1
|
Fakhiri J, Grimm D. Best of most possible worlds: Hybrid gene therapy vectors based on parvoviruses and heterologous viruses. Mol Ther 2021; 29:3359-3382. [PMID: 33831556 PMCID: PMC8636155 DOI: 10.1016/j.ymthe.2021.04.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 01/12/2021] [Accepted: 03/31/2021] [Indexed: 12/12/2022] Open
Abstract
Parvoviruses and especially the adeno-associated virus (AAV) species provide an exciting and versatile platform for the rational design or molecular evolution of human gene-therapy vectors, documented by literature from over half a century, hundreds of clinical trials, and the recent commercialization of multiple AAV gene therapeutics. For the last three decades, the power of these vectors has been further potentiated through various types of hybrid vectors created by intra- or inter-genus juxtaposition of viral DNA and protein cis elements or by synergistic complementation of parvoviral features with those of heterologous, prokaryotic, or eukaryotic viruses. Here, we provide an overview of the history and promise of this rapidly expanding field of hybrid parvoviral gene-therapy vectors, starting with early generations of chimeric particles composed of a recombinant AAV genome encapsidated in shells of synthetic AAVs or of adeno-, herpes-, baculo-, or protoparvoviruses. We then dedicate our attention to two newer, highly promising types of hybrid vectors created via (1) pseudotyping of AAV genomes with bocaviral serotypes and capsid mutants or (2) packaging of AAV DNA into, or tethering of entire vector particles to, bacteriophages. Finally, we conclude with an outlook summarizing critical requirements and improvements toward clinical translation of these original concepts.
Collapse
Affiliation(s)
- Julia Fakhiri
- Department of Infectious Diseases/Virology, Medical Faculty, University of Heidelberg, Heidelberg, Germany; BioQuant, University of Heidelberg, Heidelberg, Germany
| | - Dirk Grimm
- Department of Infectious Diseases/Virology, Medical Faculty, University of Heidelberg, Heidelberg, Germany; BioQuant, University of Heidelberg, Heidelberg, Germany; German Center for Infection Research (DZIF) and German Center for Cardiovascular Research (DZHK), Partner site Heidelberg, Heidelberg, Germany.
| |
Collapse
|
2
|
Xiao B, Li J, Fan Y, Ye M, Lv S, Xu B, Chai Y, Zhou Z, Wu M, Zhu X. Downregulation of SYT7 inhibits glioblastoma growth by promoting cellular apoptosis. Mol Med Rep 2017; 16:9017-9022. [PMID: 28990113 DOI: 10.3892/mmr.2017.7723] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 08/17/2017] [Indexed: 11/06/2022] Open
Abstract
Synaptotagmin‑7 (SYT7) is a member of the synaptotagmin gene family, and encodes a protein that mediates the calcium‑dependent regulation of membrane trafficking during synaptic transmission. A previous study demonstrated that the expression of SYT7 is associated with prostate cancer and serves an important role in development of prostate cancer. However, the roles of SYT7 in the progression of glioma remain unknown. In the present study, reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) analysis demonstrated that SYT7 was expressed in three human glioma cell lines. Western blotting and RT‑qPCR analysis demonstrated the knockdown efficiency of SYT7 shRNA in 293T cells and U87MG cells. Celigo Image Cytometer Analysis, a caspase‑3/7 assay, flow cytometry and an MTT assay demonstrated that the proliferation of U87MG cells was inhibited as SYT7 was downregulated by a lentiviral vector expressing SYT7 shRNA, via the promotion of cellular apoptosis. The results of the present study demonstrated that the downregulation of SYT7 inhibited glioblastoma growth by promoting cellular apoptosis, and that SYT7 may therefore be a potential target for glioma intervention.
Collapse
Affiliation(s)
- Bing Xiao
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jianbin Li
- Department of Neurosurgery, The Second Hospital of Nanchang, Nanchang, Jiangxi 330003, P.R. China
| | - Yanghua Fan
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Minhua Ye
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Shigang Lv
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Bin Xu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yi Chai
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zhiqing Zhou
- Department of Oncology, The Second People's Hospital of Huaihua City, Huaihua, Hunan 418000, P.R. China
| | - Miaojing Wu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xingen Zhu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
3
|
Vollmers EM, Tattersall P. Distinct host cell fates for human malignant melanoma targeted by oncolytic rodent parvoviruses. Virology 2013; 446:37-48. [PMID: 24074565 PMCID: PMC3811133 DOI: 10.1016/j.virol.2013.07.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 07/10/2013] [Accepted: 07/12/2013] [Indexed: 11/21/2022]
Abstract
The rodent parvoviruses are known to be oncoselective, and lytically infect many transformed human cells. Because current therapeutic regimens for metastatic melanoma have low response rates and have little effect on improving survival, this disease is a prime candidate for novel approaches to therapy, including oncolytic parvoviruses. Screening of low-passage, patient-derived melanoma cell lines for multiplicity-dependent killing by a panel of five rodent parvoviruses identified LuIII as the most melanoma-lytic. This property was mapped to the LuIII capsid gene, and an efficiently melanoma tropic chimeric virus shown to undergo three types of interaction with primary human melanoma cells: (1) complete lysis of cultures infected at very low multiplicities; (2) acute killing resulting from viral protein synthesis and DNA replication, without concomitant expansion of the infection, due to failure to export progeny virions efficiently; or (3) complete resistance that operates at an intracellular step following virion uptake, but preceding viral transcription.
Collapse
Affiliation(s)
- Ellen M. Vollmers
- Medical Scientist Training Program, Yale University Medical School, 333 Cedar Street, New Haven, CT 06510
- Department of Genetics, Yale University Medical School, 333 Cedar Street, New Haven, CT 06510
| | - Peter Tattersall
- Department of Laboratory Medicine, Yale University Medical School, 333 Cedar Street, New Haven, CT 06510
- Department of Genetics, Yale University Medical School, 333 Cedar Street, New Haven, CT 06510
| |
Collapse
|
4
|
LuIII parvovirus selectively and efficiently targets, replicates in, and kills human glioma cells. J Virol 2012; 86:7280-91. [PMID: 22553327 DOI: 10.1128/jvi.00227-12] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Because productive infection by parvoviruses requires cell division and is enhanced by oncogenic transformation, some parvoviruses may have potential utility in killing cancer cells. To identify the parvovirus(es) with the optimal oncolytic effect against human glioblastomas, we screened 12 parvoviruses at a high multiplicity of infection (MOI). MVMi, MVMc, MVM-G17, tumor virus X (TVX), canine parvovirus (CPV), porcine parvovirus (PPV), rat parvovirus 1A (RPV1A), and H-3 were relatively ineffective. The four viruses with the greatest oncolytic activity, LuIII, H-1, MVMp, and MVM-G52, were tested for the ability, at a low MOI, to progressively infect the culture over time, causing cell death at a rate higher than that of cell proliferation. LuIII alone was effective in all five human glioblastomas tested. H-1 progressively infected only two of five; MVMp and MVM-G52 were ineffective in all five. To investigate the underlying mechanism of LuIII's phenotype, we used recombinant parvoviruses with the LuIII capsid replacing the MVMp capsid or with molecular alteration of the P4 promoter. The LuIII capsid enhanced efficient replication and oncolysis in MO59J gliomas cells; other gliomas tested required the entire LuIII genome to exhibit enhanced infection. LuIII selectively infected glioma cells over normal glial cells in vitro. In mouse models, human glioblastoma xenografts were selectively infected by LuIII when administered intratumorally; LuIII reduced tumor growth by 75%. LuIII also had the capacity to selectively infect subcutaneous or intracranial gliomas after intravenous inoculation. Intravenous or intracranial LuIII caused no adverse effects. Intracranial LuIII caused no infection of mature mouse neurons or glia in vivo but showed a modest infection of developing neurons.
Collapse
|
5
|
Paglino J, Tattersall P. The parvoviral capsid controls an intracellular phase of infection essential for efficient killing of stepwise-transformed human fibroblasts. Virology 2011; 416:32-41. [PMID: 21600623 DOI: 10.1016/j.virol.2011.04.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 04/01/2011] [Accepted: 04/25/2011] [Indexed: 10/18/2022]
Abstract
Members of the rodent subgroup of the genus Parvovirus exhibit lytic replication and spread in many human tumor cells and are therefore attractive candidates for oncolytic virotherapy. However, the significant variation in tumor tropism observed for these viruses remains largely unexplained. We report here that LuIII kills BJ-ELR 'stepwise-transformed' human fibroblasts efficiently, while MVM does not. Using viral chimeras, we mapped this property to the LuIII capsid gene, VP2, which is necessary and sufficient to confer the killer phenotype on MVM. LuIII VP2 facilitates a post-entry, pre-DNA-amplification step early in the life cycle, suggesting the existence of an intracellular moiety whose efficient interaction with the incoming capsid shell is critical to infection. Thus targeting of human cancers of different tissue-type origins will require use of parvoviruses with capsids that effectively make this critical interaction.
Collapse
Affiliation(s)
- Justin Paglino
- Department of Laboratory Medicine, Yale University Medical School, New Haven, CT 06520, USA
| | | |
Collapse
|
6
|
Novel adenovirus-based helper system to support production of recombinant parvovirus. Cancer Gene Ther 2010; 18:240-9. [PMID: 21102423 DOI: 10.1038/cgt.2010.73] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Preclinical studies using various cell culture and animal systems highlight the potential of recombinant rodent parvoviruses (recPVs) for cancer therapy. Production of these viruses is, however, not efficient and this hampers the clinical applications of these agents. In this study, we show that the adenovirus genes E2a, E4(orf6) and VA RNA increase the production of recPVs by more than 10-fold and reduce the time of production from 3 to 2 days in HEK293T cells. The helper effects of these genes can be observed with different recPVs, regardless of the nature and size of the inserted transgene. Furthermore, we generated a recombinant Adenovirus 5 carrying the parvovirus VP transcription unit. This helper, named Ad-VP, allows recPVs to be efficiently produced through a protocol based only on cell infection, making possible to use cell lines, such as NB324K, which are good producers of parvoviruses but are hardly transfectable. Hence, we could further improve viral titers and reduce time and costs of production. This Ad-VP helper-based protocol could be scaled up to a bioreactor format for the generation of the large amounts of recPVs needed for future clinical applications.
Collapse
|
7
|
Enderlin M, Kleinmann EV, Struyf S, Buracchi C, Vecchi A, Kinscherf R, Kiessling F, Paschek S, Sozzani S, Rommelaere J, Cornelis JJ, Van Damme J, Dinsart C. TNF-alpha and the IFN-gamma-inducible protein 10 (IP-10/CXCL-10) delivered by parvoviral vectors act in synergy to induce antitumor effects in mouse glioblastoma. Cancer Gene Ther 2008; 16:149-60. [PMID: 18670452 DOI: 10.1038/cgt.2008.62] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Interferon-gamma-inducible protein 10 is a potent chemoattractant for natural killer cells and activated T lymphocytes. It also displays angiostatic properties and some antitumor activity. Tumor necrosis factor-alpha (TNF-alpha) is a powerful immunomodulating cytokine with demonstrated tumoricidal activity in various tumor models and the ability to induce strong immune responses. This prompted us to evaluate the antitumor effects of recombinant parvoviruses designed to deliver IP-10 or TNF-alpha into a glioblastoma. When Gl261 murine glioma cells were infected in vitro with an IP-10- or TNF-alpha-transducing parvoviral vector and were subcutaneously implanted in mice, tumor growth was significantly delayed. Complete tumor regression was observed when the glioma cells were coinfected with both the vectors, demonstrating synergistic antitumor activity. In an established in vivo glioma model, however, repeated simultaneous peritumoral injection of the IP-10- and TNF-alpha-delivering parvoviruses failed to improve the therapeutic effect as compared with the use of a single cytokine-delivering vector. In this tumor model, cytokine-mediated immunostimulation, rather than inhibition of vascularization, is likely responsible for the therapeutic efficacy.
Collapse
Affiliation(s)
- M Enderlin
- Deutsches Krebsforschungszentrum, Infection and Cancer Program, Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Augmented transgene expression in transformed cells using a parvoviral hybrid vector. Cancer Gene Ther 2008; 15:252-67. [PMID: 18202715 DOI: 10.1038/sj.cgt.7701113] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Autonomous parvoviruses possess an intrinsic oncotropism based on viral genetic elements controlling gene expression and genome replication. We constructed a hybrid vector consisting of the H1 parvovirus-derived expression cassette comprising the p4 promoter, the ns1 gene and the p38 promoter flanked by the adeno-associated viruses 2 (AAV2) inverted terminal repeats and packaged into AAV2 capsids. Gene transduction using this vector could be stimulated by coinfection with adenovirus, by irradiation or treatment with genotoxic agents, similar to standard AAV2 vectors. However, the latter were in most cases less efficient in gene transduction than the hybrid vector. With the new vector, tumor cell-selective increase in transgene expression was observed in pairs of transformed and non-transformed cells, leading to selective killing of the transformed cells after expression of a prodrug-converting enzyme. Preferential gene expression in tumor versus normal liver tissue was also observed in vivo in a syngeneic rat model. Comparative transduction of a panel of different tumor cell lines with the H1 and the H1/AAV hybrid vector showed a preference of each vector for distinct cell types, probably reflecting the dependence of the viral tropism on capsid determinants.
Collapse
|
9
|
Wetzel K, Struyf S, Van Damme J, Kayser T, Vecchi A, Sozzani S, Rommelaere J, Cornelis JJ, Dinsart C. MCP-3 (CCL7) delivered by parvovirus MVMp reduces tumorigenicity of mouse melanoma cells through activation of T lymphocytes and NK cells. Int J Cancer 2007; 120:1364-71. [PMID: 17154174 DOI: 10.1002/ijc.22421] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Monocyte chemotactic protein 3 (MCP-3/CCL7), a CC chemokine able to attract and activate a large panel of leukocytes including natural killer cells and T lymphocytes, could be beneficial in antitumor therapy. Vectors were constructed based on the autonomous parvovirus minute virus of mice (MVMp), carrying the human (MCP-3) cDNA. These vectors were subsequently evaluated in the poorly immunogenic mouse melanoma model B78/H1. The infection of the tumor cells with MCP3-transducing vector at low virus input multiplicities, but not with wild-type virus, strongly inhibited tumor growth after implantation in euthymic mice. In a therapeutic B78/H1 model, repeated intratumoral injections of MCP3-tranducing virus prevented further tumor expansion as long as the treatment was pursued. The antitumor effects of the MCP-3-transducing vector were not restricted to this tumor model since they could also be observed in the K1735 melanoma. The depletion of CD4, CD8, NK cells and of interferon gamma (IFNgamma) in mice implanted with MVMp/MCP3-infected B78/H1 cells abolished the antitumor activity of the vector. The latter data, together with tumor growth in nude mice and reverse-transcriptase (RT)-PCR analyses of MVMp/MCP3-treated tumors, clearly showed that activated CD4, CD8 and NK cells were indispensable for the antineoplastic effect in the B78/H1 tumor. Altogether, our results show that MCP3-transducing parvovirus vectors may be quite potent against poorly or nonimmunogenic tumors, even in conditions where only a fraction of the tumor cell population is efficiently infected with recombinant parvoviruses.
Collapse
Affiliation(s)
- Kristiane Wetzel
- Infection and Cancer Program, Abteilung F010, and Institut National de la Santé et de la Recherche Médicale U701, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 242, D-69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Vähä-Koskela MJ, Heikkilä JE, Hinkkanen AE. Oncolytic viruses in cancer therapy. Cancer Lett 2007; 254:178-216. [PMID: 17383089 PMCID: PMC7126325 DOI: 10.1016/j.canlet.2007.02.002] [Citation(s) in RCA: 220] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2006] [Revised: 02/01/2007] [Accepted: 02/05/2007] [Indexed: 12/26/2022]
Abstract
Oncolytic virotherapy is a promising form of gene therapy for cancer, employing nature’s own agents to find and destroy malignant cells. The purpose of this review is to provide an introduction to this very topical field of research and to point out some of the current observations, insights and ideas circulating in the literature. We have strived to acknowledge as many different oncolytic viruses as possible to give a broader picture of targeting cancer using viruses. Some of the newest additions to the panel of oncolytic viruses include the avian adenovirus, foamy virus, myxoma virus, yaba-like disease virus, echovirus type 1, bovine herpesvirus 4, Saimiri virus, feline panleukopenia virus, Sendai virus and the non-human coronaviruses. Although promising, virotherapy still faces many obstacles that need to be addressed, including the emergence of virus-resistant tumor cells.
Collapse
Affiliation(s)
- Markus J.V. Vähä-Koskela
- Åbo Akademi University, Department of Biochemistry and Pharmacy and Turku Immunology Centre, Turku, Finland
- Turku Graduate School of Biomedical Sciences, Turku, Finland
- Corresponding author. Address: Åbo Akademi University, Department of Biochemistry and Pharmacy and Turku Immunology Centre, Turku, Finland. Tel.: +358 2 215 4018; fax: +358 2 215 4745.
| | - Jari E. Heikkilä
- Åbo Akademi University, Department of Biochemistry and Pharmacy and Turku Immunology Centre, Turku, Finland
| | - Ari E. Hinkkanen
- Åbo Akademi University, Department of Biochemistry and Pharmacy and Turku Immunology Centre, Turku, Finland
| |
Collapse
|
11
|
Abschuetz A, Kehl T, Geibig R, Leuchs B, Rommelaere J, Régnier-Vigouroux A. Oncolytic murine autonomous parvovirus, a candidate vector for glioma gene therapy, is innocuous to normal and immunocompetent mouse glial cells. Cell Tissue Res 2006; 325:423-36. [PMID: 16699801 DOI: 10.1007/s00441-006-0199-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2005] [Accepted: 03/08/2006] [Indexed: 10/24/2022]
Abstract
The sensitivity of brain tumour cells to wild-type or recombinant parvoviruses H1-PV and MVMp makes these agents promising candidates for gene therapy of astrocytoma. This application raises the question of whether parvoviruses exert deleterious or bystander effects on normal glial cells surrounding tumours. We addressed this question in the mouse model by using cell cultures derived from BALB/c, C57BL/6 and VM/Dk strains. Astrocytes and a large proportion of microglia cultures were competent for MVMp uptake. Infection was, however, abortive as replication-associated viral proteins synthesis took place in less than 10% of astrocytes and no progeny virions were produced. This restriction was even more pronounced for microglia in which no viral protein expression could be detected, save for a minute fraction of VM/Dk-derived cells. Infection with MVMp had no significant effect on glial cell survival and did not interfere with their immune potential. Indeed, neither the lipopolysaccharide (LPS)/interferon (IFN-gamma)-induced cytotoxicity of VM/Dk-derived microglia towards the mouse glioma (MT539MG) cell line, nor the glial cells capacity for tumour necrosis factor alpha production upon LPS stimulation or LPS/IFN-gamma stimulation were affected by infection with MVMp. Moreover, stimulation with LPS and/or IFN-gamma resulted in a decreased expression of the viral replicative and cytotoxic protein NS1. Together, our data indicate that, in the natural host, a majority of normal glial cells are not competent for MVMp replication and that the abortive infection taking place in a minor fraction of these cells fails to impede their survival and immunocompetence, giving credit to the consideration of autonomous parvoviruses for glioma therapy.
Collapse
Affiliation(s)
- Anette Abschuetz
- Infection and Cancer Program, INSERM, U701, Deutsches Krebsforschungszentrum, 69120 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
12
|
Wollmann G, Tattersall P, van den Pol AN. Targeting human glioblastoma cells: comparison of nine viruses with oncolytic potential. J Virol 2005; 79:6005-22. [PMID: 15857987 PMCID: PMC1091699 DOI: 10.1128/jvi.79.10.6005-6022.2005] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Brain tumors classified as glioblastomas have proven refractory to treatment and generally result in death within a year of diagnosis. We used seven in vitro tests and one in vivo trial to compare the efficacy of nine different viruses for targeting human glioblastoma. Green fluorescent protein (GFP)-expressing vesicular stomatitis (VSV), Sindbis virus, pseudorabies virus (PRV), adeno-associated virus (AAV), and minute virus of mice i-strain (MVMi) and MVMp all infected glioblastoma cells. Mouse and human cytomegalovirus, and simian virus 40 showed only low levels of infection or GFP expression. VSV and Sindbis virus showed strong cytolytic actions and high rates of replication and spread, leading to an elimination of glioblastoma. PRV and both MVM strains generated more modest lytic effects and replication capacity. VSV showed a similar oncolytic profile on U-87 MG and M059J glioblastoma. In contrast, Sindbis virus showed strong preference for U-87 MG, whereas MVMi and MVMp preferred M059J. Sindbis virus and both MVM strains showed highly tumor-selective actions in glioblastoma plus fibroblast coculture. VSV and Sindbis virus were serially passaged on glioblastoma cells; we isolated a variant, VSV-rp30, that had increased selectivity and lytic capacity in glioblastoma cells. VSV and Sindbis virus were very effective at replicating, spreading within, and selectively killing human glioblastoma in an in vivo mouse model, whereas PRV and AAV remained at the injection site with minimal spread. Together, these data suggest that four (VSV, Sindbis virus, MVMi, and MVMp) of the nine viruses studied merit further analysis for potential therapeutic actions on glioblastoma.
Collapse
Affiliation(s)
- Guido Wollmann
- Department of Neurosurgery, Yale University School of Medicine, 333 Cedar St., New Haven, CT 06520, USA
| | | | | |
Collapse
|
13
|
Herrero Y Calle M, Cornelis JJ, Herold-Mende C, Rommelaere J, Schlehofer JR, Geletneky K. Parvovirus H-1 infection of human glioma cells leads to complete viral replication and efficient cell killing. Int J Cancer 2004; 109:76-84. [PMID: 14735471 DOI: 10.1002/ijc.11626] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The extremely poor prognosis of malignant gliomas requires the investigation of other than standard therapies, i.e., the application of oncolytic viruses. In our study, we evaluated the effects of the oncosuppressive parvovirus H-1 on different established glioblastoma cell lines of rat and human origin and on short-term/low-passage cultures of human glioblastoma cells. We observed an efficient and dose-dependent killing of all glioma cell cultures at low multiplicities of infectious particles (MOI) per cell. Southern blot analysis of viral DNA amplification, RT-PCR analysis of viral RNA expression and Western blot analysis of the expression of viral structural (VP-1/VP-2) and nonstructural (NS-1) proteins demonstrated the biosynthesis of these viral macromolecular components in all of the cultures. Moreover, all the glioma cells were proficient for the production of infectious H-1 virus particles. The amount of virus production differed between a several fold increase of the input virus titer in most of the short-term/low-passage cultures up to 1,000-fold in one short-term glioma and in the rat cells. Glioma cells lines and, more importantly, short-term/low-passage cultures of human glioblastomas were found to be highly susceptible target cells for H-1 virus mediated cytotoxicity. The formation of fully infectious progeny particles in infected glioma cells offers the chance for the induction of secondary rounds of infection resulting in an advanced cytotoxic effect. These advantageous characteristics of H-1 virus infection of glioma cells, combined with the known low toxicity of H-1 virus in nontransformed cells, make parvovirus H-1 a promising candidate for oncolytic glioma therapy.
Collapse
|
14
|
Abstract
The field of cancer gene therapy is in continuous expansion, and technology is quickly moving ahead as far as gene targeting and regulation of gene expression are concerned. This review focuses on the endocrine aspects of gene therapy, including the possibility to exploit hormone and hormone receptor functions for regulating therapeutic gene expression, the use of endocrine-specific genes as new therapeutic tools, the effects of viral vector delivery and transgene expression on the endocrine system, and the endocrine response to viral vector delivery. Present ethical concerns of gene therapy and the risk of germ cell transduction are also discussed, along with potential lines of innovation to improve cell and gene targeting.
Collapse
Affiliation(s)
- Luisa Barzon
- Department of Histology, Microbiology, and Medical Biotechnologies, University of Padova, I-35121 Padua, Italy
| | | | | |
Collapse
|
15
|
Hendrie PC, Hirata RK, Russell DW. Chromosomal integration and homologous gene targeting by replication-incompetent vectors based on the autonomous parvovirus minute virus of mice. J Virol 2004; 77:13136-45. [PMID: 14645570 PMCID: PMC296056 DOI: 10.1128/jvi.77.24.13136-13145.2003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The molecular mechanisms responsible for random integration and gene targeting by recombinant adeno-associated virus (AAV) vectors are largely unknown, and whether vectors derived from autonomous parvoviruses transduce cells by similar pathways has not been investigated. In this report, we constructed vectors based on the autonomous parvovirus minute virus of mice (MVM) that were designed to introduce a neomycin resistance expression cassette (neo) into the X-linked human hypoxanthine phosphoribosyl transferase (HPRT) locus. High-titer, replication-incompetent MVM vector stocks were generated with a two-plasmid transfection system that preserved the wild-type characteristic of packaging only one DNA strand. Vectors with inserts in the forward or reverse orientations packaged noncoding or coding strands, respectively. In human HT-1080 cells, MVM vector random integration frequencies (neo(+) colonies) were comparable to those obtained with AAV vectors, and no difference was observed for noncoding and coding strands. HPRT gene-targeting frequencies (HPRT mutant colonies) were lower with MVM vectors, and the noncoding strand frequency was threefold greater than that of the coding strand. Random integration and gene-targeting events were confirmed by Southern blot analysis of G418- and 6-thioguanine (6TG)-resistant clones. In separate experiments, correction of an alkaline phosphatase (AP) gene by gene targeting was nine times more effective with a coding strand vector. The data suggest that single-stranded parvoviral vector genomes are substrates for gene targeting and possibly for random integration as well.
Collapse
Affiliation(s)
- Paul C Hendrie
- Department of Medicine, Division of Hematology, University of Washington, Seattle, Washington 98195, USA
| | | | | |
Collapse
|
16
|
Davis C, Segev-Amzaleg N, Rotem I, Mincberg M, Amir N, Sivan S, Gitelman I, Tal J. The P4 promoter of the parvovirus minute virus of mice is developmentally regulated in transgenic P4-LacZ mice. Virology 2003; 306:268-79. [PMID: 12642100 DOI: 10.1016/s0042-6822(02)00020-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Activation of the minute virus of mice (MVM) P4 promoter is a key step in the life cycle of the virus and is completely dependent on host transcription factors. Since transcription-factor composition varies widely in different cell types, there is the possibility that only some cell types in the host organism have the capacity to initiate expression from the P4 promoter and therefore that the promoter may be a factor in determining the tropism of MVM. In this study, the ability of various cell types to activate P4, independent of the other virus-host interactions, was examined in transgenic mouse lines bearing a beta-galactosidase reporter sequence driven by the P4 promoter. It was found that lacZ was expressed during embryogenesis and in the adult in a cell-type-specific and differentiation-dependent pattern. The data are consistent with cell-type and stage-specific activation of the P4 promoter having a role in determining the host cell-type range of MVM. The ability of some parvoviruses to replicate in, and kill oncogenically transformed cells, and to destroy induced tumors in laboratory animals is the basis of recent approaches to use MVM-based vectors in cancer gene therapy. Since these vectors rely on the activation of the P4 promoter by the target tissues, understanding the promoter dependence on cell-type and differentiation status is important for their design and potential use.
Collapse
Affiliation(s)
- Claytus Davis
- Department of Molecular Genetics of Development, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Eichwald V, Daeffler L, Klein M, Rommelaere J, Salomé N. The NS2 proteins of parvovirus minute virus of mice are required for efficient nuclear egress of progeny virions in mouse cells. J Virol 2002; 76:10307-19. [PMID: 12239307 PMCID: PMC136550 DOI: 10.1128/jvi.76.20.10307-10319.2002] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2002] [Accepted: 07/17/2002] [Indexed: 01/06/2023] Open
Abstract
The small nonstructural NS2 proteins of parvovirus minute virus of mice (MVMp) were previously shown to interact with the nuclear export receptor Crm1. We report here the analysis of two MVM mutant genomic clones generating NS2 proteins that are unable to interact with Crm1 as a result of amino acid substitutions within their nuclear export signal (NES) sequences. Upon transfection of human and mouse cells, the MVM-NES21 and MVM-NES22 mutant genomic clones were proficient in synthesis of the four virus-encoded proteins. While the MVM-NES22 clone was further able to produce infectious mutant virions, no virus could be recovered from cells transfected with the MVM-NES21 clone. Whereas the defect of MVM-NES21 appeared to be complex, the phenotype of MVM-NES22 could be traced back to a novel distinct NS2 function. Infection of mouse cells with the MVM-NES22 mutant led to stronger nuclear retention not only of the NS2 proteins but also of infectious progeny MVM particles. This nuclear sequestration correlated with a severe delay in the release of mutant virions in the medium and with prolonged survival of the infected cell populations compared with wild-type virus-treated cultures. This defect could explain, at least in part, the small size of the plaques generated by the MVM-NES22 mutant when assayed on mouse indicator cells. Altogether, our data indicate that the interaction of MVMp NS2 proteins with the nuclear export receptor Crm1 plays a critical role at a late stage of the parvovirus life cycle involved in release of progeny viruses.
Collapse
Affiliation(s)
- Virginie Eichwald
- Department of Applied Tumor Virology, INSERM U375-Abteilung F0100, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 242, D-69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
18
|
Abstract
Parvoviruses are small, icosahedral viruses (approximately 25 nm) containing a single-strand DNA genome (approximately 5 kb) with hairpin termini. Autonomous parvoviruses (APVs) are found in many species; they do not require a helper virus for replication but they do require proliferating cells (S-phase functions) and, in some cases, tissue-specific factors. APVs can protect animals from spontaneous or experimental tumors, leading to consideration of these viruses, and vectors derived from them, as anticancer agents. Vector development has focused on three rodent APVs that can infect human cells, namely, LuIII, MVM, and H1. LuIII-based vectors with complete replacement of the viral coding sequences can direct transient or persistent expression of transgenes in cell culture. MVM-based and H1-based vectors with substitution of transgenes for the viral capsid sequences retain viral nonstructural (NS) coding sequences and express the NS1 protein. The latter serves to amplify the vector genome in target cells, potentially contributing to antitumor activity. APV vectors have packaging capacity for foreign DNA of approximately 4.8 kb, a limit that probably cannot be exceeded by more than a few percent. LuIII vectors can be pseudotyped with capsid proteins from related APVs, a promising strategy for controlling tissue tropism and circumventing immune responses to repeated administration. Initial success has been achieved in targeting such a pseudotyped vector by genetic modification of the capsid. Subject to advances in production and purification methods, APV vectors have potential as gene transfer agents for experimental and therapeutic use, particularly for cancer therapy.
Collapse
Affiliation(s)
- Ian H Maxwell
- Department of Dermatology and University of Colorado Cancer Center, University of Colorado Health Sciences Center, 4200 East Ninth Avenue, Denver, CO 80262, USA.
| | | | | |
Collapse
|
19
|
Giese NA, Raykov Z, DeMartino L, Vecchi A, Sozzani S, Dinsart C, Cornelis JJ, Rommelaere J. Suppression of metastatic hemangiosarcoma by a parvovirus MVMp vector transducing the IP-10 chemokine into immunocompetent mice. Cancer Gene Ther 2002; 9:432-42. [PMID: 11961666 DOI: 10.1038/sj.cgt.7700457] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2002] [Indexed: 11/09/2022]
Abstract
We have previously shown that the growth of human tumor xenografts in immunodeficient mice can be efficiently suppressed upon infection with the autonomous parvovirus H-1 or with cytokine-transducing derivatives thereof. To further evaluate the benefits of implementing parvoviruses in cancer gene therapy, we have created a new recombinant vector, MVMp/IP-10, transducing the immunoactive, antiangiogenic chemokine IP-10, and used this virus to treat syngeneic tumors grown in immunocompetent mice. Intratumoral/intraperitoneal administration of only 3 x 10(7) replication units of MVMp/IP-10 per animal strongly inhibited the progression of established H5V cell-induced vascular tumors, a highly malignant mouse model for human cavernous hemangioma and Kaposi's sarcoma. Retardation of recurrent tumor growth and suppression of life-threatening metastatic dissemination to internal organs were accompanied by a striking delay in hemangioma-associated mortality. Parental MVMp did not have a significant effect under these conditions up to the dose of 10(10) infectious units/animal, but had strong antihemangiosarcoma activity when used to infect H5V cells ex vivo prior to implantation. In all cases, virus therapy was very well tolerated. Virus-induced suppression of hemangiosarcoma was dependent on host T cells and associated with intratumoral persistence of IFN gamma-expressing cytotoxic lymphocytes, and led to the reduced expression of hepatic plasminogen activator inhibitor-1 (PAI-1), a metastasis-linked marker. This proof of principle study demonstrates that MVMp/IP-10 can aid the treatment of vascular tumors and that autonomous parvovirus-based vectors can be considered potent tools for cancer gene therapy purposes.
Collapse
Affiliation(s)
- Nathalia A Giese
- Applied Tumor Virology Program F0100 and INSERM U375, Deutsches Krebsforschungszentrum, Heidelberg 69120, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Olijslagers S, Dege AY, Dinsart C, Voorhoeve M, Rommelaere J, Noteborn MH, Cornelis JJ. Potentiation of a recombinant oncolytic parvovirus by expression of Apoptin. Cancer Gene Ther 2001; 8:958-65. [PMID: 11781658 DOI: 10.1038/sj.cgt.7700392] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2001] [Indexed: 01/14/2023]
Abstract
The oncotropic and oncolytic behaviors of certain autonomous rodent parvoviruses make them promising vectors for anticancer gene therapies. However, these parvoviruses are often not potent enough to kill all tumor cells equally well. With the aim of enhancing the intrinsic antitumor effect and the range of natural parvoviruses, a recombinant H1 parvovirus vector was constructed that produces the Apoptin protein, a tumor cell-specific, p53-independent, Bcl-2-insensitive apoptotic effector. We compared the apoptotic activity exerted by a recombinant hH1/Apoptin virus with that of a Green Fluorescent Protein (GFP)-transducing recombinant virus, hH1/GFP, in three human tumor cell lines differing in their susceptibility to wild-type parvovirus H1-induced killing. We found that in cells that were rather resistant to the basal cytotoxic effect of wild-type H1 or the GFP recombinant virus, a parvovirus that expressed Apoptin caused a pronounced, additional cytotoxic effect. In contrast to its enhanced cytotoxicity toward tumor cells, hH1/Apoptin virus was not more toxic to normal human fibroblasts than was the wild-type H1 virus. Taken together, these data indicate that enhancing the oncotropic behavior of wild-type H1 parvoviruses with the tumor-specific apoptotic potency of Apoptin should lead to an effective replicative parvoviral vector.
Collapse
Affiliation(s)
- S Olijslagers
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
The concept of using viruses as oncolytic agents has a long history. However, relatively new developments are the use of these viruses as gene delivery vehicles and the restriction of viral replication and lysis to tumour cells. The latter is attempted by the use of tumour-specific promoters, which transcriptionally target viral genes involved in replication, or by deletion of viral functions dispensable for replication in tumour cells but essential for productive infection of normal cells. In addition, retargeting of the viral tropism towards tumours by capsid modifications has been examined. Although much progress has been made in developing oncolytic vectors for clinical use, there is still a long way to go to determine which combinations of virus, gene therapy, surgery, radiation, and/or chemotherapy will provide improved therapy for the control and eradication of a variety of human cancers. First controlled clinical trials with an oncolytic adenovirus in combination with chemotherapy have shown encouraging antineoplastic activity. For future vector developments it will be crucial to achieve maximum vector distribution and transgene expression within tumours, to trigger a specific systemic immune effector response against treated and untreated lesions, and to modulate the immune system to avoid immune-mediated inactivation or destruction of the virus. In the context of replication-competent vectors, suicide genes might be used as fail-safe mechanism in the case of a runaway infection.
Collapse
Affiliation(s)
- O Wildner
- Humboldt-Universität zu Berlin, Labor für Gentherapie, Germany.
| |
Collapse
|
22
|
Dupont F, Karim A, Dumon JC, Mine N, Avalosse B. A novel MVMp-based vector system specifically designed to reduce the risk of replication-competent virus generation by homologous recombination. Gene Ther 2001; 8:921-9. [PMID: 11426332 DOI: 10.1038/sj.gt.3301477] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2000] [Accepted: 04/06/2001] [Indexed: 11/08/2022]
Abstract
Recent work highlights the potential usefulness of MVM-based vectors as selective vehicles for cancer gene therapy (Dupont et al, Gene Therapy, 2000; 7: 790-796). To implement this strategy, however, it is necessary to develop optimized methods for producing high-titer, helper-free parvovirus stocks. Recombinants of MVMp (rMVMp) are currently generated by transiently co-transfecting permissive cell lines with a plasmid carrying the vector genome and a helper plasmid expressing the capsid genes (replaced with a foreign gene in the vector genome). The resulting stocks, however, are always heavily contaminated with replication-competent viruses (RCV), which precludes their use in vivo and particularly in gene therapy. In the present work we have developed a second-generation MVMp-based vector system specifically designed to reduce the probability of RCV generation by homologous recombination. We have constructed a new MVMp-based vector and a new helper genome with minimal sequence overlap and have used the degeneracy of the genetic code to further decrease vector-helper homology. In this system, the left homologous region was almost completely eliminated and the right sequence overlap was reduced to 74 nt with only 61% homology. We were thus able to substantially reduce ( approximately 200 x), but not completely eliminate, generation of contaminating viruses in medium-scale rMVMp preparations. Since the remaining sequence homology between the new vector and helper genomes is weak, our results suggest that contaminating viruses in this system are generated by nonhomologous recombination. It is important to note, unlike the autonomously replicating helper viruses produced from the first-generation vector/helper genomes, the contaminating viruses arising from the new packaging system cannot initiate secondary infection rounds (so they are not 'replication-competent viruses'). Our findings have important implications for the design of new MVMp-based vectors and for the construction of trans-complementing packaging cell lines.
Collapse
Affiliation(s)
- F Dupont
- Laboratoire d'Investigation Clinique et d'Oncologie Expérimentale, Institut Jules Bordet, Université Libre de Bruxelles, Bruxelles, Belgium
| | | | | | | | | |
Collapse
|