1
|
Omelina ES, Pindyurin AV. Optogenetic regulation of endogenous gene transcription in mammals. Vavilovskii Zhurnal Genet Selektsii 2019. [DOI: 10.18699/vj19.485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Despite the rapid development of approaches aimed to precisely control transcription of exogenous genes in time and space, design of systems providing similar tight regulation of endogenous gene expression is much more challenging. However, finding ways to control the activity of endogenous genes is absolutely necessary for further progress in safe and effective gene therapies and regenerative medicine. In addition, such systems are of particular interest for genetics, molecular and cell biology. An ideal system should ensure tunable and reversible spatio-temporal control over transcriptional activity of a gene of interest. Although there are drug-inducible systems for transcriptional regulation of endogenous genes, optogenetic approaches seem to be the most promising for the gene therapy applications, as they are noninvasive and do not exhibit toxicity in comparison with druginducible systems. Moreover, they are not dependent on chemical inducer diffusion rate or pharmacokinetics and exhibit fast activation-deactivation switching. Among optogenetic tools, long-wavelength light-controlled systems are more preferable for use in mammalian tissues in comparison with tools utilizing shorter wavelengths, since far-red/near-infrared light has the maximum penetration depth due to lower light scattering caused by lipids and reduced tissue autofluorescence at wavelengths above 700 nm. Here, we review such light-inducible systems, which are based on synthetic factors that can be targeted to any desired DNA sequence and provide activation or repression of a gene of interest. The factors include zinc finger proteins, transcription activator-like effectors (TALEs), and the CRISPR/Cas9 technology. We also discuss the advantages and disadvantages of these DNA targeting tools in the context of the light-inducible gene regulation systems.
Collapse
Affiliation(s)
| | - A. V. Pindyurin
- Institute of Molecular and Cellular Biology, SB RAS; Novosibirsk State University
| |
Collapse
|
2
|
Polstein LR, Juhas M, Hanna G, Bursac N, Gersbach CA. An Engineered Optogenetic Switch for Spatiotemporal Control of Gene Expression, Cell Differentiation, and Tissue Morphogenesis. ACS Synth Biol 2017; 6:2003-2013. [PMID: 28793186 DOI: 10.1021/acssynbio.7b00147] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The precise spatial and temporal control of gene expression, cell differentiation, and tissue morphogenesis has widespread application in regenerative medicine and the study of tissue development. In this work, we applied optogenetics to control cell differentiation and new tissue formation. Specifically, we engineered an optogenetic "on" switch that provides permanent transgene expression following a transient dose of blue light illumination. To demonstrate its utility in controlling cell differentiation and reprogramming, we incorporated an engineered form of the master myogenic factor MyoD into this system in multipotent cells. Illumination of cells with blue light activated myogenic differentiation, including upregulation of myogenic markers and fusion into multinucleated myotubes. Cell differentiation was spatially patterned by illumination of cell cultures through a photomask. To demonstrate the application of the system to controlling in vivo tissue development, the light inducible switch was used to control the expression of VEGF and angiopoietin-1, which induced angiogenic sprouting in a mouse dorsal window chamber model. Live intravital microscopy showed illumination-dependent increases in blood-perfused microvasculature. This optogenetic switch is broadly useful for applications in which sustained and patterned gene expression is desired following transient induction, including tissue engineering, gene therapy, synthetic biology, and fundamental studies of morphogenesis.
Collapse
Affiliation(s)
- Lauren R. Polstein
- Department of Biomedical
Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Mark Juhas
- Department of Biomedical
Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Gabi Hanna
- Department of Radiation Oncology and Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Nenad Bursac
- Department of Biomedical
Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Charles A. Gersbach
- Department of Biomedical
Engineering, Duke University, Durham, North Carolina 27708, United States
- Center for
Genomic and Computational Biology, Duke University, Durham, North Carolina 27708, United States
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, North Carolina 27710, United States
| |
Collapse
|
3
|
Tang W, Hu JH, Liu DR. Aptazyme-embedded guide RNAs enable ligand-responsive genome editing and transcriptional activation. Nat Commun 2017; 8:15939. [PMID: 28656978 PMCID: PMC5493748 DOI: 10.1038/ncomms15939] [Citation(s) in RCA: 160] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 05/12/2017] [Indexed: 01/01/2023] Open
Abstract
Programmable sequence-specific genome editing agents such as CRISPR-Cas9 have greatly advanced our ability to manipulate the human genome. Although canonical forms of genome-editing agents and programmable transcriptional regulators are constitutively active, precise temporal and spatial control over genome editing and transcriptional regulation activities would enable the more selective and potentially safer use of these powerful technologies. Here, by incorporating ligand-responsive self-cleaving catalytic RNAs (aptazymes) into guide RNAs, we developed a set of aptazyme-embedded guide RNAs that enable small molecule-controlled nuclease-mediated genome editing and small molecule-controlled base editing, as well as small molecule-dependent transcriptional activation in mammalian cells.
Collapse
Affiliation(s)
- Weixin Tang
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, USA
- Howard Hughes Medical Institute, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02141, USA
| | - Johnny H. Hu
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, USA
- Howard Hughes Medical Institute, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02141, USA
| | - David R. Liu
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, USA
- Howard Hughes Medical Institute, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02141, USA
| |
Collapse
|
4
|
Abstract
The coupling of light-inducible protein-protein interactions with gene regulation systems has enabled the control of gene expression with light. In particular, heterodimer protein pairs from plants can be used to engineer a gene regulation system in mammalian cells that is reversible, repeatable, tunable, controllable in a spatiotemporal manner, and targetable to any DNA sequence. This system, Light-Inducible Transcription using Engineered Zinc finger proteins (LITEZ), is based on the blue light-induced interaction of GIGANTEA and the LOV domain of FKF1 that drives the localization of a transcriptional activator to the DNA-binding site of a highly customizable engineered zinc finger protein. This chapter provides methods for modifying LITEZ to target new DNA sequences, engineering a programmable LED array to illuminate cell cultures, and using the modified LITEZ system to achieve spatiotemporal control of transgene expression in mammalian cells.
Collapse
Affiliation(s)
- Lauren R Polstein
- Department of Biomedical Engineering, Duke University, Room 136 Hudson Hall, 90281, Durham, NC, 27708-0281, USA
| | | |
Collapse
|
5
|
Mercer AC, Gaj T, Sirk SJ, Lamb BM, Barbas CF. Regulation of endogenous human gene expression by ligand-inducible TALE transcription factors. ACS Synth Biol 2014; 3:723-30. [PMID: 24251925 PMCID: PMC4097969 DOI: 10.1021/sb400114p] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The construction of increasingly sophisticated synthetic biological circuits is dependent on the development of extensible tools capable of providing specific control of gene expression in eukaryotic cells. Here, we describe a new class of synthetic transcription factors that activate gene expression in response to extracellular chemical stimuli. These inducible activators consist of customizable transcription activator-like effector (TALE) proteins combined with steroid hormone receptor ligand-binding domains. We demonstrate that these ligand-responsive TALE transcription factors allow for tunable and conditional control of gene activation and can be used to regulate the expression of endogenous genes in human cells. Since TALEs can be designed to recognize any contiguous DNA sequence, the conditional gene regulatory system described herein will enable the design of advanced synthetic gene networks.
Collapse
Affiliation(s)
- Andrew C. Mercer
- The Skaggs Institute for
Chemical Biology and the Departments of Chemistry and Cell and Molecular
Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Thomas Gaj
- The Skaggs Institute for
Chemical Biology and the Departments of Chemistry and Cell and Molecular
Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Shannon J. Sirk
- The Skaggs Institute for
Chemical Biology and the Departments of Chemistry and Cell and Molecular
Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Brian M. Lamb
- The Skaggs Institute for
Chemical Biology and the Departments of Chemistry and Cell and Molecular
Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Carlos F. Barbas
- The Skaggs Institute for
Chemical Biology and the Departments of Chemistry and Cell and Molecular
Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
6
|
Diabetes Mellitus: New Challenges and Innovative Therapies. NEW STRATEGIES TO ADVANCE PRE/DIABETES CARE: INTEGRATIVE APPROACH BY PPPM 2013; 3. [PMCID: PMC7120768 DOI: 10.1007/978-94-007-5971-8_3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Diabetes is a common chronic disease affecting an estimated 285 million adults worldwide. The rising incidence of diabetes, metabolic syndrome, and subsequent vascular diseases is a major public health problem in industrialized countries. This chapter summarizes current pharmacological approaches to treat diabetes mellitus and focuses on novel therapies for diabetes mellitus that are under development. There is great potential for developing a new generation of therapeutics that offer better control of diabetes, its co-morbidities and its complications. Preclinical results are discussed for new approaches including AMPK activation, the FGF21 target, cell therapy approaches, adiponectin mimetics and novel insulin formulations. Gene-based therapies are among the most promising emerging alternatives to conventional treatments. Therapies based on gene silencing using vector systems to deliver interference RNA to cells (i.e. against VEGF in diabetic retinopathy) are also a promising therapeutic option for the treatment of several diabetic complications. In conclusion, treatment of diabetes faces now a new era that is characterized by a variety of innovative therapeutic approaches that will improve quality of life in the near future.
Collapse
|
7
|
Orthogonal control of endogenous gene expression in mammalian cells using synthetic ligands. Biotechnol Bioeng 2013; 110:1419-29. [DOI: 10.1002/bit.24807] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 11/16/2012] [Accepted: 12/03/2012] [Indexed: 12/14/2022]
|
8
|
Beurdeley M, Bietz F, Li J, Thomas S, Stoddard T, Juillerat A, Zhang F, Voytas DF, Duchateau P, Silva GH. Compact designer TALENs for efficient genome engineering. Nat Commun 2013; 4:1762. [PMID: 23612303 PMCID: PMC3644105 DOI: 10.1038/ncomms2782] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Accepted: 03/20/2013] [Indexed: 01/29/2023] Open
Abstract
Transcription activator-like effector nucleases are readily targetable 'molecular scissors' for genome engineering applications. These artificial nucleases offer high specificity coupled with simplicity in design that results from the ability to serially chain transcription activator-like effector repeat arrays to target individual DNA bases. However, these benefits come at the cost of an appreciably large multimeric protein complex, in which DNA cleavage is governed by the nonspecific FokI nuclease domain. Here we report a significant improvement to the standard transcription activator-like effector nuclease architecture by leveraging the partially specific I-TevI catalytic domain to create a new class of monomeric, DNA-cleaving enzymes. In vivo yeast, plant and mammalian cell assays demonstrate that the half-size, single-polypeptide compact transcription activator-like effector nucleases exhibit overall activity and specificity comparable to currently available designer nucleases. In addition, we harness the catalytic mechanism of I-TevI to generate novel compact transcription activator-like effector nuclease-based nicking enzymes that display a greater than 25-fold increase in relative targeted gene correction efficacy.
Collapse
Affiliation(s)
- Marine Beurdeley
- Cellectis, Research and Development, 8 rue de la Croix Jarry, 75013 Paris, France
| | - Fabian Bietz
- Cellectis, Research and Development, 8 rue de la Croix Jarry, 75013 Paris, France
| | - Jin Li
- Cellectis Plant Sciences, 600 County Road D West Suite 8, New Brighton, Minnesota 55112, USA
| | - Severine Thomas
- Cellectis, Research and Development, 8 rue de la Croix Jarry, 75013 Paris, France
| | - Thomas Stoddard
- Cellectis Plant Sciences, 600 County Road D West Suite 8, New Brighton, Minnesota 55112, USA
| | - Alexandre Juillerat
- Cellectis, Research and Development, 8 rue de la Croix Jarry, 75013 Paris, France
| | - Feng Zhang
- Cellectis Plant Sciences, 600 County Road D West Suite 8, New Brighton, Minnesota 55112, USA
| | - Daniel F. Voytas
- Cellectis Plant Sciences, 600 County Road D West Suite 8, New Brighton, Minnesota 55112, USA
| | - Philippe Duchateau
- Cellectis, Research and Development, 8 rue de la Croix Jarry, 75013 Paris, France
| | - George H. Silva
- Cellectis, Research and Development, 8 rue de la Croix Jarry, 75013 Paris, France
| |
Collapse
|
9
|
Romano G. Development of safer gene delivery systems to minimize the risk of insertional mutagenesis-related malignancies: a critical issue for the field of gene therapy. ISRN ONCOLOGY 2012; 2012:616310. [PMID: 23209944 PMCID: PMC3512301 DOI: 10.5402/2012/616310] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 10/23/2012] [Indexed: 12/17/2022]
Abstract
Integrating gene delivery systems allow for a more stable transgene expression in mammalian cells than the episomal ones. However, the integration of the shuttle vector within the cellular chromosomal DNA is associated with the risk of insertional mutagenesis, which, in turn, may cause malignant cell transformation. The use of a retroviral-derived vector system was responsible for the development of leukemia in five children, who participated in various clinical trials for the treatment of severe combined immunodeficiency (SCID-X1) in France and in the United Kingdom. Unfortunately, the hematological malignancy claimed the life of one patient in 2004, who was enrolled in the French clinical trial. In addition, adeno-associated-viral-(AAV-) mediated gene transfer induced tumors in animal models, whereas the Sleeping Beauty (SB) DNA transposon system was associated with insertional mutagenesis events in cell culture systems. On these grounds, it is necessary to develop safer gene delivery systems for the genetic manipulation of mammalian cells. This paper discusses the latest achievements that have been reported in the field of vector design.
Collapse
Affiliation(s)
- Gaetano Romano
- Department of Biology, College of Science and Technology, Temple University, Bio-Life Science Building, Suite 456, 1900 N. 12th Street, Philadelphia, PA 19122, USA
| |
Collapse
|
10
|
Polstein LR, Gersbach CA. Light-inducible spatiotemporal control of gene activation by customizable zinc finger transcription factors. J Am Chem Soc 2012; 134:16480-3. [PMID: 22963237 PMCID: PMC3468123 DOI: 10.1021/ja3065667] [Citation(s) in RCA: 156] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Advanced gene regulatory systems are necessary for scientific
research,
synthetic biology, and gene-based medicine. An ideal system would
allow facile spatiotemporal manipulation of gene expression within
a cell population that is tunable, reversible, repeatable, and can
be targeted to diverse DNA sequences. To meet these criteria, a gene
regulation system was engineered that combines light-sensitive proteins
and programmable zinc finger transcription factors. This system, light-inducible
transcription using engineered zinc finger proteins (LITEZ), uses
two light-inducible dimerizing proteins from Arabidopsis thaliana, GIGANTEA and the LOV domain of FKF1, to control synthetic zinc
finger transcription factor activity in human cells. Activation of
gene expression in human cells engineered with LITEZ was reversible
and repeatable by modulating the duration of illumination. The level
of gene expression could also be controlled by modulating light intensity.
Finally, gene expression could be activated in a spatially defined
pattern by illuminating the human cell culture through a photomask
of arbitrary geometry. LITEZ enables new approaches for precisely
regulating gene expression in biotechnology and medicine, as well
as studying gene function, cell–cell interactions, and tissue
morphogenesis.
Collapse
Affiliation(s)
- Lauren R Polstein
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
| | | |
Collapse
|
11
|
Lian LS, Yang YG, Liu W, Guo LL, Guan H, Liu CW, Li YJ. Zinc Finger Protein-activating Transcription Factor Up-regulates Vascular Endothelial Growth Factor-A Expression in Vitro. ACTA ACUST UNITED AC 2012; 27:171-5. [DOI: 10.1016/s1001-9294(14)60051-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Benzoate X receptor zinc-finger gene switches for drug-inducible regulation of transcription. Gene Ther 2011; 19:458-62. [PMID: 21796215 DOI: 10.1038/gt.2011.112] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Targeted zinc-finger (ZF) DNA-binding domains in conjunction with nuclear receptor ligand-binding domains (LBDs) produce chemically inducible gene switches that have applications in gene therapy and proteomic and genomic research. The benzoate X receptor-β (BXRβ) LBD was used to construct homodimer and single-chain ZF transcription factors (ZF(TF)s). These ZF(TF)s specifically regulated the transcription of target genes in response to two ligands, ethyl-4-hydroxybenzoate and propyl-4-hydroxybenzoate, in a dose-dependent manner. The ZF(TF)s also regulated the expression of endogenous intercellular adhesion molecule-1 in response to either ligand. The advantage of BXRβ-based ZF(TF)s is that the ligands are inexpensive and easily synthetically modified, making the system a base for creation of orthogonal ligand-receptor pairs and expanding the gene-switch toolbox.
Collapse
|
13
|
Davis D, Stokoe D. Zinc finger nucleases as tools to understand and treat human diseases. BMC Med 2010; 8:42. [PMID: 20594338 PMCID: PMC2904710 DOI: 10.1186/1741-7015-8-42] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Accepted: 07/01/2010] [Indexed: 11/10/2022] Open
Abstract
Recent work has shown that it is possible to target regulatory elements to DNA sequences of an investigator's choosing, increasing the armamentarium for probing gene function. In this review, we discuss the development and use of designer zinc finger proteins (ZFPs) as sequence specific tools. While the main focus of this review is to discuss the attachment of the FokI nuclease to ZFPs and the ability of the resulting fusion protein (termed zinc finger nucleases (ZFNs)) to genomically manipulate a gene of interest, we will also cover the utility of other functional domains, such as transcriptional activators and repressors, and highlight how these are being used as discovery and therapeutic tools.
Collapse
Affiliation(s)
- David Davis
- Department of Molecular Biology, Genentech Inc, 1 DNA Way, South San Francisco, California 94080, USA
| | - David Stokoe
- Department of Molecular Biology, Genentech Inc, 1 DNA Way, South San Francisco, California 94080, USA
| |
Collapse
|
14
|
Sena CM, Bento CF, Pereira P, Seiça R. Diabetes mellitus: new challenges and innovative therapies. EPMA J 2010; 1:138-163. [PMID: 23199048 PMCID: PMC3405309 DOI: 10.1007/s13167-010-0010-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Accepted: 02/04/2010] [Indexed: 12/25/2022]
Abstract
Diabetes mellitus is a widespread disease prevalence and incidence of which increases worldwide. The introduction of insulin therapy represented a major breakthrough in type 1 diabetes; however, frequent hyper- and hypoglycemia seriously affects the quality of life of these patients. New therapeutic approaches, such as whole pancreas transplant or pancreatic islet transplant, stem cell, gene therapy and islets encapsulation are discussed in this review. Regarding type 2 diabetes, therapy has been based on drugs that stimulate insulin secretion (sulphonylureas and rapid-acting secretagogues), reduce hepatic glucose production (biguanides), delay digestion and absorption of intestinal carbohydrate (alpha-glucosidase inhibitors) or improve insulin action (thiazolidinediones). This review is also focused on the newer therapeutically approaches such as incretin-based therapies, bariatric surgery, stem cells and other emerging therapies that promise to further extend the options available. Gene-based therapies are among the most promising emerging alternatives to conventional treatments. Some of these therapies rely on genetic modification of non-differentiated cells to express pancreatic endocrine developmental factors, promoting differentiation of non-endocrine cells into β-cells, enabling synthesis and secretion of insulin in a glucose-regulated manner. Alternative therapies based on gene silencing using vector systems to deliver interference RNA to cells (i.e. against VEGF in diabetic retinopathy) are also a promising therapeutic option for the treatment of several diabetic complications. In conclusion, treatment of diabetes faces now a new era that is characterized by a variety of innovative therapeutic approaches that will improve quality-life and allow personalized therapy-planning in the near future.
Collapse
Affiliation(s)
- Cristina M. Sena
- Institute of Physiology, Faculty of Medicine, University of Coimbra, Subunit 1, polo 3, Azinhaga de Santa Comba, Celas, 3000-354 Coimbra, Portugal
- IBILI, University of Coimbra, Coimbra, Portugal
| | - Carla F. Bento
- IBILI, University of Coimbra, Coimbra, Portugal
- Centre of Ophthalmology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Paulo Pereira
- IBILI, University of Coimbra, Coimbra, Portugal
- Centre of Ophthalmology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Raquel Seiça
- Institute of Physiology, Faculty of Medicine, University of Coimbra, Subunit 1, polo 3, Azinhaga de Santa Comba, Celas, 3000-354 Coimbra, Portugal
- IBILI, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
15
|
Dougherty MJ, Arnold FH. Directed evolution: new parts and optimized function. Curr Opin Biotechnol 2009; 20:486-91. [PMID: 19720520 DOI: 10.1016/j.copbio.2009.08.005] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Revised: 08/07/2009] [Accepted: 08/12/2009] [Indexed: 11/28/2022]
Abstract
Constructing novel biological systems that function in a robust and predictable manner requires better methods for discovering new functional molecules and for optimizing their assembly in novel biological contexts. By enabling functional diversification and optimization in the absence of detailed mechanistic understanding, directed evolution is a powerful complement to 'rational' engineering approaches. Aided by clever selection schemes, directed evolution has generated new parts for genetic circuits, cell-cell communication systems, and non-natural metabolic pathways in bacteria.
Collapse
Affiliation(s)
- Michael J Dougherty
- Division of Chemistry & Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | | |
Collapse
|
16
|
Sera T. Zinc-finger-based artificial transcription factors and their applications. Adv Drug Deliv Rev 2009; 61:513-26. [PMID: 19394375 DOI: 10.1016/j.addr.2009.03.012] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2008] [Accepted: 03/10/2009] [Indexed: 11/28/2022]
Abstract
Artificial transcription factors (ATFs) are potentially a powerful molecular tool to modulate endogenous target gene expression in living cells and organisms. To date, many DNA-binding molecules have been developed as the DNA-binding domains for ATFs. Among them, ATFs comprising Cys(2)His(2)-type zinc-finger proteins (ZFPs) as the DNA-binding domain have been extensively explored. The zinc-finger-based ATFs specifically recognize targeting sites in chromosomes and effectively up- and downregulate expression of their target genes not only in vitro, but also in vivo. In this review, after briefly introducing Cys(2)His(2)-type ZFPs, I will review the studies of endogenous human gene regulation by zinc-finger-based ATFs and other applications as well.
Collapse
Affiliation(s)
- Takashi Sera
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku-Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.
| |
Collapse
|
17
|
Casey RJ, Desaulniers JP, Hojfeldt JW, Mapp AK. Expanding the repertoire of small molecule transcriptional activation domains. Bioorg Med Chem 2009; 17:1034-43. [DOI: 10.1016/j.bmc.2008.02.045] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2007] [Revised: 02/08/2008] [Accepted: 02/13/2008] [Indexed: 10/22/2022]
|
18
|
Morisaki T, Imanishi M, Futaki S, Sugiura Y. Rapid Transcriptional Activity in Vivo and Slow DNA Binding in Vitro by an Artificial Multi-Zinc Finger Protein. Biochemistry 2008; 47:10171-7. [DOI: 10.1021/bi801124b] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tatsuya Morisaki
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan, PRESTO, Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan, and Faculty of Pharmaceutical Sciences, Doshisha Women’s University, Kyotanabe, Kyoto 610-0395, Japan
| | - Miki Imanishi
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan, PRESTO, Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan, and Faculty of Pharmaceutical Sciences, Doshisha Women’s University, Kyotanabe, Kyoto 610-0395, Japan
| | - Shiroh Futaki
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan, PRESTO, Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan, and Faculty of Pharmaceutical Sciences, Doshisha Women’s University, Kyotanabe, Kyoto 610-0395, Japan
| | - Yukio Sugiura
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan, PRESTO, Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan, and Faculty of Pharmaceutical Sciences, Doshisha Women’s University, Kyotanabe, Kyoto 610-0395, Japan
| |
Collapse
|
19
|
Drug-inducible and simultaneous regulation of endogenous genes by single-chain nuclear receptor-based zinc-finger transcription factor gene switches. Gene Ther 2008; 15:1223-32. [PMID: 18528430 DOI: 10.1038/gt.2008.96] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Chemically inducible gene switches that regulate expression of endogenous genes have multiple applications for basic gene expression research and gene therapy. Single-chain zinc-finger transcription factors that utilize either estrogen receptor homodimers or retinoid X receptor-alpha/ecdysone receptor heterodimers are shown here to be effective regulators of ICAM-1 and ErbB-2 transcription. Using activator (VP64) and repressor (Krüppel-associated box) domains to impart regulatory directionality, ICAM-1 was activated by 4.8-fold and repressed by 81% with the estrogen receptor-inducible transcription factors. ErbB-2 was activated by up to threefold and repressed by 84% with the retinoid X receptor-alpha/ecdysone receptor-inducible transcription factors. The dynamic range of these proteins was similar to the constitutive system and showed negligible basal regulation when ligand was not present. We have also demonstrated that the regulation imposed by these inducible transcription factors is dose dependent, sustainable for at least 11 days and reversible upon cessation of drug treatment. Importantly, these proteins can be used in conjunction with each other with no detectable overlap of activity enabling concurrent and temporal regulation of multiple genes within the same cell. Thus, these chemically inducible transcription factors are valuable tools for spatiotemporal control of gene expression that should prove valuable for research and gene therapy applications.
Collapse
|
20
|
Yokoi K, Zhang HS, Kachi S, Balaggan KS, Yu Q, Guschin D, Kunis M, Surosky R, Africa LM, Bainbridge JW, Spratt SK, Gregory PD, Ali RR, Campochiaro PA. Gene transfer of an engineered zinc finger protein enhances the anti-angiogenic defense system. Mol Ther 2007; 15:1917-23. [PMID: 17700545 DOI: 10.1038/sj.mt.6300280] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Zinc finger protein transcription factors (ZFP TFs) have been shown to positively or negatively regulate the expression of endogenous genes involved in a number of different disease processes. In this study we investigated whether gene transfer of an engineered ZFP TF designed to up-regulate expression of the chromosomal pigment epithelium-derived factor (Pedf) gene could suppress experimentally induced choroidal neovascularization (CNV). Transient transfection with engineered ZFP TFs significantly increased both Pedf messenger RNA (mRNA) and secreted PEDF protein levels in cell culture. Six weeks after intravitreous or subretinal injection of an adeno-associated viral (AAV) vector expressing the PEDF-activating ZFP TF in mice, we observed increased retinal Pedf mRNA, and a significant reduction in the size of CNV at Bruch's membrane rupture sites, assessed in vivo by fluorescein angiography or by postmortem measurements on choroidal flat mounts. Importantly, the anti-angiogenic activity persisted at 3 months after intravitreous injection. These data suggest that ZFP TF-driven enhancement of the endogenous anti-angiogenic defense system may provide a new approach for prophylaxis and treatment of neovascular diseases of the eye.
Collapse
Affiliation(s)
- Katsutoshi Yokoi
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287-9277, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|