1
|
Hasbullah HH, Musa M. Gene Therapy Targeting p53 and KRAS for Colorectal Cancer Treatment: A Myth or the Way Forward? Int J Mol Sci 2021; 22:11941. [PMID: 34769370 PMCID: PMC8584926 DOI: 10.3390/ijms222111941] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is the third most commonly diagnosed malignancy worldwide and is responsible as one of the main causes of mortality in both men and women. Despite massive efforts to raise public awareness on early screening and significant advancements in the treatment for CRC, the majority of cases are still being diagnosed at the advanced stage. This contributes to low survivability due to this cancer. CRC patients present various genetic changes and epigenetic modifications. The most common genetic alterations associated with CRC are p53 and KRAS mutations. Gene therapy targeting defect genes such as TP53 (tumor suppressor gene encodes for p53) and KRAS (oncogene) in CRC potentially serves as an alternative treatment avenue for the disease in addition to the standard therapy. For the last decade, significant developments have been seen in gene therapy for translational purposes in treating various cancers. This includes the development of vectors as delivery vehicles. Despite the optimism revolving around targeted gene therapy for cancer treatment, it also has various limitations, such as a lack of availability of related technology, high cost of the involved procedures, and ethical issues. This article will provide a review on the potentials and challenges of gene therapy targeting p53 and KRAS for the treatment of CRC.
Collapse
Affiliation(s)
| | - Marahaini Musa
- Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia;
| |
Collapse
|
2
|
Komissarov AA, Kostrov SV, Demidyuk IV. In Vitro Assay for the Evaluation of Cytotoxic Effects Provided by a Combination of Suicide and Killer Genes in a Bicistronic Vector. Methods Mol Biol 2019; 1895:135-147. [PMID: 30539535 DOI: 10.1007/978-1-4939-8922-5_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
When using bicistronic expression constructs the issue arises concerning proper evaluation of the cytotoxic efficiency of a combination of therapeutic genes. For this purpose, an approach can be applied based on the transient transfection of cultured human cells with a specifically designed set of mono- and bicistronic expression constructs and on the comparison of their cytotoxic effects. Here the application of this approach is described using an example of the evaluation of the combined cytotoxic action of bifunctional yeast cytosine deaminase/uracil phosphoribosyltransferase fusion protein (FCU1) and hepatitis A virus 3C protease in a bicistronic plasmid construct.
Collapse
Affiliation(s)
- Alexey A Komissarov
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Sergey V Kostrov
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Ilya V Demidyuk
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
3
|
Komissarov A, Demidyuk I, Safina D, Roschina M, Shubin A, Lunina N, Karaseva M, Kostrov S. Cytotoxic effect of co-expression of human hepatitis A virus 3C protease and bifunctional suicide protein FCU1 genes in a bicistronic vector. Mol Biol Rep 2017; 44:323-332. [PMID: 28748410 DOI: 10.1007/s11033-017-4113-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 07/19/2017] [Indexed: 12/20/2022]
Abstract
Recent reports on various cancer models demonstrate a great potential of cytosine deaminase/5-fluorocytosine suicide system in cancer therapy. However, this approach has limited success and its application to patients has not reached the desirable clinical significance. Accordingly, the improvement of this suicide system is an actively developing trend in gene therapy. The purpose of this study was to explore the cytotoxic effect observed after co-expression of hepatitis A virus 3C protease (3C) and yeast cytosine deaminase/uracil phosphoribosyltransferase fusion protein (FCU1) in a bicistronic vector. A set of mono- and bicistronic plasmid constructs was generated to provide individual or combined expression of 3C and FCU1. The constructs were introduced into HEK293 and HeLa cells, and target protein synthesis as well as the effect of 5-fluorocytosine on cell death and the time course of the cytotoxic effect was studied. The obtained vectors provide for the synthesis of target proteins in human cells. The expression of the genes in a bicistronic construct provide for the cytotoxic effect comparable to that observed after the expression of genes in monocistronic constructs. At the same time, co-expression of FCU1 and 3C recapitulated their cytotoxic effects. The combined effect of the killer and suicide genes was studied for the first time on human cells in vitro. The integration of different gene therapy systems inducing cell death (FCU1 and 3C genes) in a bicistronic construct allowed us to demonstrate that it does not interfere with the cytotoxic effect of each of them. A combination of cytotoxic genes in multicistronic vectors can be used to develop pluripotent gene therapy agents.
Collapse
Affiliation(s)
- Alexey Komissarov
- Laboratory of Protein Engineering, Institute of Molecular Genetics, Russian Academy of Science, 2 Kurchatova Sq., Moscow, Russia, 123182
| | - Ilya Demidyuk
- Laboratory of Protein Engineering, Institute of Molecular Genetics, Russian Academy of Science, 2 Kurchatova Sq., Moscow, Russia, 123182.
| | - Dina Safina
- Laboratory of Protein Engineering, Institute of Molecular Genetics, Russian Academy of Science, 2 Kurchatova Sq., Moscow, Russia, 123182
| | - Marina Roschina
- Laboratory of Protein Engineering, Institute of Molecular Genetics, Russian Academy of Science, 2 Kurchatova Sq., Moscow, Russia, 123182
| | - Andrey Shubin
- Laboratory of Protein Engineering, Institute of Molecular Genetics, Russian Academy of Science, 2 Kurchatova Sq., Moscow, Russia, 123182
| | - Nataliya Lunina
- Laboratory of Protein Engineering, Institute of Molecular Genetics, Russian Academy of Science, 2 Kurchatova Sq., Moscow, Russia, 123182
| | - Maria Karaseva
- Laboratory of Protein Engineering, Institute of Molecular Genetics, Russian Academy of Science, 2 Kurchatova Sq., Moscow, Russia, 123182
| | - Sergey Kostrov
- Laboratory of Protein Engineering, Institute of Molecular Genetics, Russian Academy of Science, 2 Kurchatova Sq., Moscow, Russia, 123182
| |
Collapse
|
4
|
Erkan EP, Senfter D, Madlener S, Jungwirth G, Ströbel T, Saydam N, Saydam O. Extracellular vesicle-mediated suicide mRNA/protein delivery inhibits glioblastoma tumor growth in vivo. Cancer Gene Ther 2016; 24:38-44. [DOI: 10.1038/cgt.2016.78] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 11/08/2016] [Accepted: 11/11/2016] [Indexed: 02/05/2023]
|
5
|
Krassikova LS, Karshieva SS, Cheglakov IB, Belyavsky AV. Combined treatment, based on lysomustine administration with mesenchymal stem cells expressing cytosine deaminase therapy, leads to pronounced murine Lewis lung carcinoma growth inhibition. J Gene Med 2016; 18:220-33. [DOI: 10.1002/jgm.2894] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 07/18/2016] [Accepted: 07/20/2016] [Indexed: 12/22/2022] Open
Affiliation(s)
- Lyudmila S. Krassikova
- Pushchino State Institute of Natural Sciences; Pushchino Russia
- Engelhardt Institute of Molecular Biology RAS; Moscow Russia
| | - Saida S. Karshieva
- Engelhardt Institute of Molecular Biology RAS; Moscow Russia
- N. N. Blokhin Cancer Research Center; Russia
| | - Ivan B. Cheglakov
- Engelhardt Institute of Molecular Biology RAS; Moscow Russia
- N. N. Blokhin Cancer Research Center; Russia
| | | |
Collapse
|
6
|
Affiliation(s)
- Zoltán Ivics
- Division of Medical Biotechnology, Paul Ehrlich Institute, Langen, Germany
| |
Collapse
|
7
|
Krasikova LS, Karshieva SS, Cheglakov IB, Belyavsky AV. Mesenchymal stem cells expressing cytosine deaminase inhibit growth of murine melanoma B16F10 in vivo. Mol Biol 2015. [DOI: 10.1134/s0026893315060126] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
8
|
KIM YESEUL, HWANG KYUNGA, GO RYEOEUN, KIM CHOWON, CHOI KYUNGCHUL. Gene therapy strategies using engineered stem cells for treating gynecologic and breast cancer patients (Review). Oncol Rep 2015; 33:2107-12. [DOI: 10.3892/or.2015.3846] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 02/09/2015] [Indexed: 11/06/2022] Open
|
9
|
Sekar TV, Foygel K, Ilovich O, Paulmurugan R. Noninvasive theranostic imaging of HSV1-sr39TK-NTR/GCV-CB1954 dual-prodrug therapy in metastatic lung lesions of MDA-MB-231 triple negative breast cancer in mice. Am J Cancer Res 2014; 4:460-74. [PMID: 24669276 PMCID: PMC3964441 DOI: 10.7150/thno.8077] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 01/20/2014] [Indexed: 11/19/2022] Open
Abstract
Metastatic breast cancer is an obdurate cancer type that is not amenable to chemotherapy regimens currently used in clinic. There is a desperate need for alternative therapies to treat this resistant cancer type. Gene-Directed Enzyme Prodrug Therapy (GDEPT) is a superior gene therapy method when compared to chemotherapy and radiotherapy procedures, proven to be effective against many types of cancer in pre-clinical evaluations and clinical trials. Gene therapy that utilizes a single enzyme/prodrug combination targeting a single cellular mechanism needs significant overexpression of delivered therapeutic gene in order to achieve therapy response. Hence, to overcome this obstacle we recently developed a dual therapeutic reporter gene fusion that uses two different prodrugs, targeting two distinct cellular mechanisms in order to achieve effective therapy with a limited expression of delivered transgenes. In addition, imaging therapeutic reporter genes offers additional information that indirectly correlates gene delivery, expression, and functional effectiveness as a theranostic approach. In the present study, we evaluate the therapeutic potential of HSV1-sr39TK-NTR fusion dual suicide gene therapy system that we recently developed, in MDA-MB-231 triple negative breast cancer lung-metastatic lesions in a mouse model. We compared the therapeutic potential of HSV1-sr39TK-NTR fusion with respective dual prodrugs GCV-CB1954 with HSV1-sr39TK/GCV and NTR/CB1954 single enzyme prodrug system in this highly resistant metastatic lesion of the lungs. In vitro optimization of dose and duration of exposure to GCV and CB1954 was performed in MDA-MB-231 cells. Drug combinations of 1 μg/ml GCV and 10 μM CB1954 for 3 days was found to be optimal regimen for induction of significant cell death, as assessed by FACS analysis. In vivo therapeutic evaluation in animal models showed a complete ablation of lung metastatic nodules of MDA-MB-231 triple negative breast cancer cells following two consecutive doses of a combination of GCV (40 mg/kg) and CB1954 (40 mg/kg) administered at 5 day intervals. In contrast, the respective treatment condition in animals expressing HSV1-sr39TK or NTR separately, showed minimal or no effect on tumor reduction as measured by bioluminescence (tumor mass) and [18F]-FHBG microPET (TK expression) imaging. These highlight the strong therapeutic effect of the dual fusion prodrug therapy and its use in theranostic imaging of tumor monitoring in living animals by multimodality molecular imaging.
Collapse
|
10
|
Valdes G, Schulte RW, Ostermeier M, Iwamoto KS. The High-Affinity Maltose Switch MBP317-347 has Low Affinity for Glucose: Implications for Targeting Tumors with Metabolically Directed Enzyme Prodrug Therapy. Chem Biol Drug Des 2013; 83:266-71. [DOI: 10.1111/cbdd.12249] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 08/23/2013] [Accepted: 10/04/2013] [Indexed: 12/27/2022]
Affiliation(s)
- Gilmer Valdes
- Department of Radiation Oncology; David Geffen School of Medicine at UCLA; 10833 LeConte Ave. Los Angeles CA 90095-1714 USA
| | - Reinhard W. Schulte
- Department of Radiation Medicine; Loma Linda University Medical Center; B121 Loma Linda CA 92354 USA
| | - Marc Ostermeier
- Department of Chemical and Biomolecular Engineering; Whiting School of Engineering, Johns Hopkins University; 3400 N. Charles St. Baltimore MD 21218 USA
| | - Keisuke S. Iwamoto
- Department of Radiation Oncology; David Geffen School of Medicine at UCLA; 10833 LeConte Ave. Los Angeles CA 90095-1714 USA
| |
Collapse
|
11
|
Kim DJ, Yi BR, Lee HR, Kim SU, Choi KC. Pancreatic tumor mass in a xenograft mouse model is decreased by treatment with therapeutic stem cells following introduction of therapeutic genes. Oncol Rep 2013; 30:1129-36. [PMID: 23807450 DOI: 10.3892/or.2013.2564] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 04/22/2013] [Indexed: 11/06/2022] Open
Abstract
Pancreatic cancer is the fourth most common cause of cancer-related mortality. In the present study, we employed 2 types of therapeutic stem cells expressing cytosine deaminase (CD) with or without human interferon-β (IFN‑β), HB1.F3.CD and HB1.F3.CD.IFN-β cells, respectively, to selectively treat pancreatic cancer. The CD gene converts the non-toxic prodrug, 5-flurorocytosine (5-FC), into the toxic agent, 5-fluorouracil (5-FU). In addition, human IFN-β is a potent cytokine that has antitumor effects. To generate a xenograft mouse model, PANC-1 cells (2x10(6)/mouse) cultured in DMEM containing 10% FBS were mixed with Matrigel and were subcutaneously injected into Balb/c nu/nu mice. In the migration assay, the stem cells expressing the CD or IFN-β gene effectively migrated toward the pancreatic cancer cells, suggesting the presence of chemoattractant factors secreted by the pancreatic tumors. In the co-culture and MTT assay, antitumor activity of the therapeutic stem cells was observed in the presence of 5-FC was shown that the growth of PANC-1 cells was inhibited. Furthermore, these effects were confirmed in the xenograft mouse model bearing tumors originating from PANC-1 cells. Analyses by histological and fluorescence microscopy showed that treatment with the stem cells resulted in the inhibition of pancreatic cancer growth in the presence of 5-FC. Taken together, these results indicate that stem cells expressing the CD and/or IFN-β gene can be used to effectively treat pancreatic cancer and reduce the side-effects associated with conventional therapies.
Collapse
Affiliation(s)
- Doo-Jin Kim
- Laboratory of Veterinary Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | | | | | | | | |
Collapse
|
12
|
Suppression of the growth of human colorectal cancer cells by therapeutic stem cells expressing cytosine deaminase and interferon-β via their tumor-tropic effect in cellular and xenograft mouse models. Mol Oncol 2013; 7:543-54. [PMID: 23403306 DOI: 10.1016/j.molonc.2013.01.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 01/10/2013] [Accepted: 01/11/2013] [Indexed: 01/14/2023] Open
Abstract
Genetically engineered stem cells (GESTECs) exhibit a potent therapeutic efficacy via their strong tumor tropism toward cancer cells. In this study, we introduced the human parental neural stem cells, HB1.F3, with the human interferon beta (IFN-β) gene which is a typical cytokine gene that has an antitumor effect and the cytosine deaminase (CD) gene from Escherichia coli (E. coli) that could convert the non-toxic prodrug, 5-fluorocytosine (5-FC), to a toxic metabolite, 5-fluorouracil (5-FU). Two types of stem cells expressing the CD gene (HB1.F3.CD cells) and both the CD and human IFN-β genes (HB1.F3.CD.IFN-β) were generated. The present study was performed to examine the migratory and therapeutic effects of these GESTECs against the colorectal cancer cell line, HT-29. When co-cultured with colorectal cancer cells in the presence of 5-FC, HB1.F3.CD and HB1.F3.CD.IFN-β cells exhibited the cytotoxicity on HT-29 cells via the bystander effect. In particular, HB1.F3.CD.IFN-β cells showed the synergistic cytotoxic activity of 5-FU and IFN-β. We also confirmed the migration ability of HB1.F3.CD and HB1.F3.CD.IFN-β cells toward HT-29 cells by a modified migration assay in vitro, where chemoattractant factors secreted by HT-29 cells attracted the GESTECs. In a xenograft mouse model, the volume of tumor mass was decreased up to 56% in HB1.F3.CD injected mice while the tumor mass was greatly inhibited about 76% in HB1.F3.CD.IFN-β injected mice. The therapeutic treatment by these GESTECs is a novel strategy where the combination of the migration capacity of stem cells as a vector for therapeutic genes towards colorectal cancer and a synergistic antitumor effect of CD and IFN-β genes can selectively target this type of cancer.
Collapse
|
13
|
Matuskova M, Baranovicova L, Kozovska Z, Durinikova E, Pastorakova A, Hunakova L, Waczulikova I, Nencka R, Kucerova L. Intrinsic properties of tumour cells have a key impact on the bystander effect mediated by genetically engineered mesenchymal stromal cells. J Gene Med 2012; 14:776-87. [DOI: 10.1002/jgm.2684] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2012] [Revised: 10/18/2012] [Accepted: 11/07/2012] [Indexed: 01/14/2023] Open
Affiliation(s)
- Miroslava Matuskova
- Laboratory of Molecular Oncology; Cancer Research Institute of Slovak Academy of Sciences; Bratislava; Slovakia
| | - Lenka Baranovicova
- Laboratory of Molecular Oncology; Cancer Research Institute of Slovak Academy of Sciences; Bratislava; Slovakia
| | - Zuzana Kozovska
- Laboratory of Molecular Oncology; Cancer Research Institute of Slovak Academy of Sciences; Bratislava; Slovakia
| | - Erika Durinikova
- Laboratory of Molecular Oncology; Cancer Research Institute of Slovak Academy of Sciences; Bratislava; Slovakia
| | - Andrea Pastorakova
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine; Comenius University; Bratislava; Slovakia
| | - Lubica Hunakova
- Laboratory of Tumour Immunology; Cancer Research Institute of Slovak Academy of Sciences; Bratislava; Slovakia
| | - Iveta Waczulikova
- Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and Informatics; Comenius University; Bratislava; Slovakia
| | - Radim Nencka
- Institute of Organic Chemistry and Biochemistry AS CR vvi; Prague; Czech Republic
| | - Lucia Kucerova
- Laboratory of Molecular Oncology; Cancer Research Institute of Slovak Academy of Sciences; Bratislava; Slovakia
| |
Collapse
|
14
|
Yi BR, Hwang KA, Kang NH, Kim SU, Jeung EB, Kim HC, Choi KC. Synergistic effects of genetically engineered stem cells expressing cytosine deaminase and interferon-β via their tumor tropism to selectively target human hepatocarcinoma cells. Cancer Gene Ther 2012; 19:644-51. [PMID: 22790964 DOI: 10.1038/cgt.2012.45] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Stem cells have received a great deal of attention for their clinical and therapeutic potential for treating human diseases and disorders. Recent studies have shown that it is possible to genetically engineered stem cells (GESTECs) to produce suicide enzymes that convert non-toxic prodrugs to toxic metabolites, selectively migrate toward tumor sites and reduce tumor growth. In this study, we evaluated whether these GESTECs are capable of migrating to hepatocarcinoma cells and examined the potential therapeutic efficacy of gene-directed enzyme prodrug therapy against liver cancer cells in cellular and animal models. A modified transwell migration assay was performed to determine the migratory capacity of GESTECs to Hep3B hepatocarcinoma cells. GESTECs, that is, HB1.F3.CD or HB1.F3.CD.interferon-β (IFN-β) cells, engineered to express a suicide gene, cytosine deaminase (CD), selectively migrated toward liver cancer cells. Treatment of Hep3B, human liver cancer cells, with the prodrug 5-fluorocytosine (5-FC) in the presence of HB1.F3.CD or HB1.F3.CD.IFN-β cells resulted in the inhibition of Hep3B cell growth. In a xenografted mouse model injected with hepatocarcinoma, we investigated the therapeutic effect of these stem cells. For 9 weeks, the xenografted mice were treated with HB1.F3.CD or HB1.F3.CD.IFN-β in the presence of 5-FC. A growth of tumor mass was inhibited about 40-50% in the mice treated with GESTECs and a prodrug. In addition, we further confirmed the cytotoxic effect on tumor cells by histological analysis and migratory effect of therapeutic stem cells. Taken together, GESTECs expressing a fusion gene encoding CD and IFN-β may exert a synergistic antitumor effect on this type of tumor.
Collapse
Affiliation(s)
- B-R Yi
- Laboratory of Veterinary Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
15
|
Yi BR, Choi KJ, Kim SU, Choi KC. Therapeutic potential of stem cells expressing suicide genes that selectively target human breast cancer cells: evidence that they exert tumoricidal effects via tumor tropism (review). Int J Oncol 2012; 41:798-804. [PMID: 22736197 PMCID: PMC3582792 DOI: 10.3892/ijo.2012.1523] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 05/30/2012] [Indexed: 12/21/2022] Open
Abstract
Breast cancer is the most prevalent cancer in women worldwide and is classified into ductal and lobular carcinoma. Breast cancer as well as lobular carcinoma is associated with various risk factors such as gender, age, female hormone exposure, ethnicity, family history and genetic risk factor-associated genes. Genes associated with a high risk of developing breast cancer include BRCA1, BRCA2, p53, PTEN, CHEK2 and ATM. Surgery, chemotherapy, radiotherapy and hormone therapy are used to treat breast cancer but these therapies, except for surgery, have many side-effects such as alopecia, anesthesia, diarrhea and arthralgia. Gene-directed enzyme/prodrug therapy (GEPT) or suicide gene therapy, may improve the therapeutic efficacy of conventional cancer radiotherapy and chemotherapy without side-effects. GEPT most often involves the use of a viral vector to deliver a gene not found in mammalian cells and that produces enzymes which can convert a relatively non-toxic prodrug into a toxic agent. Examples of these systems include cytosine deaminase/5-fluorocytosine (CD/5-FC), carboxyl esterase/irinotecan (CE/CPT-11), and thymidine kinase/ganciclovir (TK/GCV). Recently, therapies based on genetically engineered stem cells (GESTECs) using a GEPT system have received a great deal of attention for their clinical and therapeutic potential to treat breast cancer. In this review, we discuss the potential of GESTECs via tumor tropism effects and therapeutic efficacy against several different types of cancer cells. GESTECs represent a useful tool for treating breast cancer without inducing injuries associated with conventional therapeutic modalities.
Collapse
Affiliation(s)
- Bo-Rim Yi
- Laboratory of Veterinary Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | | | | | | |
Collapse
|
16
|
Hunt MA, Li D, Hay MP, Currie MJ, Robinson BA, Patterson AV, Dachs GU. Characterisation of enzyme prodrug gene therapy combinations in coated spheroids and vascular networks in vitro. J Gene Med 2012; 14:62-74. [DOI: 10.1002/jgm.1635] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Michelle A. Hunt
- Angiogenesis and Cancer Research Group, Department of Pathology; University of Otago; Christchurch; New Zealand
| | - Dan Li
- Auckland Cancer Society Research Centre; University of Auckland; Auckland; New Zealand
| | - Michael P. Hay
- Auckland Cancer Society Research Centre; University of Auckland; Auckland; New Zealand
| | - Margaret J. Currie
- Angiogenesis and Cancer Research Group, Department of Pathology; University of Otago; Christchurch; New Zealand
| | - Bridget A. Robinson
- Angiogenesis and Cancer Research Group, Department of Pathology; University of Otago; Christchurch; New Zealand
| | - Adam V. Patterson
- Auckland Cancer Society Research Centre; University of Auckland; Auckland; New Zealand
| | - Gabi U. Dachs
- Angiogenesis and Cancer Research Group, Department of Pathology; University of Otago; Christchurch; New Zealand
| |
Collapse
|
17
|
Evaluation of a UCMK/dCK fusion enzyme for gemcitabine-mediated cytotoxicity. Biochem Biophys Res Commun 2011; 416:199-204. [PMID: 22093835 DOI: 10.1016/j.bbrc.2011.11.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 11/04/2011] [Indexed: 11/22/2022]
Abstract
While gemcitabine (2'-2'-difluoro-2'-deoxycytidine, dFdC) displays wide-ranging antineoplastic activity as a single agent, variable response rates and poor intracellular metabolism often limit its clinical efficacy. In an effort to enhance dFdC cytotoxicity and help normalize response rates, we created a bifunctional fusion enzyme that combines the enzymatic activities of deoxycytidine kinase (dCK) and uridine/cytidine monophosphate kinase (UCMK) in a single polypeptide. Our goal was to evaluate whether the created fusion could induce beneficial, functional changes toward dFdC, expedite dFdC conversion to its active antimetabolites and consequently amplify cell dFdC sensitivity. While kinetic analyses revealed the UCMK/dCK fusion enzyme to possess both native activities, the fusion rendered cells sensitive to the cytotoxic effects of dFdC at the same level as dCK expression alone. These results suggest that increased wild-type UCMK expression does not provide a significant enhancement in dFdC-mediated cytotoxicity and may warrant the implementation of studies aimed at engineering UCMK variants with improved activity toward gemcitabine monophosphate.
Collapse
|
18
|
Kim KY, Yi BR, Lee HR, Kang NH, Jeung EB, Kim SU, Choi KC. Stem cells with fused gene expression of cytosine deaminase and interferon-β migrate to human gastric cancer cells and result in synergistic growth inhibition for potential therapeutic use. Int J Oncol 2011; 40:1097-104. [PMID: 22159640 PMCID: PMC3584621 DOI: 10.3892/ijo.2011.1288] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 11/09/2011] [Indexed: 01/14/2023] Open
Abstract
Genetically engineered stem cells (GESTECs) producing suicide enzymes and immunotherapeutic cytokines have therapeutic effects on tumors, and may possibly reduce the side effects of toxic drugs used for treatments. Suicide enzymes can convert non-toxic pro-drugs to toxic metabolites that can reduce tumor growth. Cytosine deaminase (CD) is a suicide enzyme that metabolizes a non-toxic pro-drug, 5-fluorocytosine (5-FC), into the cytotoxic agent, 5-fluorouracil (5-FU). As an immunotherapeutic agent, human interferon-β (IFN-β) has anticancer effects. In this study, we used modified human neural stem cells (HB1.F3) expressing the Escherichia coli (E. coli) CD gene (HB1.F3.CD) or both the CD and human IFN-β genes (HB1.F3.CD.IFN-β) and evaluated their effectiveness on gastric carcinoma cells (AGS); migration of GESTECs to AGS was analyzed as well as formation of 5-FU and IFN-β. Reverse transcription-polymerase chain reaction (RT-PCR) was used to confirm the expression of CD and IFN-β genes in GESTECs along with confirming the production of chemoattractant molecules such as stem cell factor (SCF), CXCR4, c-Kit, vascular endothelial growth factor (VEGF) and VEGF receptor 2 (VEGFR2). In addition, by co-culturing GESTECs with AGS in the presence of 5-FC, we were able to confirm that cancer growth was inhibited, along with a synergistic effect when the CD and IFN-β genes (HB1.F3.CD.IFN-β) were co-expressed. Indeed a marked anticancer effect was demonstrated when the CD and IFN-β genes were expressed together compared to expression of the CD gene alone (HB1.F3.CD). According to a modified transwell migration assay, the migration of GESTECs toward AGS was confirmed. In conclusion, these data suggest potential application of GESTECs to gastric cancer therapy, due to a remarkable synergistic effect of CD and IFN-β genes in the presence of 5-FC. Additionally, the tumor-selective migration capability in vitro suggests that GESTECs are a potential anticancer therapy candidate that may result in minimal side effects compared to the conventional chemotherapy.
Collapse
Affiliation(s)
- Kyoung-Yoon Kim
- Laboratory of Veterinary Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
19
|
Yamada S, Kuroda T, Fuchs BC, He X, Supko JG, Schmitt A, McGinn CM, Lanuti M, Tanabe KK. Oncolytic herpes simplex virus expressing yeast cytosine deaminase: relationship between viral replication, transgene expression, prodrug bioactivation. Cancer Gene Ther 2011; 19:160-70. [PMID: 22076044 PMCID: PMC3288710 DOI: 10.1038/cgt.2011.70] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Yeast cytosine deaminase (yCD) is a well-characterized prodrug/enzyme system that converts 5-fluorocytosine (5-FC) to 5-fluorouracil (5-FU), and has been combined with oncolytic viruses. However, in vivo studies of the interactions between 5-FC bioactivation and viral replication have not been previously reported, nor have the kinetics of transgene expression and the pharmacokinetics of 5-FC and 5-FU. We constructed a replication-conditional HSV-1 expressing yCD and examined cytotoxicity when 5-FC was initiated at different times after viral infection, and observed that earlier 5-FC administration led to greater cytotoxicity than later 5-FC administration in vitro and in vivo. Twelve days of 5-FC administration was superior to 6 days in animal models, but dosing beyond 12 days did not further enhance efficacy. Consistent with the dosing schedule results, both viral genomic DNA copy number and viral titers were observed to peak on Day 3 after viral injection and gradually decrease thereafter. The virus is replication-conditional and was detected in tumors for as long as 2 weeks after viral injection. The maximum relative extent of yCD conversion of 5-FC to 5-FU in tumors was observed on Day 6 after viral injection and it decreased progressively thereafter. The observation that 5-FU generation within tumors did not lead to appreciable levels of systemic 5-FU (<10 ng/ml) is important and has not been previously reported. The approaches used in these studies of the relationship between the viral replication kinetics, transgene expression, prodrug administration and anti-tumor efficacy are useful in the design of clinical trials of armed, oncolytic viruses.
Collapse
Affiliation(s)
- S Yamada
- Division of Surgical Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Chemovirotherapy for head and neck squamous cell carcinoma with EGFR-targeted and CD/UPRT-armed oncolytic measles virus. Cancer Gene Ther 2011; 19:181-91. [PMID: 22076043 DOI: 10.1038/cgt.2011.75] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
First-line treatment of recurrent and/or refractory head and neck squamous cell carcinoma (HNSCC) is based on platinum, 5-fluorouracil (5-FU) and the monoclonal antiEGFR antibody cetuximab. However, in most cases this chemoimmunotherapy does not cure the disease, and more than 50% of HNSCC patients are dying because of local recurrence of the tumors. In the majority of cases, HNSCC overexpress the epidermal growth factor receptor (EGFR), and its presence is associated with a poor outcome. In this study, we engineered an EGFR-targeted oncolytic measles virus (MV), armed with the bifunctional enzyme cytosine deaminase/uracil phosphoribosyltransferase (CD/UPRT). CD/UPRT converts 5-fluorocytosine (5-FC) into the chemotherapeutic 5-FU, a mainstay of HNSCC chemotherapy. This virus efficiently replicates in and lyses primary HNSCC cells in vitro. Arming with CD/UPRT mediates efficient prodrug activation with high bystander killing of non-infected tumor cells. In mice bearing primary HNSCC xenografts, intratumoral administration of MV-antiEGFR resulted in statistically significant tumor growth delay and prolongation of survival. Importantly, combination with 5-FC is superior to virus-only treatment leading to significant tumor growth inhibition. Thus, chemovirotherapy with EGFR-targeted and CD/UPRT-armed MV is highly efficacious in preclinical settings with direct translational implications for a planned Phase I clinical trial of MV for locoregional treatment of HNSCC.
Collapse
|
21
|
Chen CT, Yamaguchi H, Lee HJ, Du Y, Lee HH, Xia W, Yu WH, Hsu JL, Yen CJ, Sun HL, Wang Y, Yeh ETH, Hortobagyi GN, Hung MC. Dual targeting of tumor angiogenesis and chemotherapy by endostatin-cytosine deaminase-uracil phosphoribosyltransferase. Mol Cancer Ther 2011; 10:1327-36. [PMID: 21610170 DOI: 10.1158/1535-7163.mct-10-1117] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Several antiangiogenic drugs targeting VEGF/VEGF receptor (VEGFR) that were approved by the Food and Drug Administration for many cancer types, including colorectal and lung cancer, can effectively reduce tumor growth. However, targeting the VEGF signaling pathway will probably influence the normal function of endothelial cells in maintaining homeostasis and can cause unwanted adverse effects. Indeed, emerging experimental evidence suggests that VEGF-targeting therapy induced less tumor cell-specific cytotoxicity, allowing residual cells to become more resistant and eventually develop a more malignant phenotype. We report an antitumor therapeutic EndoCD fusion protein developed by linking endostatin (Endo) to cytosine deaminase and uracil phosphoribosyltransferase (CD). Specifically, Endo possesses tumor antiangiogenesis activity that targets tumor endothelial cells, followed by CD, which converts the nontoxic prodrug 5-fluorocytosine (5-FC) to the cytotoxic antitumor drug 5-fluorouracil (5-FU) in the local tumor area. Moreover, selective targeting of tumor sites allows an increasing local intratumoral concentration of 5-FU, thus providing high levels of cytotoxic activity. We showed that treatment with EndoCD plus 5-FC, compared with bevacizumab plus 5-FU treatment, significantly increased the 5-FU concentration around tumor sites and suppressed tumor growth and metastasis in human breast and colorectal orthotropic animal models. In addition, in contrast to treatment with bevacizumab/5-FU, EndoCD/5-FC did not induce cardiotoxicity leading to heart failure in mice after long-term treatment. Our results showed that, compared with currently used antiangiogenic drugs, EndoCD possesses potent anticancer activity with virtually no toxic effects and does not increase tumor invasion or metastasis. Together, these findings suggest that EndoCD/5-FC could become an alternative option for future antiangiogenesis therapy.
Collapse
Affiliation(s)
- Chun-Te Chen
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Zhong B, Watts KL, Gori JL, Wohlfahrt ME, Enssle J, Adair JE, Kiem HP. Safeguarding nonhuman primate iPS cells with suicide genes. Mol Ther 2011; 19:1667-75. [PMID: 21587213 DOI: 10.1038/mt.2011.51] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The development of technology to generate induced pluripotent stem (iPS) cells constitutes one of the most exciting scientific breakthroughs because of the enormous potential for regenerative medicine. However, the safety of iPS cell-related products is a major concern for clinical translation. Insertional mutagenesis, possible oncogenic transformation of iPS cells or their derivatives, or the contamination of differentiated iPS cells with undifferentiated cells, resulting in the formation of teratomas, have remained considerable obstacles. Here, we demonstrate the utility of suicide genes to safeguard iPS cells and their derivatives. We found suicide genes can control the cell fate of iPS cells in vitro and in vivo without interfering with their pluripotency and self-renewal capacity. This study will be useful to evaluate the safety of iPS cell technology in a clinically highly relevant, large animal model and further benefit the clinical use of human iPS cells.
Collapse
Affiliation(s)
- Bonan Zhong
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109-1024, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Niculescu-Duvaz D, Negoita-Giras G, Niculescu-Duvaz I, Hedley D, Springer CJ. Directed Enzyme Prodrug Therapies. PRODRUGS AND TARGETED DELIVERY 2011. [DOI: 10.1002/9783527633166.ch12] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
24
|
Johnson AJ, Ardiani A, Sanchez-Bonilla M, Black ME. Comparative analysis of enzyme and pathway engineering strategies for 5FC-mediated suicide gene therapy applications. Cancer Gene Ther 2011; 18:533-42. [PMID: 21394105 PMCID: PMC3139007 DOI: 10.1038/cgt.2011.6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Bacterial- and yeast- encoded cytosine deaminases (bCD and yCD, respectively) are widely investigated suicide enzymes used in combination with the prodrug 5-fluorocytosine (5FC) to achieve localized cytotoxicity. Yet characteristics such as poor turnover rates of 5FC (bCD) and enzyme thermolability (yCD) preclude their full therapeutic potential. We previously applied regio-specific random mutagenesis and computational design to create novel bCD and yCD variants with altered substrate preference (bCD(1525)) or increased thermostability (yCD(double), yCD(triple)) to aid in overcoming these limitations. Others have utilized pathway engineering in which the microbial enzyme uracil phosphoribosyltransferase (UPRT) is fused with its respective CD, creating bCD/bUPRT or yCD/yUPRT. In this study, we evaluated whether the overlay of CD mutants onto their respective CD/UPRT fusion construct would further enhance 5FC activation, cancer cell prodrug sensitivity and bystander activity in vitro and in vivo. We show that all mutant fusion enzymes allowed for significant reductions in IC(50) values relative to their mutant CD counterparts. However, in vivo the CD mutants displayed enhanced tumor growth inhibition capacity relative to the mutant fusions, with bCD(1525) displaying the greatest tumor growth inhibition and bystander activity. In summary, mutant bCD(1525) appears to be the most effective of all bacterial or yeast CD or CD/UPRT enzymes examined and as such is likely to be the best choice to significantly improve the clinical outcome of CD/5FC suicide gene therapy applications.
Collapse
Affiliation(s)
- A J Johnson
- College of Veterinary Medicine, School of Molecular Biosciences, Washington State University, Pullman, USA
| | | | | | | |
Collapse
|
25
|
Paul A, Jardin BA, Kulamarva A, Malhotra M, Elias CB, Prakash S. Recombinant baculovirus as a highly potent vector for gene therapy of human colorectal carcinoma: molecular cloning, expression, and in vitro characterization. Mol Biotechnol 2010; 45:129-39. [PMID: 20143184 DOI: 10.1007/s12033-010-9248-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Present therapeutic strategies for most cancers are restricted mainly to the primary tumors and are also not very effective in controlling metastatic states. Alternatively, gene therapy can be a potential option for treating such cancers. Currently mammalian viral-based cancer gene therapy is the most popular approach, but the efficacy has been shown to be quite low in clinical trials. In this study, for the first time, the insect cell-specific baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV) has been evaluated as a vector for gene delivery to colorectal cancer cells. Experiments involving factorial design were employed to study the individual and combined effects of different parameters such as multiplicity of infection (MOI), viral incubation time and epigenetic factors on transduction efficiency. The results demonstrate that baculovirus gene delivery system holds immense potential for development of a new generation of highly effective virotherapy for colorectal, as well as other major carcinomas (breast, pancreas, and brain), and offers significant benefits to traditional animal virus-based vectors with respect to safety concerns.
Collapse
Affiliation(s)
- Arghya Paul
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering and Artificial Cells and Organs Research Centre, Faculty of Medicine, McGill University, 3775 University Street, Montreal, QC H3A 2B4, Canada
| | | | | | | | | | | |
Collapse
|
26
|
Serve KM, Yáñez JA, Remsberg CM, Davies NM, Black ME. Development and validation of a rapid and sensitive HPLC method for the quantification of 5-fluorocytosine and its metabolites. Biomed Chromatogr 2010; 24:556-61. [PMID: 19795393 DOI: 10.1002/bmc.1326] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
To study the intracellular metabolism of the prodrug 5-fluorocytosine (5FC), we developed a novel reverse-phase high-performance liquid chromatography method to simultaneously detect 5FC and its four major anabolic metabolites: 5-fluorouracil, 5-fluorouridine, 5-fluorouridine-monophosphate and 5-fluoro-2'deoxyuridine-5'-monophosphate. Separation of each compound was accomplished under isocratic conditions using a C(18) column and mobile phase of formic acid-water (1 : 99 v/v). The method was validated for both accuracy and reproducibility in cell culture media. Additionally, metabolites were assessed for stability at ambient temperatures and following freeze-thaw cycles. Calibration curves were linear over a range of 1-200 microg/mL. Limit of quantification for four of the five compounds was 1 microg/mL in cell culture media (RSD < 11%). This method was successfully used to monitor intracellular conversion of 5FC to its metabolic products over a 24h period.
Collapse
|
27
|
Kim KY, Kim SU, Leung PCK, Jeung EB, Choi KC. Influence of the prodrugs 5-fluorocytosine and CPT-11 on ovarian cancer cells using genetically engineered stem cells: tumor-tropic potential and inhibition of ovarian cancer cell growth. Cancer Sci 2010; 101:955-62. [PMID: 20704576 PMCID: PMC11159652 DOI: 10.1111/j.1349-7006.2009.01485.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024] Open
Abstract
Recent studies have shown that genetically engineered stem cells (GESTECs) to produce suicide enzymes that convert non-toxic prodrugs to toxic metabolites selectively migrate toward tumor sites and reduce tumor growth. In the present study, we evaluated whether these GESTECs were capable of migrating to human ovarian cancer cells and examined the potential therapeutic efficacy of the gene-directed enzyme prodrug therapy against ovarian cancer cells in vitro. The expression of cytosine deaminase (CD) or carboxyl esterase (CE) mRNA of GESTECs was confirmed by RT-PCR. A modified transwell migration assay was performed to determine the migratory capacity of GESTECs to ovarian cancer cells. GESTECs (HB1.F3.CD or HB1.F3.CE cells) engineered to express a suicide gene (CD or CE) selectively migrated toward ovarian cancer cells. A [(3)H] thymidine incorporation assay was conducted to measure the proliferative index. Treatment of human epithelial ovarian cancer cell line (SKOV-3, an ovarian adenocarcinoma derived from the ascites of an ovarian cancer patient) with the prodrugs 5-fluorocytosine (5-FC) or camptothecin-11 (CPT-11) in the presence of HB1.F3.CD or HB1.F3.CE cells resulted in the inhibition of ovarian cancer cell growth. Based on the data presented herein, we suggest that GESTECs expressing CD/CE may have a potent advantage to selectively treat ovarian cancers.
Collapse
Affiliation(s)
- Ki-Yon Kim
- Department of Obstetrics and Gynecology, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | |
Collapse
|
28
|
Kim KY, Kim SU, Leung PCK, Jeung EB, Choi KC. Influence of the prodrugs 5-fluorocytosine and CPT-11 on ovarian cancer cells using genetically engineered stem cells: tumor-tropic potential and inhibition of ovarian cancer cell growth. Cancer Sci 2010. [DOI: 10.1111/j.1349-7006.2010.01485.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
29
|
Imamura Y, Ishikawa S, Sato N, Karashima R, Hirashima K, Hiyoshi Y, Nagai Y, Koga Y, Hayashi N, Watanabe M, Yamada G, Baba H. Adenoviral oncolytic suicide gene therapy for a peritoneal dissemination model of gastric cancer in mice. Ann Surg Oncol 2009; 17:643-52. [PMID: 20012217 DOI: 10.1245/s10434-009-0852-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Indexed: 01/20/2023]
Abstract
BACKGROUND Peritoneal dissemination of gastric cancer is often refractory to systemic therapies. Although adenoviral gene therapy has been reported to be a potentially useful therapeutic modality, the adenovirus itself has a dose-limiting toxicity. A novel system was constructed using adenoviral oncolytic suicide gene therapy targeting carcinoembryonic antigen (CEA), and its therapeutic effect and the possibility to reduce the total viral dose while still preserving the antitumor effect were assessed. METHODS Three types of adenoviruses were prepared for this novel system: (A) Ad/CEA-Cre, (B) Ad/lox-CD::UPRT for a Cre/loxP system, and (C) Ad/CEA-E1 for conditionally replicating adenovirus. The antitumor effect of the oncolytic suicide gene therapy (A + B + C) was then evaluated in vitro. Mice bearing peritoneal dissemination of human gastric cancer were treated with either this system (A + B + C) or with a tenfold viral dose of suicide gene therapy (A + B). The adverse effects in terms of hepatotoxicity were then evaluated between the two groups. RESULTS The current system (A + B + C) demonstrated significantly better cytotoxic effect for CEA-producing cell lines than did suicide gene therapy (A + B) at the same viral dose in vitro. The effect of oncolytic suicide gene therapy was almost equal to that of the tenfold viral dose of suicide gene therapy in vivo. The hepatotoxicity of the two treated groups was also found to be equivalent. CONCLUSION It was possible to reduce the total adenoviral dose of oncolytic suicide gene therapy while still preserving the antitumor effect.
Collapse
Affiliation(s)
- Yu Imamura
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto-City, Kumamoto, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Dachs GU, Hunt MA, Syddall S, Singleton DC, Patterson AV. Bystander or no bystander for gene directed enzyme prodrug therapy. Molecules 2009; 14:4517-45. [PMID: 19924084 PMCID: PMC6255103 DOI: 10.3390/molecules14114517] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2009] [Revised: 11/03/2009] [Accepted: 11/05/2009] [Indexed: 12/12/2022] Open
Abstract
Gene directed enzyme prodrug therapy (GDEPT) of cancer aims to improve the selectivity of chemotherapy by gene transfer, thus enabling target cells to convert nontoxic prodrugs to cytotoxic drugs. A zone of cell kill around gene-modified cells due to transfer of toxic metabolites, known as the bystander effect, leads to tumour regression. Here we discuss the implications of either striving for a strong bystander effect to overcome poor gene transfer, or avoiding the bystander effect to reduce potential systemic effects, with the aid of three successful GDEPT systems. This review concentrates on bystander effects and drug development with regard to these enzyme prodrug combinations, namely herpes simplex virus thymidine kinase (HSV-TK) with ganciclovir (GCV), cytosine deaminase (CD) from bacteria or yeast with 5-fluorocytodine (5-FC), and bacterial nitroreductase (NfsB) with 5-(azaridin-1-yl)-2,4-dinitrobenzamide (CB1954), and their respective derivatives.
Collapse
Affiliation(s)
- Gabi U. Dachs
- Angiogenesis and Cancer Research Group, University of Otago, Christchurch, PO Box 4345, Christchurch 8140, New Zealand; E-Mail: (M.A.H.)
| | - Michelle A. Hunt
- Angiogenesis and Cancer Research Group, University of Otago, Christchurch, PO Box 4345, Christchurch 8140, New Zealand; E-Mail: (M.A.H.)
| | - Sophie Syddall
- Auckland Cancer Society Research Centre, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; E-Mails: (S.S.); (D-C.S.); (A-V.P.)
| | - Dean C. Singleton
- Auckland Cancer Society Research Centre, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; E-Mails: (S.S.); (D-C.S.); (A-V.P.)
| | - Adam V. Patterson
- Auckland Cancer Society Research Centre, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; E-Mails: (S.S.); (D-C.S.); (A-V.P.)
| |
Collapse
|
31
|
Adipose tissue-derived mesenchymal stem cells expressing prodrug-converting enzyme inhibit human prostate tumor growth. Mol Ther 2009; 18:223-31. [PMID: 19844197 DOI: 10.1038/mt.2009.237] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The ability of human adipose tissue-derived mesenchymal stem cells (AT-MSCs), engineered to express the suicide gene cytosine deaminase::uracil phosphoribosyltransferase (CD::UPRT), to convert the relatively nontoxic 5-fluorocytosine (5-FC) into the highly toxic antitumor 5-fluorouracil (5-FU) together with their ability to track and engraft into tumors and micrometastases makes these cells an attractive tool to activate prodrugs directly within the tumor mass. In this study, we tested the feasibility and efficacy of these therapeutic cells to function as cellular vehicles of prodrug-activating enzymes in prostate cancer (PC) therapy. In in vitro migration experiments we have shown that therapeutic AT-MSCs migrated to all the prostate cell lines tested. In a pilot preclinical study, we observed that coinjections of human bone metastatic PC cells along with the transduced AT-MSCs into nude mice treated with 5-FC induced a complete tumor regression in a dose dependent manner or did not even allow the establishment of the tumor. More importantly, we also demonstrated that the therapeutic cells were effective in significantly inhibiting PC tumor growth after intravenous administration that is a key requisite for any clinical application of gene-directed enzyme prodrug therapies.
Collapse
|
32
|
Ferrás C, Oude Vrielink JAF, Verspuy JWA, te Riele H, Tsaalbi-Shtylik A, de Wind N. Abrogation of microsatellite-instable tumors using a highly selective suicide gene/prodrug combination. Mol Ther 2009; 17:1373-80. [PMID: 19471249 DOI: 10.1038/mt.2009.114] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
A substantial fraction of sporadic and inherited colorectal and endometrial cancers in humans is deficient in DNA mismatch repair (MMR). These cancers are characterized by length alterations in ubiquitous simple sequence repeats, a phenotype called microsatellite instability. Here we have exploited this phenotype by developing a novel approach for the highly selective gene therapy of MMR-deficient tumors. To achieve this selectivity, we mutated the VP22FCU1 suicide gene by inserting an out-of-frame microsatellite within its coding region. We show that in a significant fraction of microsatellite-instable (MSI) cells carrying the mutated suicide gene, full-length protein becomes expressed within a few cell doublings, presumably resulting from a reverting frameshift within the inserted microsatellite. Treatment of these cells with the innocuous prodrug 5-fluorocytosine (5-FC) induces strong cytotoxicity and we demonstrate that this owes to multiple bystander effects conferred by the suicide gene/prodrug combination. In a mouse model, MMR-deficient tumors that contained the out-of-frame VP22FCU1 gene displayed strong remission after treatment with 5-FC, without any obvious adverse systemic effects to the mouse. By virtue of its high selectivity and potency, this conditional enzyme/prodrug combination may hold promise for the treatment or prevention of MMR-deficient cancer in humans.
Collapse
Affiliation(s)
- Cristina Ferrás
- Department of Toxicogenetics, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
33
|
Herpes simplex virus delivery to orthotopic rectal carcinoma results in an efficient and selective antitumor effect. Gene Ther 2009; 16:905-15. [PMID: 19440231 DOI: 10.1038/gt.2009.44] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Cancer of the rectum poses a complex therapeutic challenge because of its proximity to adjacent organs and anal sphincters. The addition of radiotherapy before surgical resection has been shown to confer good survival rates while preserving sphincter function. Nevertheless, radiation is associated with significant side effects. On the basis of our previous work showing that herpes simplex virus type-1 (HSV-1) preferentially infects human colon cancer, we set out to examine the oncolytic effect of HSV-1 on orthotopic rectal tumors in mice. Two vectors were compared for oncolytic activity, HSV-1(Gbeta) with wild-type replication and an attenuated HSV-1 vector (HSV-G47Delta). Intratumoral injection of HSV-1(Gbeta) and HSV-G47Delta resulted in a significant reduction or disappearance of the tumors and increased survival of mice. Although the use of HSV-1(Gbeta) was associated with systemic toxicity, HSV-G47Delta appears to possess a selective oncolytic activity. Moreover, infection with HSV-G47Delta resulted in the activation of the double-stranded RNA-dependent protein kinase (PKR) pathway. A significant improvement in viral replication and the antitumor effect was observed when the PKR inhibitor 2-aminopurine was coadministered with HSV-G47Delta to the tumor. In conclusion, the efficacy of local delivery of HSV-G47Delta combined with a specific chemical inhibitor of antiviral activity points to a novel therapeutic modality for rectal cancer and other solid tumors.
Collapse
|
34
|
Kucerova L, Matuskova M, Pastorakova A, Tyciakova S, Jakubikova J, Bohovic R, Altanerova V, Altaner C. Cytosine deaminase expressing human mesenchymal stem cells mediated tumour regression in melanoma bearing mice. J Gene Med 2008; 10:1071-82. [PMID: 18671316 DOI: 10.1002/jgm.1239] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Previously, we validated capability of human adipose tissue-derived mesenchymal stem cells (AT-MSC) to serve as cellular vehicles for gene-directed enzyme prodrug molecular chemotherapy. Yeast fusion cytosine deaminase : uracil phosphoribosyltransferase expressing AT-MSC (CD y-AT-MSC) combined with systemic 5-fluorocytosine (5FC) significantly inhibited growth of human colon cancer xenografts. We aimed to determine the cytotoxic efficiency to other tumour cells both in vitro and in vivo. METHODS CD y-AT-MSC/5FC-mediated proliferation inhibition against a panel of human tumour cells lines was evaluated in direct and indirect cocultures in vitro. Antitumour effect was tested on immunodeficient mouse model in vivo. RESULTS Although culture expansion of CD y-AT-MSC sensitized these cells to 5FC mediated suicide effect, expanded CD y-AT-MSC/5FC still exhibited strong bystander cytotoxic effect towards human melanoma, glioblastoma, colon, breast and bladder carcinoma in vitro. Most efficient inhibition (91%) was observed in melanoma A375 cell line when directly cocultured with 2% of therapeutic cells CD y-AT-MSC/5FC. The therapeutic paradigm of the CD y -AT-MSC/5FC system was further evaluated on melanoma A375 xenografts on nude mice in vivo. Complete regression in 89% of tumours was achieved when 20% CD y-AT-MSC/5FC were co-injected along with tumour cells. More importantly, systemic CD y-AT-MSC administration resulted in therapeutic cell homing into subcutaneous melanoma and mediated tumour growth inhibition. CONCLUSIONS CD y-AT-MSC capability of targeting subcutaneous melanoma offers a possibility to selectively produce cytotoxic agent in situ. Our data further demonstrate beneficial biological properties of AT-MSC as a cellular vehicle for enzyme/prodrug therapy approach to molecular chemotherapy.
Collapse
Affiliation(s)
- Lucia Kucerova
- Laboratories of Molecular Oncology, Cancer Research Institute of Slovak Academy of Sciences, Bratislava, Slovakia.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Zhang P, Zeng H, Wei Q, Lu Y, Li X, Wang J, Zhao F, Li H. Improved effects of a double suicide gene system on prostate cancer cells by targeted regulation of prostate-specific membrane antigen promoter and enhancer. Int J Urol 2008; 15:442-8. [PMID: 18452463 DOI: 10.1111/j.1442-2042.2008.02034.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To explore the specific killing effect on prostate cancer cells of a dual cytosine deaminase (CD) and uracil phosphoribosyltransferase (UPRT) expression plasmid system controlled by the prostate-specific membrane antigen (PSMA) promoter and enhancer. METHODS The CD gene was used to construct the recombinant plasmid prostate-specific membrane antigen(promoter/enhancer)-CD (pPSMA(E/P)-CD). The specific regulatory function of the pPSMA(E/P) promoter was demonstrated by detection of enhanced green fluorescent protein (EGFP) expression in the LNCaP cell line. Survival of cells transfected with different plasmids and treated with 5-fluorocytosine (5-FC) was measured by microculture tetrazolium assay. Cell cycle changes were measured by flow cytometry. RESULTS Target-specific expression of PSMA(E/P) was observed in the prostate cancer cell line. Cytotoxicity of 5-FC was greater against LNCaP cells transfected with pPSMA(E/P)-CD and UPRT and pPSMA(E/P)-CD than control groups. Percentages of cells in S phase were 37.5% (LNCaP) and 30.6% (5-FC treatment) in the un-transfected groups, whereas they were 23.9% and 12.4% in the double and single suicide gene groups, respectively. CONCLUSIONS Our findings confirm the cytotoxic efficacy of the pPSMA(E/P)-CD + 5-FC and pPSMA(E/P)-CD and UPRT + 5-FC suicide gene systems. The CD and UPRT gene system quickly and directly converted 5-FC into 5-FU, and then into toxic metabolites. The CD and UPRT double suicide gene system was more effective in inducing tumor cell apoptosis with 5-FC than the single suicide gene system. Thus, this construct can specifically target prostate cancer cells and might have a role in gene therapy against prostate cancer.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Urology, West China Hospital, Sichuan University, Sichuan, China
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Wu BW, Li YJ, Zhang KJ, Li DF, Zeng ZG, Zhang YH, Geng QS. Construction of FCU1 recombinant adenovirus vector and its killing effect on colon cancer cells. Shijie Huaren Xiaohua Zazhi 2008; 16:2599-2603. [DOI: 10.11569/wcjd.v16.i23.2599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To construct a recombinant adenovirus vector containing fusion suicide gene FCU1, and study the cytotoxic effect of prodrug 5-FC on colon cancer cells.
METHODS: Restriction fragment of FCU1 was inserted into pDC316 vector with EcoRⅠ and SalⅠ. Recombinant plasmid pDC316-FCU1 was confirmed by restriction enzyme digestion and sequencing. Thereafter, pDC316-FCU1 was cotransfected with adenovirus backbone pBHG into 293 cells to establish the recombinant adenovirus Ad5-FCU1 by homologous recombination. The cytotoxic effect of prodrug 5-FC on the infected HCT116 cells was determined with MTT assay.
RESULTS: Recombinant plasmid pDC316-FCU1was constructed successfully. After pDC316-FCU1 together with adenovirus backbone pBHG was cotransfected into 293 cells, significant virus plaques were observed, which showed the successful homologous recombination and virus packaging in 293 cells. The titer of the purified Ad-FCU1 was 2 × 1012 PFU/L. Nontoxic prodrug 5-FC has significant cytotoxic effect on HCT116 cells infected with pAd5-FCU1. The survival of HCT116/FCU1 cells was minimal, while that of the control cells was close to 90%, when 5-FC was used at 100 μmol/L.
CONCLUSION: Recombinant adenovirus Ad5-FCU1 containing fusion suicide gene FCU1 is established successfully, which has significant killing effect on colon cancer cells in vitro.
Collapse
|
37
|
Prodrug cancer gene therapy. Cancer Lett 2008; 270:191-201. [PMID: 18502571 DOI: 10.1016/j.canlet.2008.04.023] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Revised: 04/16/2008] [Accepted: 04/16/2008] [Indexed: 12/26/2022]
Abstract
There is no effective treatment for late stage and metastatic cancers of colorectal, prostate, pancreatic, breast, glioblastoma and melanoma cancers. Novel treatment modalities are needed for these late stage patients because cytotoxic chemotherapy offers only palliation, usually accompanied with systemic toxicities and poor quality of life. Gene directed enzyme prodrug therapy (GDEPT), which concentrates the cytotoxic effect in the tumor site may be one alternative. This review provides an explanation of the GDEPT principle, focusing on the development, application and potential of various GDEPTs. Current gene therapy limitations are in efficient expression of the therapeutic gene and in tumor-specific targeting. Therefore, the current status of research related to the enhancement of in situ GDEPT delivery and tumor-specific targeting of vectors is assessed. Finally, GDEPT versions of stem cell based gene therapy as another potential treatment modality for progressed tumors and metastases are discussed. Combinations of traditional, targeted, and stem cell directed gene therapy could significantly advance the treatment of cancer.
Collapse
|
38
|
Kucerova L, Altanerova V, Matuskova M, Tyciakova S, Altaner C. Adipose tissue-derived human mesenchymal stem cells mediated prodrug cancer gene therapy. Cancer Res 2007; 67:6304-13. [PMID: 17616689 DOI: 10.1158/0008-5472.can-06-4024] [Citation(s) in RCA: 309] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Human adipose tissue-derived mesenchymal stem cells (AT-MSC) are considered to be a promising source of autologous stem cells in personalized cell-based therapies. Tumor tracking properties of MSC provide an attractive opportunity for targeted transgene delivery into the sites of tumor formation. In the present study, we addressed whether the suicide gene introduction into human AT-MSC could produce a tumor-specific prodrug converting cellular vehicle for targeted chemotherapy. We prepared yeast fusion cytosine deaminase::uracil phosphoribosyltransferase gene-expressing cells [cytosine deaminase (CD)-expressing AT-MSC (CD-AT-MSC)] by retrovirus transduction. We explored their therapeutic potential on a model of human colon cancer in the presence of prodrug 5-fluorocytosine (5-FC). Gene manipulation of human AT-MSC did not sensitize CD-AT-MSC to 5-FC, thus overcoming the inherent disadvantage of suicide effect on cellular vehicle. CD-AT-MSC in combination with 5-FC augmented the bystander effect and selective cytotoxicity on target tumor cells HT-29 in direct coculture in vitro. We confirmed directed migration ability of AT-MSC and CD-AT-MSC toward tumor cells HT-29 in vitro. Moreover, we achieved significant inhibition of s.c. tumor xenograft growth by s.c. or i.v. administered CD-AT-MSC in immunocompromised mice treated with 5-FC. We confirmed the ability of CD-AT-MSC to deliver the CD transgene to the site of tumor formation and mediate strong antitumor effect in vivo. Taken together, these data characterize MSC derived from adipose tissue as suitable delivery vehicles for prodrug converting gene and show their utility for a personalized cell-based targeted cancer gene therapy.
Collapse
Affiliation(s)
- Lucia Kucerova
- Laboratory of Molecular Oncology, Cancer Research Institute of Slovak Academy of Sciences, Bratislava, Slovakia
| | | | | | | | | |
Collapse
|
39
|
Portsmouth D, Hlavaty J, Renner M. Suicide genes for cancer therapy. Mol Aspects Med 2007; 28:4-41. [PMID: 17306358 DOI: 10.1016/j.mam.2006.12.001] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Accepted: 12/18/2006] [Indexed: 12/31/2022]
Abstract
The principle of using suicide genes for gene directed enzyme prodrug therapy (GDEPT) of cancer has gained increasing significance during the 20 years since its inception. The astute application of suitable GDEPT systems should permit tumour ablation in the absence of off-target toxicity commonly associated with classical chemotherapy, a hypothesis which is supported by encouraging results in a multitude of pre-clinical animal models. This review provides a clear explanation of the rationale behind the GDEPT principle, outlining the advantages and limitations of different GDEPT strategies with respect to the roles of the bystander effect, the immune system and the selectivity of the activated prodrug in contributing to their therapeutic efficacy. An in-depth analysis of the most widely used suicide gene/prodrug combinations is presented, including details of the latest advances in enzyme and prodrug optimisation and results from the most recent clinical trials.
Collapse
Affiliation(s)
- Daniel Portsmouth
- Research Institute for Virology and Biomedicine, University of Veterinary Medicine, Vienna, Austria
| | | | | |
Collapse
|
40
|
Ramnaraine ML, Mathews WE, Donohue JM, Lynch CM, Goblirsch MJ, Clohisy DR. Osteoclasts direct bystander killing of bone cancer. Cancer Res 2006; 66:10929-35. [PMID: 17108130 DOI: 10.1158/0008-5472.can-06-1295] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Primary and metastatic bone cancers are difficult to eradicate and novel approaches are needed to improve treatment and extend life. As bone cancer grows, osteoclasts, the principal bone-resorbing cells of the body, are recruited to and activated at sites of cancer. In this investigation, we determined if osteoclast lineage cells could function as a cell-based gene delivery system to bone cancers. We used the cytosine deaminase (CD) 5-fluorocytosine (5-FC) enzyme/prodrug system and studied bone marrow and bones from transgenic mice expressing a novel CD gene regulated by the osteoclast tartrate-resistant acid phosphatase (TRAP) gene promoter (Tg/NCD). DsRed2-labeled 2472 sarcoma cells were placed in Tg/NCD osteoclastogenic cultures and treated with 5-FC. 5-FC treatment resulted in profound bystander killing (90%; P < 0.05). The effect of 5-FC treatment on osteoclast lineage cells was most dramatic when administered at the beginning of the 7-day cultures, suggesting that mature osteoclasts are less sensitive to 5-FC. Evaluation of osteoclast-directed bystander killing in vivo revealed dramatic killing of bone cancer with only a modest effect on osteoclast number. Specifically, 5-FC treatment of tumor-bearing Tg/NCD mice or Tg/NCD bone marrow transplanted C3H mice (Tg/NCD-C3H) resulted in 92% and 44% reductions in tumor area, respectively (P < 0.05). Eight of ten 5-FC-treated Tg/NCD mice had complete bone tumor killing and five of six 5-FC-treated Tg/NCD-C3H mice had reduced tumor compared with controls. In addition, Tg/NCD osteoclasts were resistant to 5-FC treatment in vivo, a very important feature, as it identifies osteoclasts as an ideal CD gene delivery system.
Collapse
Affiliation(s)
- Margaret L Ramnaraine
- Department of Orthopedic Surgery, University of Minnesota, Minneapolis, Minnesota, USA
| | | | | | | | | | | |
Collapse
|
41
|
Khatri A, Zhang B, Doherty E, Chapman J, Ow K, Pwint H, Martiniello-Wilks R, Russell PJ. Combination of cytosine deaminase with uracil phosphoribosyl transferase leads to local and distant bystander effects against RM1 prostate cancer in mice. J Gene Med 2006; 8:1086-96. [PMID: 16832832 DOI: 10.1002/jgm.944] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND We aimed to evaluate the efficacy of gene-directed enzyme-prodrug therapy (GDEPT) using cytosine deaminase in combination with uracil phosphoribosyl transferase (CDUPRT) against intraprostatic mouse androgen-refractory prostate (RM1) tumors in immunocompetent mice. The product of the fusion gene, CDUPRT, converts the prodrug, 5-fluorocytosine (5FC), into 5-fluorouracil (5FU) and other cytotoxic metabolites that kill both CDUPRT-expressing and surrounding cells, via a 'bystander effect'. METHODS Stably transformed andogen-independent mouse prostate cancer (PC) cells, RM1-CDUPRT, -GFP or GFP/LacZ cells were used. To assess the local bystander effects of CDUPRT-GDEPT, immunocompetent C57BL/6 mice implanted with cell mixtures of RM1-GFP/CDUPRT and RM1-GFP cells in different proportions intraprostatically were treated with 5FC. Pseudo-metastases in the lungs were established by a tail vein injection of untransfected RM1 cells. At necropsy, prostate weight/volume and lung colony counts were assessed. Tumors, lymph nodes, spleens and lungs were frozen or fixed for immunohistochemistry. RESULTS CDUPRT expression in RM1-GFP/CDUPRT cells or tumors was confirmed by enzymic conversion of 5FC into 5FU, using HPLC. Treatment of mice bearing intraprostatic RM1-GFP/CDUPRT tumors with 5FC resulted in complete regression of the tumors. A 'local bystander effect' was seen, even though only 20% of the cells expressed CDUPRT. More importantly a significant reduction in pseudo-metastases of RM1 cells in lungs indicated a 'distant bystander effect'. Immunohistochemical evaluation of the treated tumors showed increased necrosis and apoptosis, with decreased tumor vascularity. There was also a significant increase in tumour-infiltration by macrophages, CD4+ T and natural killer cells. CONCLUSIONS We conclude that CDUPRT-GDEPT significantly suppressed the aggressive growth of RM1 prostate tumors and lung pseudo-metastases via immune mechanisms involving necrosis and apoptosis.
Collapse
Affiliation(s)
- Aparajita Khatri
- Oncology Research Centre, Prince of Wales Hospital Clinical School of Medicine, The University of New South Wales, Randwick, NSW 2031, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Kaliberov SA, Chiz S, Kaliberova LN, Krendelchtchikova V, Della Manna D, Zhou T, Buchsbaum DJ. Combination of cytosine deaminase suicide gene expression with DR5 antibody treatment increases cancer cell cytotoxicity. Cancer Gene Ther 2006; 13:203-14. [PMID: 16082379 DOI: 10.1038/sj.cgt.7700874] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Combined treatment using adenoviral-directed enzyme/prodrug therapy and immunotherapy has the potential to become a powerful alternative method of cancer therapy. We have developed adenoviral vectors encoding the cytosine deaminase gene (Ad-CD) and cytosine deaminase:uracil phosphoribosyltransferase fusion gene (Ad-CD:UPRT). A monoclonal antibody, TRA-8, specifically binds to death receptor 5, one of two death receptors bound by tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). The purpose of this study was to evaluate cytotoxicity in vitro and therapeutic efficacy in vivo of the combination of Ad-CD:UPRT and TRA-8 against human pancreatic cancer and glioma cell lines. The present study demonstrates that Ad-CD:UPRT infection resulted in increased 5-FC-mediated cell killing, compared with Ad-CD. Furthermore, a significant increase of cytotoxicity following Ad-CD:UPRT/5-FC and TRA-8 treatment of cancer cells in vitro was demonstrated. Animal studies showed significant inhibition of tumor growth of MIA PaCa-2 pancreatic and D54MG glioma xenografts by the combination of Ad-CD:UPRT/5-FC plus TRA-8 as compared with either agent alone or no treatment. The results suggest that the combination of Ad-CD:UPRT/5-FC with TRA-8 produces an additive cytotoxic effect in cancer cells in vitro and in vivo. These data indicate that combined treatment with enzyme/prodrug therapy and TRAIL immunotherapy provides a promising approach for cancer therapy.
Collapse
MESH Headings
- Adenoviridae/genetics
- Analysis of Variance
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/metabolism
- Antibodies, Monoclonal/therapeutic use
- Blotting, Western
- Cell Line, Tumor
- Cytosine Deaminase/genetics
- Cytotoxicity Tests, Immunologic
- Female
- Flow Cytometry
- Genes, Transgenic, Suicide/genetics
- Genetic Therapy/methods
- Glioma/immunology
- Glioma/therapy
- Humans
- Immunotherapy/methods
- Mice
- Mice, Nude
- Microscopy, Fluorescence
- Pancreatic Neoplasms/immunology
- Pancreatic Neoplasms/therapy
- Pentosyltransferases/genetics
- Prodrugs/therapeutic use
- Receptors, TNF-Related Apoptosis-Inducing Ligand
- Receptors, Tumor Necrosis Factor/metabolism
Collapse
Affiliation(s)
- S A Kaliberov
- Department of Radiation Oncology, University of Alabama at Birmingham, 674 Wallace Tumor Institute, Birmingham, Alabama 35294, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Investigation of hrDNA targeting vector-mediated tumor-specific suicide gene therapy for hepatocellular carcinoma. CHINESE SCIENCE BULLETIN-CHINESE 2006. [DOI: 10.1007/s11434-006-2120-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
44
|
Richard C, Duivenvoorden W, Bourbeau D, Massie B, Roa W, Yau J, Th'ng J. Sensitivity of 5-fluorouracil-resistant cancer cells to adenovirus suicide gene therapy. Cancer Gene Ther 2006; 14:57-65. [PMID: 16874362 DOI: 10.1038/sj.cgt.7700980] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A promising approach for cancer gene therapy is the combination of adenovirus vectors (AdV) with the suicide gene cytosine deaminase and uracil phosphoribosyl transferase (CDColon, two colonsUPRT). While such vectors have been tested in tumor cell lines and xenograft models, it is not clear how these therapeutic vectors would perform in primary human tumors. We, thus, examined the effect of the combination of a recombinant adenovirus expressing the CDColon, two colonsUPRT (AdCU) with 5-fluorocytosine (5-FC) on primary cancer cells isolated from the ascites or pleural fluids of patients with metastatic cancers. In such models, we have found a direct correlation between the patients' response to 5-FU and the response shown by the cancer cells in vitro, confirming the clinical relevance of this methodology. Our findings demonstrated that this combination was able to kill primary tumor cells, including those that had developed resistance to 5-FU. Furthermore, while proliferating cells were more susceptible to 5-FU, the combination was effective in both rapid and slow proliferating samples. Our study demonstrated that this gene therapy approach could provide an effective therapeutic option for cancers and is not affected by acquired 5-FU resistance. Also of importance is the effectiveness of this gene therapy approach on slower proliferating cells that is typical of the majority of cancers in vivo. This suggests a greater likelihood that it will be effective in a clinical setting.
Collapse
Affiliation(s)
- C Richard
- Regional Cancer Program, Thunder Bay Regional Health Sciences Centre, Thunder Bay, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
45
|
Russell PJ, Khatri A. Novel gene-directed enzyme prodrug therapies against prostate cancer. Expert Opin Investig Drugs 2006; 15:947-61. [PMID: 16859396 DOI: 10.1517/13543784.15.8.947] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
There is no effective cure for late-stage hormone (androgen) refractory prostate cancer. Although chemotherapy offers palliation to these late-stage patients, it also leads to systemic toxicities leading to poor quality of life. Clearly, the focus is on the development and evaluation of novel biologically relevant alternatives such as cytoreductive gene-directed enzyme prodrug therapy (GDEPT). With the current limitations of effective gene delivery in vivo, the in situ amplification of cytotoxicity due to bystander effects of GDEPT has special attraction for patients with prostate cancer, the prostate being dispensable. This review focuses on the development, application and potential of various GDEPTs for treating prostate cancer. The current status of research related to the issues of enhancement of in situ GDEPT delivery and prostate cancer-specific targeting of vectors (especially viral vectors) is assessed. Finally, the scope and progress of synergies between GDEPT and other treatment modalities, both traditional and alternate, are discussed.
Collapse
Affiliation(s)
- Pamela J Russell
- Oncology Research Centre, Prince of Wales Hospital Sydney, Level 2, Clinical Sciences Building, Barker Street, Randwick, NSW 2031, Australia.
| | | |
Collapse
|
46
|
Graepler F, Lemken ML, Wybranietz WA, Schmidt U, Smirnow I, Gross CD, Spiegel M, Schenk A, Graf H, Lauer UA, Vonthein R, Gregor M, Armeanu S, Bitzer M, Lauer UM. Bifunctional chimeric SuperCD suicide gene -YCD: YUPRT fusion is highly effective in a rat hepatoma model. World J Gastroenterol 2006; 11:6910-9. [PMID: 16437592 PMCID: PMC4717030 DOI: 10.3748/wjg.v11.i44.6910] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the effects of catalytically superior gene-directed enzyme prodrug therapy systems on a rat hepatoma model. METHODS To increase hepatoma cell chemosensitivity for the prodrug 5-fluorocytosine (5-FC), we generated a chimeric bifunctional SuperCD suicide gene, a fusion of the yeast cytosine deaminase (YCD) and the yeast uracil phosphoribosyltransferase (YUPRT) gene. RESULTS In vitro stably transduced Morris rat hepatoma cells (MH) expressing the bifunctional SuperCD suicide gene (MH SuperCD) showed a clearly marked enhancement in cell killing when incubated with 5-FC as compared with MH cells stably expressing YCD solely (MH YCD) or the cytosine deaminase gene of bacterial origin (MH BCD), respectively. In vivo, MH SuperCD tumors implanted both subcutaneously as well as orthotopically into the livers of syngeneic ACI rats demonstrated significant tumor regressions (P<0.01) under both high dose as well as low dose systemic 5-FC application, whereas MH tumors without transgene expression (MH naive) showed rapid progression. For the first time, an order of in vivo suicide gene effectiveness (SuperCD>> YCD>>BCD>>>negative control) was defined as a result of a direct in vivo comparison of all three suicide genes. CONCLUSION Bifunctional SuperCD suicide gene expression is highly effective in a rat hepatoma model, thereby significantly improving both the therapeutic index and the efficacy of hepatocellular carcinoma killing by fluorocytosine.
Collapse
Affiliation(s)
- Florian Graepler
- Department of Internal Medicine I, Medical University Clinic Tübingen, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
For the minority of patients with hepatocellular carcinoma (HCC), surgical or locally ablative therapies may offer the prospect of cure. However, the majority of patients present with advanced disease, such that treatment with curative intent is no longer possible. For some of these patients, with good hepatic reserve and a patent portal venous system, chemoembolisation may afford a modest survival benefit. The remainder of patients are frequently treated with systemic therapies with palliative intent. However, no drug treatment has yet clearly demonstrated a significant beneficial effect on survival or quality of life. Thus, there is an urgent need for novel approaches. Gene- and immunotherapy approaches using a variety of strategies are in development at present. HCC possesses several characteristics that make it an attractive target for these therapies. This review aims to summarise the approaches to gene- and immunotherapy for HCC, with particular reference to strategies that are entering clinical trials. It will then describe some of the obstacles to the success of these new approaches and provide opinion regarding ongoing and future developments. The challenge remains to design clinical trials to optimally evaluate these agents and allow feedback to the laboratory for their ongoing development.
Collapse
Affiliation(s)
- Daniel H Palmer
- CR UK Institute for Cancer Studies, Clinical Research Block, University of Birmingham, Birmingham, B15 2TT, UK.
| | | | | |
Collapse
|
48
|
Ramnaraine M, Pan W, Clohisy DR. Osteoclasts direct bystander killing of cancer cells in vitro. Bone 2006; 38:4-12. [PMID: 16139579 DOI: 10.1016/j.bone.2005.07.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2005] [Revised: 07/26/2005] [Accepted: 07/26/2005] [Indexed: 12/28/2022]
Abstract
Cytosine deaminase (CD) catalyzes the deamination of 5-fluorocytosine (5FC) to produce the highly toxic chemotherapeutic agent 5-fluorouracil (5FU). A unique feature of the CD/5FC enzyme/prodrug system is its ability to kill adjacent cells via bystander killing. Bystander killing of cancer cells can be mediated by non-cancerous accessory cells transduced with the CD gene; one type of non-cancerous accessory cell found in primary bone cancer and breast cancer metastases to bone is the osteoclast. This manuscript determines if osteoclast precursor cells, transduced with the CD gene, can function as a gene delivery system capable of killing cancer cells. An osteoclast precursor cell line (RAW 264.7, RAW) and authentic bone marrow-derived osteoclast precursor cells were transduced with a retroviral vector containing the cytosine deaminase fusion gene (NCD) composed of the human nerve growth factor receptor and CD genes. RAW cells and bone marrow-derived osteoclast precursor cells transduced with NCD expressed NCD protein and converted 5FC to 5FU. Treatment of NCD-transduced osteoclast precursor cells with the 5FC prodrug resulted in significant killing in vitro. NCD-transduced osteoclasts were co-cultured with either DsRed2-labeled sarcoma cells (2472-DSR) or green fluorescent protein (GFP)-labeled breast cancer cells (GFP-4T1). Treatment of the NCD osteoclast/tumor cell co-cultures with 5FC resulted in bystander killing of 2472-DSR cells (P < 0.006) and GFP-4T1 cells (P < 0.004). These findings demonstrate that NCD-transduced osteoclasts can promote killing of cancer cells and introduce the exciting possibility for developing osteoclast-mediated, CD-based treatment of primary bone cancers and breast cancer metastases to bone.
Collapse
Affiliation(s)
- Margaret Ramnaraine
- Department of Orthopedic Surgery, University of Minnesota, 420 Delaware Street SE, MMC 806, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
49
|
Selski DJ, Clohisy DR. A customized retroviral vector confers marker gene expression in osteoclast lineage cells. J Cell Biochem 2006; 97:641-50. [PMID: 16229014 DOI: 10.1002/jcb.20679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Osteoclasts play a seminal role in many skeletal diseases and therefore are candidates for cell-based gene delivery systems to treat disorders of bone. As an initial step toward developing osteoclast-mediated gene delivery systems, we have made and analyzed a customized Molony-Murine leukemia virus (MMLV)-based retroviral vector containing elements of the osteoclast-specific tartrate-resistant acid phosphatase (TRAP) gene. RAW 264.7 cells were transduced with the customized vector (E3) and differentiated along macrophage or osteoclast lineages. E3 contained a truncated form of the human nerve growth factor receptor (NGFR) as a reporter gene. NGFR expression increased with RANK-ligand (RANK-L) treatment but not with macrophage (gamma-IFN/LPS treatment) differentiation. Enhanced NGFR expression peaked 48 h after RANK-L treatment. Electrophoretic mobility shift assays (EMSA) analysis of the TRAP gene regulatory elements in E3 identified a single 27 bp DNA probe, which specifically bound protein from RANK-L-treated cells. DNA sequence revealed AP-1 binding sites, and analysis with mutant probes implied that the sites were functional. EMSA supershift analysis identified Fos protein interacting with the 27 bp probe. In summary, insertion of sequence -962 to -868 from the TRAP gene into the U3 region of the MMLV LTR confers RANK-L induced retroviral gene expression via Fos family protein interaction at AP-1 sites.
Collapse
Affiliation(s)
- Daniel J Selski
- Department of Orthopaedic Surgery, The University of Minnesota, 420 Delaware Street, Minneapolis, MN 55455, USA
| | | |
Collapse
|
50
|
Tan PH, Chan CLH, Chan C, George AJT. The evolving role of gene-based treatment in surgery. Br J Surg 2005; 92:1466-80. [PMID: 16273530 DOI: 10.1002/bjs.5181] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Abstract
Background
The completion of the sequencing of the human genome in 2003 marked the dawn of a new era of human biology and medicine. Although these remarkable scientific advances improve the understanding of human biology, the question remains how this rapidly expanding knowledge of functional genomics affects the role of surgeons. This article reviews the potential therapeutic application of gene therapy for various surgical conditions.
Methods
The core of this review was derived from a Medline database literature search.
Results and conclusion
The currently available vectors in the field of gene therapy and their limitations for clinical applications were analysed. The achievements of gene therapy in clinical trials and the future ramifications for surgery were also explored. Whether gene therapy takes a major role in surgical practice will depend greatly on the success of future vector development. Advances in viral vector technology to reduce the inflammatory effect, and improvements in the efficiency of gene delivery using non-viral vector technology, would allow this form of therapy to become more clinically applicable.
Collapse
Affiliation(s)
- P H Tan
- Department of Surgery, Stoke Mandeville Hospital, South Buckinghamshire NHS Trust, Aylesbury, UK.
| | | | | | | |
Collapse
|