1
|
Preclinical Models of Neuroendocrine Neoplasia. Cancers (Basel) 2022; 14:cancers14225646. [PMID: 36428741 PMCID: PMC9688518 DOI: 10.3390/cancers14225646] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/15/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022] Open
Abstract
Neuroendocrine neoplasia (NENs) are a complex and heterogeneous group of cancers that can arise from neuroendocrine tissues throughout the body and differentiate them from other tumors. Their low incidence and high diversity make many of them orphan conditions characterized by a low incidence and few dedicated clinical trials. Study of the molecular and genetic nature of these diseases is limited in comparison to more common cancers and more dependent on preclinical models, including both in vitro models (such as cell lines and 3D models) and in vivo models (such as patient derived xenografts (PDXs) and genetically-engineered mouse models (GEMMs)). While preclinical models do not fully recapitulate the nature of these cancers in patients, they are useful tools in investigation of the basic biology and early-stage investigation for evaluation of treatments for these cancers. We review available preclinical models for each type of NEN and discuss their history as well as their current use and translation.
Collapse
|
2
|
Fan C, Wu Y, Rui X, Yang Y, Ling C, Liu S, Liu S, Wang Y. Animal models for COVID-19: advances, gaps and perspectives. Signal Transduct Target Ther 2022; 7:220. [PMID: 35798699 PMCID: PMC9261903 DOI: 10.1038/s41392-022-01087-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/20/2022] [Accepted: 06/27/2022] [Indexed: 01/08/2023] Open
Abstract
COVID-19, caused by SARS-CoV-2, is the most consequential pandemic of this century. Since the outbreak in late 2019, animal models have been playing crucial roles in aiding the rapid development of vaccines/drugs for prevention and therapy, as well as understanding the pathogenesis of SARS-CoV-2 infection and immune responses of hosts. However, the current animal models have some deficits and there is an urgent need for novel models to evaluate the virulence of variants of concerns (VOC), antibody-dependent enhancement (ADE), and various comorbidities of COVID-19. This review summarizes the clinical features of COVID-19 in different populations, and the characteristics of the major animal models of SARS-CoV-2, including those naturally susceptible animals, such as non-human primates, Syrian hamster, ferret, minks, poultry, livestock, and mouse models sensitized by genetically modified, AAV/adenoviral transduced, mouse-adapted strain of SARS-CoV-2, and by engraftment of human tissues or cells. Since understanding the host receptors and proteases is essential for designing advanced genetically modified animal models, successful studies on receptors and proteases are also reviewed. Several improved alternatives for future mouse models are proposed, including the reselection of alternative receptor genes or multiple gene combinations, the use of transgenic or knock-in method, and different strains for establishing the next generation of genetically modified mice.
Collapse
Affiliation(s)
- Changfa Fan
- Division of Animal Model Research, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control (NIFDC), National Rodent Laboratory Animal Resources Center, Beijing, 102629, China
| | - Yong Wu
- Division of Animal Model Research, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control (NIFDC), National Rodent Laboratory Animal Resources Center, Beijing, 102629, China
| | - Xiong Rui
- Division of Animal Model Research, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control (NIFDC), National Rodent Laboratory Animal Resources Center, Beijing, 102629, China
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100083, China
| | - Yuansong Yang
- Division of Animal Model Research, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control (NIFDC), National Rodent Laboratory Animal Resources Center, Beijing, 102629, China
| | - Chen Ling
- Division of Animal Model Research, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control (NIFDC), National Rodent Laboratory Animal Resources Center, Beijing, 102629, China
- College of Life Sciences, Northwest University; Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, 710069, China
| | - Susu Liu
- Division of Animal Model Research, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control (NIFDC), National Rodent Laboratory Animal Resources Center, Beijing, 102629, China
| | - Shunan Liu
- Division of Animal Model Research, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control (NIFDC), National Rodent Laboratory Animal Resources Center, Beijing, 102629, China
| | - Youchun Wang
- Division of HIV/AIDS and Sexually Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, China.
| |
Collapse
|
3
|
Rotondo JC, Mazzoni E, Bononi I, Tognon M, Martini F. Association Between Simian Virus 40 and Human Tumors. Front Oncol 2019; 9:670. [PMID: 31403031 PMCID: PMC6669359 DOI: 10.3389/fonc.2019.00670] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 07/09/2019] [Indexed: 12/17/2022] Open
Abstract
Simian virus 40 (SV40) is a small DNA tumor virus of monkey origin. This polyomavirus was administered to human populations mainly through contaminated polio vaccines, which were produced in naturally infected SV40 monkey cells. Previous molecular biology and recent immunological assays have indicated that SV40 is spreading in human populations, independently from earlier SV40-contaminated vaccines. SV40 DNA sequences have been detected at a higher prevalence in specific human cancer specimens, such as the brain and bone tumors, malignant pleural mesotheliomas, and lymphoproliferative disorders, compared to the corresponding normal tissues/specimens. However, other investigations, which reported negative data, did not confirm an association between SV40 and human tumors. To circumvent the controversies, which have arisen because of these molecular biology studies, immunological researches with newly developed indirect ELISA tests were carried out in serum samples from patients affected by the same kind of tumors as mentioned above. These innovative indirect ELISAs employ synthetic peptides as mimotopes/specific SV40 antigens. SV40 mimotopes do not cross-react with the homologous human polyomaviruses, BKPyV, and JCPyV. Immunological data obtained from indirect ELISAs, using SV40 mimotopes, employed to analyze serum samples from oncological patients, have indicated that these sera had a higher prevalence of antibodies against SV40 compared to healthy subjects. The main data on (i) the biology and genetics of SV40; (ii) the epidemiology of SV40 in the general population, (iii) the mechanisms of SV40 transformation; (iv) the putative role of SV40 in the onset/progression of specific human tumors, and (v) its association with other human diseases are reported in this review.
Collapse
Affiliation(s)
- John Charles Rotondo
- Section of Pathology, Oncology and Experimental Biology, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Elisa Mazzoni
- Section of Pathology, Oncology and Experimental Biology, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Ilaria Bononi
- Section of Pathology, Oncology and Experimental Biology, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Mauro Tognon
- Section of Pathology, Oncology and Experimental Biology, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Fernanda Martini
- Section of Pathology, Oncology and Experimental Biology, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
4
|
Biology and evolution of poorly differentiated neuroendocrine tumors. Nat Med 2017; 23:1-10. [PMID: 28586335 DOI: 10.1038/nm.4341] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 04/13/2017] [Indexed: 12/11/2022]
Abstract
Neuroendocrine (NE) cancers are a diverse group of neoplasms typically diagnosed and treated on the basis of their site of origin. This Perspective focuses on advances in our understanding of the tumorigenesis and treatment of poorly differentiated neuroendocrine tumors. Recent evidence from sequencing indicates that, although neuroendocrine tumors can arise de novo, they can also develop as a result of lineage plasticity in response to pressure from targeted therapies. We discuss the shared genomic alterations of these tumors independently of their site of origin, and we explore potential therapeutic strategies on the basis of recent biological findings.
Collapse
|
5
|
Abstract
INTRODUCTION The mouse is an important, though imperfect, organism with which to model human disease and to discover and test novel drugs in a preclinical setting. Many experimental strategies have been used to discover new biological and molecular targets in the mouse, with the hopes of translating these discoveries into novel drugs to treat prostate cancer in humans. Modeling prostate cancer in the mouse, however, has been challenging, and often drugs that work in mice have failed in human trials. AREAS COVERED The authors discuss the similarities and differences between mice and men; the types of mouse models that exist to model prostate cancer; practical questions one must ask when using a mouse as a model; and potential reasons that drugs do not often translate to humans. They also discuss the current value in using mouse models for drug discovery to treat prostate cancer and what needs are still unmet in field. EXPERT OPINION With proper planning and following practical guidelines by the researcher, the mouse is a powerful experimental tool. The field lacks genetically engineered metastatic models, and xenograft models do not allow for the study of the immune system during the metastatic process. There remain several important limitations to discovering and testing novel drugs in mice for eventual human use, but these can often be overcome. Overall, mouse modeling is an essential part of prostate cancer research and drug discovery. Emerging technologies and better and ever-increasing forms of communication are moving the field in a hopeful direction.
Collapse
Affiliation(s)
- Kenneth C Valkenburg
- The Johns Hopkins University, The James Buchanan Brady Urological Institute, Department of Urology , 600 North Wolfe Street, Baltimore, MD 21287 , USA
| | | |
Collapse
|
6
|
Abstract
Prostate cancer remains the second leading cause of cancer death in men in the USA and most western countries. Prostatic acinar adenocarcinoma is the most commonly diagnosed form of prostate cancer. Small-cell neuroendocrine carcinoma is less frequently identified at the time of initial diagnosis, but this highly aggressive form of prostate cancer is increasingly observed in patients who have failed first- and second-line hormone therapy. Thus, developing and exploring models of neuroendocrine prostate cancer (NePC) are of increasing importance. This review examines the relevant xenograft tumor and genetically engineered mouse models of NePC, with the aim of addressing salient features and clinical relevance.
Collapse
Affiliation(s)
- Lisa D Berman-Booty
- Department of Cancer BiologyKimmel Cancer CenterDepartments of UrologyRadiation OncologyThomas Jefferson University, 233 South 10th Street, BLSB 1008, Philadelphia, Pennsylvania 19107, USA Department of Cancer BiologyKimmel Cancer CenterDepartments of UrologyRadiation OncologyThomas Jefferson University, 233 South 10th Street, BLSB 1008, Philadelphia, Pennsylvania 19107, USA
| | - Karen E Knudsen
- Department of Cancer BiologyKimmel Cancer CenterDepartments of UrologyRadiation OncologyThomas Jefferson University, 233 South 10th Street, BLSB 1008, Philadelphia, Pennsylvania 19107, USA Department of Cancer BiologyKimmel Cancer CenterDepartments of UrologyRadiation OncologyThomas Jefferson University, 233 South 10th Street, BLSB 1008, Philadelphia, Pennsylvania 19107, USA Department of Cancer BiologyKimmel Cancer CenterDepartments of UrologyRadiation OncologyThomas Jefferson University, 233 South 10th Street, BLSB 1008, Philadelphia, Pennsylvania 19107, USA Department of Cancer BiologyKimmel Cancer CenterDepartments of UrologyRadiation OncologyThomas Jefferson University, 233 South 10th Street, BLSB 1008, Philadelphia, Pennsylvania 19107, USA
| |
Collapse
|
7
|
Colvin EK, Weir C, Ikin RJ, Hudson AL. SV40 TAg mouse models of cancer. Semin Cell Dev Biol 2014; 27:61-73. [PMID: 24583142 DOI: 10.1016/j.semcdb.2014.02.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 02/03/2014] [Accepted: 02/05/2014] [Indexed: 02/09/2023]
Abstract
The discovery of a number of viruses with the ability to induce tumours in animals and transform human cells has vastly impacted cancer research. Much of what is known about tumorigenesis today regarding tumour drivers and tumour suppressors has been discovered through experiments using viruses. The SV40 virus has proven extremely successful in generating transgenic models of many human cancer types and this review provides an overview of these models and seeks to give evidence as to their relevance in this modern era of personalised medicine and technological advancements.
Collapse
Affiliation(s)
- Emily K Colvin
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, University of Sydney, Royal North Shore Hospital, St. Leonards, New South Wales 2065, Australia.
| | - Chris Weir
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, University of Sydney, Royal North Shore Hospital, St. Leonards, New South Wales 2065, Australia.
| | - Rowan J Ikin
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, University of Sydney, Royal North Shore Hospital, St. Leonards, New South Wales 2065, Australia.
| | - Amanda L Hudson
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, University of Sydney, Royal North Shore Hospital, St. Leonards, New South Wales 2065, Australia.
| |
Collapse
|
8
|
Irshad S, Abate-Shen C. Modeling prostate cancer in mice: something old, something new, something premalignant, something metastatic. Cancer Metastasis Rev 2013; 32:109-22. [PMID: 23114843 PMCID: PMC3584242 DOI: 10.1007/s10555-012-9409-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
More than 15 years ago, the first generation of genetically engineered mouse (GEM) models of prostate cancer was introduced. These transgenic models utilized prostate-specific promoters to express SV40 oncogenes specifically in prostate epithelium. Since the description of these initial models, there have been a plethora of GEM models of prostate cancer representing various perturbations of oncogenes or tumor suppressors, either alone or in combination. This review describes these GEM models, focusing on their relevance for human prostate cancer and highlighting their strengths and limitations, as well as opportunities for the future.
Collapse
Affiliation(s)
- Shazia Irshad
- Herbert Irving Comprehensive Cancer Center, Departments of Urology and Pathology & Cell Biology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | | |
Collapse
|
9
|
Khatamianfar V, Valiyeva F, Rennie PS, Lu WY, Yang BB, Bauman GS, Moussa M, Xuan JW. TRIM59, a novel multiple cancer biomarker for immunohistochemical detection of tumorigenesis. BMJ Open 2012; 2:e001410. [PMID: 23048060 PMCID: PMC3488719 DOI: 10.1136/bmjopen-2012-001410] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 07/20/2012] [Indexed: 01/16/2023] Open
Abstract
OBJECTIVES AND DESIGN We identified a novel TRIM59 gene, as an early signal transducer in two (SV40Tag and Ras) oncogene pathways in murine prostate cancer (CaP) models. We explore its clinical applications as a multitumour marker detecting early tumorigenesis by immunohistochemistry (IHC). SETTING AND PARTICIPANTS 88 CaP patients were from a tissue microarray (TMA) of radical prostatectomy specimen, 42 patients from a 35 multiple tumour TMA, 75 patients with renal cell carcinoma (RCC) and 92 patients from eight different tumour groups (breast, lung, parotid, gastrointestinal, female genital tract, bladder, kidney and prostate cancer). RESULTS TRIM59 upregulation specifically in tumour area was determined by IHC in 291 cases of 37 tumour types. To demonstrate that TRIM59 upregulation is 'tumour-specific', we characterised a significant correlation of TRIM59 IHC signals with tumorigenesis and progression, while in control and normal area, TRIM59 IHC signal was all negative or significantly low. TRIM59 protein upregulation in prostate and kidney cancers was detectable in both intensity and extent in early tumorigenesis of prostate intraepithelial neoplasia (p<0.05) and grade 1 of RCC (p<0.05), and stopped until high grades cancer. The results of the correlation in these two large cohorts of tumour types confirmed and repeated murine CaP model studies. Enhanced TRIM59 expression was identified in most of the 37 different tumours, while the highest intensities were in lung, breast, liver, skin, tongue and mouth (squamous cell cancer) and endometrial cancers. Multiple tumour upregulation was further confirmed by comparing relative scores of TRIM59 IHC signals in eight tumours with a larger patient population; and by a mouse whole-mount embryo (14.5 days post conception) test on the origin of TRIM59 upregulation in epithelial cells. CONCLUSIONS TRIM59 may be used a novel multiple tumour marker for immunohistochemical detecting early tumorigenesis and could direct a novel strategy for molecular-targeted diagnosis and therapy of cancer.
Collapse
Affiliation(s)
- Vida Khatamianfar
- Department of Surgery, Lawson Health Research Institute, Western University, London, Ontario, Canada
| | - Fatma Valiyeva
- Department of Surgery, Lawson Health Research Institute, Western University, London, Ontario, Canada
| | - Paul S Rennie
- Department of Surgery, University of British Columbia, Vancovour, British Columbia, Canada
| | - Wei-yang Lu
- Department of Physiology, Robarts Research Institute, Western University, London, Ontario, Canada
| | - Burton B Yang
- Department of Laboratory Medicine and Pathbiology, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Glenn S Bauman
- London Regional Cancer Program, Western University, London, Ontario, Canada
| | - Madeleine Moussa
- Department of Pathology, Western University, London, Ontario, Canada
| | - Jim W Xuan
- Department of Surgery, Lawson Health Research Institute, Western University, London, Ontario, Canada
| |
Collapse
|
10
|
Qi F, Carbone M, Yang H, Gaudino G. Simian virus 40 transformation, malignant mesothelioma and brain tumors. Expert Rev Respir Med 2012; 5:683-97. [PMID: 21955238 DOI: 10.1586/ers.11.51] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Simian virus 40 (SV40) is a DNA virus isolated in 1960 from contaminated polio vaccines, that induces mesotheliomas, lymphomas, brain and bone tumors, and sarcomas, including osteosarcomas, in hamsters. These same tumor types have been found to contain SV40 DNA and proteins in humans. Mesotheliomas and brain tumors are the two tumor types that have been most consistently associated with SV40, and the range of positivity has varied about from 6 to 60%, although a few reported 100% of positivity and a few reported 0%. It appears unlikely that SV40 infection alone is sufficient to cause human malignancy, as we did not observe an epidemic of cancers following the administration of SV40-contaminated vaccines. However, it seems possible that SV40 may act as a cofactor in the pathogenesis of some tumors. In vitro and animal experiments showing cocarcinogenicity between SV40 and asbestos support this hypothesis.
Collapse
Affiliation(s)
- Fang Qi
- University of Hawaii Cancer Center, Honolulu, HI, USA
| | | | | | | |
Collapse
|
11
|
Fujimoto N, Kitamura S, Kanno J. Androgen dependent transcription of a mouse prostatic protein gene, PSP94: involvement of estrogen receptors. J Steroid Biochem Mol Biol 2011; 127:301-6. [PMID: 21856419 DOI: 10.1016/j.jsbmb.2011.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 07/20/2011] [Accepted: 08/02/2011] [Indexed: 11/17/2022]
Abstract
Prostatic secretory protein 94 (PSP94) is a prostatic protein found in both humans and rodents. As with other prostatic proteins, expression of this protein is regulated by androgens. In order to understand the androgen-responsive transcriptional regulation mechanisms involved, the present study aimed to identify and characterize the promoter activity of the gene. The 5'flanking (5'f) region of mouse PSP94 (mPSP94) gene was cloned and introduced into a vector upstream of the luciferase reporter gene. A Chinese hamster ovarian cell line, CHO, and a human prostate adenocarcinoma cell line, LNCaP, were transiently transfected with our reporter constructs along with an androgen receptor expression vector, and treated with dihydrotestosterone. Reporter gene assay revealed that the 5'f region of mPSP94 gene was indeed responsible for the androgen-dependent transcription. Subsequent deletion and mutation analysis indicated that the androgen responsive element (ARE)-like sequence at position -93 from the transcription start site was primarily responsible for androgen dependency. Interestingly, when estrogen receptor (ER) α was co-transfected, the androgen-dependent transcription was substantially increased. However, ERα-dependent enhancement of androgen responses was not observed when estrogen responsive element (ERE)-like motifs of the promoter region were deleted. Administration of estrogen did not influence the enhancement associated with ERα, although an anti-estrogen suppressed such effects. Collectively, these data suggest that the androgen-dependent transcription of the mPSP94 gene was co-regulated/modulated by the presence of ERα via ERE-like motifs.
Collapse
Affiliation(s)
- Nariaki Fujimoto
- Department of Disease Model, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan.
| | | | | |
Collapse
|
12
|
Valiyeva F, Jiang F, Elmaadawi A, Moussa M, Yee SP, Raptis L, Izawa JI, Yang BB, Greenberg NM, Wang F, Xuan JW. Characterization of the oncogenic activity of the novel TRIM59 gene in mouse cancer models. Mol Cancer Ther 2011; 10:1229-40. [PMID: 21593385 DOI: 10.1158/1535-7163.mct-11-0077] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A novel TRIM family member, TRIM59 gene was characterized to be upregulated in SV40 Tag oncogene-directed transgenic and knockout mouse prostate cancer models as a signaling pathway effector. We identified two phosphorylated forms of TRIM59 (p53 and p55) and characterized them using purified TRIM59 proteins from mouse prostate cancer models at different stages with wild-type mice and NIH3T3 cells as controls. p53/p55-TRIM59 proteins possibly represent Ser/Thr and Tyr phosphorylation modifications, respectively. Quantitative measurements by ELISA showed that the p-Ser/Thr TRIM59 correlated with tumorigenesis, whereas the p-Tyr-TRIM59 protein correlated with advanced cancer of the prostate (CaP). The function of TRIM59 was elucidated using short hairpin RNA (shRNA)-mediated knockdown of the gene in human CaP cells, which caused S-phase cell-cycle arrest and cell growth retardation. A hit-and-run effect of TRIM59 shRNA knockdown was observed 24 hours posttransfection. Differential cDNA microarrray analysis was conducted, which showed that the initial and rapid knockdown occurred early in the Ras signaling pathway. To confirm the proto-oncogenic function of TRIM59 in the Ras signaling pathway, we generated a transgenic mouse model using a prostate tissue-specific gene (PSP94) to direct the upregulation of the TRIM59 gene. Restricted TRIM59 gene upregulation in the prostate revealed the full potential for inducing tumorigenesis, similar to the expression of SV40 Tag, and coincided with the upregulation of genes specific to the Ras signaling pathway and bridging genes for SV40 Tag-mediated oncogenesis. The finding of a possible novel oncogene in animal models will implicate a novel strategy for diagnosis, prognosis, and therapy for cancer.
Collapse
Affiliation(s)
- Fatma Valiyeva
- Lawson Health Research Institute, University of Western Ontario, 375 South Street, London, ON, N6A 4G5, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Luk SU, Lee TKW, Liu J, Lee DTW, Chiu YT, Ma S, Ng IOL, Wong YC, Chan FL, Ling MT. Chemopreventive effect of PSP through targeting of prostate cancer stem cell-like population. PLoS One 2011; 6:e19804. [PMID: 21603625 PMCID: PMC3095629 DOI: 10.1371/journal.pone.0019804] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Accepted: 04/16/2011] [Indexed: 01/06/2023] Open
Abstract
Recent evidence suggested that prostate cancer stem/progenitor cells (CSC) are responsible for cancer initiation as well as disease progression. Unfortunately, conventional therapies are only effective in targeting the more differentiated cancer cells and spare the CSCs. Here, we report that PSP, an active component extracted from the mushroom Turkey tail (also known as Coriolus versicolor), is effective in targeting prostate CSCs. We found that treatment of the prostate cancer cell line PC-3 with PSP led to the down-regulation of CSC markers (CD133 and CD44) in a time and dose-dependent manner. Meanwhile, PSP treatment not only suppressed the ability of PC-3 cells to form prostaspheres under non-adherent culture conditions, but also inhibited their tumorigenicity in vivo, further proving that PSP can suppress prostate CSC properties. To investigate if the anti-CSC effect of PSP may lead to prostate cancer chemoprevention, transgenic mice (TgMAP) that spontaneously develop prostate tumors were orally fed with PSP for 20 weeks. Whereas 100% of the mice that fed with water only developed prostate tumors at the end of experiment, no tumors could be found in any of the mice fed with PSP, suggesting that PSP treatment can completely inhibit prostate tumor formation. Our results not only demonstrated the intriguing anti-CSC effect of PSP, but also revealed, for the first time, the surprising chemopreventive property of oral PSP consumption against prostate cancer.
Collapse
Affiliation(s)
- Sze-Ue Luk
- Department of Anatomy, The University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Terence Kin-Wah Lee
- Department of Pathology, The University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Ji Liu
- Australian Prostate Cancer Research Centre-Queensland and Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Davy Tak-Wing Lee
- Department of Anatomy, The University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Yung-Tuen Chiu
- Department of Anatomy, The University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Stephanie Ma
- Department of Pathology, The University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Irene Oi-Lin Ng
- Department of Pathology, The University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Yong-Chuan Wong
- Department of Anatomy, The University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Franky Leung Chan
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Ming-Tat Ling
- Australian Prostate Cancer Research Centre-Queensland and Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
- * E-mail:
| |
Collapse
|
14
|
Mouse models of prostate cancer. Prostate Cancer 2011; 2011:895238. [PMID: 22111002 PMCID: PMC3221286 DOI: 10.1155/2011/895238] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 11/12/2010] [Accepted: 01/04/2011] [Indexed: 02/07/2023] Open
Abstract
The development and optimization of high-throughput screening methods has identified a multitude of genetic changes associated with human disease. The use of immunodeficient and genetically engineered mouse models that mimic the human disease has been crucial in validating the importance of these genetic pathways in prostate cancer. These models provide a platform for finding novel therapies to treat human patients afflicted with prostate cancer as well as those who have debilitating bone metastases. In this paper, we focus on the historical development and phenotypic descriptions of mouse models used to study prostate cancer. We also comment on how closely each model recapitulates human prostate cancer.
Collapse
|
15
|
Modeling Human Prostate Cancer in Genetically Engineered Mice. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 100:1-49. [DOI: 10.1016/b978-0-12-384878-9.00001-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
16
|
Whitaker HC, Kote-Jarai Z, Ross-Adams H, Warren AY, Burge J, George A, Bancroft E, Jhavar S, Leongamornlert D, Tymrakiewicz M, Saunders E, Page E, Mitra A, Mitchell G, Lindeman GJ, Evans DG, Blanco I, Mercer C, Rubinstein WS, Clowes V, Douglas F, Hodgson S, Walker L, Donaldson A, Izatt L, Dorkins H, Male A, Tucker K, Stapleton A, Lam J, Kirk J, Lilja H, Easton D, Cooper C, Eeles R, Neal DE. The rs10993994 risk allele for prostate cancer results in clinically relevant changes in microseminoprotein-beta expression in tissue and urine. PLoS One 2010; 5:e13363. [PMID: 20967219 PMCID: PMC2954177 DOI: 10.1371/journal.pone.0013363] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Accepted: 09/01/2010] [Indexed: 11/19/2022] Open
Abstract
Background Microseminoprotein-beta (MSMB) regulates apoptosis and using genome-wide association studies the rs10993994 single nucleotide polymorphism in the MSMB promoter has been linked to an increased risk of developing prostate cancer. The promoter location of the risk allele, and its ability to reduce promoter activity, suggested that the rs10993994 risk allele could result in lowered MSMB in benign tissue leading to increased prostate cancer risk. Methodology/Principal Findings MSMB expression in benign and malignant prostate tissue was examined using immunohistochemistry and compared with the rs10993994 genotype. Urinary MSMB concentrations were determined by ELISA and correlated with urinary PSA, the presence or absence of cancer, rs10993994 genotype and age of onset. MSMB levels in prostate tissue and urine were greatly reduced with tumourigenesis. Urinary MSMB was better than urinary PSA at differentiating men with prostate cancer at all Gleason grades. The high risk allele was associated with heterogeneity of MSMB staining and loss of MSMB in both tissue and urine in benign prostate. Conclusions These data show that some high risk alleles discovered using genome-wide association studies produce phenotypic effects with potential clinical utility. We provide the first link between a low penetrance polymorphism for prostate cancer and a potential test in human tissue and bodily fluids. There is potential to develop tissue and urinary MSMB for a biomarker of prostate cancer risk, diagnosis and disease monitoring.
Collapse
Affiliation(s)
- Hayley C Whitaker
- Uro-Oncology Research Group, CRUK Cambridge Research Institute, Cambridge, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Despite considerable success in treatment of early stage localized prostate cancer (PC), acute inadequacy of late stage PC treatment and its inherent heterogeneity poses a formidable challenge. Clearly, an improved understanding of PC genesis and progression along with the development of new targeted therapies are warranted. Animal models, especially, transgenic immunocompetent mouse models, have proven to be the best ally in this respect. A series of models have been developed by modulation of expression of genes implicated in cancer-genesis and progression; mainly, modulation of expression of oncogenes, steroid hormone receptors, growth factors and their receptors, cell cycle and apoptosis regulators, and tumor suppressor genes have been used. Such models have contributed significantly to our understanding of the molecular and pathological aspects of PC initiation and progression. In particular, the transgenic mouse models based on multiple genetic alterations can more accurately address the inherent complexity of PC, not only in revealing the mechanisms of tumorigenesis and progression but also for clinically relevant evaluation of new therapies. Further, with advances in conditional knockout technologies, otherwise embryonically lethal gene changes can be incorporated leading to the development of new generation transgenics, thus adding significantly to our existing knowledge base. Different models and their relevance to PC research are discussed.
Collapse
Affiliation(s)
- Varinder Jeet
- Oncology Research Centre, Prince of Wales Hospital, Barker St., Randwick, NSW, 2031, Australia
| | | | | |
Collapse
|
18
|
Whitaker HC, Warren AY, Eeles R, Kote-Jarai Z, Neal DE. The potential value of microseminoprotein-beta as a prostate cancer biomarker and therapeutic target. Prostate 2010; 70:333-40. [PMID: 19790236 DOI: 10.1002/pros.21059] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Recent genome-wide association studies have shown an association of a SNP two base pairs upstream of the 5' UTR of the microseminoprotein-beta (MSMB) gene with an increased risk of developing the prostate cancer, re-igniting interest in its protein product, MSMB. METHODS As one of the most abundant prostatic proteins, MSMB can be reliably detected in tissue and serum. RESULTS It has been consistently shown that MSMB expression is high in normal and benign prostate tissue and lowered or lost in prostate cancer suggesting that it might be a useful tissue biomarker for prostate cancer diagnosis and its levels in serum may be useful as a marker for prognosis. Members of the cysteine-rich secretory protein family and laminin receptors have been shown to bind MSMB at the cell surface and in serum thereby regulating apoptosis. Thus, in the benign prostate, MSMB regulates cell growth, but when MSMB is lost during tumourigenesis, cells are able to grow in a more uncontrolled manner. Both full length MSMB and a short peptide comprised of amino acids 31-45 have been tested for potential therapeutic benefit in mouse models and humans. CONCLUSIONS MSMB has potential as a biomarker of prostate cancer development, progression and recurrence and potentially as a target for therapeutic intervention.
Collapse
Affiliation(s)
- Hayley C Whitaker
- Uro-Oncology Research Group, CRUK Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge, UK.
| | | | | | | | | |
Collapse
|
19
|
Singh P, Yam M, Russell PJ, Khatri A. Molecular and traditional chemotherapy: a united front against prostate cancer. Cancer Lett 2010; 293:1-14. [PMID: 20117879 DOI: 10.1016/j.canlet.2009.11.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 11/23/2009] [Accepted: 11/27/2009] [Indexed: 01/28/2023]
Abstract
Castrate resistant prostate cancer (CRPC) is essentially incurable. Recently though, chemotherapy demonstrated a survival benefit ( approximately 2months) in the treatment of CRPC. While this was a landmark finding, suboptimal efficacy and systemic toxicities at the therapeutic doses warranted further development. Smart combination therapies, acting through multiple mechanisms to target the heterogeneous cell populations of PC and with potential for reduction in individual dosing, need to be developed. In that, targeted molecular chemotherapy has generated significant interest with the potential for localized treatment to generate systemic efficacy. This can be further enhanced through the use of oncolytic conditionally replicative adenoviruses (CRAds) to deliver molecular chemotherapy. The prospects of chemotherapy and molecular-chemotherapy as single and as components of combination therapies are discussed.
Collapse
Affiliation(s)
- P Singh
- Centre for Medicine and Oral Health, Griffith University - Gold Coast GH1, High Street, Southport, Gold Coast, QLD 4215, Australia
| | | | | | | |
Collapse
|
20
|
Gabra P, Shen G, Xuan J, Lee TY. Arterio-venous anastomoses in mice affect perfusion measurements with dynamic contrast enhanced CT. Physiol Meas 2010; 31:249-60. [DOI: 10.1088/0967-3334/31/2/010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
21
|
Affiliation(s)
- Magnus Essand
- Clinical Immunology Division, Rudbeck Laboratory, Uppsala University, Sweden.
| |
Collapse
|
22
|
Pinter SZ, Lacefield JC. Detectability of small blood vessels with high-frequency power Doppler and selection of wall filter cut-off velocity for microvascular imaging. ULTRASOUND IN MEDICINE & BIOLOGY 2009; 35:1217-1228. [PMID: 19394752 DOI: 10.1016/j.ultrasmedbio.2009.01.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Revised: 01/09/2009] [Accepted: 01/24/2009] [Indexed: 05/27/2023]
Abstract
Power Doppler imaging of physiologic and pathologic angiogenesis is widely used in preclinical studies to track normal development, disease progression and treatment efficacy but can be challenging given the presence of small blood vessels and slow flow velocities. Power Doppler images can be plagued with false-positive color pixels or undetected vessels, thereby complicating the interpretation of vascularity metrics such as color pixel density (CPD). As an initial step toward improved microvascular quantification, flow-phantom experiments were performed to establish relationships between vessel detection and various combinations of vessel size (160, 200, 250, 300 and 360 microm), flow velocity (4, 3, 2, 1 and 0.5 mm/s) and transducer frequency (30 and 40 MHz) while varying the wall filter cut-off velocity. Receiver operating characteristic (ROC) curves and areas under ROC curves indicate that good vessel detection performance can be achieved with a 40-MHz transducer for flow velocities > or =2 mm/s and with a 30-MHz transducer for flow velocities > or =1 mm/s. In the second part of the analysis, CPD was plotted as a function of wall filter cut-off velocity for each flow-phantom data set. Three distinct regions were observed: overestimation of CPD at low cut-offs, underestimation of CPD at high cut-offs and a plateau at intermediate cut-offs. The CPD at the plateau closely matched the phantom's vascular volume fraction and the length of the plateau corresponded with the flow-detection performance of the Doppler system assessed using ROC analysis. Color pixel density vs. wall filter cut-off curves from analogous in vivo experiments exhibited the same shape, including a distinct CPD plateau. The similar shape of the flow-phantom and in vivo curves suggests that the presence of a plateau in vivo can be used to identify the best-estimate CPD value that can be treated as a quantitative vascularity metric. The ability to identify the best CPD estimate is expected to improve quantification of angiogenesis and anti-vascular treatment responses with power Doppler.
Collapse
Affiliation(s)
- Stephen Z Pinter
- Biomedical Engineering Graduate Program, Robarts Research Institute, University of Western Ontario, London, Ontario N6A 5B9, Canada
| | | |
Collapse
|
23
|
Xuan JW, Bygrave M, Valiyeva F, Moussa M, Izawa JI, Bauman GS, Klibanov A, Wang F, Greenberg NM, Fenster A. Molecular Targeted Enhanced Ultrasound Imaging of Flk1 Reveals Diagnosis and Prognosis Potential in a Genetically Engineered Mouse Prostate Cancer Model. Mol Imaging 2009. [DOI: 10.2310/7290.2009.00020] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Jim W. Xuan
- From the Lawson Health Research Institute, Robarts Research Institute, London Regional Cancer Program, University of Western Ontario, London, ON; The University of Virginia Health Sciences Center, Charlottesville, VA; Institute of Biosciences and Technology, Texas A&M University System Health Science Center, Houston, TX; Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Michael Bygrave
- From the Lawson Health Research Institute, Robarts Research Institute, London Regional Cancer Program, University of Western Ontario, London, ON; The University of Virginia Health Sciences Center, Charlottesville, VA; Institute of Biosciences and Technology, Texas A&M University System Health Science Center, Houston, TX; Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Fatma Valiyeva
- From the Lawson Health Research Institute, Robarts Research Institute, London Regional Cancer Program, University of Western Ontario, London, ON; The University of Virginia Health Sciences Center, Charlottesville, VA; Institute of Biosciences and Technology, Texas A&M University System Health Science Center, Houston, TX; Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Madeleine Moussa
- From the Lawson Health Research Institute, Robarts Research Institute, London Regional Cancer Program, University of Western Ontario, London, ON; The University of Virginia Health Sciences Center, Charlottesville, VA; Institute of Biosciences and Technology, Texas A&M University System Health Science Center, Houston, TX; Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Jonathan I. Izawa
- From the Lawson Health Research Institute, Robarts Research Institute, London Regional Cancer Program, University of Western Ontario, London, ON; The University of Virginia Health Sciences Center, Charlottesville, VA; Institute of Biosciences and Technology, Texas A&M University System Health Science Center, Houston, TX; Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Glenn S. Bauman
- From the Lawson Health Research Institute, Robarts Research Institute, London Regional Cancer Program, University of Western Ontario, London, ON; The University of Virginia Health Sciences Center, Charlottesville, VA; Institute of Biosciences and Technology, Texas A&M University System Health Science Center, Houston, TX; Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Alexander Klibanov
- From the Lawson Health Research Institute, Robarts Research Institute, London Regional Cancer Program, University of Western Ontario, London, ON; The University of Virginia Health Sciences Center, Charlottesville, VA; Institute of Biosciences and Technology, Texas A&M University System Health Science Center, Houston, TX; Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Fen Wang
- From the Lawson Health Research Institute, Robarts Research Institute, London Regional Cancer Program, University of Western Ontario, London, ON; The University of Virginia Health Sciences Center, Charlottesville, VA; Institute of Biosciences and Technology, Texas A&M University System Health Science Center, Houston, TX; Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Norman M. Greenberg
- From the Lawson Health Research Institute, Robarts Research Institute, London Regional Cancer Program, University of Western Ontario, London, ON; The University of Virginia Health Sciences Center, Charlottesville, VA; Institute of Biosciences and Technology, Texas A&M University System Health Science Center, Houston, TX; Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Aaron Fenster
- From the Lawson Health Research Institute, Robarts Research Institute, London Regional Cancer Program, University of Western Ontario, London, ON; The University of Virginia Health Sciences Center, Charlottesville, VA; Institute of Biosciences and Technology, Texas A&M University System Health Science Center, Houston, TX; Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| |
Collapse
|
24
|
Abstract
Advances in science and technology have allowed us to manipulate the mouse genome and analyse the effect of specific genetic alterations on the development of prostate cancer in vivo. We can now analyse the molecular basis of initiation, invasion and progression to metastatic disease. The current mouse models utilise knockout, knock-in or conditional regulation of expression using Cre-loxP technology. Genes that have been targeted include homeobox genes, tumour suppressors and oncogenes, growth factors (and their receptors), steroid hormones and cell-cycle regulators, as well as pro- and anti-apoptotic proteins. Bigenic models indicate that that two 'hits' are required for progression from intra-epithelial neoplasia (PIN) to invasion carcinoma, and two to five hits are needed for metastasis. Here, we discuss the numerous models that mimic various aspects of the disease process, such as PIN, locally invasive adenocarcinoma and metastatic disease. Currently the PB-Cre4 x PTEN(loxP/loxP) mouse is the only model that spans the entire continuum from initiation to local invasion and metastasis. Such mouse models increase our understanding of the disease process and provide targets for novel therapeutic approaches. Hopefully, the transgenic models will become inducible and ultimately allow both temporal and spatial gene inactivation. Compound mutational models will also develop further, with double and triple knock-in or knockout systems adding to our knowledge of the interaction between different signalling cascades.
Collapse
|
25
|
Xuan JW, Lacefield JC, Wirtzfeld LA, Bygrave M, Jiang H, Izawa JI, Moussa M, Chin JL, Fenster A. Prostatic Secretory Protein of 94 Amino Acids Gene-Directed Transgenic Prostate Cancer. Cancer Imaging 2008. [DOI: 10.1016/b978-012374212-4.50142-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
26
|
Xuan JW, Bygrave M, Jiang H, Valiyeva F, Dunmore-Buyze J, Holdsworth DW, Izawa JI, Bauman G, Moussa M, Winter SF, Greenberg NM, Chin JL, Drangova M, Fenster A, Lacefield JC. Functional neoangiogenesis imaging of genetically engineered mouse prostate cancer using three-dimensional power Doppler ultrasound. Cancer Res 2007; 67:2830-9. [PMID: 17363606 DOI: 10.1158/0008-5472.can-06-3944] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We report the first application of high-frequency three-dimensional power Doppler ultrasound imaging in a genetically engineered mouse (GEM) prostate cancer model. We show that the technology sensitively and specifically depicts functional neoangiogenic blood flow because little or no flow is measurable in normal prostate tissue or tumors smaller than 2-3 mm diameter, the neoangiogenesis "switch-on" size. Vascular structures depicted by power Doppler were verified using Microfil-enhanced micro-computed tomography (micro-CT) and by correlation with microvessel distributions measured by immunohistochemistry and enhanced vascularity visualized by confocal microscopy in two GEM models [transgenic adenocarcinoma of the mouse prostate (TRAMP) and PSP94 gene-directed transgenic mouse adenocarcinoma of the prostate (PSP-TGMAP)]. Four distinct phases of neoangiogenesis in cancer development were observed, specifically, (a) an early latent phase; (b) establishment of a peripheral capsular vascular structure as a neoangiogenesis initiation site; (c) a peak in tumor vascularity that occurs before aggressive tumor growth; and (d) rapid tumor growth accompanied by decreasing vascularity. Microsurgical interventions mimicking local delivery of antiangiogenesis drugs were done by ligating arteries upstream from feeder vessels branching to the prostate. Microsurgery produced an immediate reduction of tumor blood flow, and flow remained low from 1 h to 2 weeks or longer after treatment. Power Doppler, in conjunction with micro-CT, showed that the tumors recruit secondary blood supplies from nearby vessels, which likely accounts for the continued growth of the tumors after surgery. The microsurgical model represents an advanced angiogenic prostate cancer stage in GEM mice corresponding to clinically defined hormone-refractory prostate cancer. Three-dimensional power Doppler imaging is completely noninvasive and will facilitate basic and preclinical research on neoangiogenesis in live animal models.
Collapse
Affiliation(s)
- Jim W Xuan
- Department of Surgery, University of Western Ontario, London, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Waspe AC, Cakiroglu HJ, Lacefield JC, Fenster A. Design, calibration and evaluation of a robotic needle-positioning system for small animal imaging applications. Phys Med Biol 2007; 52:1863-78. [PMID: 17374916 DOI: 10.1088/0031-9155/52/7/007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A needle-positioning robot has been developed for image-guided interventions in small animal research models. The device is designed to position a needle with an error < or =100 microm. The robot has two rotational axes (pitch and roll) to control needle orientation, and one linear axis to perform needle insertion. The three axes intersect at a single point to create a remote centre of motion (RCM) that acts as a fulcrum for the orientation of the needle. The RCM corresponds to the skin-entry point of the needle into the animal. The robot was calibrated to ensure that the three axes intersected at a single point defining an RCM and that the needle tip was positioned at the RCM. Needle-positioning accuracy and precision were quantified in Cartesian coordinates at ten target locations in the plane of each rotational axis. The measured needle-positioning accuracy in free space was 54 +/- 12 microm for the pitch axis plane and 91 +/- 21 microm for the roll axis plane. The measured needle-positioning precision was 15 and 17 microm for the pitch and roll axes planes, respectively. The robot's ability to insert a needle into a tumour in a euthanized mouse was demonstrated.
Collapse
Affiliation(s)
- Adam C Waspe
- Biomedical Engineering Graduate Program, University of Western Ontario, London, Ontario, N6A 5B9, Canada.
| | | | | | | |
Collapse
|
28
|
Guo C, Wu G, Chin JL, Bauman G, Moussa M, Wang F, Greenberg NM, Taylor SS, Xuan JW. Bub1 up-regulation and hyperphosphorylation promote malignant transformation in SV40 tag-induced transgenic mouse models. Mol Cancer Res 2007; 4:957-69. [PMID: 17189386 DOI: 10.1158/1541-7786.mcr-06-0168] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Rodents do not naturally develop prostate cancer. Currently, most widely used genetically engineered mouse prostate cancer models use SV40 T/tag oncogene. To understand the mechanism underlying prostate cancer development in transgenic and knock-in SV40 Tag mouse models, we did cDNA microarray analyses, comparing gene expression profiles of prostate cancer tissues from early-, late-, and advance-stage androgen-independent prostate cancers. Of the 67 genes that were up-regulated by > or = 10-fold, 40 are known to be required for chromosome stability. In particular, the spindle checkpoint component Bub1 was persistently up-regulated from early to advanced androgen-independent prostate cancer lesions. Significantly, Bub1, which is required for accurate chromosome segregation during mitosis, has recently been reported to bind SV40 Tag. Consistent with a spindle checkpoint defect, flow cytometry experiments indicate that advanced androgen-independent prostate cancer tumors exhibit aneuploidy, along with up-regulation of levels of both Bub1 mRNA and Bub1 protein or hyperphosphorylation. Importantly, up-regulation and hyperphosphorylation of Bub1 were also observed in established human prostate cancer cell lines and in clinical studies. Furthermore, analysis of human prostate cancer lines showed impaired spindle checkpoint function and endoreduplication following exposure to spindle toxins. Small interfering RNA-mediated repression of Bub1 in the human prostate cancer line PC-3 restrained cell proliferation, an effect mimicked by inhibition of mitogen-activated protein kinase, an upstream activator of Bub1. Thus, by perturbing Bub1 function, our observations suggest a new mechanism whereby the SV40 Tag oncoprotein promotes chromosomal instability and aneuploidy in transgenic mouse prostate cancer models. Whereas the exact details of this mechanism remain unclear, our novel findings raise the possibility of exploiting Bub1 as a new therapeutic target in the treatment of prostate cancer, the most common cancer in adult men in North America.
Collapse
Affiliation(s)
- Conghui Guo
- Department of Surgery, University of Western Ontario, London, Ontario, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Thielen JL, Volzing KG, Collier LS, Green LE, Largaespada DA, Marker PC. Markers of prostate region-specific epithelial identity define anatomical locations in the mouse prostate that are molecularly similar to human prostate cancers. Differentiation 2007; 75:49-61. [PMID: 17244021 DOI: 10.1111/j.1432-0436.2006.00115.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Although the basic functions of the prostate gland are conserved among mammals, its morphology varies greatly among species. Comparative studies between mouse and human are important because mice are widely used to study prostate cancer, a disease that occurs in a region-restricted manner within the human prostate. An informatics-based approach was used to identify prostate-specific human genes as candidate markers of region-specific identity that might distinguish prostatic ducts prone to prostate cancer from ducts that rarely give rise to cancer. Subsequent analysis of normal and cancerous human prostates demonstrated that the genes microseminoprotein-beta (MSMB) and transglutaminase 4 (TGM4) were expressed in distinct groups of ducts in the normal human prostate, and only MSMB was detected in areas of prostate cancer. The mouse orthologs of MSMB and TGM4 were then used for expression studies in mice along with the mouse ventrally expressed gene spermine binding protein (SBP). All three genes were informative markers of region-specific epithelial identity with distinct expression patterns that collectively accounted for all ducts in the mouse prostate. Together with the human data, this suggested that MSMB expression defines an anatomical domain in the mouse prostate that is molecularly most similar to human prostate cancers. Computer-assisted serial section reconstruction was used to visualize the complete expression domains for MSMB, SBP, and TGM4 in the mouse prostate. This showed that MSMB is expressed in prostatic ducts that comprise 21% of the mouse dorso-lateral prostate. Finally, the expression of MSMB, SBP, and TGM4 was evaluated in a mouse prostate cancer model created by the prostate epithelium-specific deletion of the tumor suppressor PTEN. MSMB and TGM4 were rapidly and dramatically down-regulated in response to PTEN deletion suggesting that this model of prostate cancer includes a more rapid de-differentiation of the prostatic epithelium than is observed in organ-confined human prostate cancers.
Collapse
Affiliation(s)
- Joshua L Thielen
- Department of Genetics, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | |
Collapse
|
30
|
Russell PJ, Khatri A. Novel gene-directed enzyme prodrug therapies against prostate cancer. Expert Opin Investig Drugs 2006; 15:947-61. [PMID: 16859396 DOI: 10.1517/13543784.15.8.947] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
There is no effective cure for late-stage hormone (androgen) refractory prostate cancer. Although chemotherapy offers palliation to these late-stage patients, it also leads to systemic toxicities leading to poor quality of life. Clearly, the focus is on the development and evaluation of novel biologically relevant alternatives such as cytoreductive gene-directed enzyme prodrug therapy (GDEPT). With the current limitations of effective gene delivery in vivo, the in situ amplification of cytotoxicity due to bystander effects of GDEPT has special attraction for patients with prostate cancer, the prostate being dispensable. This review focuses on the development, application and potential of various GDEPTs for treating prostate cancer. The current status of research related to the issues of enhancement of in situ GDEPT delivery and prostate cancer-specific targeting of vectors (especially viral vectors) is assessed. Finally, the scope and progress of synergies between GDEPT and other treatment modalities, both traditional and alternate, are discussed.
Collapse
Affiliation(s)
- Pamela J Russell
- Oncology Research Centre, Prince of Wales Hospital Sydney, Level 2, Clinical Sciences Building, Barker Street, Randwick, NSW 2031, Australia.
| | | |
Collapse
|
31
|
Wu G, Wang D, Wang H, Yuan J, Xuan JW. Histopathological characteristics of a novel knock-in mouse prostate cancer model. Braz J Med Biol Res 2006; 39:759-65. [PMID: 16751981 DOI: 10.1590/s0100-879x2006000600008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Prostate cancer is relatively unique to man. There is no naturally occurring prostate cancer in the mouse. Pre-clinical studies involve the establishment of a genetically engineered mouse prostate cancer model with features close to those of the human situation. A new knock-in mouse adenocarcinoma prostate (KIMAP) model was established, which showed close-to-human kinetics of tumor development. In order to determine if the similar kinetics is associated with heterogeneous tumor architecture similar to the human situation, we utilized a new mouse histological grading system (Gleason analogous grading system) similar to the Gleason human grading system and flow cytometry DNA analysis to measure and compare the adenocarcinoma of the KIMAP model with human prostate cancer. Sixty KIMAP prostate cancer samples from 60 mice were measured and compared with human prostate cancer. Flow cytometry DNA analysis was performed on malignant prostate tissues obtained from KIMAP models. Mice with prostate cancer from KIMAP models showed a 53.3% compound histological score rate, which was close to the human clinical average (50%) and showed a significant correlation with age (P = 0.001). Flow cytometry analyses demonstrated that most KIMAP tumor tissues were diploid, analogous to the human situation. The similarities of the KIMAP mouse model with tumors of the human prostate suggest the use of this experimental model to complement studies of human prostate cancer.
Collapse
Affiliation(s)
- G Wu
- Department of Urology, Xijing Hospital, the Fourth Military Medical University, Xi'an, China.
| | | | | | | | | |
Collapse
|
32
|
Huizen IV, Wu G, Moussa M, Chin JL, Fenster A, Lacefield JC, Sakai H, Greenberg NM, Xuan JW. Establishment of a serum tumor marker for preclinical trials of mouse prostate cancer models. Clin Cancer Res 2006; 11:7911-9. [PMID: 16278416 DOI: 10.1158/1078-0432.ccr-05-0953] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Current prostate cancer research in both basic and preclinical trial studies employ genetically engineered mouse models. However, unlike in human prostate cancer patients, rodents have no counterpart of prostatic-specific antigen (PSA) for monitoring prostate cancer initiation and progression. In this study, we established a mouse serum tumor marker from a mouse homologue of human prostate secretory protein of 94 amino acids (PSP94). Immunohistochemistry studies on different histologic grades from both transgenic and knock-in mouse prostate cancer models showed the down-regulation of tissue PSP94 expression (P < 0.001), the same as for PSA and PSP94 in humans. The presence of mouse serum PSP94 was shown by affinity column and immunoprecipitation purification using a polyclonal mouse PSP94 antibody. A competitive ELISA protocol was established to quantify serum PSP94 levels with a sensitivity of 1 ng/mL. Quantified serum levels of mouse PSP94 ranged from 49.84 ng/mL in wild-type mice to 113.86, 400.45, and 930.90 ng/mL in mouse prostatic intraepithelial neoplasia with microinvasion, well differentiated, moderately differentiated, and poorly differentiated prostate cancer genetically engineered prostate cancer mice, respectively (P < 0.01, n = 68). This increase in serum PSP94 is also well correlated with age and tumor weight. Through longitudinal monitoring of serum PSP94 levels of castrated mice (androgen ablation therapy), we found a correlation between responsiveness/refractory prostate tissues and serum PSP94 levels. The utility of mouse serum PSP94 as a marker in hormone therapy was further confirmed by three-dimensional ultrasound imaging. The establishment of the first rodent prostate cancer serum biomarker will greatly facilitate both basic and preclinical research on human prostate cancer.
Collapse
Affiliation(s)
- Isaac Van Huizen
- Department of Surgery, Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Wu G, Yu L, Wang L, Wang H, Xuan JW. Application of Gleason analogous grading system and flow cytometry DNA analysis in a novel knock-in mouse prostate cancer model. Postgrad Med J 2006; 82:40-5. [PMID: 16397079 PMCID: PMC2563736 DOI: 10.1136/pgmj.2005.038042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
OBJECTIVE A new knock-in mouse adenocarcinoma prostate model (KIMAP) was established, which showed a close to human kinetics of tumour development. This study used a new mouse histological grading system similar to the human Gleason grading system and flow cytometry DNA analysis to measure and compare the new KIMAP model with human CaP and transgenic mouse adenocarcinoma prostate (TGMAP) model. METHODS According to heterogeneity of the clinical standard for prostate cancer diagnosis, a close to human mouse standard for histological grading and scoring system, Gleason analogous grading system, was established in this study. Sixty KIMAP and 48 TGMAP prostate cancer samples were measured and compared with human CaP. Flow cytometry DNA analysis was performed on malignant prostate tissues obtained from both TGMAP and KIMAP models. RESULTS Mice with CaP from KIMAP (n = 60) and TGMAP (n = 48) models showed a different distribution of histological scores (p = 0.000). KIMAP mice showed higher percentage (53.3%) of compound histological score rate than TGMAP (25%), but closer to the human clinical average (50%), which showed significant correlation with age (p = 0.001), while TGMAP mice showed unbalanced and random score distribution in all age groups. Flow cytometry analyses showed that most tumour tissues in KIMAP were diploid, analogous to the human condition, while all the TGMAP mice showed aneuploid tumours. CONCLUSIONS Results of this study further show that KIMAP, a new generation of murine prostate cancer model, could be used as a supplementary model in addition to the currently widely used transgenic models.
Collapse
Affiliation(s)
- G Wu
- Department of Urology, Xijing Hospital, the Fourth Military Medical University, Xi'an, China, 710032.
| | | | | | | | | |
Collapse
|
34
|
Shukeir N, Garde S, Wu JJ, Panchal C, Rabbani SA. Prostate secretory protein of 94 amino acids (PSP-94) and its peptide (PCK3145) as potential therapeutic modalities for prostate cancer. Anticancer Drugs 2005; 16:1045-51. [PMID: 16222145 DOI: 10.1097/00001813-200511000-00002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This review focuses on the promising roles of prostate secretory protein of 94 amino acids (PSP-94) and one of its derived peptides (PCK3145) as potential therapeutic modalities for prostate cancer and its associated complications. Evaluation of these compounds was carried out in vitro and in vivo using syngeneic models of rat prostate cancer. Overproduction of parathyroid hormone-related protein (PTHrP) results in the development of hypercalcemia of malignancy in several malignancies including prostate cancer. In order to evaluate the effect of PSP-94 and PCK3145 on prostate cancer progression, the rat Dunning R3227 MatLyLu cell line transfected with full-length cDNA encoding PTHrP (MatLyLu-PTHrP) was used. As the main pathogenetic factor of hypercalcemia of malignancy, overexpression of PTHrP was aimed at mimicking the hypercalcemic nature seen in patients suffering from late-stage cancer. In vitro studies showed that PSP-94 and PCK3145 can cause a dose-dependent inhibition in the growth of MatLyLu-PTHrP cells. For in vivo studies, male Copenhagen rats were inoculated either s.c. into the right flank or directly into the left ventricle via intracardiac (i.c.) inoculation with MatLyLu-PTHrP cells. In these models, s.c. injection of MatLyLu cells results in the development of primary tumor growth, whereas i.c. inoculation routinely results in the development of experimental skeletal metastases in the lumbar vertebrae causing hind-limb paralysis. Administration of PSP-94 and PCK3145 into tumor-bearing animals resulted in a dose-dependent inhibition of primary tumor growth, and tumoral and plasma PTHrP levels, and in the reduction of plasma calcium levels. Additionally, treatment with PSP-94 or PCK3145 caused an inhibition of skeletal metastases resulting in a significant delay in the development of hind-limb paralysis. Interestingly, equimolar concentrations of PCK3145 were shown to be more effective in delaying the development of experimental skeletal metastases as compared to PSP-94. One of the possible mechanisms of action of these modalities is through the induction of apoptosis which was observed by both in-vitro and in-vivo analyses of MatLyLu-PTHrP cells and tumors. Several intracellular mechanisms can also be involved in inhibiting PTHrP production and anti-tumor effects of PSP-94 and PCK3145. Collectively, these studies warrant the continued clinical development of these agents as therapeutic agents for patients with hormone-refractory prostate cancer.
Collapse
Affiliation(s)
- Nicholas Shukeir
- Department of Medicine, Physiology and Oncology, McGill University Health Centre, Montreal, Quebec, Canada, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
35
|
Gabril MY, Duan W, Wu G, Moussa M, Izawa JI, Panchal CJ, Sakai H, Xuan JW. A novel knock-in prostate cancer model demonstrates biology similar to that of human prostate cancer and suitable for preclinical studies. Mol Ther 2005; 11:348-62. [PMID: 15727931 DOI: 10.1016/j.ymthe.2004.12.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2004] [Accepted: 12/11/2004] [Indexed: 10/25/2022] Open
Abstract
Preclinical studies of prostate cancer (CaP) have employed a genetically engineered mouse model, since there is no naturally occurring CaP in rodents. We have previously reported a new knock-in mouse adenocarcinoma prostate (KIMAP) model. In this study, we demonstrate that the new model possesses a tumor architecture of heterogeneity and multifocality similar to that of human CaP, by utilizing a new compound scoring system to compare with the PSP94 (approved gene symbol Msmb) gene-directed transgenic mouse CaP model (TGMAP). KIMAP mice showed a balanced distribution of tumor extent, which penetrated the prostate gland. Comparative studies on cDNA microarrays demonstrated that KIMAP tumors were upregulated with higher contents of immunoresponse genes, whereas PSP-TGMAP tumors had neuroendocrine (NE) differentiation. The majority of KIMAP mice did not progress to NE CaP, which was observed only at a very late stage and a low frequency. Several tumor marker genes characteristic of human CaP were uniquely identified in KIMAP tumors, including hepsin, maspin, Nkx3.1, CD10 and PSP94 (similar to PSA), etc. The differences between these two CaP models are attributed to the introduction of a single endogenous knock-in mutation. Due to the similarities between human CaP tumors and the PSP-KIMAP tumors, this preclinical model may supplement the current transgenic models to study CaP more accurately.
Collapse
Affiliation(s)
- Manal Y Gabril
- Department of Surgery, University of Western Ontario, London, ON N6A 4G5, Canada
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Wirtzfeld LA, Wu G, Bygrave M, Yamasaki Y, Sakai H, Moussa M, Izawa JI, Downey DB, Greenberg NM, Fenster A, Xuan JW, Lacefield JC. A new three-dimensional ultrasound microimaging technology for preclinical studies using a transgenic prostate cancer mouse model. Cancer Res 2005; 65:6337-45. [PMID: 16024636 DOI: 10.1158/0008-5472.can-05-0414] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Prostate cancer is the most common cancer in adult men in North America. Preclinical studies of prostate cancer employ genetically engineered mouse models, because prostate cancer does not occur naturally in rodents. Widespread application of these models has been limited because autopsy was the only reliable method to evaluate treatment efficacy in longitudinal studies. This article reports the first use of three-dimensional ultrasound microimaging for measuring tumor progression in a genetically engineered mouse model, the 94-amino acid prostate secretory protein gene-directed transgenic prostate cancer model. Qualitative comparisons of three-dimensional ultrasound images with serial histology sections of prostate tumors show the ability of ultrasound to accurately depict the size and shape of malignant masses in live mice. Ultrasound imaging identified tumors ranging from 2.4 to 14 mm maximum diameter. The correlation coefficient of tumor diameter measurements done in vivo with three-dimensional ultrasound and at autopsy was 0.998. Prospective tumor detection sensitivity and specificity were both >90% when diagnoses were based on repeated ultrasound examinations done on separate days. Representative exponential growth curves constructed via longitudinal ultrasound imaging indicated volume doubling times of 5 and 13 days for two prostate tumors. Compared with other microimaging and molecular imaging modalities, the application of three-dimensional ultrasound imaging to prostate cancer in mice showed advantages, such as high spatial resolution and contrast in soft tissue, fast and uncomplicated protocols, and portable and economical equipment that will likely enable ultrasound to become a new microimaging modality for mouse preclinical trial studies.
Collapse
Affiliation(s)
- Lauren A Wirtzfeld
- Biomedical Engineering Graduate Program, University of Western Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abdulkadir SA, Kim J. Genetically engineered murine models of prostate cancer: insights into mechanisms of tumorigenesis and potential utility. Future Oncol 2005; 1:351-60. [PMID: 16556009 DOI: 10.1517/14796694.1.3.351] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
There has been substantial progress made recently in the effort to model human prostate cancer in mice. Several mutant mice have been generated which mimic various aspects of the human disease, including the development of preneoplastic lesions, invasive carcinoma, and metastases. These mouse reagents provide the research community with valuable new tools for dissecting the mechanisms of tumorigenesis, as well as for testing new targeted therapies. This review will summarize some of these models and their utility, as well as propose future challenges for developing improved models.
Collapse
Affiliation(s)
- Sarki A Abdulkadir
- The University of Alabama at Birmingham, Department of Pathology,701 19th Street South, 533 LHRB, Birmingham, AL 35294, USA.
| | | |
Collapse
|
38
|
Kasper S. Survey of genetically engineered mouse models for prostate cancer: analyzing the molecular basis of prostate cancer development, progression, and metastasis. J Cell Biochem 2005; 94:279-97. [PMID: 15565647 DOI: 10.1002/jcb.20339] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Genetically engineered mouse models have been generated to study the molecular basis of prostate cancer (PCa) development, progression, and metastasis. Selection of a prostate-specific promoter, such as the probasin (PB) and prostate specific antigen (PSA) promoters, is critical for generating sufficient levels of transgene expression to elicit a phenotypic response. To date, target genes have included growth factors, cell cycle regulators, pro- and anti-apoptotic proteins, steroid hormone and growth factor receptors, oncogenes, tumor suppressors, and homeobox genes. The experimental approaches used to generate these mouse models include overexpression of the transgene, knock-out/knock-in of transgene expression and conditional regulation of expression using Cre/lox technology. This review summarizes the promoters, which have been utilized to create genetically engineered mouse models for PCa. Furthermore, the effects of gene disruption on promoting low- and high-grade intraepithelial neoplasia (LGPIN and HGPIN, respectively), locally invasive carcinoma and metastatic lesions will be discussed. To date, the PB-Cre4 x PTENloxp/loxp model appears to be the only model that represents the entire continuum of prostate adenocarcinoma development, tumor progression, and metastasis, although models that develop prostatic neuroendocrine (NE) cancer can be generated by disrupting one genetic event. Indeed, analysis of bigenic mouse models indicates that two genetic events are generally required for progression from HGPIN to locally invasive adenocarcinoma and that two to five genetic events can promote metastasis to distant sites. Studying the effects of genetic perturbation on PCa biology will increase our understanding of the disease process and potentially provide targets for developing novel therapeutic approaches.
Collapse
Affiliation(s)
- Susan Kasper
- Department of Urologic Surgery, the Vanderbilt Prostate Cancer Center, Nashville, Tennessee 37232-2765, USA.
| |
Collapse
|
39
|
Duan W, Gabril MY, Moussa M, Chan FL, Sakai H, Fong G, Xuan JW. Knockin of SV40 Tag oncogene in a mouse adenocarcinoma of the prostate model demonstrates advantageous features over the transgenic model. Oncogene 2005; 24:1510-24. [PMID: 15674347 DOI: 10.1038/sj.onc.1208229] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Prostate cancer (CaP) is the most common cancer in adult men in North America. Since there is no naturally occurring prostate cancer in the mouse, preclinical studies stipulate for the establishment of a genetically manipulated mouse CaP model with features close to the human situation. In view of the limitations of transgenic technique-derived CaP models, herein we report the first application of knockin technology to establish a new mouse adenocarcinoma prostate model (PSP-KIMAP) by targeting of SV40 Tag to a prostate tissue-specific gene, PSP94 (prostate secretory protein of 94 amino acids). In order to demonstrate its novelty, we compared KIMAP to a PSP94 gene-directed transgenic mouse adenocarcinoma of the prostate (PSP-TGMAP) model. The CaP development of the PSP-KIMAP mice started almost immediately after puberty at 10 weeks of age from mouse prostatic intraepithelial neoplasia (mPIN) with microinvasion to well-differentiated CaP, and demonstrated a close-to-human kinetics of prolonged tumor growth and a predominance of well and moderately differentiated tumors. The invasive nature of KIMAP model was demonstrated by multitissue metastases (lymph node, lung and liver etc) and also by immunohistochemical study of multiple invasive prostate tumor markers. PSP-KIMAP model is responsive to androgen deprivation (castration). The knockin technology in our KIMAP model demonstrates highly predictive CaP development procedures and many advantageous features, which the traditional transgenic technique-derived CaP models could not reach for both basic and clinical studies. These features include the high stability of both phenotype and genotype, highly synchronous prostate cancer development, high and precise prostate tissue targeting and with no founder line variation. The differences between the two CaP models were attributed to the introduction of a single endogenous knockin mutation, resulting in a CaP model self-regulated and controlled by a prostate gene promoter/enhancer of PSP94.
Collapse
Affiliation(s)
- Wenming Duan
- Department of Surgery, University of Western Ontario, Ontario, London, Canada
| | | | | | | | | | | | | |
Collapse
|
40
|
Wu G, Wang L, Yu L, Wang H, Xuan JW. The Use of Three-Dimensional Ultrasound Micro-Imaging to Monitor Prostate Tumor Development in a Transgenic Prostate Cancer Mouse Model. TOHOKU J EXP MED 2005; 207:181-9. [PMID: 16210828 DOI: 10.1620/tjem.207.181] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Longitudinal studies of mouse cancer models required large cohorts since autopsy was the only reliable method to evaluate treatment efficacy. This paper reports the use of high-resolution three-dimensional ultrasound micro-imaging to monitor prostate tumor development in genetically engineered mice. Twenty-nine genetically engineered prostate cancer mice, including castrated and uncastrated mice, were imaged by three-dimensional ultrasound. Qualitative comparisons of three-dimensional ultrasound images with histology sections of prostate tumors demonstrate the ability of ultrasound to accurately depict the size and shape of malignant masses in live mice. The correlation coefficient of tumor diameter measurements performed in vivo with three-dimensional ultrasound and at autopsy was 0.997. Prospective tumor detection sensitivity and specificity were 91.7% and 100%. Representative exponential growth curves constructed via longitudinal ultrasound imaging indicated diameter doubling times from 10 to 37 days for four prostate tumors during an initial period of rapid progression. Three-dimensional ultrasound will likely become the micro-imaging modality most readily adopted for mouse pre-clinical trial studies.
Collapse
Affiliation(s)
- Guojun Wu
- Department of Urology, Xi-jing Hospital, the Fourth Military Medical University, Xi'an.
| | | | | | | | | |
Collapse
|
41
|
Gabril M, Xuan J, Moussa M, Dinney CPN, Chin JL, Izawa JI. Characterization of initiation of angiogenesis in early stages of prostate adenocarcinoma development and progression in a transgenic murine model. Urology 2004; 64:1233-7. [PMID: 15596214 DOI: 10.1016/j.urology.2004.07.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2004] [Accepted: 07/30/2004] [Indexed: 11/27/2022]
Abstract
OBJECTIVES A novel prostate-specific protein of 94 amino acids (PSP94) promoter/enhancer-directed transgenic murine model of prostate cancer (CaP) was examined to determine the temporal relationship of angiogenesis with the development and progression of CaP. METHODS Immunohistochemistry and in situ hybridization were performed to determine the protein and mRNA expression of basic fibroblast growth factor, vascular endothelial growth factor, and microvessel formation at different stages of CaP development and progression. RESULTS Differential expression of basic fibroblast growth factor and vascular endothelial growth factor protein was found with the development and progression of CaP (P <0.0001 and P <0.0001, respectively). Angiogenesis was identified in CaP. mRNA expression of basic fibroblast growth factor and vascular endothelial growth factor was present from high-grade prostatic intraepithelial neoplasia to poorly differentiated CaP. CONCLUSIONS The PSP94 gene is conserved in humans and rodents; therefore, the PSP94 transgenic murine model of CaP provides a preclinical model to test such antiangiogenic or other chemopreventive therapies that may be predictive of human CaP.
Collapse
Affiliation(s)
- Manal Gabril
- Department of Surgery, London Health Sciences Centre, University of Western Ontario, London, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
42
|
Winter SF, Cooper AB, Greenberg NM. Models of metastatic prostate cancer: a transgenic perspective. Prostate Cancer Prostatic Dis 2004; 6:204-11. [PMID: 12970722 DOI: 10.1038/sj.pcan.4500655] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
PURPOSE Transgenic mouse models are proving to be invaluable in our effort to understand the molecular basis of metastatic prostate cancer (CaP). We review and discuss how current animal models have contributed to our understanding of the metastatic cascade and how transgenic technology is being used to develop the next generation of mouse models. Our goal is to provide a review of the recent advances and provide a framework for further studies. MATERIALS AND METHODS We performed a MEDLINE search of the literature on CaP metastasis transgenic and animal models. RESULTS We present a summary of the characteristics of nine different animal models of CaP. Each model is unique and provides valuable insight into the molecular mechanisms governing the progression of CaP. Our experience with transgenic models and all the new data from the literature predicts that we will be able to develop genetically engineered mice that accurately mimic the heterogeneity, androgen-independent growth, and metastatic spread seen in clinical disease. CONCLUSION In order to elucidate the molecular mechanisms of CaP metastasis, it will be necessary to compare gene and protein expression patterns and biochemical analyses of clinical metastatic disease with data obtained from current models. We will also need to refine our ability to engineer and characterize genetic perturbation models. This type of integrative and iterative approach should facilitate better understanding of the molecular biology of CaP metastases.
Collapse
Affiliation(s)
- S F Winter
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | |
Collapse
|
43
|
Kwong J, Lui K, Chan PSF, Ho SM, Wong YC, Xuan JW, Chan FL. Expression study of three secretory proteins (prostatic secretory protein of 94 amino acids, probasin, and seminal vesicle secretion II) in dysplastic and neoplastic rat prostates. Prostate 2003; 56:81-97. [PMID: 12746832 DOI: 10.1002/pros.10228] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Prostatic secretory protein of 94 amino acids (PSP94), probasin, and seminal vesicle secretion II (SVSII) are the three major proteins secreted by the lateral lobe of the rat prostate gland. Among these proteins, rodent PSP94 but not probasin and SVSII has a human homologue and it is also a major secretory protein of the human prostate, in addition to prostatic acid phosphatase and prostate-specific antigen. METHODS In this study, we examined and compared the mRNA expression of these three secretory markers in three rat models of prostate cancer including the sex steroid-induced dysplasia (prostatic intraepithelial neoplasia or PIN) in Noble (Nb) rat model, an androgen-independent Nb rat prostatic tumor (AIT) and Dunning rat prostatic adenocarcinomas (both androgen-dependent and -independent) by in situ hybridization (ISH), reverse transcriptase-polymerase chain reaction (RT-PCR), and immunohistochemistry. RESULTS The transcripts for the three markers were highly expressed in the secretory epithelium of normal lateral prostate (LP). Their hybridization signals became reduced in the epithelial cells in the low-grade PINs and significantly weakened or lost in the high-grade PINs induced in the LP. Interestingly, we observed that some dysplastic cells located at the basal compartment of the PIN lesions, and nests of outpouching epithelial cells in the vicinity of PINs, expressed positive hybridization signals of three markers. In the adenocarcinoma, signals of probasin but not PSP94 and SVSII were detected. No hybridization signals were detected in both Dunning and AIT tumors. By RT-PCR, transcripts for these proteins were still detected but significantly reduced in the Dunning tumors, whereas in the AIT tumor, only SVSII transcripts were detected. Immunohistochemistry of PSP94 also showed a reduced staining in the PIN lesions, but no immunoreactivity was seen in the rat prostatic tumors. CONCLUSIONS The mRNA expression of the three prostatic secretory markers were decreased in the hormone-induced PINs and in two rat prostatic tumors, indicating that the androgen-regulated secretory differentiation was impaired during the development of the premalignant lesion and further reduced in advanced tumors. The abnormal expression pattern of these secretory markers and androgen receptor (AR) in the basal compartment of the PIN lesions suggests that there is a population of cell types with secretory phenotype appearing in the basal cell layer during the early malignant transformation of the prostatic epithelium.
Collapse
Affiliation(s)
- Joseph Kwong
- Department of Anatomy, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | | | | | | | | | | | | |
Collapse
|
44
|
Thota A, Karajgikar M, Duan W, Gabril MY, Chan FL, Wong YC, Sakai H, Chin JL, Moussa M, Xuan JW. Mouse PSP94 expression is prostate tissue-specific as demonstrated by a comparison of multiple antibodies against recombinant proteins. J Cell Biochem 2003; 88:999-1011. [PMID: 12616537 DOI: 10.1002/jcb.10425] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Prostate tissue-specific gene expression is crucial for driving potentially therapeutic genes to target specifically to the prostate. Prostate secretory protein of 94 amino acids (PSP94), also known as beta-MSP (microseminoprotein), is one of the three most abundant secretory proteins of the prostate gland, and is generally considered to be prostate tissue-specific. We have previously demonstrated that the expression of the rat PSP94 gene is strictly prostate tissue-specific by an antibody against a recombinant rat PSP94. In order to study prostate targeting utilizing the PSP94 gene in a mouse pre-clinical experimental model, we need to establish antibodies against mouse PSP94 to confirm if it is prostate tissue-specific as well. In this study, firstly we raised a polyclonal antibody against a recombinant glutathione-S-transferase- (GST-) mouse mature form of PSP94. However, it showed very poor immunoreactivity against prostate tissue PSP94 as tested in Western blotting experiments. Neither antibodies against rat PSP94 nor mouse PSP94 showed significant cross-reactivity. Thus a second antibody was established against a recombinant mouse mature PSP94 containing N-terminal polyhistidines, and stronger immunoreactivity against mouse prostate tissue PSP94 was identified in Western blotting experiments. Both of these antibodies showed immunohistochemical reactivity, while the latter showed stronger reactivity in IHC when tested with different fixatives. By studying tissue distribution, we demonstrated that, as with rat PSP94, mouse PSP94 is strictly prostate tissue-specific in experiments of both Western blotting and immunohistochemistry (IHC). This conclusion was also derived from a comparison among antibodies against human, rat, and mouse PSP94, showing very different immunoreactivities in Western blotting and IHC. Finally, a competitive assay between different species was performed. We demonstrated that antibodies against PSP94 from different species (human, primate, rodents) have poor cross-reactivities. These observations also indicate that the PSP94 gene is a rapidly evolving gene in all species. Results from this study have led to the possibility of utilizing PSP94 as a targeting agent specifically to the prostate in a mouse experimental model.
Collapse
Affiliation(s)
- Anuradha Thota
- Department of Surgery, University of Western Ontario, London, Ontario, N6A 4G5 Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|