1
|
Padzińska-Pruszyńska IB, Taciak B, Kiraga Ł, Smolarska A, Górczak M, Kucharzewska P, Kubiak M, Szeliga J, Matejuk A, Król M. Targeting Cancer: Microenvironment and Immunotherapy Innovations. Int J Mol Sci 2024; 25:13569. [PMID: 39769334 PMCID: PMC11679359 DOI: 10.3390/ijms252413569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/12/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
In 2024, the United States was projected to experience 2 million new cancer diagnoses and approximately 611,720 cancer-related deaths, reflecting a broader global trend in which cancer cases are anticipated to exceed 35 million by 2050. This increasing burden highlights ongoing challenges in cancer treatment despite significant advances that have reduced cancer mortality by 31% since 1991. Key obstacles include the disease's inherent heterogeneity and complexity, such as treatment resistance, cancer stem cells, and the multifaceted tumor microenvironment (TME). The TME-comprising various tumor and immune cells, blood vessels, and biochemical factors-plays a crucial role in tumor growth and resistance to therapies. Recent innovations in cancer treatment, particularly in the field of immuno-oncology, have leveraged insights into TME interactions. An emerging example is the FDA-approved therapy using tumor-infiltrating lymphocytes (TILs), demonstrating the potential of cell-based approaches in solid tumors. However, TIL therapy is just one of many strategies being explored. This review provides a comprehensive overview of the emerging field of immuno-oncology, focusing on how novel therapies targeting or harnessing components of the TME could enhance treatment efficacy and address persistent challenges in cancer care.
Collapse
Affiliation(s)
- Irena Barbara Padzińska-Pruszyńska
- Center of Cellular Immunotherapies, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (I.B.P.-P.); (B.T.); (A.S.); (M.G.); (P.K.); (M.K.); (J.S.)
| | - Bartłomiej Taciak
- Center of Cellular Immunotherapies, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (I.B.P.-P.); (B.T.); (A.S.); (M.G.); (P.K.); (M.K.); (J.S.)
| | - Łukasz Kiraga
- Division of Pharmacology and Toxicology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-787 Warsaw, Poland;
| | - Anna Smolarska
- Center of Cellular Immunotherapies, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (I.B.P.-P.); (B.T.); (A.S.); (M.G.); (P.K.); (M.K.); (J.S.)
| | - Małgorzata Górczak
- Center of Cellular Immunotherapies, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (I.B.P.-P.); (B.T.); (A.S.); (M.G.); (P.K.); (M.K.); (J.S.)
| | - Paulina Kucharzewska
- Center of Cellular Immunotherapies, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (I.B.P.-P.); (B.T.); (A.S.); (M.G.); (P.K.); (M.K.); (J.S.)
| | - Małgorzata Kubiak
- Center of Cellular Immunotherapies, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (I.B.P.-P.); (B.T.); (A.S.); (M.G.); (P.K.); (M.K.); (J.S.)
| | - Jacek Szeliga
- Center of Cellular Immunotherapies, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (I.B.P.-P.); (B.T.); (A.S.); (M.G.); (P.K.); (M.K.); (J.S.)
| | - Agata Matejuk
- Department of Immunology, Collegium Medicum, University of Zielona Góra, 65-046 Zielona Góra, Poland;
| | - Magdalena Król
- Center of Cellular Immunotherapies, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (I.B.P.-P.); (B.T.); (A.S.); (M.G.); (P.K.); (M.K.); (J.S.)
| |
Collapse
|
2
|
Moglan AM, Albaradie OA, Alsayegh FF, Alharbi HM, Samman YM, Jalal MM, Saeedi NH, Mahmoud AB, Alkayyal AA. Preclinical efficacy of oncolytic VSV-IFNβ in treating cancer: A systematic review. Front Immunol 2023; 14:1085940. [PMID: 37063914 PMCID: PMC10104167 DOI: 10.3389/fimmu.2023.1085940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 03/17/2023] [Indexed: 04/03/2023] Open
Abstract
BackgroundCancer incidence and mortality are increasing rapidly worldwide, necessitating further investigation into developing and optimizing emergent cancer therapies. Oncolytic viruses such as vesicular stomatitis virus encoding interferon β (VSV-IFNβ) have attracted considerable attention, as they offer great efficacy and safety profiles. This systematic review aimed to determine and compare the efficacy profile between VSV-IFNβ and non-treatment controls in preclinical cancer models.MethodologyThe Embase and Medline databases were systematically searched for relevant studies using related key terms and Medical Subject Headings (MeSH). Titles, abstracts, and full texts were screened, and data from eligible articles were extracted by two groups independently and in duplicate (two reviewers per group). Disagreements were resolved by a fifth independent reviewer. The included articles were all preclinical (translational) in vivo English studies that investigated and compared the efficacy profile between VSV-IFNβ and non-treatment controls in animal models. The risk of bias among the studies was assessed by two reviewers independently and in duplicate using SYRCLE’s risk-of-bias tool for animal studies; disparities were addressed by a third independent reviewer.ResultsAfter employing relevant MeSH and key terms, we identified 1598 articles. A total of 87 articles were either duplicates or conference proceedings and were thus excluded. Following title and abstract screening, 37 articles were included in the full-text assessment. Finally, 14 studies met the eligibility criteria. Forty-two experiments from the included studies examined the potential efficacy of VSV-IFNβ through different routes of administration, including intratumoral, intraperitoneal, and intravenous routes. Thirty-seven experiments reported positive outcomes. Meanwhile, five experiments reported negative outcomes, three and two of which examined intratumoral and intravenous VSV-IFNβ administration, respectively.ConclusionAlthough the majority of the included studies support the promising potential of VSV-IFNβ as an oncolytic virus, further research is necessary to ensure a safe and efficacious profile to translate its application into clinical trials.Systematic review registrationhttps://www.crd.york.ac.uk/PROSPERO/, identifier CRD42022335418.
Collapse
Affiliation(s)
- Abdulaziz Molham Moglan
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
| | - Omar A. Albaradie
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
| | - Fares Fayez Alsayegh
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
| | - Hussam Mohsen Alharbi
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
| | - Yahya Marwan Samman
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
| | - Mohammed M. Jalal
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Nizar H. Saeedi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Ahmad Bakur Mahmoud
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Taibah University, Almadinah Almunwarah, Saudi Arabia
- Strategic Research and Innovation Laboratories, Taibah University, Almadinah Almunwarah, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- *Correspondence: Ahmad Bakur Mahmoud, ; Almohanad A. Alkayyal,
| | - Almohanad A. Alkayyal
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- *Correspondence: Ahmad Bakur Mahmoud, ; Almohanad A. Alkayyal,
| |
Collapse
|
3
|
Fang C, Xiao G, Wang T, Song L, Peng B, Xu B, Zhang K. Emerging Nano-/Biotechnology Drives Oncolytic Virus-Activated and Combined Cancer Immunotherapy. RESEARCH 2023; 6:0108. [PMID: 37040283 PMCID: PMC10079287 DOI: 10.34133/research.0108] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 03/15/2023] [Indexed: 04/05/2023]
Abstract
Oncolytic viruses (OVs) as one promising antitumor methods have made important contributions to tumor immunotherapy, which arouse increasing attention. They provide the dual mechanisms including direct killing effect toward tumor cells and immune activation for elevating antitumor responses, which have been proved in many preclinical studies. Especially, natural or genetically modified viruses as clinical immune preparations have emerged as a new promising approach objective to oncology treatment. The approval of talimogene laherparepvec (T-VEC) by the U.S. Food and Drug Administration (FDA) for the therapy of advanced melanoma could be considered as a milestone achievement in the clinical translation of OV. In this review, we first discussed the antitumor mechanisms of OVs with an emphasis on targeting, replication, and propagation. We further outlined the state of the art of current OVs in tumor and underlined the activated biological effects especially including immunity. More significantly, the enhanced immune responses based on OVs were systematically discussed from different perspectives such as combination with immunotherapy, genetic engineering of OVs, integration with nanobiotechnology or nanoparticles, and antiviral response counteraction, where their principles were shed light on. The development of OVs in the clinics was also highlighted to analyze the actuality and concerns of different OV applications in clinical trials. At last, the future perspectives and challenges of OVs as an already widely accepted treatment means were discussed. This review will provide a systematic review and deep insight into OV development and also offer new opportunities and guidance pathways to drive the further clinical translation.
Collapse
Affiliation(s)
- Chao Fang
- Central Laboratory and Department of Urology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine,
Tongji University, No. 301 Yan-chang-zhong Road, Shanghai 200072, China
| | - Gaozhe Xiao
- National Center for International Research of Bio-targeting Theranostics,
Guangxi Medical University, No. 22 Shuangyong Road 22, Nanning, Guangxi 530021, China
| | - Taixia Wang
- Central Laboratory and Department of Urology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine,
Tongji University, No. 301 Yan-chang-zhong Road, Shanghai 200072, China
| | - Li Song
- Central Laboratory and Department of Urology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine,
Tongji University, No. 301 Yan-chang-zhong Road, Shanghai 200072, China
| | - Bo Peng
- Central Laboratory and Department of Urology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine,
Tongji University, No. 301 Yan-chang-zhong Road, Shanghai 200072, China
| | - Bin Xu
- Department of Urology, Shanghai Ninth People’s Hospital,
Shanghai Jiaotong University School of Medicine, No. 639 Zhizaoju Road, Huangpu, Shanghai 200011, China
| | - Kun Zhang
- Central Laboratory and Department of Urology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine,
Tongji University, No. 301 Yan-chang-zhong Road, Shanghai 200072, China
- National Center for International Research of Bio-targeting Theranostics,
Guangxi Medical University, No. 22 Shuangyong Road 22, Nanning, Guangxi 530021, China
| |
Collapse
|
4
|
The Evolution and Future of Targeted Cancer Therapy: From Nanoparticles, Oncolytic Viruses, and Oncolytic Bacteria to the Treatment of Solid Tumors. NANOMATERIALS 2021; 11:nano11113018. [PMID: 34835785 PMCID: PMC8623458 DOI: 10.3390/nano11113018] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/28/2021] [Accepted: 11/01/2021] [Indexed: 02/07/2023]
Abstract
While many classes of chemotherapeutic agents exist to treat solid tumors, few can generate a lasting response without substantial off-target toxicity despite significant scientific advancements and investments. In this review, the paths of development for nanoparticles, oncolytic viruses, and oncolytic bacteria over the last 20 years of research towards clinical translation and acceptance as novel cancer therapeutics are compared. Novel nanoparticle, oncolytic virus, and oncolytic bacteria therapies all start with a common goal of accomplishing therapeutic drug activity or delivery to a specific site while avoiding off-target effects, with overlapping methodology between all three modalities. Indeed, the degree of overlap is substantial enough that breakthroughs in one therapeutic could have considerable implications on the progression of the other two. Each oncotherapeutic modality has accomplished clinical translation, successfully overcoming the potential pitfalls promising therapeutics face. However, once studies enter clinical trials, the data all but disappears, leaving pre-clinical researchers largely in the dark. Overall, the creativity, flexibility, and innovation of these modalities for solid tumor treatments are greatly encouraging, and usher in a new age of pharmaceutical development.
Collapse
|
5
|
Cao GD, He XB, Sun Q, Chen S, Wan K, Xu X, Feng X, Li PP, Chen B, Xiong MM. The Oncolytic Virus in Cancer Diagnosis and Treatment. Front Oncol 2020; 10:1786. [PMID: 33014876 PMCID: PMC7509414 DOI: 10.3389/fonc.2020.01786] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 08/11/2020] [Indexed: 12/28/2022] Open
Abstract
Cancer has always been an enormous threat to human health and survival. Surgery, radiotherapy, and chemotherapy could improve the survival of cancer patients, but most patients with advanced cancer usually have a poor survival or could not afford the high cost of chemotherapy. The emergence of oncolytic viruses provided a new strategy for us to alleviate or even cure malignant tumors. An oncolytic virus can be described as a genetically engineered or naturally existing virus that can selectively replicate in cancer cells and then kill them without damaging the healthy cells. There have been many kinds of oncolytic viruses, such as herpes simplex virus, adenovirus, and Coxsackievirus. Moreover, they have different clinical applications in cancer treatment. This review focused on the clinical application of oncolytic virus and predicted the prospect by analyzing the advantages and disadvantages of oncolytic virotherapy.
Collapse
Affiliation(s)
- Guo-dong Cao
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiao-bo He
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Qiang Sun
- Jiangsu Key Laboratory of Biological Cancer, Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Sihan Chen
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ke Wan
- Department of Oncology, Anhui Medical University, Hefei, China
| | - Xin Xu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xudong Feng
- Department of Infectious Disease, Zhejiang University, Hangzhou, China
| | - Peng-ping Li
- Department of General Surgery, The First People’s Hospital of Xiaoshan District, Hangzhou, China
| | - Bo Chen
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Mao-ming Xiong
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
6
|
Patel MR, Jacobson BA, Ji Y, Hebbel RP, Kratzke RA. Blood Outgrowth Endothelial Cells as a Cellular Carrier for Oncolytic Vesicular Stomatitis Virus Expressing Interferon-β in Preclinical Models of Non-Small Cell Lung Cancer. Transl Oncol 2020; 13:100782. [PMID: 32422574 PMCID: PMC7231872 DOI: 10.1016/j.tranon.2020.100782] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/10/2020] [Accepted: 04/13/2020] [Indexed: 12/19/2022] Open
Abstract
Oncolytic viruses have demonstrated efficacy in numerous tumor models including non-small cell lung cancer (NSCLC). One limitation of viral therapy for metastatic lung cancer is that systemic administration can be hindered by complement and antiviral immunity. Thus, we investigated whether ex vivo-infected blood outgrowth endothelial cells (BOECs) could be used to deliver VSV-IFNβ in preclinical models of NSCLC. BOECs were obtained from human donors or C57/Bl6 mice. VSV was engineered to produce GFP or IFNβ. Human and murine BOECs could be infected by VSV-GFP and VSV-IFNβ. Infected BOECs resulted in killing of NSCLC cells in vitro and shielded VSV-IFNβ from antibody neutralization. Mouse BOECs localized to lungs of mice bearing syngeneic LM2 lung tumors, and infected murine BOECs reduced tumor burden in this model. In an immune-deficient A549 xenograft model, mice treated with VSV-IFNβ-infected human BOECs exhibited superior antitumor activity and survival of mice (n = 10, P < .05 compared to VSV-IFNβ alone). We conclude that BOECs can be used as a carrier for delivery of oncolytic VSV-IFNβ. This may be an effective strategy for clinical translation of oncolytic virotherapy for patients with metastatic NSCLC.
Collapse
Affiliation(s)
- Manish R Patel
- University of Minnesota, Department of Medicine, Division of Hematology, Oncology, and Transplantation, Minneapolis, MN, USA.
| | - Blake A Jacobson
- University of Minnesota, Department of Medicine, Division of Hematology, Oncology, and Transplantation, Minneapolis, MN, USA
| | - Yan Ji
- Health Partners Regions Cancer Care Center, St. Paul, MN, USA
| | - Robert P Hebbel
- University of Minnesota, Department of Medicine, Division of Hematology, Oncology, and Transplantation, Minneapolis, MN, USA
| | - Robert A Kratzke
- University of Minnesota, Department of Medicine, Division of Hematology, Oncology, and Transplantation, Minneapolis, MN, USA
| |
Collapse
|
7
|
Vascular Wall as Source of Stem Cells Able to Differentiate into Endothelial Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019. [PMID: 31797283 DOI: 10.1007/5584_2019_421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2023]
Abstract
The traditional view of the vascular biology is changed by the discovery of vascular progenitor cells in bone marrow or peripheral blood Further complexity is due to the findings that the vessel walls harbor progenitor and stem cells, called vascular wall-resident vascular stem cells (VW-VSCs), able to differentiate to mature vascular wall cells. These immature stem/progenitor cell populations and multipotent mesenchymal lineage participate in postnatal neovascularization and vascular wall remodeling. Further studies are necessary to deepen the knowledge on characterization and biology of VW-VSCs, in particular of endothelial progenitor cells (EPCs) in order to improve their use in clinical settings for regenerative approaches.
Collapse
|
8
|
Xia M, Luo D, Dong J, Zheng M, Meng G, Wu J, Wei J. Graphene oxide arms oncolytic measles virus for improved effectiveness of cancer therapy. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:408. [PMID: 31533779 PMCID: PMC6749703 DOI: 10.1186/s13046-019-1410-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 09/03/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND Replication-competent oncolytic viruses (OVs) have been proven to be a potent anticancer weapon for clinical therapy. The preexisting neutralizing antibody in patients is a big challenge for oncolytic efficacy of OVs. Graphene oxide sheets (GOS) possess excellent biological compatibility and are easy to decorate for targeted delivery. METHODS We generated PEI-GOS-PEG-FA (Polyethyleneimine-Graphene oxide sheets-Polyethylene glycol-Folic acid). After intravenous injection, the distribution of PEI-GOS-PEG-FA in tumor-bearing mice was visualized by the IVIS Lumina XR system. Then, the oncolytic measles virus (MV-Edm) was coated with PEI-GOS-PEG-FA to form a viral-GOS complex (GOS/MV-Edm). The oncolytic effects of GOS/MV-Edm were investigated both in vitro and in vivo. RESULTS GOS/MV-Edm exhibited higher infectivity and enhanced oncolysis. In tumor-bearing mice, GOS/MV-Edm had significantly elevated viral replication within the tumor mass, and achieved an improved antitumor effect. Then, we confirmed that GOS/MV-Edm entered cancer cells via the folate receptor instead of CD46, a natural cognate receptor of MV-Edm. GOS/MV-Edm remained the infectivity in murine cells that lack CD46. Finally, we found that GOS/MV-Edm was effectively protected from neutralization in the presence of antiserum both in vitro and in vivo. In passively antiserum immunized tumor-bearing mice, the survival was remarkably improved with intravenous injection of GOS/MV-Edm. CONCLUSION Our findings demonstrate that GOS/MV-Edm displays significantly elevated viral replication within the tumor mass, leading to an improved antitumor effect in solid tumor mouse model. Our study provided a novel strategy to arm OVs for more efficient cancer therapy. That may become a promising therapeutic strategy for cancer patients.
Collapse
Affiliation(s)
- Mao Xia
- Department of Laboratory Medicine, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Dongjun Luo
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Jie Dong
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210093, China
| | - Meihong Zheng
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210093, China
| | - Gang Meng
- The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Junhua Wu
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210093, China.
| | - Jiwu Wei
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210093, China.
| |
Collapse
|
9
|
Paschalaki KE, Randi AM. Recent Advances in Endothelial Colony Forming Cells Toward Their Use in Clinical Translation. Front Med (Lausanne) 2018; 5:295. [PMID: 30406106 PMCID: PMC6205967 DOI: 10.3389/fmed.2018.00295] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 09/28/2018] [Indexed: 12/17/2022] Open
Abstract
The term “Endothelial progenitor cell” (EPC) has been used to describe multiple cell populations that express endothelial surface makers and promote vascularisation. However, the only population that has all the characteristics of a real “EPC” is the Endothelial Colony Forming Cells (ECFC). ECFC possess clonal proliferative potential, display endothelial and not myeloid cell surface markers, and exhibit pronounced postnatal vascularisation ability in vivo. ECFC have been used to investigate endothelial molecular dysfunction in several diseases, as they give access to endothelial cells from patients in a non-invasive way. ECFC also represent a promising tool for revascularization of damaged tissue. Here we review the translational applications of ECFC research. We discuss studies which have used ECFC to investigate molecular endothelial abnormalities in several diseases and review the evidence supporting the use of ECFC for autologous cell therapy, gene therapy and tissue regeneration. Finally, we discuss ways to improve the therapeutic efficacy of ECFC in clinical applications, as well as the challenges that must be overcome to use ECFC in clinical trials for regenerative approaches.
Collapse
Affiliation(s)
- Koralia E Paschalaki
- Vascular Sciences, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Anna M Randi
- Vascular Sciences, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
10
|
Carrier Cells for Delivery of Oncolytic Measles Virus into Tumors: Determinants of Efficient Loading. Virol Sin 2018; 33:234-240. [PMID: 29767404 DOI: 10.1007/s12250-018-0033-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 04/11/2018] [Indexed: 12/22/2022] Open
Abstract
Oncolytic measles virus (OMV) is a promising antitumor agent. However, the presence of anti-measles neutralizing antibodies (NAbs) against the hemagglutinin (H) protein of OMV is a major barrier to the therapeutic application of OMV in clinical practice. In order to overcome this challenge, specific types of cells have been used as carriers for OMV. Differential loading strategies appear to result in different therapeutic outcomes; despite this, only few studies have reported practical ex vivo loading strategies required for effective treatment. To this end, we systematically evaluated the antitumor efficacy of OMV using different loading strategies; this involved varying the in vitro loading duration and loading dose of OMV. We found that improved oncolysis of carrier cells was achieved by a prolonged loading duration in the absence of NAbs. However, the enhanced oncolytic effect was abrogated in the presence of NAbs. Further, we found that the expression of H protein on the surface of carrier cells was predominantly determined by the loading duration rather than the loading dose. Finally, we showed that NAbs blocked viral transfer by targeting H protein prior to the occurrence of cell-to-cell interactions. Our results provide comprehensive information on the determinants of an effective loading strategy for carrier cell-based virotherapy; these results may be useful for guiding the application of OMV as an antitumor agent in clinical practice.
Collapse
|
11
|
Xu C, Goß AV, Dorneburg C, Debatin KM, Wei J, Beltinger C. Proof-of-principle that a decoy virus protects oncolytic measles virus against neutralizing antibodies. Oncolytic Virother 2018; 7:37-41. [PMID: 29750140 PMCID: PMC5933358 DOI: 10.2147/ov.s150637] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Background Attenuated oncolytic measles virus (OMV) is a promising antitumor agent in early-phase clinical trials. However, pre-existing immunity against measles might be a hurdle for OMV therapy. Methods OMV was inactivated with short-wavelength ultraviolet light (UV-C). Loss of replication and oncolytic activity of UV-inactivated OMV were confirmed by tissue culture infective dose 50 (TCID50) assay using Vero cells and by flow cytometry using Jurkat cells. An enzyme-linked immunosorbent assay was performed to verify that UV-inactivated OMV remained antigenic. Different doses of UV-inactivated OMV were pre-cultured in media supplemented with measles immune serum. The mixture was transferred to Jurkat cells and active OMV was added. Active OMV-induced death of Jurkat cells was monitored by flow cytometry. Results UV-inactivation abrogates OMV replication while maintaining its antigenicity. UV-inactivated OMV sequesters pre-existing anti-MV antibodies in Jurkat cell culture, thereby protecting active OMV from neutralization and preserving oncolytic activity. Conclusion We prove the principle that a non-replicating OMV can serve as a “decoy” for neutralizing anti-MV antibodies, thereby allowing antitumor activity of OMV.
Collapse
Affiliation(s)
- Chun Xu
- Department of Pediatrics and Adolescent Medicine, Section of Experimental Pediatric Oncology, University Medical Center Ulm, Ulm, Germany.,Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, China
| | - Annika Verena Goß
- Department of Pediatrics and Adolescent Medicine, Section of Experimental Pediatric Oncology, University Medical Center Ulm, Ulm, Germany
| | - Carmen Dorneburg
- Department of Pediatrics and Adolescent Medicine, Section of Experimental Pediatric Oncology, University Medical Center Ulm, Ulm, Germany
| | - Klaus-Michael Debatin
- Department of Pediatrics and Adolescent Medicine, Section of Experimental Pediatric Oncology, University Medical Center Ulm, Ulm, Germany
| | - Jiwu Wei
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, China
| | - Christian Beltinger
- Department of Pediatrics and Adolescent Medicine, Section of Experimental Pediatric Oncology, University Medical Center Ulm, Ulm, Germany
| |
Collapse
|
12
|
Laurenzana A, Margheri F, Chillà A, Biagioni A, Margheri G, Calorini L, Fibbi G, Del Rosso M. Endothelial Progenitor Cells as Shuttle of Anticancer Agents. Hum Gene Ther 2018; 27:784-791. [PMID: 27502560 DOI: 10.1089/hum.2016.066] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Cell therapies are treatments in which stem or progenitor cells are stimulated to differentiate into specialized cells able to home to and repair damaged tissues. After their discovery, endothelial progenitor cells (EPCs) stimulated worldwide interest as possible vehicles to perform autologous cell therapy of tumors. Taking into account the tumor-homing properties of EPCs, two different approaches to control cancer progression have been pursued by combining cell-based therapy with gene therapy or with nanomedicine. The first approach is based on the possibility of engineering EPCs to express different transgenes, and the second is based on the capacity of EPCs to take up nanomaterials. Here we review the most important progress covering the following issues: the characterization of bona fide endothelial progenitor cells, their role in tumor vascularization and metastasis, and preclinical data about their use in cell-based tumor therapy, considering antiangiogenic, suicide, immune-stimulating, and oncolytic virus gene therapy. The mixed approach of EPC cell therapy and nanomedicine is discussed in terms of plasmonic-dependent thermoablation and molecular imaging.
Collapse
Affiliation(s)
- Anna Laurenzana
- 1 Department of Clinical and Experimental Biomedical Sciences, University of Florence , Florence, Italy
| | - Francesca Margheri
- 1 Department of Clinical and Experimental Biomedical Sciences, University of Florence , Florence, Italy
| | - Anastasia Chillà
- 1 Department of Clinical and Experimental Biomedical Sciences, University of Florence , Florence, Italy
| | - Alessio Biagioni
- 1 Department of Clinical and Experimental Biomedical Sciences, University of Florence , Florence, Italy
| | - Giancarlo Margheri
- 2 Institute for Complex Systems , National Research Council, Sesto Fiorentino, Italy
| | - Lido Calorini
- 1 Department of Clinical and Experimental Biomedical Sciences, University of Florence , Florence, Italy.,3 Center of Excellence for the Study at Molecular and Clinical Levels of Chronic, Degenerative, and Neoplastic Diseases to Develop Novel Therapies (DENOTHE) , Florence, Italy
| | - Gabriella Fibbi
- 1 Department of Clinical and Experimental Biomedical Sciences, University of Florence , Florence, Italy
| | - Mario Del Rosso
- 1 Department of Clinical and Experimental Biomedical Sciences, University of Florence , Florence, Italy.,3 Center of Excellence for the Study at Molecular and Clinical Levels of Chronic, Degenerative, and Neoplastic Diseases to Develop Novel Therapies (DENOTHE) , Florence, Italy
| |
Collapse
|
13
|
Tasev D, Koolwijk P, van Hinsbergh VWM. Therapeutic Potential of Human-Derived Endothelial Colony-Forming Cells in Animal Models. TISSUE ENGINEERING PART B-REVIEWS 2016; 22:371-382. [PMID: 27032435 DOI: 10.1089/ten.teb.2016.0050] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE OF REVIEW Tissue regeneration requires proper vascularization. In vivo studies identified that the endothelial colony-forming cells (ECFCs), a subtype of endothelial progenitor cells that can be isolated from umbilical cord or peripheral blood, represent a promising cell source for therapeutic neovascularization. ECFCs not only are able to initiate and facilitate neovascularization in diseased tissue but also can, by acting in a paracrine manner, contribute to the creation of favorable conditions for efficient and appropriate differentiation of tissue-resident stem or progenitor cells. This review outlines the progress in the field of in vivo regenerative and tissue engineering studies and surveys why, when, and how ECFCs can be used for tissue regeneration. RECENT FINDINGS Reviewed literature that regard human-derived ECFCs in xenogeneic animal models implicates that ECFCs should be considered as an endothelial cell source of preference for induction of neovascularization. Their neovascularization and regenerative potential is augmented in combination with other types of stem or progenitor cells. Biocompatible scaffolds prevascularized with ECFCs interconnect faster and better with the host vasculature. The physical incorporation of ECFCs in newly formed blood vessels grants prolonged release of trophic factors of interest, which also makes ECFCs an interesting cell source candidate for gene therapy and delivery of bioactive compounds in targeted area. SUMMARY ECFCs possess all biological features to be considered as a cell source of preference for tissue engineering and repair of blood supply. Investigation of regenerative potential of ECFCs in autologous settings in large animal models before clinical application is the next step to clearly outline the most efficient strategy for using ECFCs as treatment.
Collapse
Affiliation(s)
- Dimitar Tasev
- 1 Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center Amsterdam , Amsterdam, The Netherlands .,2 A-Skin Nederland BV , Amsterdam, The Netherlands
| | - Pieter Koolwijk
- 1 Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center Amsterdam , Amsterdam, The Netherlands
| | - Victor W M van Hinsbergh
- 1 Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center Amsterdam , Amsterdam, The Netherlands
| |
Collapse
|
14
|
Wang B, Yan X, Guo Q, Li Y, Zhang H, Xie JS, Meng X. Deficiency of caspase 3 in tumor xenograft impairs therapeutic effect of measles virus Edmoston strain. Oncotarget 2016; 6:16019-30. [PMID: 25909216 PMCID: PMC4599253 DOI: 10.18632/oncotarget.3496] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 03/07/2015] [Indexed: 11/25/2022] Open
Abstract
The oncolytic measles virus Edmonston (MV-Edm) strain shows considerable oncolytic activity against a variety of human tumors. In this study, we report MV-Edm is able to trigger apoptosis pathways in infected tumor cells and elucidate the roles of cellular apoptosis in the whole oncolytic process. We also show that activated caspase 3, a key executioner of apoptosis, plays key roles in the oncolytic virotherapy. Activated caspase 3 can accelerate viral replication in cervical cancer cells and enhance the killing effects of the virus. Deficiency of caspase 3 either in tumor cells or in tumor xenograft significantly desensitized tumor to oncolysis with MV-Edm. In the infected cells, caspase 3 regulates interferon α release, which can inhibit viral replication in neighboring tumor cells. We propose that caspase-3 activation enhances the oncolytic effects of MV-Edm, thus inhibiting tumor growth in mice.
Collapse
Affiliation(s)
- Biao Wang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences of China Medical University Shenyang, P.R. China
| | - Xu Yan
- Department of Prosthodontics, School of Stomatology, China Medical University, Shenyang, P.R. China
| | - Qingguo Guo
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences of China Medical University Shenyang, P.R. China
| | - Yan Li
- Department of Oncology, Tumour Angiogenesis and Microenvironment Laboratory (TAML), First Affiliated Hospital, Liaoning Medical College, Jinzhou, P.R. China
| | - Haiyan Zhang
- Department of Geriatrics, The First Affiliated Hospital, China Medical University, Shenyang, P.R. China
| | - Ji Sheng Xie
- Department of Ecsomatics, Youjiang Medical College for Nationalities, Baise City, P.R. China
| | - Xin Meng
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences of China Medical University Shenyang, P.R. China
| |
Collapse
|
15
|
NAMBA HIROKI, KAWAJI HIROSHI, YAMASAKI TOMOHIRO. Use of genetically engineered stem cells for glioma therapy. Oncol Lett 2016; 11:9-15. [PMID: 26870161 PMCID: PMC4726949 DOI: 10.3892/ol.2015.3860] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 09/24/2015] [Indexed: 12/18/2022] Open
Abstract
Glioblastoma, the most common and most malignant type of primary brain tumor, is associated with poor prognosis, even when treated using combined therapies, including surgery followed by concomitant radiotherapy with temozolomide-based chemotherapy. The invasive nature of this type of tumor is a major reason underlying treatment failure. The tumor-tropic ability of neural and mesenchymal stem cells offers an alternative therapeutic approach, where these cells may be used as vehicles for the invasion of tumors. Stem cell-based therapy is particularly attractive due to its tumor selectivity, meaning that the stem cells are able to target tumor cells without harming healthy brain tissue, as well as the extensive tumor tropism of stem cells when delivering anti-tumor substances, even to distant tumor microsatellites. Stem cells have previously been used to deliver cytokine genes, suicide genes and oncolytic viruses. The present review will summarize current trends in experimental studies of stem cell-based gene therapy against gliomas, and discuss the potential concerns for translating these promising strategies into clinical use.
Collapse
Affiliation(s)
- HIROKI NAMBA
- Department of Neurosurgery, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
| | - HIROSHI KAWAJI
- Department of Neurosurgery, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
| | - TOMOHIRO YAMASAKI
- Department of Neurosurgery, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
| |
Collapse
|
16
|
Li C, Meng G, Su L, Chen A, Xia M, Xu C, Yu D, Jiang A, Wei J. Dichloroacetate blocks aerobic glycolytic adaptation to attenuated measles virus and promotes viral replication leading to enhanced oncolysis in glioblastoma. Oncotarget 2015; 6:1544-1555. [PMID: 25575816 PMCID: PMC4359313 DOI: 10.18632/oncotarget.2838] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 12/01/2014] [Indexed: 01/13/2023] Open
Abstract
Targeting reprogrammed energy metabolism such as aerobic glycolysis is a potential strategy for cancer treatment. However, tumors exhibiting low-rate glycolysis or metabolic heterogeneity might be resistant to such treatment. We hypothesized that a therapeutic modality that drove cancer cells to high-rate glycolysis might sensitize cancer cells to interference directed against metabolic flux. In this study, we found that attenuated oncolytic measles virus Edmonston strain (MV-Edm) caused glioblastoma cells to shift to high-rate aerobic glycolysis; this adaptation was blocked by dichloroacetate (DCA), an inhibitor of glycolysis, leading to profound cell death of cancer cells but not of normal cells. DCA enhanced viral replication by mitigating mitochondrial antiviral signaling protein (MAVS)-mediated innate immune responses. In a subcutaneous glioblastoma (GBM) xenograft mouse model, low-dose MV-Edm and DCA significantly inhibited tumor growth in vivo. We found that DCA impaired glycolysis (blocking bioenergetic generation) and enhanced viral replication (increasing bioenergetic consumption), which, in combination, accelerated bioenergetic exhaustion leading to necrotic cell death. Taken together, oncolytic MV-Edm sensitized cancer cells to DCA, and in parallel, DCA promoted viral replication, thus, improving oncolysis. This novel therapeutic approach should be readily incorporated into clinical trials.
Collapse
Affiliation(s)
- Chunyan Li
- Jiangsu Key Laboratory of Molecular Medicine, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, China
- Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| | - Gang Meng
- Jiangsu Key Laboratory of Molecular Medicine, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, China
- Nanjing University Hightech Institute at Suzhou, Suzhou, China
| | - Lei Su
- Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Aiping Chen
- Jiangsu Key Laboratory of Molecular Medicine, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, China
| | - Mao Xia
- Jiangsu Key Laboratory of Molecular Medicine, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, China
| | - Chun Xu
- Jiangsu Key Laboratory of Molecular Medicine, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, China
| | - Decai Yu
- Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Aiqin Jiang
- Jiangsu Key Laboratory of Molecular Medicine, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, China
| | - Jiwu Wei
- Jiangsu Key Laboratory of Molecular Medicine, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, China
- Nanjing University Hightech Institute at Suzhou, Suzhou, China
| |
Collapse
|
17
|
Lühl NC, Zirngibl F, Dorneburg C, Wei J, Dahlhaus M, Barth TFE, Meyer LH, Queudeville M, Eckhoff S, Debatin KM, Beltinger C. Attenuated measles virus controls pediatric acute B-lineage lymphoblastic leukemia in NOD/SCID mice. Haematologica 2014; 99:1050-61. [PMID: 24700491 DOI: 10.3324/haematol.2013.087205] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Novel therapies are needed for pediatric acute lymphoblastic leukemia resistant to conventional therapy. While emerging data suggest leukemias as possible targets of oncolytic attenuated measles virus, it is unknown whether measles virus can eradicate disseminated leukemia, in particular pediatric acute lymphoblastic leukemia. We evaluated the efficacy of attenuated measles virus against a large panel of pediatric xenografted and native primary acute lymphoblastic leukemias ex vivo, and against four different acute lymphoblastic leukemia xenografts of B-lineage in non-obese diabetic/severe combined immunodeficient mice. Ex vivo, attenuated measles virus readily spread among and effectively killed leukemia cells while sparing normal human blood cells and their progenitors. In immunodeficient mice with disseminated acute lymphoblastic leukemia a few intravenous injections of attenuated measles virus sufficed to eradicate leukemic blasts in the hematopoietic system and to control central nervous system disease resulting in long-term survival in three of the four xenografted B-lineage leukemias. Differential sensitivity of leukemia cells did not require increased expression of the measles entry receptors CD150 or CD46 nor absence of the anti-viral retinoic acid-inducible gene I/melanoma differentiation associated gene-5 /interferon pathway. Attenuated oncolytic measles virus is dramatically effective against pediatric B-lineage acute lymphoblastic leukemia in the pre-clinical setting warranting further investigations towards clinical translation.
Collapse
Affiliation(s)
- Nike C Lühl
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Germany
| | - Felix Zirngibl
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Germany
| | - Carmen Dorneburg
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Germany
| | - Jiwu Wei
- Laboratory of Biological Cancer Therapy, Jiangsu Key Laboratory of Molecular Medicine, School of Medicine, Nanjing University, China
| | - Meike Dahlhaus
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Germany
| | | | - Lüder H Meyer
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Germany
| | - Manon Queudeville
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Germany
| | - Sarah Eckhoff
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Germany
| | - Klaus-Michael Debatin
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Germany
| | - Christian Beltinger
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Germany
| |
Collapse
|
18
|
Human mesenchymal stromal cells deliver systemic oncolytic measles virus to treat acute lymphoblastic leukemia in the presence of humoral immunity. Blood 2013; 123:1327-35. [PMID: 24345754 DOI: 10.1182/blood-2013-09-528851] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Clinical trials of oncolytic attenuated measles virus (MV) are ongoing, but successful systemic delivery in immune individuals remains a major challenge. We demonstrated high-titer anti-MV antibody in 16 adults with acute lymphoblastic leukemia (ALL) following treatments including numerous immunosuppressive drugs. To resolve this challenge, human bone marrow-derived mesenchymal stromal cells (BM-MSCs) were used to efficiently deliver MV in a systemic xenograft model of precursor B-lineage-ALL. BM-MSCs were successfully loaded with MV ex vivo, and MV was amplified intracellularly, without toxicity. Live cell confocal imaging demonstrated a viral hand-off between BM-MSCs and ALL targets in the presence of antibody. In a murine model of disseminated ALL, successful MV treatment (judged by bioluminescence quantification and survival) was completely abrogated by passive immunization with high-titer human anti-MV antibody. Importantly, no such abrogation was seen in immunized mice receiving MV delivered by BM-MSCs. These data support the use of BM-MSCs as cellular carriers for MV in patients with ALL.
Collapse
|
19
|
Oncolytic virus therapy for cancer: the first wave of translational clinical trials. Transl Res 2013; 161:355-64. [PMID: 23313629 DOI: 10.1016/j.trsl.2012.12.010] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 12/14/2012] [Accepted: 12/17/2012] [Indexed: 02/06/2023]
Abstract
The field of oncolytic virus therapy, the use of live, replicating viruses for the treatment of cancer, has expanded rapidly over the past decade. Preclinical models have clearly demonstrated anticancer activity against a number of different cancer types. Several agents have entered clinical trials and promising results have led to late stage clinical development for some viruses. The early clinical trials have demonstrated that oncolytic viruses by themselves have potential to result in tumor regression. Engineering of viruses to express novel genes have also led to the use of these vectors as a novel form of gene therapy. As a result, interest in oncolytic virus therapy has gained traction. The following review will focus on the first wave of clinical translation of oncolytic virus therapy, what has been learned so far, and potential challenges ahead for advancing the field.
Collapse
|
20
|
Msaouel P, Iankov ID, Dispenzieri A, Galanis E. Attenuated oncolytic measles virus strains as cancer therapeutics. Curr Pharm Biotechnol 2013; 13:1732-41. [PMID: 21740361 DOI: 10.2174/138920112800958896] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Accepted: 09/18/2010] [Indexed: 12/18/2022]
Abstract
Attenuated measles virus vaccine strains have emerged as a promising oncolytic vector platform, having shown significant anti-tumor activity against a broad range of malignant neoplasms. Measles virus strains derived from the attenuated Edmonston-B (MV-Edm) vaccine lineage have been shown to selectively infect, replicate in and lyse cancer cells while causing minimal cytopathic effect on normal tissues. This review summarizes the preclinical data that led to the rapid clinical translation of oncolytic measles vaccine strains and provides an overview of early clinical data using this oncolytic platform. Furthermore, novel approaches currently under development to further enhance the oncolytic efficacy of MV-Edm strains, including strategies to circumvent immunity or modulate immune system responses, combinatorial approaches with standard treatment modalities, virus retargeting as well as strategies for in vivo monitoring of viral replication are discussed.
Collapse
Affiliation(s)
- P Msaouel
- Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | | | | | | |
Collapse
|
21
|
Msaouel P, Opyrchal M, Domingo Musibay E, Galanis E. Oncolytic measles virus strains as novel anticancer agents. Expert Opin Biol Ther 2013; 13:483-502. [PMID: 23289598 DOI: 10.1517/14712598.2013.749851] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Replication-competent oncolytic measles virus (MV) strains preferentially infect and destroy a wide variety of cancer tissues. Clinical translation of engineered attenuated MV vaccine derivatives is demonstrating the therapeutic potential and negligible pathogenicity of these strains in humans. AREAS COVERED The present review summarizes the mechanisms of MV tumor selectivity and cytopathic activity as well as the current data on the oncolytic efficacy and preclinical testing of MV strains. Investigational strategies to reprogram MV selectivity, escape antiviral immunity and modulate the immune system to enhance viral delivery and tumor oncolysis are also discussed. EXPERT OPINION Clinical viral kinetic data derived from noninvasive monitoring of reporter transgene expression will guide future protocols to enhance oncolytic MV efficacy. Anti-measles immunity is a major challenge of measles-based therapeutics and various strategies are being investigated to modulate immunity. These include the combination of MV therapy with immunosuppressive drugs, such as cyclophosphamide, the use of cell carriers and the introduction of immunomodulatory transgenes and wild-type virulence genes. Available MV retargeting technologies can address safety considerations that may arise as more potent oncolytic MV vectors are being developed.
Collapse
Affiliation(s)
- Pavlos Msaouel
- Albert Einstein College of Medicine, Jacobi Medical Center, Department of Internal Medicine, Bronx, NY, USA
| | | | | | | |
Collapse
|
22
|
Su W, Wang L, Zhou M, Liu Z, Hu S, Tong L, Liu Y, Fan Y, Kong D, Zheng Y, Han Z, Wu JC, Xiang R, Li Z. Human embryonic stem cell-derived endothelial cells as cellular delivery vehicles for treatment of metastatic breast cancer. Cell Transplant 2012; 22:2079-90. [PMID: 23067802 DOI: 10.3727/096368912x657927] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Endothelial progenitor cells (EPCs) have shown tropism towards primary tumors or metastases and are thus potential vehicles for targeting tumor therapy. However, the source of adult EPCs is limited, which highlights the need for a consistent and renewable source of endothelial cells for clinical applications. Here, we investigated the potential of human embryonic stem cell-derived endothelial cells (hESC-ECs) as cellular delivery vehicles for therapy of metastatic breast cancer. In order to provide an initial assessment of the therapeutic potency of hESC-ECs, we treated human breast cancer MDA-MB-231 cells with hESC-EC conditioned medium (EC-CM) in vitro. The results showed that hESC-ECs could suppress the Wnt/β-catenin signaling pathway and thereby inhibit the proliferation and migration of MDA-MB-231 cells. To track and evaluate the possibility of hESC-EC-employed therapy, we employed the bioluminescence imaging (BLI) technology. To study the therapeutic potential of hESC-ECs, we established lung metastasis models by intravenous injection of MDA-MB-231 cells labeled with firefly luciferase (Fluc) and green fluorescent protein (GFP) to NOD/SCID mice. In mice with lung metastases, we injected hESC-ECs armed with herpes simplex virus truncated thymidine kinase (HSV-ttk) intravenously on days 11, 16, 21, and 26 after MDA-MB-231 cell injection. The NOD/SCID mice were subsequently treated with ganciclovir (GCV), and the growth status of tumor was monitored by Fluc imaging. We found that MDA-MB-231 tumors were significantly inhibited by intravenously injected hESC-ECs. The tumor-suppressive effects of the hESC-ECs, by inhibiting Wnt/β-catenin signaling pathway and inducing tumor cell death through bystander effect in human metastatic breast cancer model, provide previously unexplored therapeutic modalities for cancer treatment.
Collapse
Affiliation(s)
- Weijun Su
- Nankai University School of Medicine, Tianjin, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Bexell D, Svensson A, Bengzon J. Stem cell-based therapy for malignant glioma. Cancer Treat Rev 2012; 39:358-65. [PMID: 22795538 DOI: 10.1016/j.ctrv.2012.06.006] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 06/13/2012] [Accepted: 06/17/2012] [Indexed: 12/25/2022]
Abstract
Stem cells have been extensively investigated as tumour-tropic vectors for gene delivery to solid tumours. In this review, we discuss the potential for using stem cells as cellular vector systems in gene therapy for malignant gliomas, with a focus on neural stem cells, and multipotent mesenchymal stromal cells. Tumour cell-derived substances and factors associated with tumour-induced inflammation and tumour neovascularisation can specifically attract stem cells to invasive gliomas. Injected stem cells engineered to produce anti-tumour substances have shown strong therapeutic effects in experimental glioma models. However, the potential caveats include the immunosuppressive functions of multipotent mesenchymal stromal cells, the contribution of stem cells to the pro-tumourigenic stroma, and the malignant transformation of implanted stem cells. In addition, it is not yet known which stem cell types and therapeutic genes will be most effective for the treatment of glioma patients. Here, we highlight the possibilities and problems for translating promising experimental findings in glioma models into the clinic.
Collapse
Affiliation(s)
- Daniel Bexell
- Lund Stem Cell Center, BMC B10, Lund University, Lund, Sweden; Molecular Medicine, Center for Molecular Pathology, Lund University, Skåne University Hospital, Malmö, Sweden.
| | | | | |
Collapse
|
24
|
Dudek AZ. Endothelial lineage cell as a vehicle for systemic delivery of cancer gene therapy. Transl Res 2010; 156:136-46. [PMID: 20801410 DOI: 10.1016/j.trsl.2010.07.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Revised: 07/12/2010] [Accepted: 07/13/2010] [Indexed: 01/14/2023]
Abstract
A major limitation of cancer gene therapy is the difficulty of delivering a therapeutic gene to distant sites of metastatic disease. A promising strategy to address this difficulty is to use expanded ex vivo cells to produce a therapeutic protein. As with other approaches to gene therapy, this strategy is attractive when the therapeutic protein is unstable ex vivo or has a short circulating half life in vivo. The initial step to develop a cancer gene therapy using autologous cell delivery is the identification of a cell type that migrates to the tumor site, is readily available for harvesting, and is manipulated easily ex vivo. Recent evidence suggests that endothelial progenitor, precursor, and blood outgrowth endothelial cells are attracted to the tumor vasculature by its angiogenic drive. Here, we review recent advances in the study of circulating endothelial cell-mediated tumor vasculogenesis and discuss the advantages and challenges of bringing endothelial lineage-based cancer gene therapy closer to clinical application.
Collapse
Affiliation(s)
- Arkadiusz Z Dudek
- Division of Hematology, Oncologyand Transplantation, University of Minnesota Medical School, Minneapolis, MN 55455, USA.
| |
Collapse
|
25
|
Sottnik JL, U'Ren LW, Thamm DH, Withrow SJ, Dow SW. Chronic bacterial osteomyelitis suppression of tumor growth requires innate immune responses. Cancer Immunol Immunother 2010; 59:367-78. [PMID: 19701748 PMCID: PMC11030164 DOI: 10.1007/s00262-009-0755-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Accepted: 08/04/2009] [Indexed: 01/01/2023]
Abstract
Clinical studies over the past several years have reported that metastasis-free survival times in humans and dogs with osteosarcoma are significantly increased in patients that develop chronic bacterial osteomyelitis at their surgical site. However, the immunological mechanism by which osteomyelitis may suppress tumor growth has not been investigated. Therefore, we used a mouse model of osteomyelitis to assess the effects of bone infection on innate immunity and tumor growth. A chronic Staphylococcal osteomyelitis model was established in C3H mice and the effects of infection on tumor growth of syngeneic DLM8 osteosarcoma were assessed. The effects of infection on tumor angiogenesis and innate immunity, including NK cell and monocyte responses, were assessed. We found that osteomyelitis significantly inhibited the growth of tumors in mice, and that the effect was independent of the infecting bacterial type, tumor type, or mouse strain. Depletion of NK cells or monocytes reversed the antitumor activity elicited by infection. Moreover, infected mice had a significant increase in circulating monocytes and numbers of tumor associated macrophages. Infection suppressed tumor angiogenesis but did not affect the numbers of circulating endothelial cells. Therefore, we concluded that chronic localized bacterial infection could elicit significant systemic antitumor activity dependent on NK cells and macrophages.
Collapse
Affiliation(s)
- Joseph L Sottnik
- Department of Clinical Sciences, Animal Cancer Center, Colorado State University, Ft. Collins, 80523, USA.
| | | | | | | | | |
Collapse
|
26
|
|
27
|
Guo ZS, Thorne SH, Bartlett DL. Oncolytic virotherapy: molecular targets in tumor-selective replication and carrier cell-mediated delivery of oncolytic viruses. Biochim Biophys Acta Rev Cancer 2008; 1785:217-31. [PMID: 18328829 DOI: 10.1016/j.bbcan.2008.02.001] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 02/01/2008] [Accepted: 02/04/2008] [Indexed: 01/13/2023]
Abstract
Tremendous advances have been made in developing oncolytic viruses (OVs) in the last few years. By taking advantage of current knowledge in cancer biology and virology, specific OVs have been genetically engineered to target specific molecules or signal transduction pathways in cancer cells in order to achieve efficient and selective replication. The viral infection and amplification eventually induce cancer cells into cell death pathways and elicit host antitumor immune responses to further help eliminate cancer cells. Specifically targeted molecules or signaling pathways (such as RB/E2F/p16, p53, IFN, PKR, EGFR, Ras, Wnt, anti-apoptosis or hypoxia) in cancer cells or tumor microenvironment have been studied and dissected with a variety of OVs such as adenovirus, herpes simplex virus, poxvirus, vesicular stomatitis virus, measles virus, Newcastle disease virus, influenza virus and reovirus, setting the molecular basis for further improvements in the near future. Another exciting new area of research has been the harnessing of naturally tumor-homing cells as carrier cells (or cellular vehicles) to deliver OVs to tumors. The trafficking of these tumor-homing cells (stem cells, immune cells and cancer cells), which support proliferation of the viruses, is mediated by specific chemokines and cell adhesion molecules and we are just beginning to understand the roles of these molecules. Finally, we will highlight some avenues deserving further study in order to achieve the ultimate goals of utilizing various OVs for effective cancer treatment.
Collapse
Affiliation(s)
- Z Sheng Guo
- University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| | | | | |
Collapse
|
28
|
Allen C, Paraskevakou G, Liu C, Iankov ID, Msaouel P, Zollman P, Myers R, Peng KW, Russell SJ, Galanis E. Oncolytic measles virus strains in the treatment of gliomas. Expert Opin Biol Ther 2008; 8:213-20. [PMID: 18194077 DOI: 10.1517/14712598.8.2.213] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Recurrent gliomas have a dismal outcome despite use of multimodality treatment including surgery, radiation therapy and chemotherapy. OBJECTIVE In this article the authors discuss potential applications of oncolytic measles virus strains as novel antitumor agents in the treatment of gliomas. METHODS Important aspects of measles virus development as an anticancer therapeutic agent including engineering, retargeting and combination studies with other therapeutic modalities are discussed. The translational process that led to the first clinical trial of an engineered measles virus derivative in patients with recurrent glioblastoma multiforme is also described. RESULTS/CONCLUSIONS Oncolytic measles virus strains hold promise as novel antitumor agents in the treatment of gliomas.
Collapse
Affiliation(s)
- Cory Allen
- Mayo Clinic, Molecular Medicine Department, 200 First Street SW, Rochester, MN 55905, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|