomics has yet to deliver robust and reliable approaches for developing diagnostics and contributing to personalized medicine. Owing to technological developments and the recent accumulation of expression profiles, it is a timely and relevant question whether peripheral blood gene expression profiling can be used routinely in clinical decision making. Here, we review the available gene expression profiling data of peripheral blood in autoimmune and chronic inflammatory diseases and suggest that peripheral blood mononuclear cells are suitable for descriptive and comparative gene expression analyses. A gene-disease interaction network in chronic inflammatory diseases, a general protocol for future studies and a decision tree for researchers are presented to facilitate standardization and adoption of this approach.
Collapse
Affiliation(s)
- Bertalan Mesko
- Department of Biochemistry and Molecular Biology, Research Center for Molecular Mediicne, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary
| | | | | |
Collapse
|
23
|
Smiljanovic B, Grün JR, Steinbrich-Zöllner M, Stuhlmüller B, Häupl T, Burmester GR, Radbruch A, Grützkau A, Baumgrass R. Defining TNF-α- and LPS-induced gene signatures in monocytes to unravel the complexity of peripheral blood transcriptomes in health and disease. J Mol Med (Berl) 2010; 88:1065-79. [PMID: 20640394 DOI: 10.1007/s00109-010-0648-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Revised: 04/27/2010] [Accepted: 05/17/2010] [Indexed: 12/31/2022]
Abstract
Several genome-wide transcriptome studies have shown that chronic inflammatory responses generally taking place in the inflamed tissue are also reflected at the level of peripheral blood leukocytes. Blood monocytes are highly sensitized cell type continuously activated under inflammatory conditions. For a better understanding of the transcriptional imprinting influenced by a multitude of pro- and anti-inflammatory mediators, we established a whole blood in vitro system to explore cell- and stimulus-specific gene expression signatures in peripheral monocytes. In an explorative study, whole blood from healthy donors was stimulated with tumour necrosis factor-alpha (TNF-α) or lipopolysaccharide (LPS) for 1.5 h. Subsequently, monocytes were isolated with a purity of >99% by high-speed fluorescence activated cell sorting. Transcriptional changes were explored by whole genome Affymetrix arrays using highly validated filtering algorithm to identify differentially expressed genes. In vitro stimulation of whole blood samples with TNF-α and LPS resulted in 4,529 and 5,036 differentially expressed genes, respectively. Although both stimuli induced similar inflammatory profiles in monocytes, TNF-α- or LPS-specific gene signatures were characterized. Functional classification identified significant numbers of differentially expressed cytokines, cytokine receptors and apoptosis-associated genes. To our knowledge, this is the first study presenting cell- and stimulus-specific gene expression signatures that can be used to decipher complex disease specific profiles of acute and chronic inflammation. Once a library of signatures from the most important inflammatory mediators is defined, it can be helpful to identify those signatures, which are predominantly driving the disease pathogenesis and which are of potential interest for a therapeutical intervention.
Collapse
Affiliation(s)
- Biljana Smiljanovic
- Deutsches Rheuma-Forschungszentrum Berlin (DRFZ),a Leibniz Institute, Charitéplatz 1, 10117, Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Chaussabel D, Pascual V, Banchereau J. Assessing the human immune system through blood transcriptomics. BMC Biol 2010; 8:84. [PMID: 20619006 PMCID: PMC2895587 DOI: 10.1186/1741-7007-8-84] [Citation(s) in RCA: 174] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Accepted: 06/15/2010] [Indexed: 02/07/2023] Open
Abstract
Blood is the pipeline of the immune system. Assessing changes in transcript abundance in blood on a genome-wide scale affords a comprehensive view of the status of the immune system in health and disease. This review summarizes the work that has used this approach to identify therapeutic targets and biomarker signatures in the field of autoimmunity and infectious disease. Recent technological and methodological advances that will carry the blood transcriptome research field forward are also discussed.
Collapse
Affiliation(s)
- Damien Chaussabel
- Baylor Institute for Immunology Research and Baylor Research Institute, 3434 Live Oak, Dallas, TX 75204, USA
| | - Virginia Pascual
- Baylor Institute for Immunology Research and Baylor Research Institute, 3434 Live Oak, Dallas, TX 75204, USA
| | - Jacques Banchereau
- Baylor Institute for Immunology Research and Baylor Research Institute, 3434 Live Oak, Dallas, TX 75204, USA
| |
Collapse
|
25
|
Szegedi K, Sonkoly E, Nagy N, Németh IB, Bata-Csörgo Z, Kemény L, Dobozy A, Széll M. The anti-apoptotic protein G1P3 is overexpressed in psoriasis and regulated by the non-coding RNA, PRINS. Exp Dermatol 2010; 19:269-78. [PMID: 20377629 DOI: 10.1111/j.1600-0625.2010.01066.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Psoriasis Susceptibility-Related RNA Gene Induced by Stress (PRINS) is a non-coding RNA overexpressed in lesional and non-lesional psoriatic epidermis and induced by stress. Its function in healthy and psoriatic skin is still not known. Here, we report that PRINS regulates G1P3, a gene with anti-apoptotic effects in keratinocytes. siRNA-mediated inhibition of PRINS gene resulted in altered cell morphology and gene expression alterations, as demonstrated in a microarray experiment. One of the genes regulated by PRINS ncRNA was G1P3, an interferon-inducible gene with anti-apoptotic effects in cancer cells. Interestingly, we found that G1P3 was 400-fold upregulated in hyperproliferative lesional and ninefold upregulated in non-lesional psoriatic epidermis compared to healthy epidermis. In vitro, G1P3 protein levels were highest in proliferating keratinocytes and siRNA-mediated downregulation of G1P3 resulted in increased cell apoptosis. These data indicate that G1P3 inhibits spontaneous keratinocyte apoptosis and hence its high expression in psoriatic skin may contribute to the development of psoriatic lesions. We hypothesize that the deregulation of the PRINS ncRNA may contribute to psoriasis and results in decreased sensitivity to spontaneous keratinocyte apoptosis via the regulation of G1P3.
Collapse
Affiliation(s)
- Krisztina Szegedi
- Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Pascual V, Chaussabel D, Banchereau J. A genomic approach to human autoimmune diseases. Annu Rev Immunol 2010; 28:535-71. [PMID: 20192809 DOI: 10.1146/annurev-immunol-030409-101221] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The past decade has seen an explosion in the use of DNA-based microarrays. These techniques permit assessment of RNA abundance on a genome-wide scale. Medical applications emerged in the field of cancer, with studies of both solid tumors and hematological malignancies leading to the development of tests that are now used to personalize therapeutic options. Microarrays have also been used to analyze the blood transcriptome in a wide range of diseases. In human autoimmune diseases, these studies are showing potential for identifying therapeutic targets as well as biomarkers for diagnosis, assessment of disease activity, and response to treatment. More quantitative and sensitive high-throughput RNA profiling methods are starting to be available and will be necessary for transcriptome analyses to become routine tests in the clinical setting. We expect this to crystallize within the coming decade, as these methods become part of the personalized medicine armamentarium.
Collapse
Affiliation(s)
- Virginia Pascual
- Baylor Institute for Immunology Research, INSERM U, Dallas, Texas 75204, USA.
| | | | | |
Collapse
|
27
|
Affiliation(s)
- Vinod Chandran
- Division of Rheumatology, Department of Medicine, University of Toronto, Centre for Prognosis Studies in Rheumatic Diseases, Toronto Western Hospital, 399 Bathurst Street, 1E-410B, Toronto, Ontario M5T 2S8, Canada
| | | |
Collapse
|
28
|
Bauer JW, Bilgic H, Baechler EC. Gene-expression profiling in rheumatic disease: tools and therapeutic potential. Nat Rev Rheumatol 2009; 5:257-65. [PMID: 19412192 DOI: 10.1038/nrrheum.2009.50] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Gene-expression profiling is a powerful tool for the discovery of molecular fingerprints that underlie human disease. Microarray technologies allow the analysis of messenger RNA transcript levels for every gene in the genome. However, gene-expression profiling is best viewed as part of a pipeline that extends from sample collection through clinical application. Key genes and pathways identified by microarray profiling should be validated in independent sample sets and with alternative technologies. Analysis of relevant signaling pathways at the protein level is an important step towards understanding the functional consequences of aberrant gene expression. Peripheral blood is a convenient and rich source of potential biomarkers, but surveying purified cell populations and target tissues can also enhance our understanding of disease states. In rheumatic disease, probing the transcriptome of circulating immune cells has shed light on mechanisms underlying the pathogenesis of complex diseases, such as systemic lupus erythematosus. As these discoveries advance through the pipeline, a variety of clinical applications are on the horizon, including the use of molecular fingerprints to aid in diagnosis and prognosis, improved use of existing therapies, and the development of drugs that target relevant genes and pathways.
Collapse
Affiliation(s)
- Jason W Bauer
- Division of Rheumatic and Autoimmune Diseases, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
29
|
Pascual V, Allantaz F, Patel P, Palucka AK, Chaussabel D, Banchereau J. How the study of children with rheumatic diseases identified interferon-alpha and interleukin-1 as novel therapeutic targets. Immunol Rev 2009; 223:39-59. [PMID: 18613829 DOI: 10.1111/j.1600-065x.2008.00643.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
SUMMARY Our studies in children with rheumatic diseases have led to the identification of two of the oldest cytokines, type I interferon (IFN) and interleukin 1 (IL-1), as important pathogenic players in systemic lupus erythematosus (SLE) and systemic onset juvenile arthritis (SoJIA), respectively. These findings were obtained by studying the transcriptional profiles of patient blood cells and by assessing the biological and transcriptional effect(s) of active patient sera on healthy blood cells. We also identified a signature that can be used to promptly diagnose SoJIA from other febrile conditions. Finally, our pilot clinical trials using IL-1 blockers have shown remarkable clinical benefits in SoJIA patients refractory to other medications.
Collapse
Affiliation(s)
- Virginia Pascual
- Baylor Institute for Immunology Research and Baylor Research Institute, Dallas, TX 75204, USA
| | | | | | | | | | | |
Collapse
|
30
|
Tao XA, Li CY, Xia J, Yang X, Chen XH, Jian YT, Cheng B. Differential gene expression profiles of whole lesions from patients with oral lichen planus. J Oral Pathol Med 2009; 38:427-33. [DOI: 10.1111/j.1600-0714.2009.00764.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
31
|
The glucose transporter (GLUT4) enhancer factor is required for normal wing positioning in Drosophila. Genetics 2008; 178:919-29. [PMID: 18245850 DOI: 10.1534/genetics.107.078030] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Many of the transcription factors and target genes that pattern the developing adult remain unknown. In the present study, we find that an ortholog of the poorly understood transcription factor, glucose transporter (GLUT4) enhancer factor (Glut4EF, GEF) [also known as the Huntington's disease gene regulatory region-binding protein (HDBP) 1], plays a critical role in specifying normal wing positioning in adult Drosophila. Glut4EF proteins are zinc-finger transcription factors named for their ability to regulate expression of GLUT4 but nothing is known of Glut4EF's in vivo physiological functions. Here, we identify a family of Glut4EF proteins that are well conserved from Drosophila to humans and find that mutations in Drosophila Glut4EF underlie the wing-positioning defects seen in stretch mutants. In addition, our results indicate that previously uncharacterized mutations in Glut4EF are present in at least 11 publicly available fly lines and on the widely used TM3 balancer chromosome. These results indicate that previous observations utilizing these common stocks may be complicated by the presence of Glut4EF mutations. For example, our results indicate that Glut4EF mutations are also present on the same chromosome as two gain-of-function mutations of the homeobox transcription factor Antennapedia (Antp) and underlie defects previously attributed to Antp. In fact, our results support a role for Glut4EF in the modulation of morphogenetic processes mediated by Antp, further highlighting the importance of Glut4EF transcription factors in patterning and morphogenesis.
Collapse
|
32
|
Microarray-based identification of novel biomarkers in IL-1-mediated diseases. Curr Opin Immunol 2007; 19:623-32. [PMID: 18036805 DOI: 10.1016/j.coi.2007.10.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2007] [Revised: 09/28/2007] [Accepted: 10/03/2007] [Indexed: 12/21/2022]
Abstract
Interleukin 1b (IL-1b) is emerging as mediator of a wide range of human diseases. Availability of IL-1 blockers that result in clinical benefits to patients with these diseases is creating a demand for biomarkers to diagnose as well as to predict and follow responses to therapy. Blood gene expression profiling can be used to identify such biomarkers. This review will summarize recent studies in the field and will discuss some of the challenges raised by the use of this technology in biomarker discovery.
Collapse
|
33
|
Abstract
PURPOSE OF REVIEW Spondyloarthritides are associated with increased cardiovascular risks, which can only partly be explained by traditional risk factors. It is likely that the chronic inflammatory state is involved. In this review, novel findings regarding cardiac and vascular pathologies and potential overlapping mechanisms will be discussed. RECENT FINDINGS Cardiac pathologies in spondyloarthritides are conduction disturbances and valvular heart diseases. Recent studies have also focused on vascular pathologies and showed impaired endothelial function, suggesting that atherosclerotic alterations could also be involved in increased cardiovascular mortality. Novel findings suggest that chronic systemic inflammation is involved in these cardiac and vascular pathologies. Thus, spondyloarthritides and ankylosing spondylitis are associated with increased levels of circulating inflammatory mediators such as C-reactive protein. Interestingly, ankylosing spondylitis patients may also have an atherogenic lipid profile and disturbances in their T-helper lymphocyte subsets, which may be involved in cardiovascular disease development. The beneficial effects of statin treatment on circulating inflammatory mediators and atherogenic lipid profiles may reveal new therapeutic options for patients with spondyloarthritides. SUMMARY Recent studies have highlighted that the chronic, systemic inflammatory condition of patients with spondyloarthritides may be involved in the development of cardiac and vascular pathologies.
Collapse
Affiliation(s)
- Sylvia Heeneman
- Department of Pathology, Maastricht University, Cardiovascular Research Institute Maastricht (CARIM), Maastricht, The Netherlands.
| | | |
Collapse
|