1
|
Marei I, Abu Samaan T, Al-Quradaghi MA, Farah AA, Mahmud SH, Ding H, Triggle CR. 3D Tissue-Engineered Vascular Drug Screening Platforms: Promise and Considerations. Front Cardiovasc Med 2022; 9:847554. [PMID: 35310996 PMCID: PMC8931492 DOI: 10.3389/fcvm.2022.847554] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 02/03/2022] [Indexed: 12/12/2022] Open
Abstract
Despite the efforts devoted to drug discovery and development, the number of new drug approvals have been decreasing. Specifically, cardiovascular developments have been showing amongst the lowest levels of approvals. In addition, concerns over the adverse effects of drugs to the cardiovascular system have been increasing and resulting in failure at the preclinical level as well as withdrawal of drugs post-marketing. Besides factors such as the increased cost of clinical trials and increases in the requirements and the complexity of the regulatory processes, there is also a gap between the currently existing pre-clinical screening methods and the clinical studies in humans. This gap is mainly caused by the lack of complexity in the currently used 2D cell culture-based screening systems, which do not accurately reflect human physiological conditions. Cell-based drug screening is widely accepted and extensively used and can provide an initial indication of the drugs' therapeutic efficacy and potential cytotoxicity. However, in vitro cell-based evaluation could in many instances provide contradictory findings to the in vivo testing in animal models and clinical trials. This drawback is related to the failure of these 2D cell culture systems to recapitulate the human physiological microenvironment in which the cells reside. In the body, cells reside within a complex physiological setting, where they interact with and respond to neighboring cells, extracellular matrix, mechanical stress, blood shear stress, and many other factors. These factors in sum affect the cellular response and the specific pathways that regulate variable vital functions such as proliferation, apoptosis, and differentiation. Although pre-clinical in vivo animal models provide this level of complexity, cross species differences can also cause contradictory results from that seen when the drug enters clinical trials. Thus, there is a need to better mimic human physiological conditions in pre-clinical studies to improve the efficiency of drug screening. A novel approach is to develop 3D tissue engineered miniaturized constructs in vitro that are based on human cells. In this review, we discuss the factors that should be considered to produce a successful vascular construct that is derived from human cells and is both reliable and reproducible.
Collapse
Affiliation(s)
- Isra Marei
- Department of Pharmacology, Weill Cornell Medicine-Qatar, Doha, Qatar
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- *Correspondence: Isra Marei
| | - Tala Abu Samaan
- Department of Pharmacology, Weill Cornell Medicine-Qatar, Doha, Qatar
| | | | - Asmaa A. Farah
- Department of Pharmacology, Weill Cornell Medicine-Qatar, Doha, Qatar
| | | | - Hong Ding
- Department of Pharmacology, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Chris R. Triggle
- Department of Pharmacology, Weill Cornell Medicine-Qatar, Doha, Qatar
- Chris R. Triggle
| |
Collapse
|
2
|
Yu L, Liu S, Wang C, Zhang C, Wen Y, Zhang K, Chen S, Huang H, Liu Y, Wu L, Han Z, Chen X, Li Z, Liu N. Embryonic stem cell-derived extracellular vesicles promote the recovery of kidney injury. Stem Cell Res Ther 2021; 12:379. [PMID: 34215331 PMCID: PMC8254253 DOI: 10.1186/s13287-021-02460-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/10/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Embryonic stem cell-derived extracellular vesicles (ESC-EVs) possess therapeutic potential for a variety of diseases and are considered as an alternative of ES cells. Acute kidney injury (AKI) is a common acute and severe disease in clinical practice, which seriously threatens human life and health. However, the roles and mechanisms of ESC-EVs on AKI remain unclear. METHODS In this study, we evaluated the effects of ESC-EVs on physiological repair and pathological repair using murine ischemia-reperfusion injury-induced AKI model, the potential mechanisms of which were next investigated. EVs were isolated from ESCs and EVs derived from mouse fibroblasts as therapeutic controls. We then investigated whether ESC-EVs can restore the structure and function of the damaged kidney by promoting physiological repair and inhibiting the pathological repair process after AKI in vivo and in vitro. RESULTS We found that ESC-EVs significantly promoted the recovery of the structure and function of the damaged kidney. ESC-EVs increased the proliferation of renal tubular epithelial cells, facilitated renal angiogenesis, inhibited the progression of renal fibrosis, and rescued DNA damage caused by ischemia and reperfusion after AKI. Finally, we found that ESC-EVs play a therapeutic effect by activating Sox9+ cells. CONCLUSIONS ESC-EVs significantly promote the physiological repair and inhibit the pathological repair after AKI, enabling restoration of the structure and function of the damaged kidney. This strategy might emerge as a novel therapeutic strategy for ESC clinical application.
Collapse
Affiliation(s)
- Lu Yu
- School of Medicine, Nankai University, Tianjin, 300071, China
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Siying Liu
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Chen Wang
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Chuanyu Zhang
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Yajie Wen
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Kaiyue Zhang
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Shang Chen
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Haoyan Huang
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Yue Liu
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Lingling Wu
- State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, China
| | - Zhongchao Han
- Beijing Engineering Laboratory of Perinatal Stem Cells, Beijing Institute of Health and Stem Cells, Health & Biotech Co., Beijing, China
| | - Xiangmei Chen
- State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, China.
| | - Zongjin Li
- School of Medicine, Nankai University, Tianjin, 300071, China.
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| | - Na Liu
- School of Medicine, Nankai University, Tianjin, 300071, China.
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
3
|
Park SY, Lee H, Kwon YW, Park MR, Kim JH, Kim JB. Etv2- and Fli1-Induced Vascular Progenitor Cells Enhance Functional Recovery in Ischemic Vascular Disease Model-Brief Report. Arterioscler Thromb Vasc Biol 2020; 40:e105-e113. [PMID: 32075417 DOI: 10.1161/atvbaha.119.313684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Vascular progenitor cells (VPCs), which are able to differentiate into both endothelial cells and smooth muscle cells, have the potential for treatment of ischemic diseases. Generated by pluripotent stem cells, VPCs carry the risk of tumorigenicity in clinical application. This issue could be resolved by direct lineage conversion, the induction of functional cells from another lineage by using only lineage-restricted transcription factors. Here, we show that induced VPCs (iVPCs) can be generated from fibroblasts by ETS (E-twenty six) transcription factors, Etv2 and Fli1. Approach and Results: Mouse fibroblasts were infected with lentivirus encoding Etv2 and Fli1. Cell colonies appeared in Fli1- and Etv2/Fli1-infected groups and were mechanically picked. The identity of cell colonies was confirmed by proliferation assay and reverse-transcription polymerase chain reaction with vascular markers. Etv2/Fli1- infected cell colonies were sorted by CD144 (also known as CDH5, VE-cadherin). We defined that CD144-positive iVPCs maintained its own population and expanded stably at multiple passages. iVPCs could differentiate into functional endothelial cells and smooth muscle cells by a defined medium. The functionalities of iVPC-derived endothelial cells and smooth muscle cells were confirmed by analyzing LDL (low-density lipoprotein) uptake, carbachol-induced contraction, and tube formation in vitro. Transplantation of iVPCs into the ischemic hindlimb model enhanced blood flow without tumor formation in vivo. Human iVPCs were generated by human ETS transcription factors ETV2 and FLI1. CONCLUSIONS We demonstrate that ischemic disease curable iVPCs, which have self-renewal and bipotency, can be generated from mouse fibroblasts by enforced ETS family transcription factors, Etv2 and Fli1 expression. Our simple strategy opens insights into stem cell-based ischemic disease therapy.
Collapse
Affiliation(s)
- Soo Yong Park
- From the Hans Schöler Stem Cell Research Center, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), South Korea (S.Y.P., H.L., M.R.P., J.B.K.)
| | - Hyunah Lee
- From the Hans Schöler Stem Cell Research Center, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), South Korea (S.Y.P., H.L., M.R.P., J.B.K.)
| | - Yang Woo Kwon
- Department of Physiology, Pusan National University School of Medicine, Yangsan, South Korea (Y.W.K., J.H.K.)
| | - Myung Rae Park
- From the Hans Schöler Stem Cell Research Center, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), South Korea (S.Y.P., H.L., M.R.P., J.B.K.)
| | - Jae Ho Kim
- Department of Physiology, Pusan National University School of Medicine, Yangsan, South Korea (Y.W.K., J.H.K.)
| | - Jeong Beom Kim
- From the Hans Schöler Stem Cell Research Center, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), South Korea (S.Y.P., H.L., M.R.P., J.B.K.)
| |
Collapse
|
4
|
Zhong M, Wei D, Yang Y, Sun J, Chen X, Guo L, Wei Q, Wan Y, Fan H, Zhang X. Vascularization in Engineered Tissue Construct by Assembly of Cellular Patterned Micromodules and Degradable Microspheres. ACS APPLIED MATERIALS & INTERFACES 2017; 9:3524-3534. [PMID: 28075550 DOI: 10.1021/acsami.6b15697] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Tissue engineering aims to generate functional tissue constructs in which proper extracellular matrix (ECM) for cell survival and establishment of a vascular network are necessary. A modular approach via the assembly of modules mimicking the complex tissues' microarchitectural features and establishing a vascular network represents a promising strategy for fabricating larger and more complex tissue constructs. Herein, as a model for this modular tissue engineering, engineered bone-like constructs were developed by self-assembly of osteon-like modules and fast degradable gelatin microspheres. The collagen microspheres acting as osteon-like modules were developed by seeding human umbilical vein endothelial cells (HUVECs) onto collagen microspheres laden with human osteoblast-like cells (MG63) and collagenase. Both HUVECs and MG63 cells were well spatially patterned in the modules, and collagen as ECM well supported cell adhesion, spreading, and functional expression due to its native RGD domains and enzymatic degradation activity. The patterned modules facilitated both the cellular function expression of osteogenic MG63 cells and vasculogenic HUVECs; that is, the osteon-like units were successfully achieved. The assembly of the osteon-like modules and fast degradable gelatin microspheres promoted the vascularization, thus facilitating the osteogenic function expression. The study provides a highly efficient approach to engineering complex 3D tissues with micropatterned cell types and interconnected channels.
Collapse
Affiliation(s)
- Meiling Zhong
- National Engineering Research Center for Biomaterials, Sichuan University , Chengdu 610064, Sichuan, China
- College of Materials Science and Engineering, East China Jiaotong University , Nanchang 330013, Jiangxi, China
| | - Dan Wei
- National Engineering Research Center for Biomaterials, Sichuan University , Chengdu 610064, Sichuan, China
| | - You Yang
- National Engineering Research Center for Biomaterials, Sichuan University , Chengdu 610064, Sichuan, China
| | - Jing Sun
- National Engineering Research Center for Biomaterials, Sichuan University , Chengdu 610064, Sichuan, China
| | - Xuening Chen
- National Engineering Research Center for Biomaterials, Sichuan University , Chengdu 610064, Sichuan, China
| | - Likun Guo
- National Engineering Research Center for Biomaterials, Sichuan University , Chengdu 610064, Sichuan, China
| | - Qingrong Wei
- National Engineering Research Center for Biomaterials, Sichuan University , Chengdu 610064, Sichuan, China
| | - Yizao Wan
- College of Materials Science and Engineering, East China Jiaotong University , Nanchang 330013, Jiangxi, China
| | - Hongsong Fan
- National Engineering Research Center for Biomaterials, Sichuan University , Chengdu 610064, Sichuan, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University , Chengdu 610064, Sichuan, China
| |
Collapse
|
5
|
Han F, Wang W, Chen B, Chen C, Li S, Lu X, Duan J, Zhang Y, Zhang YA, Guo W, Li G. Human induced pluripotent stem cell–derived neurons improve motor asymmetry in a 6-hydroxydopamine–induced rat model of Parkinson's disease. Cytotherapy 2015; 17:665-79. [DOI: 10.1016/j.jcyt.2015.02.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 01/18/2015] [Accepted: 02/01/2015] [Indexed: 12/13/2022]
|
6
|
Molecular pathways governing development of vascular endothelial cells from ES/iPS cells. Stem Cell Rev Rep 2014; 9:586-98. [PMID: 23765563 DOI: 10.1007/s12015-013-9450-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Assembly of complex vascular networks occurs in numerous biological systems through morphogenetic processes such as vasculogenesis, angiogenesis and vascular remodeling. Pluripotent stem cells such as embryonic stem (ES) and induced pluripotent stem (iPS) cells can differentiate into any cell type, including endothelial cells (ECs), and have been extensively used as in vitro models to analyze molecular mechanisms underlying EC generation and differentiation. The emergence of these promising new approaches suggests that ECs could be used in clinical therapy. Much evidence suggests that ES/iPS cell differentiation into ECs in vitro mimics the in vivo vascular morphogenic process. Through sequential steps of maturation, ECs derived from ES/iPS cells can be further differentiated into arterial, venous, capillary and lymphatic ECs, as well as smooth muscle cells. Here, we review EC development from ES/iPS cells with special attention to molecular pathways functioning in EC specification.
Collapse
|
7
|
Abstract
The primary cellular source of factor VIII (FVIII) biosynthesis is controversial, with contradictory evidence supporting an endothelial or hepatocyte origin. LMAN1 is a cargo receptor in the early secretory pathway that is responsible for the efficient secretion of factor V (FV) and FVIII to the plasma. Lman1 mutations result in combined deficiency of FV and FVIII, with levels of both factors reduced to ~10% to 15% of normal in human patients. We generated Lman1 conditional knockout mice to characterize the FVIII secretion profiles of endothelial cells and hepatocytes. We demonstrate that endothelial cells are the primary biosynthetic source of murine FVIII and that hepatocytes make no significant contribution to the plasma FVIII pool. Utilizing RiboTag mice and polyribosome immunoprecipitation, we performed endothelial cell-specific messenger RNA isolation and quantitative polymerase chain reaction analyses to confirm that endothelial cells highly express F8 and to explore the heterogeneity of F8 expression in different vascular beds. We demonstrate that endothelial cells from multiple, but not all, tissues contribute to the plasma FVIII pool in the mouse.
Collapse
|
8
|
Liu Y, Fox V, Lei Y, Hu B, Joo KI, Wang P. Synthetic niches for differentiation of human embryonic stem cells bypassing embryoid body formation. J Biomed Mater Res B Appl Biomater 2013; 102:1101-12. [DOI: 10.1002/jbm.b.33092] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 10/16/2013] [Accepted: 11/26/2013] [Indexed: 12/11/2022]
Affiliation(s)
- Yarong Liu
- Mork Family Department of Chemical Engineering and Materials Science; University of Southern California; Los Angeles California
| | - Victoria Fox
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research; University of Southern California; Los Angeles California
| | - Yuning Lei
- Mork Family Department of Chemical Engineering and Materials Science; University of Southern California; Los Angeles California
| | - Biliang Hu
- Mork Family Department of Chemical Engineering and Materials Science; University of Southern California; Los Angeles California
| | - Kye-Il Joo
- Mork Family Department of Chemical Engineering and Materials Science; University of Southern California; Los Angeles California
| | - Pin Wang
- Mork Family Department of Chemical Engineering and Materials Science; University of Southern California; Los Angeles California
- Department of Biomedical Engineering; University of Southern California; Los Angeles California
- Department of Pharmacology and Pharmaceutical Sciences; University of Southern California; Los Angeles California
| |
Collapse
|
9
|
Marchand M, Anderson EK, Phadnis SM, Longaker MT, Cooke JP, Chen B, Reijo Pera RA. Concurrent generation of functional smooth muscle and endothelial cells via a vascular progenitor. Stem Cells Transl Med 2013; 3:91-7. [PMID: 24311701 DOI: 10.5966/sctm.2013-0124] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Smooth muscle cells (SMCs) and endothelial cells (ECs) are typically derived separately, with low efficiencies, from human pluripotent stem cells (hPSCs). The concurrent generation of these cell types might lead to potential applications in regenerative medicine to model, elucidate, and eventually treat vascular diseases. Here we report a robust two-step protocol that can be used to simultaneously generate large numbers of functional SMCs and ECs from a common proliferative vascular progenitor population via a two-dimensional culture system. We show here that coculturing hPSCs with OP9 cells in media supplemented with vascular endothelial growth factor, basic fibroblast growth factor, and bone morphogenetic protein 4 yields a higher percentage of CD31(+)CD34(+) cells on day 8 of differentiation. Upon exposure to endothelial differentiation media and SM differentiation media, these vascular progenitors were able to differentiate and mature into functional endothelial cells and smooth muscle cells, respectively. Furthermore, we were able to expand the intermediate population more than a billion fold to generate sufficient numbers of ECs and SMCs in parallel for potential therapeutic transplantations.
Collapse
Affiliation(s)
- Melanie Marchand
- Institute for Stem Cell Biology and Regenerative Medicine, Department of Obstetrics and Gynecology, Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, and Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Hazeltine LB, Selekman JA, Palecek SP. Engineering the human pluripotent stem cell microenvironment to direct cell fate. Biotechnol Adv 2013; 31:1002-19. [PMID: 23510904 PMCID: PMC3758782 DOI: 10.1016/j.biotechadv.2013.03.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 02/20/2013] [Accepted: 03/11/2013] [Indexed: 01/31/2023]
Abstract
Human pluripotent stem cells (hPSCs), including both embryonic stem cells and induced pluripotent stem cells, offer a potential cell source for research, drug screening, and regenerative medicine applications due to their unique ability to self-renew or differentiate to any somatic cell type. Before the full potential of hPSCs can be realized, robust protocols must be developed to direct their fate. Cell fate decisions are based on components of the surrounding microenvironment, including soluble factors, substrate or extracellular matrix, cell-cell interactions, mechanical forces, and 2D or 3D architecture. Depending on their spatio-temporal context, these components can signal hPSCs to either self-renew or differentiate to cell types of the ectoderm, mesoderm, or endoderm. Researchers working at the interface of engineering and biology have identified various factors which can affect hPSC fate, often based on lessons from embryonic development, and they have utilized this information to design in vitro niches which can reproducibly direct hPSC fate. This review highlights culture systems that have been engineered to promote self-renewal or differentiation of hPSCs, with a focus on studies that have elucidated the contributions of specific microenvironmental cues in the context of those culture systems. We propose the use of microsystem technologies for high-throughput screening of spatial-temporal presentation of cues, as this has been demonstrated to be a powerful approach for differentiating hPSCs to desired cell types.
Collapse
Affiliation(s)
| | | | - Sean P. Palecek
- Department of Chemical and Biological Engineering, University of Wisconsin – Madison 1415 Engineering Drive, Madison, WI 53706 USA
| |
Collapse
|
11
|
Shi Q, Hodara V, Simerly CR, Schatten GP, VandeBerg JL. Ex vivo reconstitution of arterial endothelium by embryonic stem cell-derived endothelial progenitor cells in baboons. Stem Cells Dev 2012; 22:631-42. [PMID: 22931470 DOI: 10.1089/scd.2012.0313] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
There is an increasing need for an animal model that can be used to translate basic research into clinical therapy. We documented the differentiation and functional competence of embryonic stem cell (ESC)-derived endothelial cells in baboons. Baboon angioblasts were sequentially differentiated from embryoid body cultures for 9 days in an angioblast differentiation medium with varying concentrations of BMP-4, FLT-3 ligand, stem cell factor, thrombopoietin, basic fibroblast growth factor (FGF), vascular endothelial growth factor (VEGF), and knockout serum replacement. Real-time polymerase chain reaction results showed that ESC-derived angioblasts downregulated NANOG and OCT3/4, upregulated T-brachyury and GATA2, and moderately expressed CD34; they did not express CD144, TEK, or VWF, and varied in levels of CD31 expression. Several populations of putative angioblasts appeared 3 days and 9 days after differentiation, as identified by flow cytometry. Angioblasts at this stage exhibited dual paths of differentiation toward hematopoietic and vascular fates. To examine whether derived angioblasts could reconstitute the endothelium, we built an ex vivo culture system and seeded fluorescently labeled angioblast cultures onto a denuded segment of the femoral artery. We found that the seeded cells were able to grow into the endothelium on the interior surface of denuded artery segments within 5 days after seeding. After 14 days of ex vivo culture, the transplanted cells expressed CD31, an endothelial marker. The control arteries, seeded with vehicle only, did not harbor cells with endothelial markers. We conclude that ESC-derived angioblasts are promising therapeutic agents for repairing damaged vasculature, and that the baboon model will be vital for optimizing therapies for human clinical studies.
Collapse
Affiliation(s)
- Qiang Shi
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas 78245-0549, USA.
| | | | | | | | | |
Collapse
|
12
|
Ho PJ, Yen ML, Yet SF, Yen BL. Current Applications of Human Pluripotent Stem Cells: Possibilities and Challenges. Cell Transplant 2012; 21:801-14. [DOI: 10.3727/096368911x627507] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Stem cells are self-renewable cells with the differentiation capacity to develop into somatic cells with biological functions. This ability to sustain a renewable source of multi- and/or pluripotential differentiation has brought new hope to the field of regenerative medicine in terms of cell therapy and tissue engineering. Moreover, stem cells are invaluable tools as in vitro models for studying diverse fields, from basic scientific questions such as developmental processes and lineage commitment, to practical application including drug screening and testing. The stem cells with widest differentiation potential are pluripotent stem cells (PSCs), which are rare cells with the ability to generate somatic cells from all three germ layers. PSCs are considered the most optimal choice for therapeutic potential of stem cells, bringing new impetus to the field of regenerative medicine. In this article, we discuss the therapeutic potential of human PSCs (hPSCs) including human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs), reviewing the current preclinical and clinical data using these stem cells. We describe the classification of different sources of hPSCs, ongoing research, and currently encountered clinical obstacles of these novel and versatile human stem cells.
Collapse
Affiliation(s)
- Pai-Jiun Ho
- Regenerative Medicine Research Group, Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Men-Luh Yen
- Departmant of Primary Medicine and Department of Obstetrics/Gynecology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shaw-Fang Yet
- Cardiovascular Research Group, Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - B. Linju Yen
- Regenerative Medicine Research Group, Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
| |
Collapse
|
13
|
Pistollato F, Bremer-Hoffmann S, Healy L, Young L, Stacey G. Standardization of pluripotent stem cell cultures for toxicity testing. Expert Opin Drug Metab Toxicol 2012; 8:239-57. [PMID: 22248265 DOI: 10.1517/17425255.2012.639763] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
INTRODUCTION Pluripotent stem cell (PSC) lines offer a unique opportunity to derive various human cell types that can be exploited for human safety assessments in vitro and as such contribute to modern mechanistically oriented toxicity testing. AREAS COVERED This article reviews the two major types of PSC cultures that are currently most promising for toxicological applications: human embryonic stem cell lines and human induced PSC lines. Through the review, the article explains how these cell types will improve the current safety evaluations of chemicals and will allow a more efficient selection of drug candidates. Additionally, the article discusses the important issues of maintaining PSCs as well as their differentiation efficiency. EXPERT OPINION The demonstration of the reliability and relevance of in vitro toxicity tests for a given purpose is mandatory for their use in regulatory toxicity testing. Given the peculiar nature of PSCs, a high level of standardization of undifferentiated cell cultures as well as of the differentiation process is required in order to ensure the establishment of robust test systems. It is, therefore, of pivotal importance to define and internationally agree on crucial parameters to judge the quality of the cellular models before enrolling them for toxicity testing.
Collapse
Affiliation(s)
- Francesca Pistollato
- Institute for Health & Consumer Protection, Systems Toxicology Unit, Joint Research Centre, European Commission, Ispra, Italy
| | | | | | | | | |
Collapse
|
14
|
Hsiai TK, Wu JC. Hemodynamic forces regulate embryonic stem cell commitment to vascular progenitors. Curr Cardiol Rev 2011; 4:269-74. [PMID: 20066134 PMCID: PMC2801858 DOI: 10.2174/157340308786349471] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2008] [Revised: 06/02/2008] [Accepted: 06/02/2008] [Indexed: 12/17/2022] Open
Abstract
Pluripotent embryonic stem can (ES) cells can differentiate into all cell lineages. During the process of embryonic development, ES cells are exposed to fluid flow or blood flow generated by the contracting heart. Absence of fluid flow results in the formation of abnormal cardiac chambers and valve formation. Thus, hemodynamic forces and ES cell differentiation to vascular progenitor cells (VPCs) are of emerging interests for restoring endothelial dysfunction, inducing angiogenesis, and forming blood vessel networks. Hemodynamic forces such as fluid shear stress increase the percentage of cells in the S and G2-M phases, and induce decondensation of chromatin for gene transcription. Fluid shear stress further accelerates ES commitment to CD31+ VPC vascular progenitor cells. These ES-derived CD31+ cells express endothelial nitric oxide synthase (eNOS) and von Willebrand factor (vWF). They are also capable of LDL uptake and tubular network formation. In this context, understanding hemodynamic forces and ES cell kinetics of differentiation towards endothelial lineage has potential therapeutic applications for repairing vascular damage and engineering vascular graft. Multidisciplinary team approach will likely garner momentum and synergize expertise to address the current road blocks in basic stem cell research for engraftable, restorative, low immunogenic, and non-tumorigenic endothelial progenitors in high purity and stability.
Collapse
Affiliation(s)
- Tzung K Hsiai
- Department of Biomedical Engineering and Division of Cardiovascular Medicine, University of Southern California, Los Angeles, CA 90089-1111, USA
| | | |
Collapse
|
15
|
Isolation, differentiation and characterization of vascular cells derived from human embryonic stem cells. Nat Protoc 2010; 5:1115-26. [PMID: 20539287 DOI: 10.1038/nprot.2010.31] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Herein, we describe a protocol for the isolation of human embryonic stem cells (hESCs)-derived vascular cells at various stages of development. The cells are isolated from 10 to 15-d-old human embryoid bodies (EBs) cultured in suspension. After dissociation, cells are labeled with anti-CD34 or anti-CD31 (PECAM1) antibody and separated from the cell mixture by magnetic-activated cell separation (MACS) or fluorescent-activated cell sorting (FACS). Isolated vascular cells are then cultured in media conditions that support specific differentiation and expansion pathways. The resulting vascular cell populations contain >80% endothelial-like or smooth muscle-like cells. Assuming typical initial cell adhesion and proliferation rates, the entire procedure can be completed within 1.5 months. Vascular cells isolated and differentiated under the described conditions may constitute a potential cell source for therapeutic application toward repair of ischemic tissues, preparation of tissue-engineered vascular grafts and design of cellular kits for drug screening applications.
Collapse
|
16
|
Ball SG, Shuttleworth CA, Kielty CM. Platelet-derived growth factor receptors regulate mesenchymal stem cell fate: implications for neovascularization. Expert Opin Biol Ther 2009; 10:57-71. [DOI: 10.1517/14712590903379510] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
17
|
Li X, Gao H, Uo M, Sato Y, Akasaka T, Feng Q, Cui F, Liu X, Watari F. Effect of carbon nanotubes on cellular functions in vitro. J Biomed Mater Res A 2009; 91:132-139. [PMID: 18767064 DOI: 10.1002/jbm.a.32203] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Carbon nanotubes (CNTs) have been shown to affect cell behavior. But how and why the CNTs affect potential differentiation of the attached cells has not been largely known. In this study, multiwalled carbon nanotubes (MWNTs) and graphite (GP) were pressed as compacts. Higher ability of CNTs to adsorb proteins, compared with GP, was shown. Myoblastic mouse cells (C2C12) were cultured and the cell responses to the two kinds of compacts were compared in vitro. Meanwhile, we used cell culture on the culture plate as a control. During the conventional culture, significantly better cell attachment, proliferation, and differentiation of cells on the MWNTs were found. To confirm the hypothesis that the larger amount of protein adsorbed on the CNTs was crucial for this, we made the compacts adsorb more proteins in culture medium with 50% fetal bovine serum (FBS) before cell culture. With the adsorption of the proteins in advance, the increments of the total-protein/DNA and alkaline phosphatase (ALP)/DNA for the MWNTs was respectively as about 11 times and 18 times as the increments of those for GP and the control at both day 4 and day 7. Therefore, the CNTs might induce cellular functions by adsorbing more proteins, which indicated that the CNTs might be a candidate for scaffold material for tissue engineering.
Collapse
Affiliation(s)
- Xiaoming Li
- Department of Biomedical Materials and Engineering, Graduate School of Dental Medicine, Hokkaido University, Sapporo 060-8586, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Nikolic B, Faintuch S, Goldberg SN, Kuo MD, Cardella JF. Stem Cell Therapy: A Primer for Interventionalists and Imagers. J Vasc Interv Radiol 2009; 20:999-1012. [DOI: 10.1016/j.jvir.2009.04.075] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Revised: 04/24/2009] [Accepted: 04/28/2009] [Indexed: 02/06/2023] Open
|
19
|
Li X, Gao H, Uo M, Sato Y, Akasaka T, Abe S, Feng Q, Cui F, Watari F. Maturation of osteoblast-like SaoS2 induced by carbon nanotubes. Biomed Mater 2009; 4:015005. [PMID: 18981539 DOI: 10.1088/1748-6041/4/1/015005] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Osteogenic maturation of the osteoblast is crucial for bone formation. In this study, multi-walled carbon nanotubes (MWCNTs) and graphite (GP) were pressed as compacts. The greater ability of carbon nanotubes to adsorb proteins, compared with graphite, was shown. Human osteoblast-like SaoS2 cells were cultured and the cell response to the two kinds of compacts was compared in vitro. Meanwhile, we used cell culture on the culture plate as a control. Assays for osteonectin, osteopontin and osteocalcin gene expression, total protein (TP) amount, alkaline phosphatase activity (ALP) and DNA of cells cultured on the samples were done. During the conventional culture, significantly higher osteonectin, osteopontin and osteocalcin gene expression level, ALP/DNA and TP/DNA on carbon nanotubes were found. To confirm the hypothesis that the larger amount of specific proteins adsorbed on the carbon nanotubes was crucial for this, the compacts were pre-soaked in culture medium having additional recombinant human bone morphogenetic protein-2 (rhBMP-2) before cell culture. Compared with GP, osteonectin, osteopontin and osteocalcin gene expression level, ALP/DNA and TP/DNA of the cells tested increased more on the MWCNTs after the compacts were pre-soaked in the culture medium with rhBMP-2. The results indicated that the carbon nanotubes might induce osteogenic maturation of the osteoblast by adsorbing more specific proteins.
Collapse
Affiliation(s)
- Xiaoming Li
- Department of Biomedical Materials and Engineering, Graduate School of Dental Medicine, Hokkaido University, Kita Ku Kita 13, Nishi 7, Sapporo 060-8586, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
ES cell research represents an exploding field of exploration. Initially predicted to provide rapid cures for numerous human diseases, the clinical usefulness of ES cell-derived cells remains untested in humans. However, ES cells have rapidly expanded our knowledge of human development and the molecular details of differentiation. Our ability to generate relatively pure populations of specifically differentiated cells for transplantation has markedly improved. It is hoped that soon researchers will overcome the biologic impediments to successful treatment of human disease with ES cell-derived cells.
Collapse
|