1
|
Liu XQ, Xin HY, Lyu YN, Ma ZW, Peng XC, Xiang Y, Wang YY, Wu ZJ, Cheng JT, Ji JF, Zhong JX, Ren BX, Wang XW, Xin HW. Oncolytic herpes simplex virus tumor targeting and neutralization escape by engineering viral envelope glycoproteins. Drug Deliv 2019; 25:1950-1962. [PMID: 30799657 PMCID: PMC6282442 DOI: 10.1080/10717544.2018.1534895] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Oncolytic herpes simplex viruses (oHSVs) have been approved for clinical usage and become more and more popular for tumor virotherapy. However, there are still many issues for the oHSVs used in clinics and clinical trials. The main issues are the limited anti-tumor effects, intratumor injection, and some side effects. To overcome such challenges, here we review the genetic engineering of the envelope glycoproteins for oHSVs to target tumors specifically, and at the same time we summarize the many neutralization antibodies against the envelope glycoproteins and align the neutralization epitopes with functional domains of the respective glycoproteins for future identification of new functions of the glycoproteins and future engineering of the epitopes to escape from host neutralization.
Collapse
Affiliation(s)
- Xiao-Qin Liu
- a Faculty of Medicine, The Second School of Clinical Medicine , Yangtze University, Nanhuan , Jingzhou , Hubei , China.,b Laboratory of Oncology, Faculty of Medicine, Center for Molecular Medicine, School of Basic Medicine , Yangtze University , Jingzhou , Hubei , China.,c Faculty of Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medicine , Yangtze University , Jingzhou , Hubei , China.,d Department of Nursing and Medical Imaging Technology , Yangtze University , Jingzhou , Hubei , China
| | - Hong-Yi Xin
- e Star Array Pte Ltd , JTC Medtech Hub , Singapore , Singapore
| | - Yan-Ning Lyu
- f Institute for Infectious Diseases and Endemic Diseases Prevention and Control, Beijing Center for Diseases Prevention and Control , Beijing , China
| | - Zhao-Wu Ma
- a Faculty of Medicine, The Second School of Clinical Medicine , Yangtze University, Nanhuan , Jingzhou , Hubei , China.,b Laboratory of Oncology, Faculty of Medicine, Center for Molecular Medicine, School of Basic Medicine , Yangtze University , Jingzhou , Hubei , China.,c Faculty of Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medicine , Yangtze University , Jingzhou , Hubei , China
| | - Xiao-Chun Peng
- a Faculty of Medicine, The Second School of Clinical Medicine , Yangtze University, Nanhuan , Jingzhou , Hubei , China.,b Laboratory of Oncology, Faculty of Medicine, Center for Molecular Medicine, School of Basic Medicine , Yangtze University , Jingzhou , Hubei , China.,g Faculty of Medicine, Department of Pathophysiology, School of Basic Medicine , Yangtze University , Jingzhou , Hubei , China
| | - Ying Xiang
- a Faculty of Medicine, The Second School of Clinical Medicine , Yangtze University, Nanhuan , Jingzhou , Hubei , China.,b Laboratory of Oncology, Faculty of Medicine, Center for Molecular Medicine, School of Basic Medicine , Yangtze University , Jingzhou , Hubei , China.,c Faculty of Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medicine , Yangtze University , Jingzhou , Hubei , China
| | - Ying-Ying Wang
- a Faculty of Medicine, The Second School of Clinical Medicine , Yangtze University, Nanhuan , Jingzhou , Hubei , China.,b Laboratory of Oncology, Faculty of Medicine, Center for Molecular Medicine, School of Basic Medicine , Yangtze University , Jingzhou , Hubei , China.,c Faculty of Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medicine , Yangtze University , Jingzhou , Hubei , China
| | - Zi-Jun Wu
- a Faculty of Medicine, The Second School of Clinical Medicine , Yangtze University, Nanhuan , Jingzhou , Hubei , China.,b Laboratory of Oncology, Faculty of Medicine, Center for Molecular Medicine, School of Basic Medicine , Yangtze University , Jingzhou , Hubei , China.,c Faculty of Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medicine , Yangtze University , Jingzhou , Hubei , China.,d Department of Nursing and Medical Imaging Technology , Yangtze University , Jingzhou , Hubei , China
| | - Jun-Ting Cheng
- a Faculty of Medicine, The Second School of Clinical Medicine , Yangtze University, Nanhuan , Jingzhou , Hubei , China.,b Laboratory of Oncology, Faculty of Medicine, Center for Molecular Medicine, School of Basic Medicine , Yangtze University , Jingzhou , Hubei , China.,c Faculty of Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medicine , Yangtze University , Jingzhou , Hubei , China
| | - Jia-Fu Ji
- h Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery , Peking University Cancer Hospital and Institute , Haidian , Beijing , China
| | - Ji-Xin Zhong
- i Cardiovascular Research Institute , Case Western Reserve University , Cleveland , OH , USA
| | - Bo-Xu Ren
- a Faculty of Medicine, The Second School of Clinical Medicine , Yangtze University, Nanhuan , Jingzhou , Hubei , China.,d Department of Nursing and Medical Imaging Technology , Yangtze University , Jingzhou , Hubei , China
| | - Xian-Wang Wang
- a Faculty of Medicine, The Second School of Clinical Medicine , Yangtze University, Nanhuan , Jingzhou , Hubei , China.,b Laboratory of Oncology, Faculty of Medicine, Center for Molecular Medicine, School of Basic Medicine , Yangtze University , Jingzhou , Hubei , China.,j Faculty of Medicine, Department of Laboratory Medicine, School of Basic Medicine , Yangtze University , Jingzhou , Hubei , China
| | - Hong-Wu Xin
- a Faculty of Medicine, The Second School of Clinical Medicine , Yangtze University, Nanhuan , Jingzhou , Hubei , China.,b Laboratory of Oncology, Faculty of Medicine, Center for Molecular Medicine, School of Basic Medicine , Yangtze University , Jingzhou , Hubei , China.,c Faculty of Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medicine , Yangtze University , Jingzhou , Hubei , China
| |
Collapse
|
2
|
Tamura T, Kawabata C, Matsushita S, Sakaguchi M, Yoshida S. Malaria sporozoite protein expression enhances baculovirus-mediated gene transfer to hepatocytes. J Gene Med 2018; 18:75-85. [PMID: 27007512 DOI: 10.1002/jgm.2879] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 02/28/2016] [Accepted: 03/16/2016] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Baculovirus vector (BV) is able to transduce foreign genes into mammalian cells efficiently and safely by incorporating a mammalian promoter. In the present study, we tailored the surface proteins expressed by malaria sporozoites to enhance hepatocyte transduction. Sporozoites infect hepatocytes within minutes of initial entry into the blood circulation. Infectivity and hepatocyte-specific selectivity are mediated by the interplay between hepatocytes and sporozoite surface proteins. The circumsporozoite protein (CSP) and the thrombospondin-related anonymous protein (TRAP) bind to the heparan sulfate proteoglycan on the hepatocyte surface and contribute to sporozoite infection and hepatocyte selectivity. METHODS BVs displaying an ectodomain consisting of three different CSP variants (full-length, N-terminal and C-terminal) or TRAP on the virus envelope were constructed, and the resulting in vitro hepatocyte transduction efficiency was evaluated. RESULTS We demonstrated improved hepatocyte transduction efficiency in BVs expressing CSP or TRAP ectodomains compared to BVs without malaria surface proteins. In addition, gene transduction efficiencies for BVs displaying CSP or TRAP are higher than those expressing the preS1 antigen of the hepatitis B virus. CONCLUSIONS BVs expressing CSP or TRAP in the ectodomain could represent a promising hepatocyte-specific gene delivery methodology. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Takahiko Tamura
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University, School of Pharmacy, Kanazawa, Japan
| | - Chiaki Kawabata
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University, School of Pharmacy, Kanazawa, Japan
| | - Shunsuke Matsushita
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University, School of Pharmacy, Kanazawa, Japan
| | - Miako Sakaguchi
- Electron Microscope Room, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Shigeto Yoshida
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University, School of Pharmacy, Kanazawa, Japan
| |
Collapse
|
3
|
Goins WF, Hall B, Cohen JB, Glorioso JC. Retargeting of herpes simplex virus (HSV) vectors. Curr Opin Virol 2016; 21:93-101. [PMID: 27614209 DOI: 10.1016/j.coviro.2016.08.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 08/12/2016] [Indexed: 01/17/2023]
Abstract
Gene therapy applications depend on vector delivery and gene expression in the appropriate target cell. Vector infection relies on the distribution of natural virus receptors that may either not be present on the desired target cell or distributed in a manner to give off-target gene expression. Some viruses display a very limited host range, while others, including herpes simplex virus (HSV), can infect almost every cell within the human body. It is often an advantage to retarget virus infectivity to achieve selective target cell infection. Retargeting can be achieved by (i) the inclusion of glycoproteins from other viruses that have a different host-range, (ii) modification of existing viral glycoproteins or coat proteins to incorporate peptide ligands or single-chain antibodies (scFvs) that bind to the desired receptor, or (iii) employing soluble adapters that recognize both the virus and a specific receptor on the target cell. This review summarizes efforts to target HSV using these three strategies.
Collapse
Affiliation(s)
- William F Goins
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 424 BSP-2, 450 Technology Drive, Pittsburgh, PA 15219, United States.
| | - Bonnie Hall
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 424 BSP-2, 450 Technology Drive, Pittsburgh, PA 15219, United States
| | - Justus B Cohen
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 424 BSP-2, 450 Technology Drive, Pittsburgh, PA 15219, United States
| | - Joseph C Glorioso
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 424 BSP-2, 450 Technology Drive, Pittsburgh, PA 15219, United States
| |
Collapse
|
4
|
Toita R, Kawano T, Kang JH, Murata M. Applications of human hepatitis B virus preS domain in bio- and nanotechnology. World J Gastroenterol 2015; 21:7400-7411. [PMID: 26139986 PMCID: PMC4481435 DOI: 10.3748/wjg.v21.i24.7400] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 02/24/2015] [Accepted: 05/04/2015] [Indexed: 02/06/2023] Open
Abstract
Human hepatitis B virus (HBV) is a member of the family Hepadnaviridae, and causes acute and chronic infections of the liver. The hepatitis B surface antigen (HBsAg) contains the large (L), middle (M), and small (S) surface proteins. The L protein consists of the S protein, preS1, and preS2. In HBsAg, the preS domain (preS1 + preS2) plays a key role in the infection of hepatocytic cells by HBV and has several immunogenic epitopes. Based on these characteristics of preS, several preS-based diagnostic and therapeutic materials and systems have been developed. PreS1-specific monoclonal antibodies (e.g., MA18/7 and KR127) can be used to inhibit HBV infection. A myristoylated preS1 peptide (amino acids 2-48) also inhibits the attachment of HBV to HepaRG cells, primary human hepatocytes, and primary tupaia hepatocytes. Antibodies and antigens related to the components of HBsAg, preS (preS1 + preS2), or preS1 can be available as diagnostic markers of acute and chronic HBV infections. Hepatocyte-targeting delivery systems for therapeutic molecules (drugs, genes, or proteins) are very important for increasing the clinical efficacy of these molecules and in reducing their adverse effects on other organs. The selective delivery of diagnostic molecules to target hepatocytic cells can also improve the efficiency of diagnosis. In addition to the full-length HBV vector, preS (preS1 + preS2), preS1, and preS1-derived fragments can be useful in hepatocyte-specific targeting. In this review, we discuss the literature concerning the applications of the HBV preS domain in bio- and nanotechnology.
Collapse
|
5
|
Huang W, Li X, Yi M, Zhu S, Chen W. Targeted delivery of siRNA against hepatitis B virus by preS1 peptide molecular ligand. Hepatol Res 2014; 44:897-906. [PMID: 23799901 DOI: 10.1111/hepr.12189] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2013] [Revised: 05/30/2013] [Accepted: 06/19/2013] [Indexed: 01/05/2023]
Abstract
AIM For chronic hepatitis B virus (HBV) infection, the effects of current therapies are limited. RNA interference of virus-specific genes has emerged as a potential antiviral mechanism. However, a suitable delivery vector is still to be developed. We studied a novel vector transferring siRNA targeting hepatic cells in vivo and in vitro in order to find a new way to cure HBV-related live diseases. METHODS The preS1-9Arg ligand was used to deliver siRNA to HepG2 and to HepG2 2.2.15 cells. To validate the antiviral efficacy in vivo, a HBV viremic animal model was established by s.c. inoculation of HepG2 2.2.15 tumor cells in nude mice. The minimal retardation effect on the migration of siRNA was detected by gel electrophoresis to confirm the combination and the optimal ratio. Hepatitis B surface antigen (HBsAg) levels were detected by semiquantitatively enzyme-linked immunosorbent assay RNA levels were quantified with quantitative real-time polymerase chain reaction and protein levels were determined with immunoblots and immunohistochemistry. RESULTS PreS1-9Arg peptide strongly combined and transferred siRNA into HepG2 cells. PreS1-9Arg-siRNA molecular conjugate effectively reduced the production of HBsAg and HBV DNA without liver toxicity in vitro and in vivo. CONCLUSION The results indicated that preS1-9Arg may be a potential novel vector to deliver siRNA targeting liver cells.
Collapse
Affiliation(s)
- Wenjuan Huang
- Department of Laboratory Medicine, the Second Hospital Affiliated to Chongqing Medical University, Chongqing, China
| | | | | | | | | |
Collapse
|
6
|
Murata M, Narahara S, Umezaki K, Toita R, Tabata S, Piao JS, Abe K, Kang JH, Ohuchida K, Cui L, Hashizume M. Liver cell specific targeting by the preS1 domain of hepatitis B virus surface antigen displayed on protein nanocages. Int J Nanomedicine 2012; 7:4353-62. [PMID: 22927755 PMCID: PMC3420599 DOI: 10.2147/ijn.s31365] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Indexed: 02/06/2023] Open
Abstract
Protein nanocages are self-organized complexes of oligomers whose three-dimensional architecture can been determined in detail. These structures possess nanoscale inner cavities into which a variety of molecules, including therapeutic or diagnostic agents, can be encapsulated. These properties yield these particles suitable for a new class of drug delivery carrier, or as a bioimaging reagent that might respond to biochemical signals in many different cellular processes. We report here the design, synthesis, and biological characterization of a hepatocyte-specific nanocage carrying small heat-shock protein. These nanoscale protein cages, with a targeting peptide composed of a preS1 derivative from the hepatitis B virus on their surfaces, were prepared by genetic engineering techniques. PreS1-carrying nanocages showed lower cytotoxicity and significantly higher specificity for human hepatocyte cell lines than other cell lines in vitro. These results suggested that small heat-shock protein-based nanocages present great potential for the development of effective targeted delivery of various agents to specific cells.
Collapse
Affiliation(s)
- Masaharu Murata
- Department of Advanced Medical Initiatives, Faculty of Medical Science, Kyushu University, Fukuoka, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Baek H, Uchida H, Jun K, Kim JH, Kuroki M, Cohen JB, Glorioso JC, Kwon H. Bispecific adapter-mediated retargeting of a receptor-restricted HSV-1 vector to CEA-bearing tumor cells. Mol Ther 2010; 19:507-14. [PMID: 20924362 DOI: 10.1038/mt.2010.207] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The safety and efficacy of viral therapies for solid tumors can be enhanced by redirecting the virus infection to tumor-specific cell-surface markers. Successful retargeting of herpes simplex virus type 1 (HSV-1) has been achieved using vectors that carry a modified envelope glycoprotein D (gD) engineered to interact directly with novel receptors. In addition, soluble bridging molecules (adapters) have been used to link gD indirectly to cell-specific receptors. Here, we describe the development of an adapter connecting gD to the common tumor antigen carcinoembryonic antigen (CEA). The adapter consisted of a CEA-specific single-chain antibody fused to the gD-binding region of the gD receptor, herpes virus entry mediator (HVEM). We used this adapter in combination with a vector that is detargeted for recognition of the widely expressed gD receptor nectin-1, but retains an intact binding region for the less common HVEM. We show that the adapter enabled infection of HSV-resistant Chinese hamster ovary (CHO) cells expressing ectopic CEA and nectin-1/CEA-bearing human gastric carcinoma cells that are resistant to the vector alone. We observed cell-to-cell spread following adapter-mediated infection in vitro and reduced tumor growth in vivo, indicating that this method of vector retargeting may provide a novel strategy for tumor-specific delivery of tumoricidal HSV.
Collapse
Affiliation(s)
- Hyunjung Baek
- Division of Radiation Oncology, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
8
|
McCarthy HO, Wang Y, Mangipudi SS, Hatefi A. Advances with the use of bio-inspired vectors towards creation of artificial viruses. Expert Opin Drug Deliv 2010; 7:497-512. [PMID: 20151849 DOI: 10.1517/17425240903579989] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
IMPORTANCE OF THE FIELD In recent years, there has been a great deal of interest in the development of recombinant vectors based on biological motifs with potential applications in gene therapy. Several such vectors have been genetically engineered, resulting in biomacromolecules with new properties that are not present in nature. AREAS COVERED IN THIS REVIEW This review briefly discusses the advantages and disadvantages of the current state-of-the-art gene delivery systems (viral and non-viral) and then provides an overview on the application of various biological motifs in vector development for gene delivery. Finally, it highlights some of the most advanced bio-inspired vectors that are designed to perform several self-guided functions. WHAT THE READER WILL GAIN This review helps the readers get a better understanding about the history and evolution of bio-inspired fusion vectors with the potential to merge the strengths of both viral and non-viral vectors in order to create efficient, safe and cost-effective gene delivery systems. TAKE HOME MESSAGE With the emergence of new technologies such as recombinant bio-inspired vectors, it may not take long before non-viral vectors are observed that are not just safe and tissue-specific, but even more efficient than viral vectors.
Collapse
Affiliation(s)
- Helen O McCarthy
- Queens University Belfast, School of Pharmacy, BT9 7BL, Northern Ireland, UK
| | | | | | | |
Collapse
|
9
|
Abstract
The very deep knowledge acquired on the genetics and molecular biology of herpes simplex virus (HSV), has allowed the development of potential replication-competent and replication-defective vectors for several applications in human healthcare. These include delivery and expression of human genes to cells of the nervous systems, selective destruction of cancer cells, prophylaxis against infection with HSV or other infectious diseases, and targeted infection to specific tissues or organs. Replication-defective recombinant vectors are non-toxic gene transfer tools that preserve most of the neurotropic features of wild type HSV-1, particularly the ability to express genes after having established latent infections, and are thus proficient candidates for therapeutic gene transfer settings in neurons. A replication-defective HSV vector for the treatment of pain has recently entered in phase 1 clinical trial. Replication-competent (oncolytic) vectors are becoming a suitable and powerful tool to eradicate brain tumours due to their ability to replicate and spread only within the tumour mass, and have reached phase II/III clinical trials in some cases. The progress in understanding the host immune response induced by the vector is also improving the use of HSV as a vaccine vector against both HSV infection and other pathogens. This review briefly summarizes the obstacle encountered in the delivery of HSV vectors and examines the various strategies developed or proposed to overcome such challenges.
Collapse
Affiliation(s)
- Roberto Manservigi
- Department of Experimental and Diagnostic Medicine - Section of Microbiology, University of Ferrara, Via Luigi Borsari 46, 44100 Ferrara, Italy
| | | | | |
Collapse
|
10
|
Manservigi R, Argnani R, Marconi P. HSV Recombinant Vectors for Gene Therapy. Open Virol J 2010; 4:123-56. [PMID: 20835362 DOI: 10.2174/1874357901004030123] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Revised: 03/13/2010] [Accepted: 03/31/2010] [Indexed: 12/16/2022] Open
Abstract
The very deep knowledge acquired on the genetics and molecular biology of herpes simplex virus (HSV), has allowed the development of potential replication-competent and replication-defective vectors for several applications in human healthcare. These include delivery and expression of human genes to cells of the nervous systems, selective destruction of cancer cells, prophylaxis against infection with HSV or other infectious diseases, and targeted infection to specific tissues or organs. Replication-defective recombinant vectors are non-toxic gene transfer tools that preserve most of the neurotropic features of wild type HSV-1, particularly the ability to express genes after having established latent infections, and are thus proficient candidates for therapeutic gene transfer settings in neurons. A replication-defective HSV vector for the treatment of pain has recently entered in phase 1 clinical trial. Replication-competent (oncolytic) vectors are becoming a suitable and powerful tool to eradicate brain tumours due to their ability to replicate and spread only within the tumour mass, and have reached phase II/III clinical trials in some cases. The progress in understanding the host immune response induced by the vector is also improving the use of HSV as a vaccine vector against both HSV infection and other pathogens. This review briefly summarizes the obstacle encountered in the delivery of HSV vectors and examines the various strategies developed or proposed to overcome such challenges.
Collapse
Affiliation(s)
- Roberto Manservigi
- Department of Experimental and Diagnostic Medicine - Section of Microbiology, University of Ferrara, Via Luigi Borsari 46, 44100 Ferrara, Italy
| | | | | |
Collapse
|
11
|
Grandi P, Fernandez J, Szentirmai O, Carter R, Gianni D, Sena-Esteves M, Breakefield XO. Targeting HSV-1 virions for specific binding to epidermal growth factor receptor-vIII-bearing tumor cells. Cancer Gene Ther 2010; 17:655-63. [PMID: 20508670 PMCID: PMC2923688 DOI: 10.1038/cgt.2010.22] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Oncolytic herpes simplex virus (HSV) vectors have been used in early phase human clinical trials as a therapy for recurrent malignant glioblastoma. This treatment proved safe but limited improvements in patient survival were observed. The potency of these vectors might be enhanced by targeting vector infectivity to tumor cells. Glioma tumors often express a mutant form (vIII) of the epidermal growth factor receptor (EGFR) resulting in the presence of a novel epitope on the cell surface. This epitope is specifically recognized by a single chain antibody designated MR1-1. HSV-1 infection involves initial binding to heparan sulfate (HS) on the cell surface mediated primarily by the viral envelope, glycoprotein C (gC). Here we joined the MR1-1 single chain antibody (scFv) to the gC sequence deleted for the HS binding domain (HSBD) as a means of targeting viral attachment to EGFRvIII on glial tumor cells. Virions bearing MR1-1-modified-gC had 5-fold increased infectivity for EGFRvIII-bearing human glioma U87 cells compared to mutant receptor-deficient cells. Further, MR1-1/EGFRvIII mediated infection was more efficient for EGFRvIII-positive cells than was wild-type virus for either positive or negative cells. Sustained infection of EGFRvIII+ glioma cells by MR1-1-modified-gC bearing oncolytic virus, as compared to wild-type gC oncolytic virus, was also shown in subcutaneous tumors in vivo using firefly luciferase as a reporter of infection. These data demonstrate that HSV tropism can be manipulated so that virions recognize a cell specific binding site with increased infectivity for the target cell. The retargeting of HSV infection to tumor cells should enhance vector specificity, tumor cell killing and vector safety.
Collapse
Affiliation(s)
- P Grandi
- Department of Neurology, Harvard Medical School, Boston, MA, USA.
| | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
Since its emergence onto the gene therapy scene nearly 25 years ago, the replication-defective Herpes Simplex Virus Type-1 (HSV-1) amplicon has gained significance as a versatile gene transfer platform due to its extensive transgene capacity, widespread cellular tropism, minimal immunogenicity, and its amenability to genetic manipulation. Herein, we detail the recent advances made with respect to the design of the HSV amplicon, its numerous in vitro and in vivo applications, and the current impediments this virus-based gene transfer platform faces as it navigates a challenging path towards future clinical testing.
Collapse
|
13
|
Miyata R, Ueda M, Jinno H, Konno T, Ishihara K, Ando N, Kitagawa Y. Selective targeting by preS1 domain of hepatitis B surface antigen conjugated with phosphorylcholine-based amphiphilic block copolymer micelles as a biocompatible, drug delivery carrier for treatment of human hepatocellular carcinoma with paclitaxel. Int J Cancer 2009; 124:2460-7. [DOI: 10.1002/ijc.24227] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
14
|
Wang Z, Yuan Z, Jin L. Gene delivery into hepatocytes with the preS/liposome/DNA system. Biotechnol J 2009; 3:1286-95. [PMID: 18830969 DOI: 10.1002/biot.200800125] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Gene delivery into human hepatocytes remains a critical issue for the development of liver-directed gene therapy. Gene delivery based on non-viral vectors is an attractive approach relative to viral vectors. In this report, novel delivery system of preS/liposome/DNA virus-like particle (VLP) was developed for gene transfection into hepatocytes in vivo and in vitro. Plasmid pCMVbeta, expressing beta-galactosidase, was encapsulated with cationic liposome, and then the histidine-tagged preS domain of hepatitis B virus was coated on the surface of liposome/DNA to form preS/liposome/ DNA VLP. Transfection efficiencies of preS/liposome/DNA, liposome/DNA, naked DNA and preS were analyzed using several different human cell lines. The highest transfection efficiency was found using preS/liposome/DNA VLP as the transfection reagent in human hepatocyte (HH) cell line. Results show that preS domain of hepatitis B virus coated on liposome/DNA can be used for highly efficient gene transfection into human hepatocytes. Moreover, the target characteristic of preS/liposome/DNA was analyzed in vivo. After preS/liposome/DNA VLP was injected into immunocompromised (Nude) mice via the tail vein, most of beta-galactosidase was expressed in the liver; however, no significant target expression was found with the injection of liposome/ DNA or naked DNA. Our results show that preS/liposome/DNA VLP can be used as a novel liver-specific gene delivery system.
Collapse
Affiliation(s)
- Zhijun Wang
- CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China.
| | | | | |
Collapse
|
15
|
Kasuya T, Yamada T, Uyeda A, Matsuzaki T, Okajima T, Tatematsu K, Tanizawa K, Kuroda S. In vivo protein delivery to human liver-derived cells using hepatitis B virus envelope pre-S region. J Biosci Bioeng 2008; 106:99-102. [PMID: 18691539 DOI: 10.1263/jbb.106.99] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2007] [Accepted: 04/16/2008] [Indexed: 12/31/2022]
Abstract
Human hepatocyte-specific delivery of green fluorescent protein was succeeded in the mouse xenograft model by fusion with hepatitis B virus surface antigen pre-S regions (pre-S(1+2)), not with each pre-S region. The entire pre-S region would be useful for human liver-specific delivery of therapeutic proteins and bio-imaging fluoroproteins in biomedical field.
Collapse
Affiliation(s)
- Takeshi Kasuya
- Department of Structural Molecular Biology, Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Conner J, Braidwood L, Brown SM. A strategy for systemic delivery of the oncolytic herpes virus HSV1716: redirected tropism by antibody-binding sites incorporated on the virion surface as a glycoprotein D fusion protein. Gene Ther 2008; 15:1579-92. [PMID: 18701918 DOI: 10.1038/gt.2008.121] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We report on the ability of single-chain variable fragment (scFv) incorporated into the viral envelope to alter the tropism of herpes simplex virus (HSV) 1716. Using recombinant viruses expressing fusion proteins comprising cell-surface antigen-specific scFvs N terminus linked to amino acids 274-393 of gD, we demonstrated that the tropism of these HSV1716 variants was modified such that infection was mediated by the cognate antigen. Thus, an HSV1716 variant that expressed an anti-CD55 scFv targeting moiety linked to these gD residues was able to infect non-permissive Chinese hamster ovary cells expressing CD55 and this infection was specifically blocked by an anti-CD55 monoclonal antibody. Similarly, the infection efficiency of an HSV1716 variant for semi-permissive human leukaemic, CD38-positive cell lines was greatly improved by an anti-CD38 scFv targeting moiety linked to gD residues 274-393, and this enhanced infectivity was abrogated specifically by an anti-CD38 monoclonal antibody. Finally, intravenous/intraperitoneal injection of an HSV1716 variant displaying an anti-epidermal growth factor receptor (EGFR) scFv linked to residues 274-393 of gD enhanced destruction of subcutaneous EGFR-positive tumours in nude mice compared to unmodified HSV1716. Therefore, targeting of HSV1716 oncolysis to specific cell types through the display of entry mediating scFv/gD fusion proteins represents an efficient route for systemic delivery.
Collapse
Affiliation(s)
- J Conner
- Crusade Laboratories Ltd, Department of Neurology, Institute of Neurological Sciences, Southern General Hospital, Glasgow, Scotland, UK.
| | | | | |
Collapse
|
17
|
Lufino MMP, Edser PAH, Wade-Martins R. Advances in high-capacity extrachromosomal vector technology: episomal maintenance, vector delivery, and transgene expression. Mol Ther 2008; 16:1525-38. [PMID: 18628754 DOI: 10.1038/mt.2008.156] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Recent developments in extrachromosomal vector technology have offered new ways of designing safer, physiologically regulated vectors for gene therapy. Extrachromosomal, or episomal, persistence in the nucleus of transduced cells offers a safer alternative to integrating vectors which have become the subject of safety concerns following serious adverse events in recent clinical trials. Extrachromosomal vectors do not cause physical disruption in the host genome, making these vectors safe and suitable tools for several gene therapy targets, including stem cells. Moreover, the high insert capacity of extrachromosomal vectors allows expression of a therapeutic transgene from the context of its genomic DNA sequence, providing an elegant way to express normal splice variants and achieve physiologically regulated levels of expression. Here, we describe past and recent advances in the development of several different extrachromosomal systems, discuss their retention mechanisms, and evaluate their use as expression vectors to deliver and express genomic DNA loci. We also discuss a variety of delivery systems, viral and nonviral, which have been used to deliver episomal vectors to target cells in vitro and in vivo. Finally, we explore the potential for the delivery and expression of extrachromosomal transgenes in stem cells. The long-term persistence of extrachromosomal vectors combined with the potential for stem cell proliferation and differentiation into a wide range of cell types offers an exciting prospect for therapeutic interventions.
Collapse
Affiliation(s)
- Michele M P Lufino
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | | | | |
Collapse
|
18
|
Kouvatsis V, Argnani R, Tsitoura E, Arsenakis M, Georgopoulou U, Mavromara P, Manservigi R. Characterization of herpes simplex virus type 1 recombinants that express and incorporate high levels of HCV E2-gC chimeric proteins. Virus Res 2006; 123:40-9. [PMID: 16989918 DOI: 10.1016/j.virusres.2006.07.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2006] [Revised: 07/21/2006] [Accepted: 07/27/2006] [Indexed: 12/18/2022]
Abstract
We report the construction of two HSV-1 recombinants encoding chimeric forms of the E2 glycoprotein of HCV-1a composed of the ectodomain of E2 (aa384-611 or 384-711) fused to different parts of the transmembrane and cytoplasmic domain of the HSV-1 gC glycoprotein (gC). The parental HSV-1, known as KgBpK(-)gC(-), is deleted for gC and the main heparan sulphate (HS) binding domain of gB, and it exhibits impaired binding (ca. 80%) to HS compared to the wild type virus KOS [Laquerre, S., Argnani, R., Anderson, D.B., Zucchini, S., Manservigi, R., Glorioso, J.C., 1998. Heparan sulphate proteoglycan binding by herpes simplex virus type 1 glycoproteins B and C, which differ in their contributions to virus attachment, penetration, and cell-to-cell spread. J. Virol. 72, 6119-6130]. We show that gC:E2 proteins are efficiently expressed and transported to the cell surface. We also demonstrate that HSV-1 can incorporate both gC:E2 chimeric proteins into particles and show that incorporation of both chimeric molecules in the viral envelope partially restored binding (ca. 20%) of the HSV-1 recombinants to heparan sulphate. Finally, we showed that the gC:E2ScaI chimeric glycoprotein was able to bind a recombinant form of hCD81 and virion-expressed gC:E2ScaI permitted the binding of the HSV-1 recombinant virus to the hCD81 molecule.
Collapse
Affiliation(s)
- V Kouvatsis
- Molecular Virology Laboratory, Hellenic Pasteur Institute, Athens 11521, Greece
| | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Cancer remains a serious threat to human health, causing over 500 000 deaths each year in US alone, exceeded only by heart diseases. Many new technologies are being developed to fight cancer, among which are gene therapies and oncolytic virotherapies. Herpes simplex virus type 1 (HSV-1) is a neurotropic DNA virus with many favorable properties both as a delivery vector for cancer therapeutic genes and as a backbone for oncolytic viruses. Herpes simplex virus type 1 is highly infectious, so HSV-1 vectors are efficient vehicles for the delivery of exogenous genetic materials to cells. The inherent cytotoxicity of this virus, if harnessed and made to be selective by genetic manipulations, makes this virus a good candidate for developing viral oncolytic approach. Furthermore, its large genome size, ability to infect cells with a high degree of efficiency, and the presence of an inherent replication controlling mechanism, the thymidine kinase gene, add to its potential capabilities. This review briefly summarizes the biology of HSV-1, examines various strategies that have been used to genetically modify the virus, and discusses preclinical as well as clinical results of the HSV-1-derived vectors in cancer treatment.
Collapse
Affiliation(s)
- Y Shen
- Mary Crowley Medical Research Center, Dallas, TX 75201, USA
| | | |
Collapse
|
20
|
Argnani R, Lufino M, Manservigi M, Manservigi R. Replication-competent herpes simplex vectors: design and applications. Gene Ther 2006; 12 Suppl 1:S170-7. [PMID: 16231051 DOI: 10.1038/sj.gt.3302622] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Replication-competent vectors are derived from attenuated viruses whose genes, that are nonessential for replication in cultured cells in vitro, are either mutated or deleted. The removal of one or more nonessential genes may reduce pathogenicity without requiring a cell line to complement growth. Herpes simplex viruses (HSV) are potential vectors for several applications in human healthcare. These include delivery and expression of human genes to cells of the nervous systems, selective destruction of cancer cells, prophylaxis against infection with HSV or other infectious diseases, and targeted infection to specific tissues or organs. This review highlights the progress in creating attenuated genetically engineered HSV vectors.
Collapse
Affiliation(s)
- R Argnani
- Department of Experimental and Diagnostic Medicine, Section of Microbiology, University of Ferrara, Ferrara, Italy
| | | | | | | |
Collapse
|
21
|
Frampton AR, Goins WF, Nakano K, Burton EA, Glorioso JC. HSV trafficking and development of gene therapy vectors with applications in the nervous system. Gene Ther 2005; 12:891-901. [PMID: 15908995 DOI: 10.1038/sj.gt.3302545] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Herpes simplex virus type 1 (HSV-1) is a neurotropic double-stranded DNA virus that causes cold sores, keratitis, and rarely encephalitis in humans. Nonpathogenic HSV-1 gene transfer vectors have been generated by elimination of viral functions necessary for replication. The life cycle of the native virus includes replication in epithelial cells at the site of initial inoculation followed by retrograde axonal transport to the nuclei of sensory neurons innervating the area of cutaneous primary infection. In this review, we summarize the current understanding of the molecular basis for HSV cell entry, nuclear transport of the genome, virion egress following replication, and retrograde and anterograde axonal transport in neurons. We discuss how each of these properties has been exploited or modified to allow the generation of gene transfer vectors with particular utility for neurological applications. Recent advances in engineering virus entry have provided proof of principle that vector targeting is possible. Furthermore, significant and potentially therapeutic modifications to the pathological responses to various noxious insults have been demonstrated in models of peripheral nerve disease. These applications exploit the natural axonal transport mechanism of HSV, allowing transgene expression in the cell nucleus within the inaccessible trigeminal ganglion or dorsal root ganglion, following the noninvasive procedure of subcutaneous vector inoculation. These findings demonstrate the importance of understanding basic virology in the design of vector systems and the powerful approach of exploiting favorable properties of the parent virus in the generation of gene transfer vectors.
Collapse
Affiliation(s)
- A R Frampton
- Department of Molecular Genetics and Biochemistry, School of Medicine, University of Pittsburgh, PA 15261, USA
| | | | | | | | | |
Collapse
|
22
|
Nakano K, Asano R, Tsumoto K, Kwon H, Goins WF, Kumagai I, Cohen JB, Glorioso JC. Herpes Simplex Virus Targeting to the EGF Receptor by a gD-Specific Soluble Bridging Molecule. Mol Ther 2005; 11:617-26. [PMID: 15771964 DOI: 10.1016/j.ymthe.2004.12.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2004] [Revised: 12/03/2004] [Accepted: 12/07/2004] [Indexed: 10/25/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) enters cells via initial binding of envelope glycoproteins (g) C and B to cell-surface glycosaminoglycans (GAGs) and subsequent membrane fusion involving envelope gD, gB, and gH/gL. Current insights suggest that the fusion process is initiated by interaction of gD with a cognate cellular receptor, such as the widely distributed cell adhesion molecule nectin-1. To redirect the tropism of HSV-1, we have generated a soluble adapter protein (P-V528LH) comprising the gD-binding variable domain of nectin-1 fused to a single-chain antibody (528LH) recognizing the EGF receptor. The adapter molecule enabled HSV-1 entry into naturally nonpermissive CHO cells expressing the human EGF receptor, but not into CHO cells lacking the receptor, and entry was not observed when the antibody portion of the adapter was replaced with an antibody of different specificity. Adapter-mediated entry increased with the viral dose and was nearly as efficient as direct viral entry into nectin-1-bearing CHO cells. Entry depended on viral gD and was diminished in the absence of cellular GAGs. These experiments represent the first demonstration that a soluble molecule can direct HSV infection via a new receptor, supporting the possible utility of this approach for HSV retargeting.
Collapse
Affiliation(s)
- Kenji Nakano
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, E1246 Biomedical Science Tower, Pittsburgh, PA 15261, USA
| | | | | | | | | | | | | | | |
Collapse
|