1
|
Nunes LGA, Rosario FJ, Urschitz J. In vivo placental gene modulation via sonoporation. Placenta 2024:S0143-4004(24)00688-X. [PMID: 39477696 DOI: 10.1016/j.placenta.2024.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 09/25/2024] [Accepted: 10/21/2024] [Indexed: 11/29/2024]
Abstract
Placental dysregulation frequently results in pregnancy complications that impact fetal well-being and potentially predispose the infant to diseases later in life. Thus, efforts to understand the molecular mechanisms underlying placental disorders are crucial to aid the development of effective treatments to restore placental function. Currently, the most common methods used for trophoblast-specific gene modulation in the laboratory are transgenic animals and lentiviral trophectoderm transduction. The generation of transgenic animal lines is costly and requires a considerable amount of time to generate and maintain, while the integration preference of lentiviruses, actively transcribed genes, may result in genotoxicity. Therefore, there is much interest in the development of non-viral in vivo transfection techniques for use in both research and clinical settings. Herein, we describe a non-viral, minimally invasive method for in vivo placental gene modulation through sonoporation, an ultrasound-mediated transfection technique wherein the application of ultrasound on target tissues is used to direct the uptake of DNA vectors. In this method, plasmids are bound to lipid microbubbles, which are then injected into the maternal bloodstream and ultimately delivered to the placenta when subjected to low-frequency ultrasound. Syncytiotrophoblasts are directly exposed to maternal blood and, therefore highly accessible to therapeutic agents in the maternal circulation. This technique can be used to modulate gene expression and, subsequently, the function of the placenta, circumventing the requirement to generate transgenic animals. Sonoporation also offers a safer alternative to existing viral techniques, making it not only an advantageous research tool but also a potentially adaptable technique in clinical settings.
Collapse
Affiliation(s)
- Lance G A Nunes
- Institute for Biogenesis Research, University of Hawai'i, Honolulu, HI, United States
| | - Fredrick J Rosario
- Department of Obstetrics and Gynecology, University of Colorado, Anschutz Medical Campus, Aurora, CO, United States
| | - Johann Urschitz
- Institute for Biogenesis Research, University of Hawai'i, Honolulu, HI, United States.
| |
Collapse
|
2
|
Mavi AK, Kumar M, Singh A, Prajapati MK, Khabiya R, Maru S, Kumar D. Progress in Non‐Viral Delivery of Nucleic Acid. INTEGRATION OF BIOMATERIALS FOR GENE THERAPY 2023:281-322. [DOI: 10.1002/9781394175635.ch10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
3
|
iPSC-neural crest derived cells embedded in 3D printable bio-ink promote cranial bone defect repair. Sci Rep 2022; 12:18701. [PMID: 36333414 PMCID: PMC9636385 DOI: 10.1038/s41598-022-22502-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
Cranial bone loss presents a major clinical challenge and new regenerative approaches to address craniofacial reconstruction are in great demand. Induced pluripotent stem cell (iPSC) differentiation is a powerful tool to generate mesenchymal stromal cells (MSCs). Prior research demonstrated the potential of bone marrow-derived MSCs (BM-MSCs) and iPSC-derived mesenchymal progenitor cells via the neural crest (NCC-MPCs) or mesodermal lineages (iMSCs) to be promising cell source for bone regeneration. Overexpression of human recombinant bone morphogenetic protein (BMP)6 efficiently stimulates bone formation. The study aimed to evaluate the potential of iPSC-derived cells via neural crest or mesoderm overexpressing BMP6 and embedded in 3D printable bio-ink to generate viable bone graft alternatives for cranial reconstruction. Cell viability, osteogenic potential of cells, and bio-ink (Ink-Bone or GelXa) combinations were investigated in vitro using bioluminescent imaging. The osteogenic potential of bio-ink-cell constructs were evaluated in osteogenic media or nucleofected with BMP6 using qRT-PCR and in vitro μCT. For in vivo testing, two 2 mm circular defects were created in the frontal and parietal bones of NOD/SCID mice and treated with Ink-Bone, Ink-Bone + BM-MSC-BMP6, Ink-Bone + iMSC-BMP6, Ink-Bone + iNCC-MPC-BMP6, or left untreated. For follow-up, µCT was performed at weeks 0, 4, and 8 weeks. At the time of sacrifice (week 8), histological and immunofluorescent analyses were performed. Both bio-inks supported cell survival and promoted osteogenic differentiation of iNCC-MPCs and BM-MSCs in vitro. At 4 weeks, cell viability of both BM-MSCs and iNCC-MPCs were increased in Ink-Bone compared to GelXA. The combination of Ink-Bone with iNCC-MPC-BMP6 resulted in an increased bone volume in the frontal bone compared to the other groups at 4 weeks post-surgery. At 8 weeks, both iNCC-MPC-BMP6 and iMSC-MSC-BMP6 resulted in an increased bone volume and partial bone bridging between the implant and host bone compared to the other groups. The results of this study show the potential of NCC-MPC-incorporated bio-ink to regenerate frontal cranial defects. Therefore, this bio-ink-cell combination should be further investigated for its therapeutic potential in large animal models with larger cranial defects, allowing for 3D printing of the cell-incorporated material.
Collapse
|
4
|
Applications of Ultrasound-Mediated Gene Delivery in Regenerative Medicine. Bioengineering (Basel) 2022; 9:bioengineering9050190. [PMID: 35621468 PMCID: PMC9137703 DOI: 10.3390/bioengineering9050190] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/22/2022] [Accepted: 04/23/2022] [Indexed: 11/21/2022] Open
Abstract
Research on the capability of non-viral gene delivery systems to induce tissue regeneration is a continued effort as the current use of viral vectors can present with significant limitations. Despite initially showing lower gene transfection and gene expression efficiencies, non-viral delivery methods continue to be optimized to match that of their viral counterparts. Ultrasound-mediated gene transfer, referred to as sonoporation, occurs by the induction of transient membrane permeabilization and has been found to significantly increase the uptake and expression of DNA in cells across many organ systems. In addition, it offers a more favorable safety profile compared to other non-viral delivery methods. Studies have shown that microbubble-enhanced sonoporation can elicit significant tissue regeneration in both ectopic and disease models, including bone and vascular tissue regeneration. Despite this, no clinical trials on the use of sonoporation for tissue regeneration have been conducted, although current clinical trials using sonoporation for other indications suggest that the method is safe for use in the clinical setting. In this review, we describe the pre-clinical studies conducted thus far on the use of sonoporation for tissue regeneration. Further, the various techniques used to increase the effectiveness and duration of sonoporation-induced gene transfer, as well as the obstacles that may be currently hindering clinical translation, are explored.
Collapse
|
5
|
Freitas GP, Lopes HB, Souza ATP, Gomes MPO, Quiles GK, Gordon J, Tye C, Stein JL, Stein GS, Lian JB, Beloti MM, Rosa AL. Mesenchymal stem cells overexpressing BMP-9 by CRISPR-Cas9 present high in vitro osteogenic potential and enhance in vivo bone formation. Gene Ther 2021; 28:748-759. [PMID: 33686254 PMCID: PMC8423866 DOI: 10.1038/s41434-021-00248-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 02/16/2021] [Accepted: 02/19/2021] [Indexed: 12/20/2022]
Abstract
Cell therapy is a valuable strategy for the replacement of bone grafts and repair bone defects, and mesenchymal stem cells (MSCs) are the most frequently used cells. This study was designed to genetically edit MSCs to overexpress bone morphogenetic protein 9 (BMP-9) using Clustered Regularly Interspaced Short Palindromic Repeats/associated nuclease Cas9 (CRISPR-Cas9) technique to generate iMSCs-VPRBMP-9+, followed by in vitro evaluation of osteogenic potential and in vivo enhancement of bone formation in rat calvaria defects. Overexpression of BMP-9 was confirmed by its gene expression and protein expression, as well as its targets Hey-1, Bmpr1a, and Bmpr1b, Dlx-5, and Runx2 and protein expression of SMAD1/5/8 and pSMAD1/5/8. iMSCs-VPRBMP-9+ displayed significant changes in the expression of a panel of genes involved in TGF-β/BMP signaling pathway. As expected, overexpression of BMP-9 increased the osteogenic potential of MSCs indicated by increased gene expression of osteoblastic markers Runx2, Sp7, Alp, and Oc, higher ALP activity, and matrix mineralization. Rat calvarial bone defects treated with injection of iMSCs-VPRBMP-9+ exhibited increased bone formation and bone mineral density when compared with iMSCs-VPR- and phosphate buffered saline (PBS)-injected defects. This is the first study to confirm that CRISPR-edited MSCs overexpressing BMP-9 effectively enhance bone formation, providing novel options for exploring the capability of genetically edited cells to repair bone defects.
Collapse
Affiliation(s)
- Gileade P Freitas
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Helena B Lopes
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Alann T P Souza
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Maria Paula O Gomes
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Georgia K Quiles
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Jonathan Gordon
- Department of Biochemistry, University of Vermont School of Medicine, Burlington, VT, USA
| | - Coralee Tye
- Department of Biochemistry, University of Vermont School of Medicine, Burlington, VT, USA
| | - Janet L Stein
- Department of Biochemistry, University of Vermont School of Medicine, Burlington, VT, USA
| | - Gary S Stein
- Department of Biochemistry, University of Vermont School of Medicine, Burlington, VT, USA
| | - Jane B Lian
- Department of Biochemistry, University of Vermont School of Medicine, Burlington, VT, USA
| | - Marcio M Beloti
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Adalberto L Rosa
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
6
|
Zhou M, Xi J, Cheng Y, Sun D, Shu P, Chi S, Tian S, Ye S. Reprogrammed mesenchymal stem cells derived from iPSCs promote bone repair in steroid-associated osteonecrosis of the femoral head. Stem Cell Res Ther 2021; 12:175. [PMID: 33712030 PMCID: PMC7953570 DOI: 10.1186/s13287-021-02249-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 02/26/2021] [Indexed: 02/06/2023] Open
Abstract
Background Cellular therapy based on mesenchymal stem cells (MSCs) is a promising novel therapeutic strategy for the osteonecrosis of the femoral head (ONFH), which is gradually becoming popular, particularly for early-stage ONFH. Nonetheless, the MSC-based therapy is challenging due to certain limitations, such as limited self-renewal capability of cells, availability of donor MSCs, and the costs involved in donor screening. As an alternative approach, MSCs derived from induced pluripotent stem cells (iPSCs), which may lead to further standardized-cell preparations. Methods In the present study, the bone marrow samples of patients with ONFH (n = 16) and patients with the fracture of the femoral neck (n = 12) were obtained during operation. The bone marrow-derived MSCs (BMSCs) were isolated by density gradient centrifugation. BMSCs of ONFH patients (ONFH-BMSCs) were reprogrammed to iPSCs, following which the iPSCs were differentiated into MSCs (iPSC-MSCs). Forty adult male rats were randomly divided into following groups (n = 10 per group): (a) normal control group, (b) methylprednisolone (MPS) group, (c) MPS + BMSCs treated group, and (d) MPS + iPSC-MSC-treated group. Eight weeks after the establishment of the ONFH model, rats in BMSC-treated group and iPSC-MSC-treated group were implanted with BMSCs and iPSC-MSCs through intrabone marrow injection. Bone repair of the femoral head necrosis area was analyzed after MSC transplantation. Results The morphology, immunophenotype, in vitro differentiation potential, and DNA methylation patterns of iPSC-MSCs were similar to those of normal BMSCs, while the proliferation of iPSC-MSCs was higher and no tumorigenic ability was exhibited. Furthermore, comparing the effectiveness of iPSC-MSCs and the normal BMSCs in an ONFH rat model revealed that the iPSC-MSCs was equivalent to normal BMSCs in preventing bone loss and promoting bone repair in the necrosis region of the femoral head. Conclusion Reprogramming can reverse the abnormal proliferation, differentiation, and DNA methylation patterns of ONFH-BMSCs. Transplantation of iPSC-MSCs could effectively promote bone repair and angiogenesis in the necrosis area of the femoral head. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02249-1.
Collapse
Affiliation(s)
- Meiling Zhou
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jiaoya Xi
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yaofeng Cheng
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China.,Department of Orthopedics, Suizhou Central Hospital, Hubei University of Medicine, Suizhou, Hubei, China
| | - Denglong Sun
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Peng Shu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Shuiqing Chi
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shuo Tian
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shunan Ye
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China.
| |
Collapse
|
7
|
Glaeser JD, Behrens P, Stefanovic T, Salehi K, Papalamprou A, Tawackoli W, Metzger MF, Eberlein S, Nelson T, Arabi Y, Kim K, Baloh RH, Ben-David S, Cohn-Schwartz D, Ryu R, Bae HW, Gazit Z, Sheyn D. Neural crest-derived mesenchymal progenitor cells enhance cranial allograft integration. Stem Cells Transl Med 2021; 10:797-809. [PMID: 33512772 PMCID: PMC8046069 DOI: 10.1002/sctm.20-0364] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/10/2020] [Accepted: 11/09/2020] [Indexed: 01/17/2023] Open
Abstract
Replacement of lost cranial bone (partly mesodermal and partly neural crest‐derived) is challenging and includes the use of nonviable allografts. To revitalize allografts, bone marrow‐derived mesenchymal stromal cells (mesoderm‐derived BM‐MSCs) have been used with limited success. We hypothesize that coating of allografts with induced neural crest cell‐mesenchymal progenitor cells (iNCC‐MPCs) improves implant‐to‐bone integration in mouse cranial defects. Human induced pluripotent stem cells were reprogramed from dermal fibroblasts, differentiated to iNCCs and then to iNCC‐MPCs. BM‐MSCs were used as reference. Cells were labeled with luciferase (Luc2) and characterized for MSC consensus markers expression, differentiation, and risk of cellular transformation. A calvarial defect was created in non‐obese diabetic/severe combined immunodeficiency (NOD/SCID) mice and allografts were implanted, with or without cell coating. Bioluminescence imaging (BLI), microcomputed tomography (μCT), histology, immunofluorescence, and biomechanical tests were performed. Characterization of iNCC‐MPC‐Luc2 vs BM‐MSC‐Luc2 showed no difference in MSC markers expression and differentiation in vitro. In vivo, BLI indicated survival of both cell types for at least 8 weeks. At week 8, μCT analysis showed enhanced structural parameters in the iNCC‐MPC‐Luc2 group and increased bone volume in the BM‐MSC‐Luc2 group compared to controls. Histology demonstrated improved integration of iNCC‐MPC‐Luc2 allografts compared to BM‐MSC‐Luc2 group and controls. Human osteocalcin and collagen type 1 were detected at the allograft‐host interphase in cell‐seeded groups. The iNCC‐MPC‐Luc2 group also demonstrated improved biomechanical properties compared to BM‐MSC‐Luc2 implants and cell‐free controls. Our results show an improved integration of iNCC‐MPC‐Luc2‐coated allografts compared to BM‐MSC‐Luc2 and controls, suggesting the use of iNCC‐MPCs as potential cell source for cranial bone repair.
Collapse
Affiliation(s)
- Juliane D Glaeser
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Phillip Behrens
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Tina Stefanovic
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Khosrowdad Salehi
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Angela Papalamprou
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Wafa Tawackoli
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Melodie F Metzger
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Orthopaedic Biomechanics Laboratory, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Samuel Eberlein
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Trevor Nelson
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Yasaman Arabi
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Kevin Kim
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Orthopaedic Biomechanics Laboratory, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Robert H Baloh
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Shiran Ben-David
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Doron Cohn-Schwartz
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Division of Internal Medicine, Rambam Health Care Campus, Haifa, Israel
| | - Robert Ryu
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Hyun W Bae
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Zulma Gazit
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Dmitriy Sheyn
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
8
|
Bharadwaz A, Jayasuriya AC. Osteogenic differentiation cues of the bone morphogenetic protein-9 (BMP-9) and its recent advances in bone tissue regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 120:111748. [PMID: 33545890 PMCID: PMC7867678 DOI: 10.1016/j.msec.2020.111748] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/14/2020] [Accepted: 11/21/2020] [Indexed: 02/07/2023]
Abstract
Bone regeneration using bioactive molecules and biocompatible materials is growing steadily with the advent of the new findings in cellular signaling. Bone Morphogenetic Protein (BMP)-9 is a considerably recent discovery from the BMP family that delivers numerous benefits in osteogenesis. The Smad cellular signaling pathway triggered by BMPs is often inhibited by Noggin. However, BMP-9 is resistant to Noggin, thus, facilitating a more robust cellular differentiation of osteoprogenitor cells into preosteoblasts and osteoblasts. This review encompasses a general understanding of the Smad signaling pathway activated by the BMP-9 ligand molecule with its specific receptors. The robust osteogenic cellular differentiation cue provided by BMP-9 has been reviewed from a bone regeneration perspective with several in vitro as well as in vivo studies reporting promising results for future research. The effect of the biomaterial, chosen in such studies as the scaffold or carrier matrix, on the activity of BMP-9 and subsequent bone regeneration has been highlighted in this review. The non-viral delivery technique for BMP-9 induced bone regeneration is a safer alternative to its viral counterpart. The recent advances in non-viral BMP-9 delivery have also highlighted the efficacy of the protein molecule at a low dosage. This opens a new horizon as a more efficient and safer alternative to BMP-2, which was prevalent among clinical trials; however, BMP-2 applications have reported its downsides during bone defect healing such as cystic bone formation.
Collapse
Affiliation(s)
- Angshuman Bharadwaz
- Biomedical Engineering Program, Department of Bioengineering, College of Engineering, The University of Toledo, Toledo, OH, USA
| | - Ambalangodage C Jayasuriya
- Biomedical Engineering Program, Department of Bioengineering, College of Engineering, The University of Toledo, Toledo, OH, USA; Department of Orthopaedic Surgery, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, USA.
| |
Collapse
|
9
|
Gantenbein B, Tang S, Guerrero J, Higuita-Castro N, Salazar-Puerta AI, Croft AS, Gazdhar A, Purmessur D. Non-viral Gene Delivery Methods for Bone and Joints. Front Bioeng Biotechnol 2020; 8:598466. [PMID: 33330428 PMCID: PMC7711090 DOI: 10.3389/fbioe.2020.598466] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 10/26/2020] [Indexed: 12/12/2022] Open
Abstract
Viral carrier transport efficiency of gene delivery is high, depending on the type of vector. However, viral delivery poses significant safety concerns such as inefficient/unpredictable reprogramming outcomes, genomic integration, as well as unwarranted immune responses and toxicity. Thus, non-viral gene delivery methods are more feasible for translation as these allow safer delivery of genes and can modulate gene expression transiently both in vivo, ex vivo, and in vitro. Based on current studies, the efficiency of these technologies appears to be more limited, but they are appealing for clinical translation. This review presents a summary of recent advancements in orthopedics, where primarily bone and joints from the musculoskeletal apparatus were targeted. In connective tissues, which are known to have a poor healing capacity, and have a relatively low cell-density, i.e., articular cartilage, bone, and the intervertebral disk (IVD) several approaches have recently been undertaken. We provide a brief overview of the existing technologies, using nano-spheres/engineered vesicles, lipofection, and in vivo electroporation. Here, delivery for microRNA (miRNA), and silencing RNA (siRNA) and DNA plasmids will be discussed. Recent studies will be summarized that aimed to improve regeneration of these tissues, involving the delivery of bone morphogenic proteins (BMPs), such as BMP2 for improvement of bone healing. For articular cartilage/osteochondral junction, non-viral methods concentrate on targeted delivery to chondrocytes or MSCs for tissue engineering-based approaches. For the IVD, growth factors such as GDF5 or GDF6 or developmental transcription factors such as Brachyury or FOXF1 seem to be of high clinical interest. However, the most efficient method of gene transfer is still elusive, as several preclinical studies have reported many different non-viral methods and clinical translation of these techniques still needs to be validated. Here we discuss the non-viral methods applied for bone and joint and propose methods that can be promising in clinical use.
Collapse
Affiliation(s)
- Benjamin Gantenbein
- Tissue Engineering for Orthopaedics and Mechanobiology, Department for BioMedical Research (DBMR), Faculty of Medicine, University of Bern, Bern, Switzerland.,Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Shirley Tang
- Department of Biomedical Engineering and Department of Orthopaedics, Spine Research Institute Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States
| | - Julien Guerrero
- Tissue Engineering for Orthopaedics and Mechanobiology, Department for BioMedical Research (DBMR), Faculty of Medicine, University of Bern, Bern, Switzerland.,Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Natalia Higuita-Castro
- Department of Biomedical Engineering and Department of Surgery, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States
| | - Ana I Salazar-Puerta
- Department of Biomedical Engineering and Department of Surgery, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States
| | - Andreas S Croft
- Tissue Engineering for Orthopaedics and Mechanobiology, Department for BioMedical Research (DBMR), Faculty of Medicine, University of Bern, Bern, Switzerland.,Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Amiq Gazdhar
- Department of Pulmonary Medicine, Inselspital, University Hospital, University of Bern, Bern, Switzerland
| | - Devina Purmessur
- Department of Biomedical Engineering and Department of Orthopaedics, Spine Research Institute Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
10
|
Decker RE, Lamantia ZE, Emrick TS, Figueiredo ML. Sonodelivery in Skeletal Muscle: Current Approaches and Future Potential. Bioengineering (Basel) 2020; 7:E107. [PMID: 32916815 PMCID: PMC7552685 DOI: 10.3390/bioengineering7030107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/27/2020] [Accepted: 09/04/2020] [Indexed: 11/16/2022] Open
Abstract
There are currently multiple approaches to facilitate gene therapy via intramuscular gene delivery, such as electroporation, viral delivery, or direct DNA injection with or without polymeric carriers. Each of these methods has benefits, but each method also has shortcomings preventing it from being established as the ideal technique. A promising method, ultrasound-mediated gene delivery (or sonodelivery) is inexpensive, widely available, reusable, minimally invasive, and safe. Hurdles to utilizing sonodelivery include choosing from a large variety of conditions, which are often dependent on the equipment and/or research group, and moderate transfection efficiencies when compared to some other gene delivery methods. In this review, we provide a comprehensive look at the breadth of sonodelivery techniques for intramuscular gene delivery and suggest future directions for this continuously evolving field.
Collapse
Affiliation(s)
- Richard E. Decker
- Department of Basic Medical Sciences, Purdue University, 625 Harrison St., West Lafayette, IN 47907, USA; (R.E.D.); (Z.E.L.)
| | - Zachary E. Lamantia
- Department of Basic Medical Sciences, Purdue University, 625 Harrison St., West Lafayette, IN 47907, USA; (R.E.D.); (Z.E.L.)
| | - Todd S. Emrick
- Department of Polymer Science & Engineering, University of Massachusetts, 120 Governors Drive, Amherst, MA 01003, USA;
| | - Marxa L. Figueiredo
- Department of Basic Medical Sciences, Purdue University, 625 Harrison St., West Lafayette, IN 47907, USA; (R.E.D.); (Z.E.L.)
| |
Collapse
|
11
|
Bez M, Pelled G, Gazit D. BMP gene delivery for skeletal tissue regeneration. Bone 2020; 137:115449. [PMID: 32447073 PMCID: PMC7354211 DOI: 10.1016/j.bone.2020.115449] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 12/11/2022]
Abstract
Musculoskeletal disorders are common and can be associated with significant morbidity and reduced quality of life. Current treatments for major bone loss or cartilage defects are insufficient. Bone morphogenetic proteins (BMPs) are key players in the recruitment and regeneration of damaged musculoskeletal tissues, and attempts have been made to introduce the protein to fracture sites with limited success. In the last 20 years we have seen a substantial progress in the development of various BMP gene delivery platforms for several conditions. In this review we cover the progress made using several techniques for BMP gene delivery for bone as well as cartilage regeneration, with focus on recent advances in the field of skeletal tissue engineering. Some methods have shown success in large animal models, and with the global trend of introducing gene therapies into the clinical setting, it seems that the day in which BMP gene therapy will be viable for clinical use is near.
Collapse
Affiliation(s)
- Maxim Bez
- Medical Corps, Israel Defense Forces, Israel; Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California, USA.
| | - Gadi Pelled
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California, USA; Skeletal Biotech Laboratory, Faculty of Dental Medicine, The Hebrew University of Jerusalem, Ein Kerem, Jerusalem, Israel; Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA; Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.
| | - Dan Gazit
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California, USA; Skeletal Biotech Laboratory, Faculty of Dental Medicine, The Hebrew University of Jerusalem, Ein Kerem, Jerusalem, Israel; Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA; Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA; Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, California, USA.
| |
Collapse
|
12
|
Xu X, Sun M, Wang D, Bu W, Wang Z, Shen Y, Zhang K, Zhou D, Yang B, Sun H. Bone formation promoted by bone morphogenetic protein-2 plasmid-loaded porous silica nanoparticles with the involvement of autophagy. NANOSCALE 2019; 11:21953-21963. [PMID: 31709429 DOI: 10.1039/c9nr07017f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Gene therapy is one of the most common and effective ways for the regeneration of defective bone tissue, but even highly efficient gene delivery vectors are insufficient. In this study, bone morphogenetic protein-2 plasmid (pBMP-2) was encapsulated by polyethylenimine-modified porous silica nanoparticles (PPSNs), which were synthesized via an ethyl ether emulsion method. Owing to the high specific surface area and high absorption characteristics, low cytotoxicy PPSNs can efficiently load and protect pBMP-2. The resulting PPSN/pBMP-2 can transfect MC3T3-E1 cells effectively to promote osteogenic differentiation and increase calcium deposition in vitro. Interestingly, the mass of calcium deposition nodules decreased dur to the presence of an autophagy inhibitor, demonstrating that PPSNs stimulated the autophagy pathway. Because of their excellent biocompatibility, high transfection efficiency, and ability to stimulate autophagy, the as-prepared PPSN/pBMP-2 could efficiently transfect local cells in a defect area in vivo. Micro-computed tomography and histological images demonstrated that PPSN/pBMP-2 could efficiently promote new bone formation in a 5 mm sized rat calvarial defect model. Taken together, our newly synthesized PPSNs could efficiently carry pBMP-2 and deliver it to the target cells as well as stimulating the autophagy pathway, resulting in significant osteogenic differentiation and bone regeneration.
Collapse
Affiliation(s)
- Xiaowei Xu
- School and Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Sheyn D, Ben-David S, Tawackoli W, Zhou Z, Salehi K, Bez M, De Mel S, Chan V, Roth J, Avalos P, Giaconi JC, Yameen H, Hazanov L, Seliktar D, Li D, Gazit D, Gazit Z. Human iPSCs can be differentiated into notochordal cells that reduce intervertebral disc degeneration in a porcine model. Theranostics 2019; 9:7506-7524. [PMID: 31695783 PMCID: PMC6831475 DOI: 10.7150/thno.34898] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 06/12/2019] [Indexed: 12/12/2022] Open
Abstract
Introduction: As many as 80% of the adult population experience back pain at some point in their lifetimes. Previous studies have indicated a link between back pain and intervertebral disc (IVD) degeneration. Despite decades of research, there is an urgent need for robust stem cell therapy targeting underlying causes rather than symptoms. It has been proposed that notochordal cells (NCs) appear to be the ideal cell type to regenerate the IVD: these cells disappear in humans as they mature, are replaced by nucleus pulposus (NP) cells, and their disappearance correlates with the initiation of degeneration of the disc. Human NCs are in short supply, thus here aimed for generation of notochordal-like cells from induced pluripotent cells (iPSCs). Methods: Human iPSCs were generated from normal dermal fibroblasts by transfecting plasmids encoding for six factors: OCT4, SOX2, KLF4, L-MYC, LIN28, and p53 shRNA. Then the iPSCs were treated with GSK3i to induce differentiation towards Primitive Streak Mesoderm (PSM). The differentiation was confirmed by qRT-PCR and immunofluorescence. PSM cells were transfected with Brachyury (Br)-encoding plasmid and the cells were encapsulated in Tetronic-tetraacrylate-fibrinogen (TF) hydrogel that mimics the NP environment (G'=1kPa), cultured in hypoxic conditions (2% O2) and with specifically defined growth media. The cells were also tested in vivo in a large animal model. IVD degeneration was induced after an annular puncture in pigs, 4 weeks later the cells were injected and IVDs were analyzed at 12 weeks after the injury using MRI, gene expression analysis and histology. Results: After short-term exposure of iPSCs to GSK3i there was a significant change in cell morphology, Primitive Streak Mesoderm (PSM) markers (Brachyury, MIXL1, FOXF1) were upregulated and markers of pluripotency (Nanog, Oct4, Sox2) were downregulated, both compared to the control group. PSM cells nucleofected with Br (PSM-Br) cultured in TF hydrogels retained the NC phenotype consistently for up to 8 weeks, as seen in the gene expression analysis. PSM-Br cells were co-cultured with bone marrow (BM)-derived mesenchymal stem cells (MSCs) which, with time, expressed the NC markers in higher levels, however the levels of expression in BM-MSCs alone did not change. Higher expression of NC and NP marker genes in human BM-MSCs was found to be induced by iNC-condition media (iNC-CM) than porcine NC-CM. The annular puncture induced IVD degeneration as early as 2 weeks after the procedure. The injected iNCs were detected in the degenerated discs after 8 weeks in vivo. The iNC-treated discs were found protected from degeneration. This was evident in histological analysis and changes in the pH levels, indicative of degeneration state of the discs, observed using qCEST MRI. Immunofluorescence stains show that their phenotype was consistent with the in vitro study, namely they still expressed the notochordal markers Keratin 18, Keratin 19, Noto and Brachyury. Conclusion: In the present study, we report a stepwise differentiation method to generate notochordal cells from human iPSCs. These cells not only demonstrate a sustainable notochordal cell phenotype in vitro and in vivo, but also show the functionality of notochordal cells and have protective effect in case of induced disc degeneration and prevent the change in the pH level of the injected IVDs. The mechanism of this effect could be suggested via the paracrine effect on resident cells, as it was shown in the in vitro studies with MSCs.
Collapse
Affiliation(s)
- Dmitriy Sheyn
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
| | - Shiran Ben-David
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
| | - Wafa Tawackoli
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
- Biomedical Research Imaging Institute, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
| | - Zhengwei Zhou
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
- Biomedical Research Imaging Institute, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
| | - Khosrawdad Salehi
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
| | - Maxim Bez
- Skeletal Biotech Laboratory, Hebrew University of Jerusalem, 91120, Israel
| | - Sandra De Mel
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
| | - Virginia Chan
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
| | - Joseph Roth
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
| | - Pablo Avalos
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
| | - Joseph C Giaconi
- Biomedical Research Imaging Institute, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
| | - Haneen Yameen
- Faculty of Biomedical Engineering, Technion, Haifa, 32003, Israel
| | - Lena Hazanov
- Faculty of Biomedical Engineering, Technion, Haifa, 32003, Israel
| | - Dror Seliktar
- Faculty of Biomedical Engineering, Technion, Haifa, 32003, Israel
| | - Debiao Li
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
- Biomedical Research Imaging Institute, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
| | - Dan Gazit
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
- Skeletal Biotech Laboratory, Hebrew University of Jerusalem, 91120, Israel
| | - Zulma Gazit
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
- Skeletal Biotech Laboratory, Hebrew University of Jerusalem, 91120, Israel
| |
Collapse
|
14
|
Juang EK, De Cock I, Keravnou C, Gallagher MK, Keller SB, Zheng Y, Averkiou M. Engineered 3D Microvascular Networks for the Study of Ultrasound-Microbubble-Mediated Drug Delivery. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:10128-10138. [PMID: 30540481 DOI: 10.1021/acs.langmuir.8b03288] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Localized and targeted drug delivery can be achieved by the combined action of ultrasound and microbubbles on the tumor microenvironment, likely through sonoporation and other therapeutic mechanisms that are not well understood. Here, we present a perfusable in vitro model with a realistic 3D geometry to study the interactions between microbubbles and the vascular endothelium in the presence of ultrasound. Specifically, a three-dimensional, endothelial-cell-seeded in vitro microvascular model was perfused with cell culture medium and microbubbles while being sonicated by a single-element 1 MHz focused transducer. This setup mimics the in vivo scenario in which ultrasound induces a therapeutic effect in the tumor vasculature in the presence of flow. Fluorescence and bright-field microscopy were employed to assess the microbubble-vessel interactions and the extent of drug delivery and cell death both in real time during treatment as well as after treatment. Propidium iodide was used as the model drug while calcein AM was used to evaluate cell viability. There were two acoustic parameter sets chosen for this work: (1) acoustic pressure: 1.4 MPa, pulse length: 500 cycles, duty cycle: 5% and (2) acoustic pressure: 0.4 MPa, pulse length: 1000 cycles, duty cycle: 20%. Enhanced drug delivery and cell death were observed in both cases while the higher pressure setting had a more pronounced effect. By introducing physiological flow to the in vitro microvascular model and examining the PECAM-1 expression of the endothelial cells within it, we demonstrated that our model is a good mimic of the in vivo vasculature and is therefore a viable platform to provide mechanistic insights into ultrasound-mediated drug delivery.
Collapse
Affiliation(s)
- Eric K Juang
- Department of Bioengineering , University of Washington , Seattle , Washington 98195 , United States
| | - Ine De Cock
- Department of Bioengineering , University of Washington , Seattle , Washington 98195 , United States
| | - Christina Keravnou
- Department of Bioengineering , University of Washington , Seattle , Washington 98195 , United States
| | - Madison K Gallagher
- Department of Bioengineering , University of Washington , Seattle , Washington 98195 , United States
| | - Sara B Keller
- Department of Bioengineering , University of Washington , Seattle , Washington 98195 , United States
| | - Ying Zheng
- Department of Bioengineering , University of Washington , Seattle , Washington 98195 , United States
| | - Michalakis Averkiou
- Department of Bioengineering , University of Washington , Seattle , Washington 98195 , United States
| |
Collapse
|
15
|
Sun L, Sun S, Zhao X, Zhang J, Guo J, Tang L, Ta D. Inhibition of myostatin signal pathway may be involved in low-intensity pulsed ultrasound promoting bone healing. J Med Ultrason (2001) 2019; 46:377-388. [PMID: 31377938 DOI: 10.1007/s10396-019-00962-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 06/12/2019] [Indexed: 12/28/2022]
Abstract
PURPOSE Low-intensity pulsed ultrasound (LIPUS) is effective in promoting bone healing, and a myostatin deficiency also has a positive effect on bone formation. In this study, we evaluated the effects of LIPUS on bone healing in rats in vivo and investigated the mechanisms in vitro, aiming to explore whether LIPUS promotes bone healing through inhibition of the myostatin signaling pathway. METHODS Rats with both drill-hole defects and MC3T3-E1 cells were randomly assigned to a LIPUS group and a control group. The LIPUS group received LIPUS treatment (1.5 MHz, 30 mW/cm2) for 20 min/day. RESULTS After 21 days, the myostatin expression in quadriceps was significantly inhibited in the LIPUS group, and remodeling of the newly formed bone in the drill-hole site was significantly better in the LIPUS group than that in the control group, which was confirmed by micro-CT analysis. After 3 days, LIPUS significantly promoted osteoblast proliferation; inhibited the expression of AcvrIIB (the myostatin receptor), Smad3, p-Smad3, and GSK-3β; and increased Wnt1 and β-catenin expression. Moreover, translocation of β-catenin from the cytolemma to the nucleus was observed in the LIPUS group. However, these effects were blocked by treatment with myostatin recombinant protein. CONCLUSIONS The results indicate that LIPUS may promote bone healing through inhibition of the myostatin signal pathway.
Collapse
Affiliation(s)
- Lijun Sun
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, 710119, China
| | - Shuxin Sun
- Department of Electronic Engineering, Fudan University, Shanghai, 200433, China
| | - Xinjuan Zhao
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, 710119, China
| | - Jing Zhang
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, 710119, China
| | - Jianzhong Guo
- Shaanxi Key Laboratory of Ultrasonics, Shaanxi Normal University, Xi'an, 710119, China
| | - Liang Tang
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, 710119, China.
| | - Dean Ta
- Department of Electronic Engineering, Fudan University, Shanghai, 200433, China. .,Human Phenome Institute, Fudan University, Shanghai, 201203, China. .,Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention (MICCAI) of Shanghai, Shanghai, 200032, China.
| |
Collapse
|
16
|
The wonders of BMP9: From mesenchymal stem cell differentiation, angiogenesis, neurogenesis, tumorigenesis, and metabolism to regenerative medicine. Genes Dis 2019; 6:201-223. [PMID: 32042861 PMCID: PMC6997590 DOI: 10.1016/j.gendis.2019.07.003] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/07/2019] [Accepted: 07/10/2019] [Indexed: 12/15/2022] Open
Abstract
Although bone morphogenetic proteins (BMPs) initially showed effective induction of ectopic bone growth in muscle, it has since been determined that these proteins, as members of the TGF-β superfamily, play a diverse and critical array of biological roles. These roles include regulating skeletal and bone formation, angiogenesis, and development and homeostasis of multiple organ systems. Disruptions of the members of the TGF-β/BMP superfamily result in severe skeletal and extra-skeletal irregularities, suggesting high therapeutic potential from understanding this family of BMP proteins. Although it was once one of the least characterized BMPs, BMP9 has revealed itself to have the highest osteogenic potential across numerous experiments both in vitro and in vivo, with recent studies suggesting that the exceptional potency of BMP9 may result from unique signaling pathways that differentiate it from other BMPs. The effectiveness of BMP9 in inducing bone formation was recently revealed in promising experiments that demonstrated efficacy in the repair of critical sized cranial defects as well as compatibility with bone-inducing bio-implants, revealing the great translational promise of BMP9. Furthermore, emerging evidence indicates that, besides its osteogenic activity, BMP9 exerts a broad range of biological functions, including stem cell differentiation, angiogenesis, neurogenesis, tumorigenesis, and metabolism. This review aims to summarize our current understanding of BMP9 across biology and the body.
Collapse
|
17
|
Nonviral ultrasound-mediated gene delivery in small and large animal models. Nat Protoc 2019; 14:1015-1026. [PMID: 30804568 DOI: 10.1038/s41596-019-0125-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 12/18/2018] [Indexed: 12/15/2022]
Abstract
Ultrasound-mediated gene delivery (sonoporation) is a minimally invasive, nonviral and clinically translatable method of gene therapy. This method offers a favorable safety profile over that of viral vectors and is less invasive as compared with other physical gene delivery approaches (e.g., electroporation). We have previously used sonoporation to overexpress transgenes in different skeletal tissues in order to induce tissue regeneration. Here, we provide a protocol that could easily be adapted to address various other targets of tissue regeneration or additional applications, such as cancer and neurodegenerative diseases. This protocol describes how to prepare, conduct and optimize ultrasound-mediated gene delivery in both a murine and a porcine animal model. The protocol includes the preparation of a microbubble-DNA mix and in vivo sonoporation under ultrasound imaging. Ultrasound-mediated gene delivery can be accomplished within 10 min. After DNA delivery, animals can be followed to monitor gene expression, protein secretion and other transgene-specific outcomes, including tissue regeneration. This procedure can be accomplished by a competent graduate student or technician with prior experience in ultrasound imaging or in performing in vivo procedures.
Collapse
|
18
|
Huang X, Das R, Patel A, Nguyen TD. Physical Stimulations for Bone and Cartilage Regeneration. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2018; 4:216-237. [PMID: 30740512 PMCID: PMC6366645 DOI: 10.1007/s40883-018-0064-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 06/07/2018] [Indexed: 12/26/2022]
Abstract
A wide range of techniques and methods are actively invented by clinicians and scientists who are dedicated to the field of musculoskeletal tissue regeneration. Biological, chemical, and physiological factors, which play key roles in musculoskeletal tissue development, have been extensively explored. However, physical stimulation is increasingly showing extreme importance in the processes of osteogenic and chondrogenic differentiation, proliferation and maturation through defined dose parameters including mode, frequency, magnitude, and duration of stimuli. Studies have shown manipulation of physical microenvironment is an indispensable strategy for the repair and regeneration of bone and cartilage, and biophysical cues could profoundly promote their regeneration. In this article, we review recent literature on utilization of physical stimulation, such as mechanical forces (cyclic strain, fluid shear stress, etc.), electrical and magnetic fields, ultrasound, shock waves, substrate stimuli, etc., to promote the repair and regeneration of bone and cartilage tissue. Emphasis is placed on the mechanism of cellular response and the potential clinical usage of these stimulations for bone and cartilage regeneration.
Collapse
|
19
|
Cwetsch AW, Pinto B, Savardi A, Cancedda L. In vivo methods for acute modulation of gene expression in the central nervous system. Prog Neurobiol 2018; 168:69-85. [PMID: 29694844 PMCID: PMC6080705 DOI: 10.1016/j.pneurobio.2018.04.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 04/17/2018] [Accepted: 04/20/2018] [Indexed: 12/17/2022]
Abstract
Accurate and timely expression of specific genes guarantees the healthy development and function of the brain. Indeed, variations in the correct amount or timing of gene expression lead to improper development and/or pathological conditions. Almost forty years after the first successful gene transfection in in vitro cell cultures, it is currently possible to regulate gene expression in an area-specific manner at any step of central nervous system development and in adulthood in experimental animals in vivo, even overcoming the very poor accessibility of the brain. Here, we will review the diverse approaches for acute gene transfer in vivo, highlighting their advantages and disadvantages with respect to the efficiency and specificity of transfection as well as to brain accessibility. In particular, we will present well-established chemical, physical and virus-based approaches suitable for different animal models, pointing out their current and future possible applications in basic and translational research as well as in gene therapy.
Collapse
Affiliation(s)
- Andrzej W Cwetsch
- Local Micro-environment and Brain Development Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genova, Italy; Università degli Studi di Genova, Via Balbi, 5, 16126 Genova, Italy
| | - Bruno Pinto
- Local Micro-environment and Brain Development Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genova, Italy; Bio@SNS, Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126, Pisa, Italy
| | - Annalisa Savardi
- Local Micro-environment and Brain Development Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genova, Italy; Università degli Studi di Genova, Via Balbi, 5, 16126 Genova, Italy
| | - Laura Cancedda
- Local Micro-environment and Brain Development Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genova, Italy; DulbeccoTelethon Institute, Italy.
| |
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW The purpose of this review is to discuss the recent advances in gene therapy as a treatment for bone regeneration. While most fractures heal spontaneously, patients who present with fracture nonunion suffer from prolonged pain, disability, and often require additional operations to regain musculoskeletal function. RECENT FINDINGS In the last few years, BMP gene delivery by means of electroporation and sonoporation resulted in repair of nonunion bone defects in mice, rats, and minipigs. Ex vivo transfection of porcine mesenchymal stem cells (MSCs) resulted in bone regeneration following implantation in vertebral defects of minipigs. Sustained release of VEGF gene from a collagen-hydroxyapatite scaffold to the mandible of a human patient was shown to be safe and osteoinductive. In conclusion, gene therapy methods for bone regeneration are systematically becoming more efficient and show proof-of-concept in clinically relevant animal models. Yet, on the pathway to clinical use, more investigation is needed to determine the safety aspects of the various techniques in terms of biodistribution, toxicity, and tumorigenicity.
Collapse
Affiliation(s)
- Galina Shapiro
- Skeletal Biotech Laboratory, The Hebrew University-Hadassah Faculty of Dental Medicine, Ein Kerem, 91120, Jerusalem, Israel
| | - Raphael Lieber
- Skeletal Biotech Laboratory, The Hebrew University-Hadassah Faculty of Dental Medicine, Ein Kerem, 91120, Jerusalem, Israel
| | - Dan Gazit
- Skeletal Biotech Laboratory, The Hebrew University-Hadassah Faculty of Dental Medicine, Ein Kerem, 91120, Jerusalem, Israel
- Department of Surgery, Cedars-Sinai Medical Center, 8700 Beverly Blvd., AHSP-8304, Los Angeles, CA, 90048, USA
- Cedars-Sinai Medical Center, Board of Governors Regenerative Medicine Institute, Los Angeles, CA, 90048, USA
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- Cedars-Sinai Medical Center, Biomedical Imaging Research Institute, Los Angeles, CA, 90048, USA
| | - Gadi Pelled
- Skeletal Biotech Laboratory, The Hebrew University-Hadassah Faculty of Dental Medicine, Ein Kerem, 91120, Jerusalem, Israel.
- Department of Surgery, Cedars-Sinai Medical Center, 8700 Beverly Blvd., AHSP-8304, Los Angeles, CA, 90048, USA.
- Cedars-Sinai Medical Center, Board of Governors Regenerative Medicine Institute, Los Angeles, CA, 90048, USA.
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA.
- Cedars-Sinai Medical Center, Biomedical Imaging Research Institute, Los Angeles, CA, 90048, USA.
| |
Collapse
|
21
|
Bez M, Sheyn D, Tawackoli W, Avalos P, Shapiro G, Giaconi JC, Da X, David SB, Gavrity J, Awad HA, Bae HW, Ley EJ, Kremen TJ, Gazit Z, Ferrara KW, Pelled G, Gazit D. In situ bone tissue engineering via ultrasound-mediated gene delivery to endogenous progenitor cells in mini-pigs. Sci Transl Med 2018; 9:9/390/eaal3128. [PMID: 28515335 DOI: 10.1126/scitranslmed.aal3128] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 02/08/2017] [Accepted: 04/14/2017] [Indexed: 12/20/2022]
Abstract
More than 2 million bone-grafting procedures are performed each year using autografts or allografts. However, both options carry disadvantages, and there remains a clear medical need for the development of new therapies for massive bone loss and fracture nonunions. We hypothesized that localized ultrasound-mediated, microbubble-enhanced therapeutic gene delivery to endogenous stem cells would induce efficient bone regeneration and fracture repair. To test this hypothesis, we surgically created a critical-sized bone fracture in the tibiae of Yucatán mini-pigs, a clinically relevant large animal model. A collagen scaffold was implanted in the fracture to facilitate recruitment of endogenous mesenchymal stem/progenitor cells (MSCs) into the fracture site. Two weeks later, transcutaneous ultrasound-mediated reporter gene delivery successfully transfected 40% of cells at the fracture site, and flow cytometry showed that 80% of the transfected cells expressed MSC markers. Human bone morphogenetic protein-6 (BMP-6) plasmid DNA was delivered using ultrasound in the same animal model, leading to transient expression and secretion of BMP-6 localized to the fracture area. Micro-computed tomography and biomechanical analyses showed that ultrasound-mediated BMP-6 gene delivery led to complete radiographic and functional fracture healing in all animals 6 weeks after treatment, whereas nonunion was evident in control animals. Collectively, these findings demonstrate that ultrasound-mediated gene delivery to endogenous mesenchymal progenitor cells can effectively treat nonhealing bone fractures in large animals, thereby addressing a major orthopedic unmet need and offering new possibilities for clinical translation.
Collapse
Affiliation(s)
- Maxim Bez
- Skeletal Biotech Laboratory, Hadassah Faculty of Dental Medicine, The Hebrew University of Jerusalem, Ein Kerem, Jerusalem 91120, Israel.,Department of Surgery, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
| | - Dmitriy Sheyn
- Department of Surgery, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA.,Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Wafa Tawackoli
- Department of Surgery, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA.,Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.,Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.,Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Pablo Avalos
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Galina Shapiro
- Skeletal Biotech Laboratory, Hadassah Faculty of Dental Medicine, The Hebrew University of Jerusalem, Ein Kerem, Jerusalem 91120, Israel
| | - Joseph C Giaconi
- Department of Imaging, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Xiaoyu Da
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Shiran Ben David
- Department of Surgery, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA.,Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jayne Gavrity
- Department of Biomedical Engineering and the Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Hani A Awad
- Department of Biomedical Engineering and the Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Hyun W Bae
- Department of Surgery, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
| | - Eric J Ley
- Department of Surgery, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
| | - Thomas J Kremen
- Department of Surgery, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA.,Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Zulma Gazit
- Skeletal Biotech Laboratory, Hadassah Faculty of Dental Medicine, The Hebrew University of Jerusalem, Ein Kerem, Jerusalem 91120, Israel.,Department of Surgery, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA.,Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.,Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Katherine W Ferrara
- Department of Biomedical Engineering, University of California, Davis, 451 Health Sciences Drive, Davis, CA 95616, USA
| | - Gadi Pelled
- Skeletal Biotech Laboratory, Hadassah Faculty of Dental Medicine, The Hebrew University of Jerusalem, Ein Kerem, Jerusalem 91120, Israel.,Department of Surgery, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA.,Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.,Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.,Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Dan Gazit
- Skeletal Biotech Laboratory, Hadassah Faculty of Dental Medicine, The Hebrew University of Jerusalem, Ein Kerem, Jerusalem 91120, Israel. .,Department of Surgery, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA.,Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.,Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.,Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.,Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
22
|
Murphy MP, Quarto N, Longaker MT, Wan DC. * Calvarial Defects: Cell-Based Reconstructive Strategies in the Murine Model. Tissue Eng Part C Methods 2017; 23:971-981. [PMID: 28825366 DOI: 10.1089/ten.tec.2017.0230] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Calvarial defects pose a continued clinical dilemma for reconstruction. Advancements within the fields of stem cell biology and tissue engineering have enabled researchers to develop reconstructive strategies using animal models. We review the utility of various animal models and focus on the mouse, which has aided investigators in understanding cranial development and calvarial bone healing. The murine model has also been used to study regenerative approaches to critical-sized calvarial defects, and we discuss the application of stem cells such as bone marrow-derived mesenchymal stromal cells, adipose-derived stromal cells, muscle-derived stem cells, and pluripotent stem cells to address deficient bone in this animal. Finally, we highlight strategies to manipulate stem cells using various growth factors and inhibitors and ultimately how these factors may prove crucial in future advancements within calvarial reconstruction using native skeletal stem cells.
Collapse
Affiliation(s)
- Matthew P Murphy
- 1 Hagey Laboratory for Pediatric Regenerative Medicine, Plastic and Reconstructive Surgery Division, Department of Surgery, Stanford University , Stanford, California.,2 Lorry I. Lokey Stem Cell Research Building, Stanford Stem Cell Biology and Regenerative Medicine Institute, Stanford University , Stanford, California
| | - Natalina Quarto
- 1 Hagey Laboratory for Pediatric Regenerative Medicine, Plastic and Reconstructive Surgery Division, Department of Surgery, Stanford University , Stanford, California
| | - Michael T Longaker
- 1 Hagey Laboratory for Pediatric Regenerative Medicine, Plastic and Reconstructive Surgery Division, Department of Surgery, Stanford University , Stanford, California.,2 Lorry I. Lokey Stem Cell Research Building, Stanford Stem Cell Biology and Regenerative Medicine Institute, Stanford University , Stanford, California
| | - Derrick C Wan
- 1 Hagey Laboratory for Pediatric Regenerative Medicine, Plastic and Reconstructive Surgery Division, Department of Surgery, Stanford University , Stanford, California
| |
Collapse
|
23
|
Zhang Z, Wang Y, Zhang H, Tang Z, Liu W, Lu Y, Wang Z, Yang H, Pang W, Zhang H, Zhang D, Duan X. Hypersonic Poration: A New Versatile Cell Poration Method to Enhance Cellular Uptake Using a Piezoelectric Nano-Electromechanical Device. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1602962. [PMID: 28195400 DOI: 10.1002/smll.201602962] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 12/18/2016] [Indexed: 06/06/2023]
Abstract
Efficient delivery of genes and therapeutic agents to the interior of the cell is critical for modern biotechnology. Herein, a new type of chemical-free cell poration method-hypersonic poration-is developed to improve the cellular uptake, especially the nucleus uptake. The hypersound (≈GHz) is generated by a designed piezoelectric nano-electromechanical resonator, which directly induces normal/shear stress and "molecular bombardment" effects on the bilayer membranes, and creates reversible temporal nanopores improving the membrane permeability. Both theory analysis and cellular uptake experiments of exogenous compounds prove the high delivery efficiency of hypersonic poration. Since target molecules in cells are accumulated with the treatment, the delivered amount can be controlled by tuning the treatment time. Furthermore, owing to the intrinsic miniature of the resonator, localized drug delivery at a confined spatial location and tunable arrays of the resonators that are compatible with multiwell plate can be achieved. The hypersonic poration method shows great delivery efficacy combined with advantage of scalability, tunable throughput, and simplification in operation and provides a potentially powerful strategy in the field of molecule delivery, cell transfection, and gene therapy.
Collapse
Affiliation(s)
- Zhixin Zhang
- College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin, 300072, China
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin, 300072, China
| | - Yanyan Wang
- College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin, 300072, China
| | - Hongxiang Zhang
- College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin, 300072, China
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin, 300072, China
| | - Zifan Tang
- College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin, 300072, China
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin, 300072, China
| | - Wenpeng Liu
- College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin, 300072, China
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin, 300072, China
| | - Yao Lu
- College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin, 300072, China
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin, 300072, China
| | - Zefang Wang
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Haitao Yang
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Wei Pang
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin, 300072, China
| | - Hao Zhang
- College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin, 300072, China
| | - Daihua Zhang
- College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin, 300072, China
| | - Xuexin Duan
- College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
24
|
Slivac I, Guay D, Mangion M, Champeil J, Gaillet B. Non-viral nucleic acid delivery methods. Expert Opin Biol Ther 2016; 17:105-118. [PMID: 27740858 DOI: 10.1080/14712598.2017.1248941] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Delivery of nucleic acid-based molecules in human cells is a highly studied approach for the treatment of several disorders including monogenic diseases and cancers. Non-viral vectors for DNA and RNA transfer, although in general less efficient than virus-based systems, are particularly well adapted mostly due to the absence of biosafety concerns. Non-viral methods could be classified in two main groups: physical and vector-assisted delivery systems. Both groups comprise several different methods, none of them universally applicable. The choice of the optimal method depends on the predefined objectives and the features of targeted micro-environment. Areas covered: In this review, the authors discuss non-viral techniques and present recent therapeutic achievements in ex vivo and in vivo nucleic acid delivery by most commonly used techniques while emphasizing the role of 'biological particles', namely peptide transduction domains, virus like particles, gesicles and exosomes. Expert opinion: The number of available non-viral transfection techniques used for human therapy increased rapidly, followed by still moderate success in efficacy. The prospects are to be found in design of multifunctional hybrid systems that reflect the viral efficiency. In this respect, biological particles are very promising.
Collapse
Affiliation(s)
- Igor Slivac
- a Faculty of Food Technology and Biotechnology , University of Zagreb , Zagreb , Croatia
| | - David Guay
- b Feldan Therapeutics, Rideau , Quebec , Canada
| | - Mathias Mangion
- c Chemical engineering Department , Université Laval , Québec , Canada
| | - Juliette Champeil
- c Chemical engineering Department , Université Laval , Québec , Canada
| | - Bruno Gaillet
- c Chemical engineering Department , Université Laval , Québec , Canada
| |
Collapse
|
25
|
Sheyn D, Ben-David S, Shapiro G, De Mel S, Bez M, Ornelas L, Sahabian A, Sareen D, Da X, Pelled G, Tawackoli W, Liu Z, Gazit D, Gazit Z. Human Induced Pluripotent Stem Cells Differentiate Into Functional Mesenchymal Stem Cells and Repair Bone Defects. Stem Cells Transl Med 2016; 5:1447-1460. [PMID: 27400789 PMCID: PMC5070500 DOI: 10.5966/sctm.2015-0311] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 02/08/2016] [Indexed: 12/19/2022] Open
Abstract
Using short-term exposure of embryoid bodies to transforming growth factor-β, the authors directed induced pluripotent stem cells (iPSCs) toward mesenchymal stem cell (MSC) differentiation. Two types of iPSC-derived MSCs were identified: early (aiMSCs) and late (tiMSCs) outgrowing cells. Both types differentiated in vitro in response to osteogenic or adipogenic supplements; aiMSCs demonstrated higher osteogenic potential than tiMSCs. Upon orthotopic injection into radial defects, both types regenerated bone and contributed to defect repair. Mesenchymal stem cells (MSCs) are currently the most established cells for skeletal tissue engineering and regeneration; however, their availability and capability of self-renewal are limited. Recent discoveries of somatic cell reprogramming may be used to overcome these challenges. We hypothesized that induced pluripotent stem cells (iPSCs) that were differentiated into MSCs could be used for bone regeneration. Short-term exposure of embryoid bodies to transforming growth factor-β was used to direct iPSCs toward MSC differentiation. During this process, two types of iPSC-derived MSCs (iMSCs) were identified: early (aiMSCs) and late (tiMSCs) outgrowing cells. The transition of iPSCs toward MSCs was documented using MSC marker flow cytometry. Both types of iMSCs differentiated in vitro in response to osteogenic or adipogenic supplements. The results of quantitative assays showed that both cell types retained their multidifferentiation potential, although aiMSCs demonstrated higher osteogenic potential than tiMSCs and bone marrow-derived MSCs (BM-MSCs). Ectopic injections of BMP6-overexpressing tiMSCs produced no or limited bone formation, whereas similar injections of BMP6-overexpressing aiMSCs resulted in substantial bone formation. Upon orthotopic injection into radial defects, all three cell types regenerated bone and contributed to defect repair. In conclusion, MSCs can be derived from iPSCs and exhibit self-renewal without tumorigenic ability. Compared with BM-MSCs, aiMSCs acquire more of a stem cell phenotype, whereas tiMSCs acquire more of a differentiated osteoblast phenotype, which aids bone regeneration but does not allow the cells to induce ectopic bone formation (even when triggered by bone morphogenetic proteins), unless in an orthotopic site of bone fracture. Significance Mesenchymal stem cells (MSCs) are currently the most established cells for skeletal tissue engineering and regeneration of various skeletal conditions; however, availability of autologous MSCs is very limited. This study demonstrates a new method to differentiate human fibroblast-derived induced pluripotent stem cells (iPSCs) to cells with MSC properties, which we comprehensively characterized including differentiation potential and transcriptomic analysis. We showed that these iPS-derived MSCs are able to regenerate nonunion bone defects in mice more efficiently than bone marrow-derived human MSCs when overexpressing BMP6 using a nonviral transfection method.
Collapse
Affiliation(s)
- Dmitriy Sheyn
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Shiran Ben-David
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Galina Shapiro
- Skeletal Biotech Laboratory, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Sandra De Mel
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Maxim Bez
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Skeletal Biotech Laboratory, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Loren Ornelas
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
- iPSC Core Facility, The David and Janet Polak Stem Cell Laboratory, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Anais Sahabian
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
- iPSC Core Facility, The David and Janet Polak Stem Cell Laboratory, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Dhruv Sareen
- Skeletal Biotech Laboratory, Hebrew University of Jerusalem, Jerusalem, Israel
- iPSC Core Facility, The David and Janet Polak Stem Cell Laboratory, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Xiaoyu Da
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Gadi Pelled
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Skeletal Biotech Laboratory, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Wafa Tawackoli
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Zhenqiu Liu
- Biostatistics and Bioinformatics Core, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Dan Gazit
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Skeletal Biotech Laboratory, Hebrew University of Jerusalem, Jerusalem, Israel
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Zulma Gazit
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Skeletal Biotech Laboratory, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
26
|
Keeney M, Chung MT, Zielins ER, Paik KJ, McArdle A, Morrison SD, Ransom RC, Barbhaiya N, Atashroo D, Jacobson G, Zare RN, Longaker MT, Wan DC, Yang F. Scaffold-mediated BMP-2 minicircle DNA delivery accelerated bone repair in a mouse critical-size calvarial defect model. J Biomed Mater Res A 2016; 104:2099-107. [PMID: 27059085 DOI: 10.1002/jbm.a.35735] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 03/29/2016] [Accepted: 04/01/2016] [Indexed: 12/31/2022]
Abstract
Scaffold-mediated gene delivery holds great promise for tissue regeneration. However, previous attempts to induce bone regeneration using scaffold-mediated non-viral gene delivery rarely resulted in satisfactory healing. We report a novel platform with sustained release of minicircle DNA (MC) from PLGA scaffolds to accelerate bone repair. MC was encapsulated inside PLGA scaffolds using supercritical CO2 , which showed prolonged release of MC. Skull-derived osteoblasts transfected with BMP-2 MC in vitro result in higher osteocalcin gene expression and mineralized bone formation. When implanted in a critical-size mouse calvarial defect, scaffolds containing luciferase MC lead to robust in situ protein production up to at least 60 days. Scaffold-mediated BMP-2 MC delivery leads to substantially accelerated bone repair as early as two weeks, which continues to progress over 12 weeks. This platform represents an efficient, long-term nonviral gene delivery system, and may be applicable for enhancing repair of a broad range of tissues types. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2099-2107, 2016.
Collapse
Affiliation(s)
- Michael Keeney
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Clark Center E-150, 300 Pasteur Drive, Edwards R105, MC5341, Stanford, California, 94305.,Department of Bioengineering, Stanford University School of Medicine, Clark Center E-150, 300 Pasteur Drive, Edwards R105, MC5341, Stanford, California, 94305
| | - Michael T Chung
- Department of Surgery, Plastic and Reconstructive Surgery Division, Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, 257 Campus Drive, Stanford University, Stanford, California, 94305-5148
| | - Elizabeth R Zielins
- Department of Surgery, Plastic and Reconstructive Surgery Division, Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, 257 Campus Drive, Stanford University, Stanford, California, 94305-5148
| | - Kevin J Paik
- Department of Surgery, Plastic and Reconstructive Surgery Division, Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, 257 Campus Drive, Stanford University, Stanford, California, 94305-5148
| | - Adrian McArdle
- Department of Surgery, Plastic and Reconstructive Surgery Division, Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, 257 Campus Drive, Stanford University, Stanford, California, 94305-5148
| | - Shane D Morrison
- Department of Surgery, Plastic and Reconstructive Surgery Division, Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, 257 Campus Drive, Stanford University, Stanford, California, 94305-5148
| | - Ryan C Ransom
- Department of Surgery, Plastic and Reconstructive Surgery Division, Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, 257 Campus Drive, Stanford University, Stanford, California, 94305-5148
| | - Namrata Barbhaiya
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Clark Center E-150, 300 Pasteur Drive, Edwards R105, MC5341, Stanford, California, 94305.,Department of Bioengineering, Stanford University School of Medicine, Clark Center E-150, 300 Pasteur Drive, Edwards R105, MC5341, Stanford, California, 94305
| | - David Atashroo
- Department of Surgery, Plastic and Reconstructive Surgery Division, Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, 257 Campus Drive, Stanford University, Stanford, California, 94305-5148
| | - Gunilla Jacobson
- Department of Chemistry, Stanford University, 333 Campus Drive Mudd Building, Room 121 Stanford, Stanford, California, 94305-4401
| | - Richard N Zare
- Department of Chemistry, Stanford University, 333 Campus Drive Mudd Building, Room 121 Stanford, Stanford, California, 94305-4401
| | - Michael T Longaker
- Department of Surgery, Plastic and Reconstructive Surgery Division, Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, 257 Campus Drive, Stanford University, Stanford, California, 94305-5148
| | - Derrick C Wan
- Department of Surgery, Plastic and Reconstructive Surgery Division, Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, 257 Campus Drive, Stanford University, Stanford, California, 94305-5148
| | - Fan Yang
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Clark Center E-150, 300 Pasteur Drive, Edwards R105, MC5341, Stanford, California, 94305.,Department of Bioengineering, Stanford University School of Medicine, Clark Center E-150, 300 Pasteur Drive, Edwards R105, MC5341, Stanford, California, 94305
| |
Collapse
|
27
|
Kim YD, Pofali P, Park TE, Singh B, Cho K, Maharjan S, Dandekar P, Jain R, Choi YJ, Arote R, Cho CS. Gene therapy for bone tissue engineering. Tissue Eng Regen Med 2016; 13:111-125. [PMID: 30603391 PMCID: PMC6170855 DOI: 10.1007/s13770-016-9063-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 09/24/2015] [Accepted: 09/29/2015] [Indexed: 02/06/2023] Open
Abstract
Gene therapy holds a great promise and has been extensively investigated to improve bone formation and regeneration therapies in bone tissue engineering. A variety of osteogenic genes can be delivered by combining different vectors (viral or non-viral), scaffolds and delivery methodologies. Ex vivo & in vivo gene enhanced tissue engineering approaches have led to successful osteogenic differentiation and bone formation. In this article, we review recent advances of gene therapy-based bone tissue engineering discussing strengths and weaknesses of various strategies as well as general overview of gene therapy.
Collapse
Affiliation(s)
- Young-Dong Kim
- Department of Molecular Genetics, School of Dentistry, Seoul National University, Seoul, Korea
| | - Prasad Pofali
- Department of Chemical Engineering, Institute of Chemical Technology, Mumbai, India
| | - Tae-Eun Park
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Bijay Singh
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Kihyun Cho
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Sushila Maharjan
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Prajakta Dandekar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
| | - Ratnesh Jain
- Department of Chemical Engineering, Institute of Chemical Technology, Mumbai, India
| | - Yun-Jaie Choi
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Rohidas Arote
- Department of Molecular Genetics, School of Dentistry, Seoul National University, Seoul, Korea
| | - Chong-Su Cho
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| |
Collapse
|
28
|
Padilla F, Puts R, Vico L, Guignandon A, Raum K. Stimulation of Bone Repair with Ultrasound. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 880:385-427. [PMID: 26486349 DOI: 10.1007/978-3-319-22536-4_21] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
This chapter reviews the different options available for the use of ultrasound in the enhancement of fracture healing or in the reactivation of a failed healing process: LIPUS, shock waves and ultrasound-mediated delivery of bioactive molecules, such as growth factors or plasmids. The main emphasis is on LIPUS, or Low Intensity Pulsed Ultrasound, the most widespread and studied technique. LIPUS has pronounced bioeffects on tissue regeneration, while employing intensities within a diagnostic range. The biological response to LIPUS is complex as the response of numerous cell types to this stimulus involves several pathways. Known to-date mechanotransduction pathways involved in cell responses include MAPK and other kinases signaling pathways, gap-junctional intercellular communication, up-regulation and clustering of integrins, involvement of the COX-2/PGE2 and iNOS/NO pathways, and activation of the ATI mechanoreceptor. Mechanisms at the origin of LIPUS biological effects remain intriguing, and analysis is hampered by the diversity of experimental systems used in-vitro. Data point to clear evidence that bioeffects can be modulated by direct and indirect mechanical effects, like acoustic radiation force, acoustic streaming, propagation of surface waves, heat, fluid-flow induced circulation and redistribution of nutrients, oxygen and signaling molecules. One of the future engineering challenge is therefore the design of dedicated experimental set-ups allowing control of these different mechanical phenomena, and to relate them to biological responses. Then, the derivation of an 'acoustic dose' and the cross-calibration of the different experimental systems will be possible. Despite this imperfect knowledge of LIPUS biophysics, the clinical evidence, although most often of low quality, speaks in favor of the clinical use of LIPUS, when the economics of nonunion and the absence of toxicity of this ultrasound technology are taken into account.
Collapse
Affiliation(s)
| | - Regina Puts
- Berlin-Brandenburg School for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Föhrerstr. 15, 13353, Berlin, Germany
| | - Laurence Vico
- Inserm U1059 Lab Biologie intégrée du Tissu Osseux, Université de Saint-Etienne, St-Etienne, 42023, France
| | - Alain Guignandon
- Inserm U1059 Lab Biologie intégrée du Tissu Osseux, Université de Saint-Etienne, St-Etienne, 42023, France
| | - Kay Raum
- Berlin-Brandenburg School for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Föhrerstr. 15, 13353, Berlin, Germany
| |
Collapse
|
29
|
Shapiro G, Wong AW, Bez M, Yang F, Tam S, Even L, Sheyn D, Ben-David S, Tawackoli W, Pelled G, Ferrara KW, Gazit D. Multiparameter evaluation of in vivo gene delivery using ultrasound-guided, microbubble-enhanced sonoporation. J Control Release 2015; 223:157-164. [PMID: 26682505 DOI: 10.1016/j.jconrel.2015.12.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Revised: 10/27/2015] [Accepted: 12/01/2015] [Indexed: 10/22/2022]
Abstract
More than 1800 gene therapy clinical trials worldwide have targeted a wide range of conditions including cancer, cardiovascular diseases, and monogenic diseases. Biological (i.e. viral), chemical, and physical approaches have been developed to deliver nucleic acids into cells. Although viral vectors offer the greatest efficiency, they also raise major safety concerns including carcinogenesis and immunogenicity. The goal of microbubble-mediated sonoporation is to enhance the uptake of drugs and nucleic acids. Insonation of microbubbles is thought to facilitate two mechanisms for enhanced uptake: first, deflection of the cell membrane inducing endocytotic uptake, and second, microbubble jetting inducing the formation of pores in the cell membrane. We hypothesized that ultrasound could be used to guide local microbubble-enhanced sonoporation of plasmid DNA. With the aim of optimizing delivery efficiency, we used nonlinear ultrasound and bioluminescence imaging to optimize the acoustic pressure, microbubble concentration, treatment duration, DNA dosage, and number of treatments required for in vivo Luciferase gene expression in a mouse thigh muscle model. We found that mice injected with 50μg luciferase plasmid DNA and 5×10(5) microbubbles followed by ultrasound treatment at 1.4MHz, 200kPa, 100-cycle pulse length, and 540 Hz pulse repetition frequency (PRF) for 2min exhibited superior transgene expression compared to all other treatment groups. The bioluminescent signal measured for these mice on Day 4 post-treatment was 100-fold higher (p<0.0001, n=5 or 6) than the signals for controls treated with DNA injection alone, DNA and microbubble injection, or DNA injection and ultrasound treatment. Our results indicate that these conditions result in efficient gene delivery and prolonged gene expression (up to 21days) with no evidence of tissue damage or off-target delivery. We believe that these promising results bear great promise for the development of microbubble-enhanced sonoporation-induced gene therapies.
Collapse
Affiliation(s)
- Galina Shapiro
- Skeletal Biotech Laboratory, The Hebrew University-Hadassah Faculty of Dental Medicine, Ein Kerem, Jerusalem 91120, Israel
| | - Andrew W Wong
- University of California, Davis, Department of Biomedical Engineering, 451 Health Sciences Drive, Davis, CA 95616, USA
| | - Maxim Bez
- Skeletal Biotech Laboratory, The Hebrew University-Hadassah Faculty of Dental Medicine, Ein Kerem, Jerusalem 91120, Israel
| | - Fang Yang
- University of California, Davis, Department of Biomedical Engineering, 451 Health Sciences Drive, Davis, CA 95616, USA
| | - Sarah Tam
- University of California, Davis, Department of Biomedical Engineering, 451 Health Sciences Drive, Davis, CA 95616, USA
| | - Lisa Even
- University of California, Davis, Department of Biomedical Engineering, 451 Health Sciences Drive, Davis, CA 95616, USA
| | - Dmitriy Sheyn
- Department of Surgery, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA; Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Shiran Ben-David
- Department of Surgery, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA; Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Wafa Tawackoli
- Department of Surgery, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA; Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Gadi Pelled
- Skeletal Biotech Laboratory, The Hebrew University-Hadassah Faculty of Dental Medicine, Ein Kerem, Jerusalem 91120, Israel; Department of Surgery, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA; Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Katherine W Ferrara
- University of California, Davis, Department of Biomedical Engineering, 451 Health Sciences Drive, Davis, CA 95616, USA
| | - Dan Gazit
- Skeletal Biotech Laboratory, The Hebrew University-Hadassah Faculty of Dental Medicine, Ein Kerem, Jerusalem 91120, Israel; Department of Surgery, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA; Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
| |
Collapse
|
30
|
PTH Induces Systemically Administered Mesenchymal Stem Cells to Migrate to and Regenerate Spine Injuries. Mol Ther 2015; 24:318-330. [PMID: 26585691 DOI: 10.1038/mt.2015.211] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 11/13/2015] [Indexed: 12/11/2022] Open
Abstract
Osteoporosis affects more than 200 million people worldwide leading to more than 2 million fractures in the United States alone. Unfortunately, surgical treatment is limited in patients with low bone mass. Parathyroid hormone (PTH) was shown to induce fracture repair in animals by activating mesenchymal stem cells (MSCs). However, it would be less effective in patients with fewer and/or dysfunctional MSCs due to aging and comorbidities. To address this, we evaluated the efficacy of combination i.v. MSC and PTH therapy versus monotherapy and untreated controls, in a rat model of osteoporotic vertebral bone defects. The results demonstrated that combination therapy significantly increased new bone formation versus monotherapies and no treatment by 2 weeks (P < 0.05). Mechanistically, we found that PTH significantly enhanced MSC migration to the lumbar region, where the MSCs differentiated into bone-forming cells. Finally, we used allogeneic porcine MSCs and observed similar findings in a clinically relevant minipig model of vertebral defects. Collectively, these results demonstrate that in addition to its anabolic effects, PTH functions as an adjuvant to i.v. MSC therapy by enhancing migration to heal bone loss. This systemic approach could be attractive for various fragility fractures, especially using allogeneic cells that do not require invasive tissue harvest.
Collapse
|
31
|
Ormiston ML, Upton PD, Li W, Morrell NW. The promise of recombinant BMP ligands and other approaches targeting BMPR-II in the treatment of pulmonary arterial hypertension. Glob Cardiol Sci Pract 2015; 2015:47. [PMID: 26779522 PMCID: PMC4710869 DOI: 10.5339/gcsp.2015.47] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 08/27/2015] [Indexed: 12/11/2022] Open
Abstract
Human genetic discoveries offer a powerful method to implicate pathways of major importance to disease pathobiology and hence provide targets for pharmacological intervention. The genetics of pulmonary arterial hypertension (PAH) strongly implicates loss-of-function of the bone morphogenetic protein type II receptor (BMPR-II) signalling pathway and moreover implicates the endothelial cell as a central cell type involved in disease initiation. We and others have described several approaches to restore BMPR-II function in genetic and non-genetic forms of PAH. Of these, supplementation of endothelial BMP9/10 signalling with exogenous recombinant ligand has been shown to hold considerable promise as a novel large molecule biopharmaceutical therapy. Here, we describe the mechanism of action and discuss potential additional effects of BMP ligand therapy.
Collapse
Affiliation(s)
- Mark L Ormiston
- The Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's and Papworth Hospitals, Cambridge, United Kingdom
| | - Paul D Upton
- The Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's and Papworth Hospitals, Cambridge, United Kingdom
| | - Wei Li
- The Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's and Papworth Hospitals, Cambridge, United Kingdom
| | - Nicholas W Morrell
- The Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's and Papworth Hospitals, Cambridge, United Kingdom
| |
Collapse
|
32
|
Balmayor ER, van Griensven M. Gene therapy for bone engineering. Front Bioeng Biotechnol 2015; 3:9. [PMID: 25699253 PMCID: PMC4313589 DOI: 10.3389/fbioe.2015.00009] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Accepted: 01/14/2015] [Indexed: 11/13/2022] Open
Abstract
Bone has an intrinsic healing capacity that may be exceeded when the fracture gap is too big or unstable. In that moment, osteogenic measures need to be taken by physicians. It is important to combine cells, scaffolds and growth factors, and the correct mechanical conditions. Growth factors are clinically administered as recombinant proteins. They are, however, expensive and needed in high supraphysiological doses. Moreover, their half-life is short when administered to the fracture. Therefore, gene therapy may be an alternative. Cells can constantly produce the protein of interest in the correct folding, with the physiological glycosylation and in the needed amounts. Genes can be delivered in vivo or ex vivo by viral or non-viral methods. Adenovirus is mostly used. For the non-viral methods, hydrogels and recently sonoporation seem to be promising means. This review will give an overview of recent advancements in gene therapy approaches for bone regeneration strategies.
Collapse
Affiliation(s)
- Elizabeth Rosado Balmayor
- Experimental Trauma Surgery, Department of Trauma Surgery, Klinikum rechts der Isar, Technical University Munich , Munich , Germany ; Institute for Advanced Science, Technical University Munich , Garching , Germany
| | - Martijn van Griensven
- Experimental Trauma Surgery, Department of Trauma Surgery, Klinikum rechts der Isar, Technical University Munich , Munich , Germany
| |
Collapse
|
33
|
Sanches PG, Mühlmeister M, Seip R, Kaijzel E, Löwik C, Böhmer M, Tiemann K, Grüll H. Ultrasound-mediated gene delivery of naked plasmid DNA in skeletal muscles: A case for bolus injections. J Control Release 2014; 195:130-7. [DOI: 10.1016/j.jconrel.2014.06.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 06/06/2014] [Accepted: 06/20/2014] [Indexed: 12/17/2022]
|
34
|
Kaipel M, Schützenberger S, Hofmann AT, Ferguson J, Nau T, Redl H, Feichtinger GA. Evaluation of fibrin-based gene-activated matrices for BMP2/7 plasmid codelivery in a rat nonunion model. INTERNATIONAL ORTHOPAEDICS 2014; 38:2607-13. [PMID: 25192687 DOI: 10.1007/s00264-014-2499-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 08/06/2014] [Indexed: 11/29/2022]
Abstract
PURPOSE Treatment of large-segmental bone defects still is a challenge in clinical routine. Application of gene-activated matrices (GAMs) based on fibrin, bone morphogenic protein (BMP) 2/7 plasmids and nonviral transfection reagents (cationic polymers) could be an innovative treatment strategy to overcome this problem. The aim of this study was to determine the therapeutic efficacy of fibrin GAMs with or without additional transfection reagents for BMP2 and 7 plasmid codelivery in a femur nonunion rat model. METHODS In this experimental study, a critical-sized femoral defect was created in 27 rats. At four weeks after the surgery, animals were separated into four groups and underwent a second operation. Fibrin clots containing BMP2/7 plasmids with and without cationic polymer were implanted into the femoral defect. Fibrin clots containing recombinant human (rh) BMP2 served as positive and clots without supplement as negative controls. RESULTS At eight weeks, animals that received GAMs containing the cationic polymer and BMP2/7 plasmids showed decreased bone volume compared with animals treated with GAMs and BMP2/7 only. Application of BMP2/7 plasmids in fibrin GAMs without cationic polymer led to variable results. Animals that received rhBMP2 protein showed increased bone volume, and osseous unions were achieved in two of six animals. CONCLUSIONS Cationic polymers decrease therapeutic efficiency of fibrin GAM-based BMP2/7 plasmid codelivery in bone regeneration. Nonviral gene transfer of BMP2/7 plasmids needs alternative promoters (e.g. by sonoporation, electroporation) to produce beneficial clinical effects.
Collapse
Affiliation(s)
- Martin Kaipel
- Orthopaedic Department, Barmherzige Brüder Hospital, Johannes von Gott-Platz 1/A-7000, Eisenstadt, Austria,
| | | | | | | | | | | | | |
Collapse
|
35
|
Bone morphogenetic proteins: Relationship between molecular structure and their osteogenic activity. FOOD SCIENCE AND HUMAN WELLNESS 2014. [DOI: 10.1016/j.fshw.2014.12.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
36
|
Xia M, Conley SM, Li G, Li PL, Boini KM. Inhibition of hyperhomocysteinemia-induced inflammasome activation and glomerular sclerosis by NLRP3 gene deletion. Cell Physiol Biochem 2014; 34:829-41. [PMID: 25171193 DOI: 10.1159/000363046] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2014] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND/AIMS Hyperhomocysteinemia (hHcys) has been reported to initiate Nod-like receptor protein 3 (NLRP3) inflammasome formation and activation in podocytes, leading to glomerular dysfunction and sclerosis. However, it remains unknown whether Nlrp3 gene is critical for the formation and activation of inflammasomes in glomeruli of hHcys mice. METHODS Plasma homocysteine concentration was estimated utilizing HPLC, inflammasome formation and immunofluorescence expression from confocal microscopy, IL-1β production from ELISA. RESULTS Uninephrectomized Nlrp3 knockout (Nlrp3(-/-)) and wild type (Nlrp3(+/+)) and intra renal Nlrp3 shRNA-transfected wild type mice (Nlrp3 shRNA) were fed a folate free (FF) diet or normal chow (ND) for 4 weeks to produce hHcys. The plasma Hcys levels were significantly elevated in both Nlrp3(-/-) and Nlrp3(+/+) mice fed a FF diet compared to ND fed mice. The FF diet significantly increased the colocalization of Nlrp3 with apoptosis-associated speck-like protein (ASC) or caspase-1, caspase-1 activity and IL-1β production in glomeruli of Nlrp3(+/+), but not in Nlrp3(-/-) mice and local Nlrp3 shRNA transfected mice. Correspondingly, the glomerular damage index (GDI) and urinary protein excretion were significantly higher in Nlrp3(+/+) mice compared to ND fed mice. However, the hHcys-induced increase in GDI and proteinuria were significantly lower in Nlrp3(-/-) and local Nlrp3 shRNA transfected mice than in Nlrp3(+/+) mice. Immunocytochemical analysis showed that hHcys decreased expression of podocin and nephrin, but increased desmin expression in glomeruli of Nlrp3(+/+) mice compared to Nlrp3(-/-) mice. CONCLUSION Nlrp3 gene is an essential component of Nlrp3 inflammasomes and that targeting Nlrp3 may be important therapeutic strategy to prevent inflammasome activation and thereby protect podocytes and glomeruli from hHcys-induced injury.
Collapse
Affiliation(s)
- Min Xia
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | | | | | | | | |
Collapse
|
37
|
Padilla F, Puts R, Vico L, Raum K. Stimulation of bone repair with ultrasound: a review of the possible mechanic effects. ULTRASONICS 2014; 54:1125-45. [PMID: 24507669 DOI: 10.1016/j.ultras.2014.01.004] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 12/20/2013] [Accepted: 01/07/2014] [Indexed: 05/15/2023]
Abstract
In vivo and in vitro studies have demonstrated the positive role that ultrasound can play in the enhancement of fracture healing or in the reactivation of a failed healing process. We review the several options available for the use of ultrasound in this context, either to induce a direct physical effect (LIPUS, shock waves), to deliver bioactive molecules such as growth factors, or to transfect cells with osteogenic plasmids; with a main focus on LIPUS (or Low Intensity Pulsed Ultrasound) as it is the most widespread and studied technique. The biological response to LIPUS is complex as numerous cell types respond to this stimulus involving several pathways. Known to-date mechanotransduction pathways involved in cell responses include MAPK and other kinases signaling pathways, gap-junctional intercellular communication, up-regulation and clustering of integrins, involvement of the COX-2/PGE2, iNOS/NO pathways and activation of ATI mechanoreceptor. The mechanisms by which ultrasound can trigger these effects remain intriguing. Possible mechanisms include direct and indirect mechanical effects like acoustic radiation force, acoustic streaming, and propagation of surface waves, fluid-flow induced circulation and redistribution of nutrients, oxygen and signaling molecules. Effects caused by the transformation of acoustic wave energy into heat can usually be neglected, but heating of the transducer may have a potential impact on the stimulation in some in-vitro systems, depending on the coupling conditions. Cavitation cannot occur at the pressure levels delivered by LIPUS. In-vitro studies, although not appropriate to identify the overall biological effects, are of great interest to study specific mechanisms of action. The diversity of current experimental set-ups however renders this analysis very complex, as phenomena such as transducer heating, inhomogeneities of the sound intensity in the near field, resonances in the transmission and reflection through the culture dish walls and the formation of standing waves will greatly affect the local type and amplitude of the stimulus exerted on the cells. A future engineering challenge is therefore the design of dedicated experimental set-ups, in which the different mechanical phenomena induced by ultrasound can be controlled. This is a prerequisite to evaluate the biological effects of the different phenomena with respect to particular parameters, like intensity, frequency, or duty cycle. By relating the variations of these parameters to the induced physical effects and to the biological responses, it will become possible to derive an 'acoustic dose' and propose a quantification and cross-calibration of the different experimental systems. Improvements in bone healing management will probably also come from a combination of ultrasound with a 'biologic' components, e.g. growth factors, scaffolds, gene therapies, or drug delivery vehicles, the effects of which being potentiated by the ultrasound.
Collapse
Affiliation(s)
- Frédéric Padilla
- Inserm, U1032, LabTau, Lyon F-69003, France; Université de Lyon, Lyon F-69003, France.
| | - Regina Puts
- Julius Wolff Institut & Berlin-Brandenburg School for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Germany
| | - Laurence Vico
- Inserm U1059 Lab Biologie intégrée du Tissu Osseux, Université de Lyon, St-Etienne F-42023, France
| | - Kay Raum
- Julius Wolff Institut & Berlin-Brandenburg School for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Germany
| |
Collapse
|
38
|
Effect of nonviral plasmid delivered basic fibroblast growth factor and low intensity pulsed ultrasound on mandibular condylar growth: a preliminary study. BIOMED RESEARCH INTERNATIONAL 2014; 2014:426710. [PMID: 24967367 PMCID: PMC4055166 DOI: 10.1155/2014/426710] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 03/14/2014] [Accepted: 04/10/2014] [Indexed: 01/06/2023]
Abstract
OBJECTIVE Basic fibroblast growth factor (bFGF) is an important regulator of tissue growth. Previous studies have shown that low intensity pulsed ultrasound (LIPUS) stimulates bone growth. The objective of this study was to evaluate the possible synergetic effect of LIPUS and local injection of nonviral bFGF plasmid DNA (pDNA) on mandibular growth in rats. DESIGN Groups were control, blank pDNA, bFGF pDNA, LIPUS, and bFGF pDNA + LIPUS. Treatments were performed for 28 days. Significant increase was observed in mandibular height and condylar length in LIPUS groups. MicroCT analysis showed significant increase in bone volume fraction in bFGF pDNA + LIPUS group. Histomorphometric analysis showed increased cell count and condylar proliferative and hypertrophic layers widths in bFGF pDNA group. RESULTS Current study showed increased mandibular condylar growth in either bFGF pDNA or LIPUS groups compared to the combined group that showed only increased bone volume fraction. CONCLUSION It appears that there is an additive effect of bFGF + LIPUS on the mandibular growth.
Collapse
|
39
|
Short noncoding DNA fragments improve the immune potency of electroporation-mediated HBV DNA vaccination. Gene Ther 2014; 21:703-8. [DOI: 10.1038/gt.2014.44] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 03/11/2014] [Accepted: 04/01/2014] [Indexed: 12/11/2022]
|
40
|
Shapiro G, Kallai I, Sheyn D, Tawackoli W, Koh YD, Bae H, Trietel T, Goldbart R, Kost J, Gazit Z, Gazit D, Pelled G. Ultrasound-mediated transgene expression in endogenous stem cells recruited to bone injury sites. POLYM ADVAN TECHNOL 2014. [DOI: 10.1002/pat.3297] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Galina Shapiro
- Skeletal Biotech Laboratory; Hebrew University-Hadassah Faculty of Dental Medicine; Jerusalem Israel
| | - Ilan Kallai
- Skeletal Biotech Laboratory; Hebrew University-Hadassah Faculty of Dental Medicine; Jerusalem Israel
| | - Dmitriy Sheyn
- Department of Surgery; Cedars-Sinai Medical Center; Los Angeles CA 90048 United States
| | - Wafa Tawackoli
- Department of Surgery; Cedars-Sinai Medical Center; Los Angeles CA 90048 United States
- Biomedical Imaging Research Institute; Cedars-Sinai Medical Center; Los Angeles CA 90048 United States
| | - Young Do Koh
- Orthopedic Surgery; Ewha Womans University; Seoul Democratic People's Republic of Korea
| | - Hyun Bae
- Department of Surgery; Cedars-Sinai Medical Center; Los Angeles CA 90048 United States
| | - Tamar Trietel
- Department of Chemical Engineering; Ben-Gurion University of the Negev; Beer-Sheva 84105 Israel
| | - Riki Goldbart
- Department of Chemical Engineering; Ben-Gurion University of the Negev; Beer-Sheva 84105 Israel
| | - Joseph Kost
- Department of Chemical Engineering; Ben-Gurion University of the Negev; Beer-Sheva 84105 Israel
| | - Zulma Gazit
- Skeletal Biotech Laboratory; Hebrew University-Hadassah Faculty of Dental Medicine; Jerusalem Israel
- Department of Surgery; Cedars-Sinai Medical Center; Los Angeles CA 90048 United States
| | - Dan Gazit
- Skeletal Biotech Laboratory; Hebrew University-Hadassah Faculty of Dental Medicine; Jerusalem Israel
- Department of Surgery; Cedars-Sinai Medical Center; Los Angeles CA 90048 United States
| | - Gadi Pelled
- Skeletal Biotech Laboratory; Hebrew University-Hadassah Faculty of Dental Medicine; Jerusalem Israel
- Department of Surgery; Cedars-Sinai Medical Center; Los Angeles CA 90048 United States
| |
Collapse
|
41
|
Sheyn D, Pelled G, Tawackoli W, Su S, Ben-David S, Gazit D, Gazit Z. Transient overexpression of Pparγ2 and C/ebpα in mesenchymal stem cells induces brown adipose tissue formation. Regen Med 2014; 8:295-308. [PMID: 23627824 DOI: 10.2217/rme.13.25] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Brown adipose tissue plays a pivotal role in mammal metabolism and thermogenesis. It has a great therapeutic potential in several metabolic disorders such as obesity and diabetes. Mesenchymal stem cells (MSCs) are suitable candidates for brown adipose tissue formation de novo. Pparγ2 and C/ebpα are nucleic receptors known to mediate adipogenic differentiation. We hypothesized that overexpression of the Pparγ2 and C/ebpα genes in MSCs would lead to the formation of adipose tissue. MATERIALS & METHODS MSCs bearing the Luc reporter gene were transfected to overexpress Pparγ2 and C/ebpα. Differentiation of nucleofected cells was evaluated in vitro and in vivo following ectopic implantation of the cells in C3H/HeN mice. RESULTS After implantation, the engineered cells survived for 5 weeks and brown adipose-like tissue was observed in histological samples. Immunostaining and bioluminescent imaging showed new adipocytes expressing Luc and the brown adipose tissue marker, UCP1, in vitro and in vivo. CONCLUSION We show that gene delivery of transcription factors into MSCs generates brown adipose tissue in vitro and in vivo.
Collapse
Affiliation(s)
- Dmitriy Sheyn
- Skeletal Biotech Laboratory, Hebrew University-Hadassah, Faculty of Dental Medicine, Jerusalem, Israel
| | | | | | | | | | | | | |
Collapse
|
42
|
Introduction of Genes via Sonoporation and Electroporation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 818:231-54. [DOI: 10.1007/978-1-4471-6458-6_12] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
43
|
Yu H, Xu L. Cell experimental studies on sonoporation: state of the art and remaining problems. J Control Release 2013; 174:151-60. [PMID: 24291334 DOI: 10.1016/j.jconrel.2013.11.010] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 11/12/2013] [Accepted: 11/12/2013] [Indexed: 12/01/2022]
Abstract
Sonoporation is the formation of transient pores on cell membrane by ultrasound exposure. Sonoporation can be applied to the increasing delivery of drug or gene into cells. However, there are some problems encountered in sonoporation studies. The mechanisms to produce sonoporation are very complicated; there are too many experimental parameters affecting the sonoporation results; and there are many bio-effects accompanied with sonoporation. In the article, the cell experimental studies on sonoporation were sorted, including experimental methods, mechanisms to produce sonoporation, correlations between sonoporation experimental parameters and results, and bioeffects accompanied with sonoporation. We'd like to make the concepts about sonoporation clearer. The sonoporation technology may be a promising auxiliary technology to promote drug or gene therapy in the future.
Collapse
Affiliation(s)
- Hao Yu
- Biomedical Engineering Department, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Liang Xu
- Shenzhen Institute for Drug Control, Shenzhen 518056, China.
| |
Collapse
|
44
|
Feichtinger GA, Hofmann AT, Slezak P, Schuetzenberger S, Kaipel M, Schwartz E, Neef A, Nomikou N, Nau T, van Griensven M, McHale AP, Redl H. Sonoporation increases therapeutic efficacy of inducible and constitutive BMP2/7 in vivo gene delivery. Hum Gene Ther Methods 2013; 25:57-71. [PMID: 24164605 DOI: 10.1089/hgtb.2013.113] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
An ideal novel treatment for bone defects should provide regeneration without autologous or allogenous grafting, exogenous cells, growth factors, or biomaterials while ensuring spatial and temporal control as well as safety. Therefore, a novel osteoinductive nonviral in vivo gene therapy approach using sonoporation was investigated in ectopic and orthotopic models. Constitutive or regulated, doxycycline-inducible, bone morphogenetic protein 2 and 7 coexpression plasmids were repeatedly applied for 5 days. Ectopic and orthotopic gene transfer efficacy was monitored by coapplication of a luciferase plasmid and bioluminescence imaging. Orthotopic plasmid DNA distribution was investigated using a novel plasmid-labeling method. Luciferase imaging demonstrated an increased trend (61% vs. 100%) of gene transfer efficacy, and micro-computed tomography evaluation showed significantly enhanced frequency of ectopic bone formation for sonoporation compared with passive gene delivery (46% vs. 100%) dependent on applied ultrasound power. Bone formation by the inducible system (83%) was stringently controlled by doxycycline in vivo, and no ectopic bone formation was observed without induction or with passive gene transfer without sonoporation. Orthotopic evaluation in a rat femur segmental defect model demonstrated an increased trend of gene transfer efficacy using sonoporation. Investigation of DNA distribution demonstrated extensive binding of plasmid DNA to bone tissue. Sonoporated animals displayed a potentially increased union rate (33%) without extensive callus formation or heterotopic ossification. We conclude that sonoporation of BMP2/7 coexpression plasmids is a feasible, minimally invasive method for osteoinduction and that improvement of bone regeneration by sonoporative gene delivery is superior to passive gene delivery.
Collapse
Affiliation(s)
- Georg A Feichtinger
- 1 Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Austrian Cluster for Tissue Regeneration, European Institute of Excellence on Tissue Engineering and Regenerative Medicine Research (Expertissues EEIG) , Vienna-Branch, 1200 Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Sheyn D, Cohn Yakubovich D, Kallai I, Su S, Da X, Pelled G, Tawackoli W, Cook-Weins G, Schwarz EM, Gazit D, Gazit Z. PTH promotes allograft integration in a calvarial bone defect. Mol Pharm 2013; 10:4462-71. [PMID: 24131143 DOI: 10.1021/mp400292p] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Allografts may be useful in craniofacial bone repair, although they often fail to integrate with the host bone. We hypothesized that intermittent administration of parathyroid hormone (PTH) would enhance mesenchymal stem cell recruitment and differentiation, resulting in allograft osseointegration in cranial membranous bones. Calvarial bone defects were created in transgenic mice, in which luciferase is expressed under the control of the osteocalcin promoter. The mice were given implants of allografts with or without daily PTH treatment. Bioluminescence imaging (BLI) was performed to monitor host osteprogenitor differentiation at the implantation site. Bone formation was evaluated with the aid of fluorescence imaging (FLI) and microcomputed tomography (μCT) as well as histological analyses. Reverse transcription polymerase chain reaction (RT-PCR) was performed to evaluate the expression of key osteogenic and angiogenic genes. Osteoprogenitor differentiation, as detected by BLI, in mice treated with an allograft implant and PTH was over 2-fold higher than those in mice treated with an allograft implant without PTH. FLI also demonstrated that the bone mineralization process in PTH-treated allografts was significantly higher than that in untreated allografts. The μCT scans revealed a significant increase in bone formation in allograft + PTH treated mice comparing to allograft + PBS treated mice. The osteogenic genes osteocalcin (Oc/Bglap) and integrin binding sialoprotein (Ibsp) were upregulated in the allograft + PTH treated animals. In summary, PTH treatment enhances osteoprogenitor differentiation and augments bone formation around structural allografts. The precise mechanism is not clear, but we show that infiltration pattern of mast cells, associated with the formation of fibrotic tissue, in the defect site is significantly affected by the PTH treatment.
Collapse
Affiliation(s)
- Dmitriy Sheyn
- Department of Surgery, Cedars-Sinai Medical Center , Los Angeles, California 90048, United States
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Rose L, Uludağ H. Realizing the potential of gene-based molecular therapies in bone repair. J Bone Miner Res 2013; 28:2245-62. [PMID: 23553878 DOI: 10.1002/jbmr.1944] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 03/13/2013] [Accepted: 03/19/2013] [Indexed: 12/17/2022]
Abstract
A better understanding of osteogenesis at genetic and biochemical levels is yielding new molecular entities that can modulate bone regeneration and potentially act as novel therapies in a clinical setting. These new entities are motivating alternative approaches for bone repair by utilizing DNA-derived expression systems, as well as RNA-based regulatory molecules controlling the fate of cells involved in osteogenesis. These sophisticated mediators of osteogenesis, however, pose unique delivery challenges that are not obvious in deployment of conventional therapeutic agents. Viral and nonviral delivery systems are actively pursued in preclinical animal models to realize the potential of the gene-based medicines. This article will summarize promising bone-inducing molecular agents on the horizon as well as provide a critical review of delivery systems employed for their administration. Special attention was paid to synthetic (nonviral) delivery systems because they are more likely to be adopted for clinical testing because of safety considerations. We present a comparative analysis of dose-response relationships, as well as pharmacokinetic and pharmacodynamic features of various approaches, with the purpose of clearly defining the current frontier in the field. We conclude with the authors' perspective on the future of gene-based therapy of bone defects, articulating promising research avenues to advance the field of clinical bone repair.
Collapse
Affiliation(s)
- Laura Rose
- Department of Biomedical Engineering, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Canada
| | | |
Collapse
|
47
|
Beederman M, Lamplot JD, Nan G, Wang J, Liu X, Yin L, Li R, Shui W, Zhang H, Kim SH, Zhang W, Zhang J, Kong Y, Denduluri S, Rogers MR, Pratt A, Haydon RC, Luu HH, Angeles J, Shi LL, He TC. BMP signaling in mesenchymal stem cell differentiation and bone formation. JOURNAL OF BIOMEDICAL SCIENCE AND ENGINEERING 2013; 6:32-52. [PMID: 26819651 PMCID: PMC4725591 DOI: 10.4236/jbise.2013.68a1004] [Citation(s) in RCA: 211] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Bone morphogenetic proteins (BMPs) are members of the TGF-β superfamily and have diverse functions during development and organogenesis. BMPs play a major role in skeletal development and bone formation, and disruptions in BMP signaling cause a variety of skeletal and extraskeletal anomalies. Several knockout models have provided insight into the mechanisms responsible for these phenotypes. Proper bone formation requires the differentiation of osteoblasts from mesenchymal stem cell (MSC) precursors, a process mediated in part by BMP signaling. Multiple BMPs, including BMP2, BMP6, BMP7 and BMP9, promote osteoblastic differentiation of MSCs both in vitro and in vivo. BMP9 is one of the most osteogenic BMPs yet is a poorly characterized member of the BMP family. Several studies demonstrate that the mechanisms controlling BMP9-mediated osteogenesis differ from other osteogenic BMPs, but little is known about these specific mechanisms. Several pathways critical to BMP9-mediated osteogenesis are also important in the differentiation of other cell lineages, including adipocytes and chondrocytes. BMP9 has also demonstrated translational promise in spinal fusion and bone fracture repair. This review will summarize our current knowledge of BMP-mediated osteogenesis, with a focus on BMP9, by presenting recently completed work which may help us to further elucidate these pathways.
Collapse
Affiliation(s)
- Maureen Beederman
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, USA
| | - Joseph D Lamplot
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, USA
| | - Guoxin Nan
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, USA; Stem Cell Biology and Therapy Laboratory of the Key Laboratory for Pediatrics Co-Designated by Chinese Ministry of Education, The Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Jinhua Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, USA; The Affiliated Hospitals and the Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Xing Liu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, USA; Stem Cell Biology and Therapy Laboratory of the Key Laboratory for Pediatrics Co-Designated by Chinese Ministry of Education, The Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Liangjun Yin
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, USA; The Affiliated Hospitals and the Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Ruidong Li
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, USA; The Affiliated Hospitals and the Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Wei Shui
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, USA; The Affiliated Hospitals and the Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Hongyu Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, USA; The Affiliated Hospitals and the Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Stephanie H Kim
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, USA
| | - Wenwen Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, USA; The Affiliated Hospitals and the Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Jiye Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, USA; The Affiliated Hospitals and the Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Yuhan Kong
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, USA; The Affiliated Hospitals and the Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Sahitya Denduluri
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, USA
| | - Mary Rose Rogers
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, USA
| | - Abdullah Pratt
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, USA
| | - Rex C Haydon
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, USA
| | - Hue H Luu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, USA
| | - Jovito Angeles
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, USA
| | - Lewis L Shi
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, USA; Stem Cell Biology and Therapy Laboratory of the Key Laboratory for Pediatrics Co-Designated by Chinese Ministry of Education, The Children's Hospital of Chongqing Medical University, Chongqing, China; The Affiliated Hospitals and the Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| |
Collapse
|
48
|
Im GI. Nonviral gene transfer strategies to promote bone regeneration. J Biomed Mater Res A 2013; 101:3009-18. [PMID: 23554051 DOI: 10.1002/jbm.a.34576] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 01/02/2013] [Indexed: 11/10/2022]
Abstract
Despite the inherent ability of bone to regenerate itself, there are a number of clinical situations in which complete bone regeneration fails to occur. In view of shortcomings of conventional treatment, gene therapy may have a place in cases of critical-size bone loss that cannot be properly treated with current medical or surgical treatment. The purpose of this review is to provide an overview of gene therapy in general, nonviral techniques of gene transfer including physical and chemical methods, RNA-based therapy, therapeutic genes to be transferred for bone regeneration, route of application including ex vivo application, and direct gene therapy approaches to regenerate bone.
Collapse
Affiliation(s)
- Gun-Il Im
- Department of Orthopaedics, Dongguk University Ilsan Hospital, Korea
| |
Collapse
|
49
|
Real-time bioluminescence functional imaging for monitoring tissue formation and regeneration. Methods Mol Biol 2013; 1048:181-93. [PMID: 23929106 DOI: 10.1007/978-1-62703-556-9_14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Real-time bioluminescence functional imaging holds great promise for regenerative medicine because it improves the researcher's ability to analyze and understand the healing process. Using transgenic mice coupled with gene-modified cells, one can employ this method to monitor host and graft activity in various models of tissue regeneration. We implemented real-time bioluminescence functional imaging to analyze bone formation by following a unique protocol in which the luciferase reporter gene, driven by an osteocalcin promoter, is used to visualize host and graft activity during bone formation. Real-time bioluminescence functional imaging can be used to assess the "host reaction" in transgenic mice models; it can also be used to assess "graft activity" in other animals in which genetically labeled stem cells have been implanted or direct gene delivery has been applied. The suggested imaging protocol requires 25 min per sample. However, special attention must be given to the layout of the experimental design, which determines the specific activity that will be analyzed.
Collapse
|
50
|
Lamplot JD, Denduluri S, Liu X, Wang J, Yin L, Li R, Shui W, Zhang H, Wang N, Nan G, Angeles J, Shi LL, Haydon RC, Luu HH, Ho S, He TC. Major Signaling Pathways Regulating the Proliferation and Differentiation of Mesenchymal Stem Cells. ESSENTIALS OF MESENCHYMAL STEM CELL BIOLOGY AND ITS CLINICAL TRANSLATION 2013:75-100. [DOI: 10.1007/978-94-007-6716-4_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
|