1
|
Fliervoet LAL, Mastrobattista E. Drug delivery with living cells. Adv Drug Deliv Rev 2016; 106:63-72. [PMID: 27129442 DOI: 10.1016/j.addr.2016.04.021] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Revised: 04/18/2016] [Accepted: 04/19/2016] [Indexed: 12/25/2022]
Abstract
The field of drug delivery has grown tremendously in the past few decades by developing a wide range of advanced drug delivery systems. An interesting category is cell-based drug delivery, which includes encapsulation of drugs inside cells or attached to the surface and subsequent transportation through the body. Another approach involves genetic engineering of cells to secrete therapeutic molecules in a controlled way. The next-generation systems integrate expertise from synthetic biology to generate therapeutic gene networks for highly advanced sensory and output devices. These developments are very exciting for the drug delivery field and could radically change the way we administer biological medicines to chronically ill patients. This review is covering the use of living cells, either as transport system or production-unit, to deliver therapeutic molecules and bioactive proteins inside the body. It describes a wide range of approaches in cell-based drug delivery and highlights exceptional examples.
Collapse
Affiliation(s)
- Lies A L Fliervoet
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands
| | - Enrico Mastrobattista
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands.
| |
Collapse
|
2
|
Agnoletto C, Brunelli L, Melloni E, Pastorelli R, Casciano F, Rimondi E, Rigolin GM, Cuneo A, Secchiero P, Zauli G. The anti-leukemic activity of sodium dichloroacetate in p53mutated/null cells is mediated by a p53-independent ILF3/p21 pathway. Oncotarget 2016; 6:2385-96. [PMID: 25544776 PMCID: PMC4385858 DOI: 10.18632/oncotarget.2960] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 12/09/2014] [Indexed: 11/25/2022] Open
Abstract
B-chronic lymphocytic leukemia (B-CLL) patients harboring p53 mutations are invariably refractory to therapies based on purine analogues and have limited treatment options and poor survival. Having recently demonstrated that the mitochondria-targeting small molecule sodium dichloroacetate (DCA) exhibits anti-leukemic activity in p53wild-type B-CLL cells, the aim of this study was to evaluate the effect of DCA in p53mutated B-CLL cells and in p53mutated/null leukemic cell lines. DCA exhibited comparable cytotoxicity in p53wild-type and p53mutated B-CLL patient cell cultures, as well as in p53mutated B leukemic cell lines (MAVER, MEC-1, MEC-2). At the molecular level, DCA promoted the transcriptional induction of p21 in all leukemic cell types investigated, including p53null HL-60. By using a proteomic approach, we demonstrated that DCA up-regulated the ILF3 transcription factor, which is a known regulator of p21 expression. The role of the ILF3/p21 axis in mediating the DCA anti-leukemic activity was underscored by knocking-down experiments. Indeed, transfection with ILF3 and p21 siRNAs significantly decreased both the DCA-induced p21 expression and the DCA-mediated cytotoxicity. Taken together, our results emphasize that DCA is a small molecule that merits further evaluation as a therapeutic agent also for p53mutated leukemic cells, by acting through the induction of a p53-independent pathway.
Collapse
Affiliation(s)
- Chiara Agnoletto
- Department of Morphology, Surgery and Experimental Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Laura Brunelli
- Department of Morphology, Surgery and Experimental Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Elisabetta Melloni
- Department of Morphology, Surgery and Experimental Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Roberta Pastorelli
- Institute of Pharmacological Researches, IRCCS "Mario Negri", Milano, Italy
| | - Fabio Casciano
- Department of Morphology, Surgery and Experimental Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Erika Rimondi
- Department of Life Science, University of Trieste, Trieste, Italy
| | - Gian Matteo Rigolin
- Department of Medical Sciences, University of Ferrara-Arcispedale S. Anna, Ferrara, Italy
| | - Antonio Cuneo
- Department of Medical Sciences, University of Ferrara-Arcispedale S. Anna, Ferrara, Italy
| | - Paola Secchiero
- Department of Morphology, Surgery and Experimental Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Giorgio Zauli
- Institute for Maternal and Child Health, IRCCS "Burlo Garofolo", Trieste, Italy
| |
Collapse
|
3
|
Hörner M, Kaufmann B, Cotugno G, Wiedtke E, Büning H, Grimm D, Weber W. A chemical switch for controlling viral infectivity. Chem Commun (Camb) 2015; 50:10319-22. [PMID: 25058661 DOI: 10.1039/c4cc03292f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Chemically triggered molecular switches for controlling the fate and function of biological systems are fundamental to the emergence of synthetic biology and the development of biomedical applications. We here present the first chemically triggered switch for controlling the infectivity of adeno-associated viral (AAV) vectors.
Collapse
Affiliation(s)
- Maximilian Hörner
- Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
4
|
Wilson CG, Martín-Saavedra FM, Padilla F, Fabiilli ML, Zhang M, Baez AM, Bonkowski CJ, Kripfgans OD, Voellmy R, Vilaboa N, Fowlkes JB, Franceschi RT. Patterning expression of regenerative growth factors using high intensity focused ultrasound. Tissue Eng Part C Methods 2014; 20:769-79. [PMID: 24460731 DOI: 10.1089/ten.tec.2013.0518] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Temporal and spatial control of growth factor gradients is critical for tissue patterning and differentiation. Reinitiation of this developmental program is also required for regeneration of tissues during wound healing and tissue regeneration. Devising methods for reconstituting growth factor gradients remains a central challenge in regenerative medicine. In the current study we develop a novel gene therapy approach for temporal and spatial control of two important growth factors in bone regeneration, vascular endothelial growth factor, and bone morphogenetic protein 2, which involves application of high intensity focused ultrasound to cells engineered with a heat-activated- and ligand-inducible gene switch. Induction of transgene expression was tightly localized within cell-scaffold constructs to subvolumes of ∼30 mm³, and the amplitude and projected area of transgene expression was tuned by the intensity and duration of ultrasound exposure. Conditions for ultrasound-activated transgene expression resulted in minimal cytotoxicity and scaffold damage. Localized regions of growth factor expression also established gradients in signaling activity, suggesting that patterns of growth factor expression generated by this method will have utility in basic and applied studies on tissue development and regeneration.
Collapse
Affiliation(s)
- Christopher G Wilson
- 1 Department of Periodontics and Oral Medicine, Center for Craniofacial Regeneration, University of Michigan School of Dentistry , Ann Arbor, Michigan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Inhibitory effect of natural anti-inflammatory compounds on cytokines released by chronic venous disease patient-derived endothelial cells. Mediators Inflamm 2013; 2013:423407. [PMID: 24489443 PMCID: PMC3893784 DOI: 10.1155/2013/423407] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 11/28/2013] [Indexed: 12/31/2022] Open
Abstract
Large vein endothelium plays important roles in clinical diseases such as chronic venous disease (CVD) and thrombosis; thus to characterize CVD vein endothelial cells (VEC) has a strategic role in identifying specific therapeutic targets. On these bases we evaluated the effect of the natural anti-inflammatory compounds α-Lipoic acid and Ginkgoselect phytosome on cytokines/chemokines released by CVD patient-derived VEC. For this purpose, we characterized the levels of a panel of cytokines/chemokines (n = 31) in CVD patients' plasma compared to healthy controls and their release by VEC purified from the same patients, in unstimulated and TNF-α stimulated conditions. Among the cytokines/chemokines released by VEC, which recapitulated the systemic profile (IL-8, TNF-α, GM-CSF, INF-α2, G-CSF, MIP-1β, VEGF, EGF, Eotaxin, MCP-1, CXCL10, PDGF, and RANTES), we identified those targeted by ex vivo treatment with α-Lipoic acid and/or Ginkgoselect phytosome (GM-CSF, G-CSF, CXCL10, PDGF, and RANTES). Finally, by investigating the intracellular pathways involved in promoting the VEC release of cytokines/chemokines, which are targeted by natural anti-inflammatory compounds, we documented that α-Lipoic acid significantly counteracted TNF-α-induced NF-κB and p38/MAPK activation while the effects of Ginkgo biloba appeared to be predominantly mediated by Akt. Our data provide new insights into the molecular mechanisms of CVD pathogenesis, highlighting new potential therapeutic targets.
Collapse
|
6
|
Martín-Saavedra FM, Wilson CG, Voellmy R, Vilaboa N, Franceschi RT. Spatiotemporal control of vascular endothelial growth factor expression using a heat-shock-activated, rapamycin-dependent gene switch. Hum Gene Ther Methods 2013; 24:160-70. [PMID: 23527589 DOI: 10.1089/hgtb.2013.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A major challenge in regenerative medicine is to develop methods for delivering growth and differentiation factors in specific spatial and temporal patterns, thereby mimicking the natural processes of development and tissue repair. Heat shock (HS)-inducible gene expression systems can respond to spatial information provided by localized heating, but are by themselves incapable of sustained expression. Conversely, gene switches activated by small molecules provide tight temporal control and sustained expression, but lack mechanisms for spatial targeting. Here we combine the advantages of HS and ligand-activated systems by developing a novel rapamycin-regulated, HS-inducible gene switch that provides spatial and temporal control and sustained expression of transgenes such as firefly luciferase and vascular endothelial growth factor (VEGF). This gene circuit exhibits very low background in the uninduced state and can be repeatedly activated up to 1 month. Furthermore, dual regulation of VEGF induction in vivo is shown to stimulate localized vascularization, thereby providing a route for temporal and spatial control of angiogenesis.
Collapse
|
7
|
Albini A, Indraccolo S, Noonan DM, Pfeffer U. Functional genomics of endothelial cells treated with anti-angiogenic or angiopreventive drugs. Clin Exp Metastasis 2010; 27:419-39. [PMID: 20383568 DOI: 10.1007/s10585-010-9312-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Accepted: 02/16/2010] [Indexed: 01/28/2023]
Abstract
Angiogenesis is a highly regulated physiological process that has been studied in considerable detail given its importance in several chronic pathologies. Many endogenous factors and hormones intervene in the regulation of angiogensis and classical as well as targeted drugs have been developed for its control. Angiogenesis inhibition has come off the bench and entered into clinical application for cancer therapy, particularly for metastatic disease. While the clinical benefit is currently in terms of months, preclinical data suggest that novel drugs and drug combinations could lead to substantial improvement. The many targets of endogenous angiogenesis inhibitors reflect the complexity of the process; in contrast, current clinical therapies mainly target the vascular endothelial growth factor system. Cancer chemopreventive compounds can retard tumor insurgence and delay or prevent metastasis and many of these molecules hinder angiogenesis, a mechanism that we termed angioprevention. Angiopreventive drugs appear to prevalently act through the inhibition of the pro-inflammatory and anti-apoptotic player NFkappaB, thus contrasting inflammation dependent angiogenesis. Relatively little is known concerning the effects of these angiogenesis inhibitors on gene expression of endothelial cells, the main target of many of these molecules. Here we provide an exhaustive list of anti-angiogenic molecules, and summarize their effects, where known, on the transcriptome and functional genomics of endothelial cells. The regulation of specific genes can be crucial to preventive or therapeutic intervention. Further, novel targets might help to circumvent resistance to anti-angiogenic therapy. The studies we review are relevant not only to cancer but also to other chronic degenerative diseases involving endothelial cells, such as cardiovascular disorders, diabetes, rheumatoid arthritis and retinopaties, as well as vessel aging.
Collapse
Affiliation(s)
- Adriana Albini
- MultiMedica Castellanza (VA) and Oncology Research, IRCCS MultiMedica, 20138 Milan, Italy.
| | | | | | | |
Collapse
|
8
|
|
9
|
Zhang B, Wang X, Wang Y. Altered gene expression and miRNA expression associated with cancerous IEC-6 cell transformed by MNNG. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2009; 28:56. [PMID: 19397828 PMCID: PMC2678987 DOI: 10.1186/1756-9966-28-56] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Accepted: 04/28/2009] [Indexed: 11/13/2022]
Abstract
Background Tumorigenesis is thought to be the consequence of gene mutation and disordered gene expression. However, the detailed molecular mechanism underlying the development and progress of colon cancer have not been elucidate completely. This study aimed to find out the genes associated with cancer biological pathways involved in transformation and tumorigenesis. Methods Normal intestinal cell line 6 (IEC-6) cells were transformed to cancer cells by treatment with cancerogenic agent of N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) and Phorbol 12-myristate 13 acetate (PMA). Then we investigated the altered gene expression of transformed IEC-6 cells by the microarray containing 113 genes associated with cancer pathway. Also the altered miRNAs of transformed IEC-6 cells were analyzed by array hybridization (miRCURY Array v9.2, Exiqon). The levels of acetylated histone H3 in transformed IEC-6 cells was evaluated by western blot. Results Cell proliferation was significantly increased as IEC-6 cells were transformed and tumor xenografts could be detected in animals as transformed IEC-6 cells were inoculated subcutaneously in nude mice. Result of microarray showed nine genes were increased and two decreased, as well as 13 miRNA were increased and 97 decreased. Verification by real-time PCR implies that the data obtained from microarray analysis were reliable. Western blot showed the levels of acetylated histone H3 were increased dramatically after MNNG/PMA treatment. Conclusion Our results showed many important biological pathways and miRNAs were involved in transformation and tumorigenesis of IEC-6 cells, which suggested the transformation of normal cells was involved with large mount of genetic and epigenetic variation.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Medical Genetics, Third Military Medical University, Chongqing, PR China.
| | | | | |
Collapse
|
10
|
Persano L, Moserle L, Esposito G, Bronte V, Barbieri V, Iafrate M, Gardiman MP, Larghero P, Pfeffer U, Naschberger E, Stürzl M, Indraccolo S, Amadori A. Interferon-alpha counteracts the angiogenic switch and reduces tumor cell proliferation in a spontaneous model of prostatic cancer. Carcinogenesis 2009; 30:851-60. [PMID: 19237608 DOI: 10.1093/carcin/bgp052] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Interferon (IFN)-alpha is a cytokine with marked therapeutic activity in transplantable tumor models, that is in part due to angiogenesis inhibition. Aim of this study was to investigate the effects of IFN-alpha during the early phases of tumor development in the transgenic adenocarcinoma of the mouse prostate (TRAMP) model. To provide sustained IFN-alpha production, TRAMP mice were injected intraperitoneally with lentiviral vectors. IFN-alpha administration resulted in rapid and protracted upregulation of IFN-alpha-regulated genes associated with antiangiogenic and antiproliferative functions in the prostate of TRAMP mice, including guanylate-binding protein 1 (GBP-1), IFI204 and CXCL10-11. These transcriptional changes were accompanied by effects on the tumor vasculature, including significant reduction of intraductal microvessel density and increased pericyte coverage, and marked reduction of tumor cell proliferation, without induction of tumor necrosis. Intriguingly, GBP-1 and myxovirus resistance A, two IFN-regulated proteins, were found expressed in approximately 40% of human prostate cancer samples analyzed, suggesting expression of endogenous IFN-alpha. Overall, these findings demonstrate that IFN-alpha is able to counteract the angiogenic switch and impairs tumor cell proliferation in preinvasive lesions. Since the angiogenic switch also marks progression of human prostatic cancer, these results highlight the potential of angiogenesis inhibitors for the development of chemoprevention strategies in high-risk individuals.
Collapse
Affiliation(s)
- Luca Persano
- Oncology Section, Department of Oncology and Surgical Sciences, University of Padova, Padova I-35128, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Lortal B, Gross F, Peron JM, Pénary M, Berg D, Hennebelle I, Favre G, Couderc B. Preclinical study of an ex vivo gene therapy protocol for hepatocarcinoma. Cancer Gene Ther 2008; 16:329-37. [PMID: 18989351 DOI: 10.1038/cgt.2008.88] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Preclinical studies in several animal models as well as clinical trials have shown a reduction in tumor growth following immunotherapy with interleukin-12 (IL-12). This cytokine is appropriate to test in therapeutic clinical trials to treat hepatocarcinoma (HC), a pathology often associated with hepatitis B or C-induced cirrhosis. The local delivery into the liver would be achieved through ex vivo gene transfer using retroviral (rv) vectors in autologous fibroblast carriers. In support of this clinical trial, a rv vector has been constructed to express coordinately both chains p35 and p40 of human IL-12. Here, we have tested good manufacturing practices (GMP) clinical lots of viral vectors derived from the transfected packaging cell line, PG13rvIL-12. We have also devised methods to facilitate the isolation of fibroblasts from freshly harvested skin specimens, enhance their outgrowth in large-scale cultures and assay IL-12 production following transduction, without any selection and irradiation. Twenty-four human skin specimens were processed to obtain fibroblast suspensions that were typically maintained for up to 8 or 12 passages. The mean +/-s.d. overall time for obtaining the required number of transduced cells for the highest IL-12 need was 40 days. The procedure, in accordance with the French medical agency for gene therapy clinical trials, is now ready to begin a clinical trial.
Collapse
Affiliation(s)
- B Lortal
- INSERM U563, CPTP, Institut Claudius Regaud, Toulouse, France
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Pierigè F, Serafini S, Rossi L, Magnani M. Cell-based drug delivery. Adv Drug Deliv Rev 2008; 60:286-95. [PMID: 17997501 DOI: 10.1016/j.addr.2007.08.029] [Citation(s) in RCA: 189] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Accepted: 08/14/2007] [Indexed: 12/24/2022]
Abstract
Drug delivery has been greatly improved over the years by means of chemical and physical agents that increase bioavailability, improve pharmacokinetic and reduce toxicities. At the same time, cell based delivery systems have also been developed. These possesses a number of advantages including prolonged delivery times, targeting of drugs to specialized cell compartments and biocompatibility. Here we'll focus on erythrocyte-based drug delivery. These systems are especially efficient in releasing drugs in circulations for weeks, have a large capacity, can be easily processed and could accommodate traditional and biologic drugs. These carriers have also been used for delivering antigens and/or contrasting agents. Carrier erythrocytes have been evaluated in thousands of drug administration in humans proving safety and efficacy of the treatments. Erythrocyte-based delivery of new and conventional drugs is thus experiencing increasing interests in drug delivery and in managing complex pathologies especially when side effects could become serious issues.
Collapse
Affiliation(s)
- F Pierigè
- Institute of Biological Chemistry Giorgio Fornaini, University of Urbino Carlo Bo, Urbino, Italy
| | | | | | | |
Collapse
|
13
|
Granot D, Addadi Y, Kalchenko V, Harmelin A, Kunz-Schughart LA, Neeman M. In vivo imaging of the systemic recruitment of fibroblasts to the angiogenic rim of ovarian carcinoma tumors. Cancer Res 2007; 67:9180-9. [PMID: 17909023 PMCID: PMC4087196 DOI: 10.1158/0008-5472.can-07-0684] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Tumor-associated stroma, in general, and tumor fibroblasts and myofibroblasts, in particular, play a role in tumor progression. We previously reported that myofibroblast infiltration into implanted ovarian carcinoma spheroids marked the exit of tumors from dormancy and that these cells contributed to vascular stabilization in ovarian tumors by expression of angiopoietin-1 and angiopoietin-2. Ex vivo labeling of fibroblasts with either magnetic resonance or optical probes rendered them detectable for in vivo imaging. Thus, magnetic resonance imaging (MRI) follow-up was feasible by biotin-bovine serum albumin-gadolinium diethylenetriaminepentaacetic acid or iron oxide particles, whereas labeling with near-IR and fluorescent vital stains enabled in vivo visualization by near-IR imaging and two-photon microscopy. Using this approach, we show here that prelabeled fibroblasts given i.p. to CD-1 nude mice can be followed in vivo by MRI and optical imaging over several days, revealing their extensive recruitment into the stroma of remote s.c. MLS human epithelial ovarian carcinoma tumors. Two-photon microscopy revealed the alignment of these invading fibroblasts in the outer rim of the tumor, colocalizing with the angiogenic neovasculature. Such angiogenic vessels remained confined to the stroma tracks within the tumor and did not penetrate the tumor nodules. These results provide dynamic evidence for the role of tumor fibroblasts in maintenance of functional tumor vasculature and offer means for image-guided targeting of these abundant stroma cells to the tumor as a possible mechanism for cellular cancer therapy.
Collapse
Affiliation(s)
- Dorit Granot
- Department of Biological Regulation, Weizmann Institute, Rehovot, Israel
| | - Yoseph Addadi
- Department of Biological Regulation, Weizmann Institute, Rehovot, Israel
| | | | - Alon Harmelin
- Department of Veterinary Resources, Weizmann Institute, Rehovot, Israel
| | - Leoni A. Kunz-Schughart
- OncoRay—Center for Radiation Research in Oncology, Medical Faculty Carl Gustav Carus, Technical University of Dresden, Dresden, Germany
| | - Michal Neeman
- Department of Biological Regulation, Weizmann Institute, Rehovot, Israel
| |
Collapse
|
14
|
Minuzzo S, Moserle L, Indraccolo S, Amadori A. Angiogenesis meets immunology: Cytokine gene therapy of cancer. Mol Aspects Med 2007; 28:59-86. [PMID: 17306360 DOI: 10.1016/j.mam.2006.12.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2006] [Accepted: 12/29/2006] [Indexed: 01/19/2023]
Abstract
Delivery of cytokine genes at the tumor site in pre-clinical models has been shown to recruit host inflammatory cells followed by inhibition of tumor growth. This local effect is often accompanied by systemic protection mediated by the immune system, mainly by CD8(+) T and NK cells. On this basis, cytokine gene-transduced tumor cells have widely been used as vaccines in clinical trials, which have shown good safety profiles and some local responses but substantial lack of systemic efficacy. Are these findings the end of the story? Possibly not, if major improvements will be attained in the coming years. These should be directed at the level of gene selection and delivery, in order to identify the optimal cytokine and achieve efficient and durable cytokine expression, and at the level of improving immune stimulation, i.e. by co-administration of co-stimulatory molecules including B7 and CD40, or boosting the expression of tumor antigens or MHC class I molecules. Interestingly, some of the cytokines which have shown encouraging anti-tumor activity, including IFNs, IL-4, IL-12 and TNF-alpha, are endowed with anti-angiogenic or vasculotoxic effects, which may significantly contribute to local tumor control. Therapeutic exploitation of this property may result in the design of novel approaches which, by maximizing immune-stimulating and anti-angiogenic effects, could possibly lead to starvation of established tumors in patients.
Collapse
Affiliation(s)
- Sonia Minuzzo
- Department of Oncology and Surgical Sciences, University of Padova, via Gattamelata 64, 35128 Padova, Italy
| | | | | | | |
Collapse
|
15
|
Persano L, Crescenzi M, Indraccolo S. Anti-angiogenic gene therapy of cancer: current status and future prospects. Mol Aspects Med 2007; 28:87-114. [PMID: 17306361 DOI: 10.1016/j.mam.2006.12.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Accepted: 12/18/2006] [Indexed: 12/14/2022]
Abstract
The discovery of endogenous inhibitors of angiogenesis has made it possible to test the hypothesis that blocking the angiogenic switch may keep tumor growth in check, and has added a new investigational arm to the field of cancer gene therapy. Angiogenesis inhibitors are heterogeneous in origin and potency, and their growing list includes proteolysis products of larger molecules with a different function, such as angiostatin, endostatin and vasostatin, modulators of vascular endothelial growth factor activity, such as sFLT-1, and some cytokines/chemokines with marked anti-endothelial activity, such as IL-12, IFN-alpha, and CXCL10. Pre-clinical studies have clearly indicated that these factors are essentially cytostatic and that they need long-term administration in order to obtain prolonged anti-tumor effects, representing a rational basis for their delivery by a gene therapy approach. The experimental approaches attempted to date, reviewed herein, indicate overall that anti-angiogenic gene therapy has efficacy mainly as an early intervention strategy and that a better understanding of the biological mechanisms underlying resistance to angiogenesis inhibition, as well as appropriate combined treatments, are required to generate a conceptual advancement which could drive the field towards successful management of established tumors.
Collapse
Affiliation(s)
- Luca Persano
- Department of Oncology and Surgical Sciences, Oncology Section, University of Padova, Via Gattamelata, 64, 35128 Padova, Italy
| | | | | |
Collapse
|