1
|
Haldrup SH, Fabian-Jessing BK, Jakobsen TS, Lindholm AB, Adsersen RL, Aagaard L, Bek T, Askou AL, Corydon TJ. Subretinal AAV delivery of RNAi-therapeutics targeting VEGFA reduces choroidal neovascularization in a large animal model. Mol Ther Methods Clin Dev 2024; 32:101242. [PMID: 38605811 PMCID: PMC11007540 DOI: 10.1016/j.omtm.2024.101242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 03/21/2024] [Indexed: 04/13/2024]
Abstract
Neovascular age-related macular degeneration (nAMD) is a frequent cause of vision loss among the elderly in the Western world. Current disease management with repeated injections of anti-VEGF agents accumulates the risk for adverse events and constitutes a burden for society and the individual patient. Sustained suppression of VEGF using gene therapy is an attractive alternative, which we explored using adeno-associated virus (AAV)-based delivery of novel RNA interference (RNAi) effectors in a porcine model of choroidal neovascularization (CNV). The potency of VEGFA-targeting, Ago2-dependent short hairpin RNAs placed in pri-microRNA scaffolds (miR-agshRNA) was established in vitro and in vivo in mice. Subsequently, AAV serotype 8 (AAV2.8) vectors encoding VEGFA-targeting or irrelevant miR-agshRNAs under the control of a tissue-specific promotor were delivered to the porcine retina via subretinal injection before CNV induction by laser. Notably, VEGFA-targeting miR-agshRNAs resulted in a significant and sizable reduction of CNV compared with the non-targeting control. We also demonstrated that single-stranded and self-complementary AAV2.8 vectors efficiently transduce porcine retinal pigment epithelium cells but differ in their transduction characteristics and retinal safety. Collectively, our data demonstrated a robust anti-angiogenic effect of VEGFA-targeting miR-aghsRNAs in a large translational animal model, thereby suggesting AAV-based delivery of anti-VEGFA RNAi therapeutics as a valuable tool for the management of nAMD.
Collapse
Affiliation(s)
- Silja Hansen Haldrup
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000 Aarhus C, Denmark
| | - Bjørn K. Fabian-Jessing
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000 Aarhus C, Denmark
- Department of Ophthalmology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 167, 8200 Aarhus N, Denmark
| | - Thomas Stax Jakobsen
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000 Aarhus C, Denmark
- Department of Ophthalmology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 167, 8200 Aarhus N, Denmark
| | - Anna Bøgh Lindholm
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000 Aarhus C, Denmark
| | - Rikke L. Adsersen
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000 Aarhus C, Denmark
| | - Lars Aagaard
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000 Aarhus C, Denmark
| | - Toke Bek
- Department of Ophthalmology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 167, 8200 Aarhus N, Denmark
| | - Anne Louise Askou
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000 Aarhus C, Denmark
- Department of Ophthalmology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 167, 8200 Aarhus N, Denmark
| | - Thomas J. Corydon
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000 Aarhus C, Denmark
- Department of Ophthalmology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 167, 8200 Aarhus N, Denmark
| |
Collapse
|
2
|
Kelley RA, Wu Z. Utilization of the retinal organoid model to evaluate the feasibility of genetic strategies to ameliorate retinal disease(s). Vision Res 2023; 210:108269. [PMID: 37295270 DOI: 10.1016/j.visres.2023.108269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/12/2023] [Accepted: 05/12/2023] [Indexed: 06/12/2023]
Abstract
Organoid models have quickly become a popular research tool to evaluate novel therapeutics on 3-D recapitulated tissue. This has enabled researchers to use physiologically relevant human tissue in vitro to augment the standard use of immortalized cells and animal models. Organoids can also provide a model when an engineered animal cannot recreate a specific disease phenotype. In particular, the retinal research field has taken advantage of this burgeoning technology to provide insight into inherited retinal disease(s) mechanisms and therapeutic intervention to ameliorate their effects. In this review we will discuss the use of both wild-type and patient-specific retinal organoids to further gene therapy research that could potentially prevent retinal disease(s) progression. Furthermore, we will discuss the pitfalls of current retinal organoid technology and present potential solutions that could overcome these hurdles in the near future.
Collapse
Affiliation(s)
- Ryan A Kelley
- PTC Therapeutics, 100 Corporate Ct #2400, South Plainfield, NJ 07080, USA.
| | - Zhijian Wu
- PTC Therapeutics, 100 Corporate Ct #2400, South Plainfield, NJ 07080, USA
| |
Collapse
|
3
|
Swirski S, May O, Ahlers M, Wissinger B, Greschner M, Jüschke C, Neidhardt J. In Vivo Efficacy and Safety Evaluations of Therapeutic Splicing Correction Using U1 snRNA in the Mouse Retina. Cells 2023; 12:cells12060955. [PMID: 36980294 PMCID: PMC10047704 DOI: 10.3390/cells12060955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/14/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Efficacy and safety considerations constitute essential steps during development of in vivo gene therapies. Herein, we evaluated efficacy and safety of splice factor-based treatments to correct mutation-induced splice defects in an Opa1 mutant mouse line. We applied adeno-associated viruses to the retina. The viruses transduced retinal cells with an engineered U1 snRNA splice factor designed to correct the Opa1 splice defect. We found the treatment to be efficient in increasing wild-type Opa1 transcripts. Correspondingly, Opa1 protein levels increased significantly in treated eyes. Measurements of retinal morphology and function did not reveal therapy-related side-effects supporting the short-term safety of the treatment. Alterations of potential off-target genes were not detected. Our data suggest that treatments of splice defects applying engineered U1 snRNAs represent a promising in vivo therapeutic approach. The therapy increased wild-type Opa1 transcripts and protein levels without detectable morphological, functional or genetic side-effects in the mouse eye. The U1 snRNA-based therapy can be tailored to specific disease gene mutations, hence, raising the possibility of a wider applicability of this promising technology towards treatment of different inherited retinal diseases.
Collapse
Affiliation(s)
- Sebastian Swirski
- Human Genetics, Department of Human Medicine, Faculty of Medicine and Health Sciences, University of Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany
| | - Oliver May
- Human Genetics, Department of Human Medicine, Faculty of Medicine and Health Sciences, University of Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany
| | - Malte Ahlers
- Visual Neuroscience, Department of Neuroscience, Faculty of Medicine and Health Sciences, University of Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany
| | - Bernd Wissinger
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Elfriede-Aulhorn-Straße 7, 72076 Tübingen, Germany
| | - Martin Greschner
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Elfriede-Aulhorn-Straße 7, 72076 Tübingen, Germany
- Research Center Neurosensory Science, University of Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany
| | - Christoph Jüschke
- Human Genetics, Department of Human Medicine, Faculty of Medicine and Health Sciences, University of Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany
| | - John Neidhardt
- Human Genetics, Department of Human Medicine, Faculty of Medicine and Health Sciences, University of Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany
- Research Center Neurosensory Science, University of Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany
| |
Collapse
|
4
|
Hakim A, Guido B, Narsineni L, Chen DW, Foldvari M. Gene therapy strategies for glaucoma from IOP reduction to retinal neuroprotection: progress towards non-viral systems. Adv Drug Deliv Rev 2023; 196:114781. [PMID: 36940751 DOI: 10.1016/j.addr.2023.114781] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/25/2023] [Accepted: 03/15/2023] [Indexed: 03/23/2023]
Abstract
Glaucoma is the result of the gradual death of retinal ganglion cells (RGCs) whose axons form the optic nerve. Elevated intraocular pressure (IOP) is a major risk factors thatcontributes to RGC apoptosis and axonal loss at the lamina cribrosa, resulting in progressive reduction and eventual anterograde-retrograde transport blockade of neurotrophic factors. Current glaucoma management mainly focuses on pharmacological or surgical lowering of IOP, to manage the only modifiable risk factor. Although IOP reduction delays disease progression, it does not address previous and ongoing optic nerve degeneration. Gene therapy is a promising direction to control or modify genes involved in the pathophysiology of glaucoma. Both viral and non-viral gene therapy delivery systems are emerging as promising alternatives or add-on therapies to traditional treatments for improving IOP control and provide neuroprotection. The specific spotlight on non-viral gene delivery systems shows further progress towards improving the safety of gene therapy and implementing neuroprotection by targeting specific tissues and cells in the eye and specifically in the retina.
Collapse
Affiliation(s)
- Antoine Hakim
- School of Pharmacy, University of Waterloo, 200 University Avenue West, Waterloo, ON, Canada N2L 3G1
| | - Benjamin Guido
- School of Pharmacy, University of Waterloo, 200 University Avenue West, Waterloo, ON, Canada N2L 3G1
| | - Lokesh Narsineni
- School of Pharmacy, University of Waterloo, 200 University Avenue West, Waterloo, ON, Canada N2L 3G1
| | - Ding-Wen Chen
- School of Pharmacy, University of Waterloo, 200 University Avenue West, Waterloo, ON, Canada N2L 3G1
| | - Marianna Foldvari
- School of Pharmacy, University of Waterloo, 200 University Avenue West, Waterloo, ON, Canada N2L 3G1; Waterloo Institute of Nanotechnology and Center for Bioengineering and Biotechnology University of Waterloo, 200 University Avenue West, Waterloo, ON, Canada N2L 3G1.
| |
Collapse
|
5
|
Zou L, Wang J, Fang Y, Tian H. PEG-mediated transduction of rAAV as a platform for spatially confined and efficient gene delivery. Biomater Res 2022; 26:69. [PMID: 36461117 PMCID: PMC9716683 DOI: 10.1186/s40824-022-00322-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 11/13/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Recombinant adeno-associated viruses (rAAV) are commonly used vectors for gene delivery in both basic neuroscience and clinical applications due to their nonpathogenic, minimally immunogenic, and sustained expression properties. However, several challenges remain for the wide-scale rAAV applications, including poor infection of many clinically important cell lines, insufficient expression at low titers, and diffusive transduction in vivo. METHODS In this work, PEG, which is a safe and non-toxic polymer of ethylene oxide monomer, was applied as an auxiliary transduction agent to improve the expression of rAAV. In detail, a small dose of PEG was added into the rAAV solution for the transgene expression in cell lines in vitro, and in the central nervous system (CNS) in vivo. The biocompatibility of PEG enhancer was assessed by characterizing the immune responses, cell morphology, cell tropism of rAAV, neuronal apoptosis, as well as motor function of animals. RESULTS The results show that small dose of PEG additive can effectively improve the gene expression characteristics of rAAV both in vitro and in vivo. Specifically, the PEG additive allows efficient transgene expression in cell lines that are difficult to be transfected with rAAV alone. In vivo studies show that the PEG additive can promote a spatially confined and efficient transgene expression of low-titer rAAV in the brain over long terms. In addition, no obvious side effects of PEG were observed on CNS in the biocompatibility studies. CONCLUSIONS This spatially confined and efficient transduction method can facilitate the applications of rAAV in fundamental research, especially in the precise dissection of neural circuits, and also improve the capabilities of rAAV in the treatment of neurological diseases which originate from the disorders of small nuclei in the brain.
Collapse
Affiliation(s)
- Liang Zou
- grid.419265.d0000 0004 1806 6075CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 China ,grid.9227.e0000000119573309CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Jinfen Wang
- grid.419265.d0000 0004 1806 6075CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 China
| | - Ying Fang
- grid.419265.d0000 0004 1806 6075CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 China ,grid.9227.e0000000119573309CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Huihui Tian
- grid.419265.d0000 0004 1806 6075CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 China
| |
Collapse
|
6
|
Martinez-Fernandez de la Camara C, Cehajic-Kapetanovic J, MacLaren RE. Emerging gene therapy products for RPGR-associated X-linked retinitis pigmentosa. Expert Opin Emerg Drugs 2022; 27:431-443. [PMID: 36562395 DOI: 10.1080/14728214.2022.2152003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 11/22/2022] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Mutations in the RPGR gene are responsible for one of the most prevalent and severe types of retinitis pigmentosa. Gene therapy has shown great promise to treat inherited retinal diseases, and currently, four RPGR gene therapy vectors are being evaluated in clinical trials. AREAS COVERED This manuscript reviews the gene therapy products that are in development for X-linked retinitis pigmentosa caused by mutations in RPGR, and the challenges that scientists and clinicians have faced. EXPERT OPINION The development of a gene therapy product for RPGR-associated retinal degeneration has been a great challenge due to the incomplete understanding of the underlying genetics and mechanism of action of RPGR, and on the other hand, due to the instability of the RPGR gene. Three of the four gene therapy vectors currently in clinical trials include a codon-optimized version of the human RPGR sequence, and the other vector contains a shortened version of the human RPGR. To date, the only Phase I/II results published in a peer-reviewed journal demonstrate a good safety profile and an improvement in the visual field using a codon optimized version of RPGRORF15.
Collapse
Affiliation(s)
- Cristina Martinez-Fernandez de la Camara
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, John Radcliffe Hospital, Level 5 & 6, West Wing, Headley Way, OX3 9DU, Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Trust, John Radcliffe Hospital, West Wing, Headley Way, OX3 9DU, Oxford, UK
| | - Jasmina Cehajic-Kapetanovic
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, John Radcliffe Hospital, Level 5 & 6, West Wing, Headley Way, OX3 9DU, Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Trust, John Radcliffe Hospital, West Wing, Headley Way, OX3 9DU, Oxford, UK
| | - Robert E MacLaren
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, John Radcliffe Hospital, Level 5 & 6, West Wing, Headley Way, OX3 9DU, Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Trust, John Radcliffe Hospital, West Wing, Headley Way, OX3 9DU, Oxford, UK
| |
Collapse
|
7
|
Mansouri V. X-Linked Retinitis Pigmentosa Gene Therapy: Preclinical Aspects. Ophthalmol Ther 2022; 12:7-34. [PMID: 36346573 PMCID: PMC9641696 DOI: 10.1007/s40123-022-00602-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/17/2022] [Indexed: 11/11/2022] Open
Abstract
The most common inherited eye disease is retinitis pigmentosa (RP). X-linked RP (XLRP) is one of the most severe types of RP, with a considerable disease burden. Patients with XLRP experience a decrease in their vision and become blind in their 4th decade of life, causing much morbidity after starting a rather normal life. Treatment of XLRP remains challenging, and current treatments are not effective enough in restoring vision. Gene therapy of XLRP, capable of restoring the functional RPGR gene, showed promising results in preclinical studies and clinical trials; however, to date, no approved product has entered the market. The development of a gene therapy product needs through preliminary assessment of the drug in animal models before administration to humans. In this article, we reviewed the genetic pathology of XLRP, along with the preclinical aspects of the XLRP gene therapy, animal models, associated assessments, and future challenges and directions.
Collapse
Affiliation(s)
- Vahid Mansouri
- Gene Therapy Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Thampi P, Samulski RJ, Grieger JC, Phillips JN, McIlwraith CW, Goodrich LR. Gene therapy approaches for equine osteoarthritis. Front Vet Sci 2022; 9:962898. [PMID: 36246316 PMCID: PMC9558289 DOI: 10.3389/fvets.2022.962898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/08/2022] [Indexed: 01/24/2023] Open
Abstract
With an intrinsically low ability for self-repair, articular cartilage injuries often progress to cartilage loss and joint degeneration resulting in osteoarthritis (OA). Osteoarthritis and the associated articular cartilage changes can be debilitating, resulting in lameness and functional disability both in human and equine patients. While articular cartilage damage plays a central role in the pathogenesis of OA, the contribution of other joint tissues to the pathogenesis of OA has increasingly been recognized thus prompting a whole organ approach for therapeutic strategies. Gene therapy methods have generated significant interest in OA therapy in recent years. These utilize viral or non-viral vectors to deliver therapeutic molecules directly into the joint space with the goal of reprogramming the cells' machinery to secrete high levels of the target protein at the site of injection. Several viral vector-based approaches have demonstrated successful gene transfer with persistent therapeutic levels of transgene expression in the equine joint. As an experimental model, horses represent the pathology of human OA more accurately compared to other animal models. The anatomical and biomechanical similarities between equine and human joints also allow for the use of similar imaging and diagnostic methods as used in humans. In addition, horses experience naturally occurring OA and undergo similar therapies as human patients and, therefore, are a clinically relevant patient population. Thus, further studies utilizing this equine model would not only help advance the field of human OA therapy but also benefit the clinical equine patients with naturally occurring joint disease. In this review, we discuss the advancements in gene therapeutic approaches for the treatment of OA with the horse as a relevant patient population as well as an effective and commonly utilized species as a translational model.
Collapse
Affiliation(s)
- Parvathy Thampi
- Orthopaedic Research Center, C. Wayne McIlwraith Translational Research Institute, College of Veterinary Medicine, Colorado State University, Fort Collins, CO, United States
| | - R. Jude Samulski
- Gene Therapy Center, University of North Carolina, Chapel Hill, NC, United States
| | - Joshua C. Grieger
- Gene Therapy Center, University of North Carolina, Chapel Hill, NC, United States
| | - Jennifer N. Phillips
- Orthopaedic Research Center, C. Wayne McIlwraith Translational Research Institute, College of Veterinary Medicine, Colorado State University, Fort Collins, CO, United States
| | - C. Wayne McIlwraith
- Orthopaedic Research Center, C. Wayne McIlwraith Translational Research Institute, College of Veterinary Medicine, Colorado State University, Fort Collins, CO, United States
| | - Laurie R. Goodrich
- Orthopaedic Research Center, C. Wayne McIlwraith Translational Research Institute, College of Veterinary Medicine, Colorado State University, Fort Collins, CO, United States,*Correspondence: Laurie R. Goodrich
| |
Collapse
|
9
|
Bian J, Chen H, Sun J, Cao Y, An J, Pan Q, Qi M. Gene Therapy for Rdh12-Associated Retinal Diseases Helps to Delay Retinal Degeneration and Vision Loss. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:3581-3591. [PMID: 34429587 PMCID: PMC8380142 DOI: 10.2147/dddt.s305378] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/04/2021] [Indexed: 12/15/2022]
Abstract
Purpose The aim of study was to establish Rdh12-associated inherited retinal disease (Rdh12-IRD) mouse model and to identify the best timepoint for gene therapy. Methods We induced retinal degeneration in Rdh12-/- mice using a bright light. We clarified the establishment of Rdh12-IRD mouse model by analyzing the thickness of retinal layers and electroretinography (ERG). Rdh12-IRD mice received a subretinal injection of adeno-associated virus 2/8-packaged Rdh12 cDNA for treatment. We evaluated the visual function and retinal structure in the treated and untreated eyes to identify the best timepoint for gene therapy. Results Rdh12-IRD mice showed significant differences in ERG amplitudes and photoreceptor survival compared to Rdh12+/+ mice. Preventive gene therapy not only maintained normal visual function but also prevented photoreceptor loss. Salvage gene therapy could not reverse the retinal degeneration phenotype of Rdh12-IRD mice, but it could slow down the loss of visual function. Conclusion The light-induced retinal degeneration in our Rdh12-/- mice indicated that a defect in Rdh12 alone was sufficient to cause visual dysfunction and photoreceptor degeneration, which reproduced the phenotypes observed in RDH12-IRD patients. This model is suitable for gene therapy studies. Early treatment of the primary Rdh12 defect helps to delay the later onset of photoreceptor degeneration and maintains visual function in Rdh12-IRD mice.
Collapse
Affiliation(s)
- Jiaxin Bian
- Department of Cell Biology and Medical Genetics, School of Medicine Zhejiang University, Hangzhou, 310000, People's Republic of China.,Center for Precision Medicine, Zhejiang-California International NanoSystems Institute, Hangzhou, 310000, People's Republic of China
| | - Hongyu Chen
- Department of Cell Biology and Medical Genetics, School of Medicine Zhejiang University, Hangzhou, 310000, People's Republic of China.,Center for Precision Medicine, Zhejiang-California International NanoSystems Institute, Hangzhou, 310000, People's Republic of China
| | - Junhui Sun
- Department of Cell Biology and Medical Genetics, School of Medicine Zhejiang University, Hangzhou, 310000, People's Republic of China.,Center for Precision Medicine, Zhejiang-California International NanoSystems Institute, Hangzhou, 310000, People's Republic of China
| | - Yuqing Cao
- School of Optometry and Ophthalmology Wenzhou Medical College, Wenzhou, People's Republic of China
| | - Jianhong An
- School of Optometry and Ophthalmology Wenzhou Medical College, Wenzhou, People's Republic of China
| | - Qing Pan
- Department of Ophthalmology, Zhejiang University Medical School First Affiliated Hospital, Hangzhou, 310000, People's Republic of China
| | - Ming Qi
- Department of Cell Biology and Medical Genetics, School of Medicine Zhejiang University, Hangzhou, 310000, People's Republic of China.,Center for Precision Medicine, Zhejiang-California International NanoSystems Institute, Hangzhou, 310000, People's Republic of China.,Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Department of Laboratory Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, 310000, People's Republic of China.,DIAN Diagnostics, Hangzhou, 310000, People's Republic of China.,Department of Pathology and Laboratory of Medicine, University of Rochester Medical Centre, Rochester, NY, 14609, USA.,HVP-China, Hangzhou, 310000, People's Republic of China
| |
Collapse
|
10
|
Sahu B, Chug I, Khanna H. The Ocular Gene Delivery Landscape. Biomolecules 2021; 11:1135. [PMID: 34439800 PMCID: PMC8394578 DOI: 10.3390/biom11081135] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/19/2021] [Accepted: 07/30/2021] [Indexed: 12/12/2022] Open
Abstract
The eye is at the forefront of developing therapies for genetic diseases. With the FDA approval of the first gene-therapy drug for a form of congenital blindness, numerous studies have been initiated to develop gene therapies for other forms of eye diseases. These examinations have revealed new information about the benefits as well as restrictions to using drug-delivery routes to the different parts of the eye. In this article, we will discuss a brief history of gene therapy and its importance to the eye and ocular delivery landscape that is currently being investigated, and provide insights into their advantages and disadvantages. Efficient delivery routes and vehicle are crucial for an effective, safe, and longer-lasting therapy.
Collapse
Affiliation(s)
| | | | - Hemant Khanna
- Department of Ophthalmology & Visual Sciences, UMass Medical School, Worcester, MA 01655, USA; (B.S.); (I.C.)
| |
Collapse
|
11
|
Cheng SY, Luo Y, Malachi A, Ko J, Su Q, Xie J, Tian B, Lin H, Ke X, Zheng Q, Tai PWL, Gao G, Punzo C. Low-Dose Recombinant Adeno-Associated Virus-Mediated Inhibition of Vascular Endothelial Growth Factor Can Treat Neovascular Pathologies Without Inducing Retinal Vasculitis. Hum Gene Ther 2021; 32:649-666. [PMID: 34182803 PMCID: PMC8312021 DOI: 10.1089/hum.2021.132] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The wet form of age-related macular degeneration is characterized by neovascular pathologies that, if untreated, can result in edemas followed by rapid vision loss. Inhibition of vascular endothelial growth factor (VEGF) has been used to successfully treat neovascular pathologies of the eye. Nonetheless, some patients require frequent intravitreal injections of anti-VEGF drugs, increasing the burden and risk of complications from the procedure to affected individuals. Recombinant adeno-associated virus (rAAV)-mediated expression of anti-VEGF proteins is an attractive alternative to reduce risk and burden to patients. However, controversy remains as to the safety of prolonged VEGF inhibition in the eye. Here, we show that two out of four rAAV serotypes tested by intravitreal delivery to express the anti-VEGF drug conbercept lead to a dose-dependent vascular sheathing pathology that is characterized by immune cell infiltrates, reminiscent of vasculitis in humans. We show that this pathology is accompanied by increased expression in vascular cell adhesion molecule 1 (VCAM1) and intercellular adhesion molecule 1 (ICAM1), both of which promote extravasation of immune cells from the vasculature. While formation of the vascular sheathing pathology is prevented in immunodeficient Rag-1 mice that lack B and T cells, increased expression of VACM1 and ICAM1 still occurs, indicating that inhibition of VEGF function leads to expression changes in cell adhesion molecules that promote extravasation of immune cells. Importantly, a 10-fold lower dose of one of the vectors that cause a vascular sheathing pathology is still able to reduce edemas resulting from choroidal neovascularization without causing any vascular sheathing pathology and only a minimal increase in VCAM1 expression. The data suggest that treatments of neovascular eye pathologies with rAAV-mediated expression of anti VEGF drugs can be developed safely. However, viral load needs to be adjusted to the tropisms of the serotype and the expression pattern of the promoter.
Collapse
Affiliation(s)
- Shun-Yun Cheng
- Department of Ophthalmology and Visual Sciences, University of Massachusetts Medical School, Worcester, Massachusetts, USA.,Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Yongwen Luo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Anneliese Malachi
- Department of Ophthalmology and Visual Sciences, University of Massachusetts Medical School, Worcester, Massachusetts, USA.,Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Jihye Ko
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts, USA.,Viral Vector Core, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Qin Su
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts, USA.,Viral Vector Core, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Jun Xie
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts, USA.,Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Bo Tian
- Department of Ophthalmology and Visual Sciences, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Haijiang Lin
- Department of Ophthalmology and Visual Sciences, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Xiao Ke
- Chengdu Kanghong Pharmaceutical Group Co. Ltd, Chengdu, Sichuan, China
| | - Qiang Zheng
- Chengdu Kanghong Pharmaceutical Group Co. Ltd, Chengdu, Sichuan, China
| | - Phillip W L Tai
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts, USA.,Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts, USA.,Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA.,Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Claudio Punzo
- Department of Ophthalmology and Visual Sciences, University of Massachusetts Medical School, Worcester, Massachusetts, USA.,Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts, USA.,Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
12
|
Fuller-Carter PI, Basiri H, Harvey AR, Carvalho LS. Focused Update on AAV-Based Gene Therapy Clinical Trials for Inherited Retinal Degeneration. BioDrugs 2021; 34:763-781. [PMID: 33136237 DOI: 10.1007/s40259-020-00453-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Inherited retinal diseases (IRDs) comprise a clinically and genetically heterogeneous group of disorders that can ultimately result in photoreceptor dysfunction/death and vision loss. With over 270 genes known to be involved in IRDs, translation of treatment strategies into clinical applications has been historically difficult. However, in recent years there have been significant advances in basic research findings as well as translational studies, culminating in an increasing number of clinical trials with the ultimate goal of reducing vision loss and associated morbidities. The recent approval of Luxturna® (voretigene neparvovec-rzyl) for Leber congenital amaurosis type 2 (LCA2) prompts a review of the current clinical trials for IRDs, with a particular focus on the importance of adeno-associated virus (AAV)-based gene therapies. The present article reviews the current state of AAV use in gene therapy clinical trials for IRDs, with a brief background on AAV and the reasons behind its dominance in ocular gene therapy. It will also discuss pre-clinical progress in AAV-based therapies aimed at treating other ocular conditions that can have hereditable links, and what alternative technologies are progressing in the same therapeutic space.
Collapse
Affiliation(s)
- Paula I Fuller-Carter
- Centre for Ophthalmology and Visual Sciences (Incorporating Lions Eye Institute), The University of Western Australia, Nedlands, WA, Australia
| | - Hamed Basiri
- Centre for Ophthalmology and Visual Sciences (Incorporating Lions Eye Institute), The University of Western Australia, Nedlands, WA, Australia
| | - Alan R Harvey
- School of Human Sciences, The University of Western Australia, Crawley, WA, Australia.,Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
| | - Livia S Carvalho
- Centre for Ophthalmology and Visual Sciences (Incorporating Lions Eye Institute), The University of Western Australia, Nedlands, WA, Australia.
| |
Collapse
|
13
|
Varin J, Bouzidi N, Dias MMDS, Pugliese T, Michiels C, Robert C, Desrosiers M, Sahel JA, Audo I, Dalkara D, Zeitz C. Restoration of mGluR6 Localization Following AAV-Mediated Delivery in a Mouse Model of Congenital Stationary Night Blindness. Invest Ophthalmol Vis Sci 2021; 62:24. [PMID: 33729473 PMCID: PMC7980044 DOI: 10.1167/iovs.62.3.24] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Complete congenital stationary night blindness (cCSNB) is an incurable inherited retinal disorder characterized by an ON-bipolar cell (ON-BC) defect. GRM6 mutations are the third most prevalent cause of cCSNB. The Grm6-/- mouse model mimics the human phenotype, showing no b-wave in the electroretinogram (ERG) and a loss of mGluR6 and other proteins of the same cascade at the outer plexiform layer (OPL). Our aim was to restore protein localization and function in Grm6-/- adult mice targeting specifically ON-BCs or the whole retina. Methods Adeno-associated virus-encoding Grm6 under two different promoters (GRM6-Grm6 and CAG-Grm6) were injected intravitreally in P15 Grm6-/- mice. ERG recordings at 2 and 4 months were performed in Grm6+/+, untreated and treated Grm6-/- mice. Similarly, immunolocalization studies were performed on retinal slices before or after treatment using antibodies against mGluR6, TRPM1, GPR179, RGS7, RGS11, Gβ5, and dystrophin. Results Following treatment, mGluR6 was localized to the dendritic tips of ON-BCs when expressed with either promoter. The relocalization efficiency in mGluR6-transduced retinas at the OPL was 2.5% versus 11% when the GRM6-Grm6 and CAG-Grm6 were used, respectively. Albeit no functional rescue was seen in ERGs, relocalization of TRPM1, GPR179, and Gβ5 was also noted using both constructs. The restoration of the localization of RGS7, RGS11, and dystrophin was more obvious in retinas treated with GRM6-Grm6 than in retinas treated with CAG-Grm6. Conclusions Our findings show the potential of treating cCSNB with GRM6 mutations; however, it appears that the transduction rate must be improved to restore visual function.
Collapse
Affiliation(s)
- Juliette Varin
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Nassima Bouzidi
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | | | - Thomas Pugliese
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | | | - Camille Robert
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | | | - José-Alain Sahel
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France.,CHNO des Quinze-Vingts, DHU Sight Restore, INSERM-DGOS CIC 1423, Paris, France.,Fondation Ophtalmologique Adolphe de Rothschild, Paris, France.,Academie des Sciences, Institut de France, Paris, France.,Department of Ophthalmology, The University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Isabelle Audo
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France.,CHNO des Quinze-Vingts, DHU Sight Restore, INSERM-DGOS CIC 1423, Paris, France.,Institute of Ophthalmology, University College of London, London, United Kingdom
| | - Deniz Dalkara
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Christina Zeitz
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| |
Collapse
|
14
|
El Moussawi Z, Boueiri M, Al-Haddad C. Gene therapy in color vision deficiency: a review. Int Ophthalmol 2021; 41:1917-1927. [PMID: 33528822 DOI: 10.1007/s10792-021-01717-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/09/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND Color vision deficiencies are a group of vision disorders, characterized by abnormal color discrimination. They include red-green color blindness, yellow-blue color blindness and achromatopsia, among others. The deficiencies are caused by mutations in the genes coding for various components of retinal cones. Gene therapy is rising as a promising therapeutic modality. The purpose of this review article is to explore the available literature on gene therapy in the different forms of color vision deficiencies. METHODS A thorough literature review was performed on PubMed using the keywords: color vision deficiencies, gene therapy, achromatopsia and the various genes responsible for this condition (OPN1LW, OPN1MW, ATF6, CNGA3, CNGB3, GNAT2, PDE6H, and PDE6C). RESULTS Various adenovirus vectors have been deployed to test the efficacy of gene therapy for achromatopsia in animals and humans. Gene therapy trials in humans and animals targeting mutations in CNGA3 have been performed, demonstrating an improvement in electroretinogram (ERG)-investigated cone cell functionality. Similar outcomes have been reported for experimental studies on other genes (CNGB3, GNAT2, M- and L-opsin). It has also been reported that delivering the genes via intravitreal rather than subretinal injections could be safer. There are currently 3 ongoing human clinical trials for the treatment of achromatopsia due to mutations in CNGB3 and CNGA3. CONCLUSION Experimental studies and clinical trials generally showed improvement in ERG-investigated cone cell functionality and visually elicited behavior. Gene therapy is a promising novel therapeutic modality in color vision deficiencies.
Collapse
Affiliation(s)
- Zeinab El Moussawi
- Ophthalmology Department, American University of Beirut, Beirut, Lebanon
| | - Marguerita Boueiri
- Faculty of Medicine, Medical School, American University of Beirut, Beirut, Lebanon
| | | |
Collapse
|
15
|
Padhy SK, Takkar B, Narayanan R, Venkatesh P, Jalali S. Voretigene Neparvovec and Gene Therapy for Leber's Congenital Amaurosis: Review of Evidence to Date. APPLICATION OF CLINICAL GENETICS 2020; 13:179-208. [PMID: 33268999 PMCID: PMC7701157 DOI: 10.2147/tacg.s230720] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/06/2020] [Indexed: 12/13/2022]
Abstract
Gene therapy has now evolved as the upcoming modality for management of many disorders, both inheritable and non-inheritable. Knowledge of genetics pertaining to a disease has therefore become paramount for physicians across most specialities. Inheritable retinal dystrophies (IRDs) are notorious for progressive and relentless vision loss, frequently culminating in complete blindness in both eyes. Leber’s congenital amaurosis (LCA) is a typical example of an IRD that manifests very early in childhood. Research in gene therapy has led to the development and approval of voretigene neparvovec (VN) for use in patients of LCA with a deficient biallelic RPE65 gene. The procedure involves delivery of a recombinant virus vector that carries the RPE65 gene in the subretinal space. This comprehensive review reports the evidence thus far in support of gene therapy for LCA. We explore and compare the various gene targets including but not limited to RPE65, and discuss the choice of vector and method for ocular delivery. The review details the evolution of gene therapy with VN in a phased manner, concluding with the challenges that lie ahead for its translation for use in communities that differ much both genetically and economically.
Collapse
Affiliation(s)
- Srikanta Kumar Padhy
- Vitreoretina and Uveitis Services, L V Prasad Eye Institute, Mithu Tulsi Chanrai Campus, Bhubaneswar, India
| | - Brijesh Takkar
- Srimati Kanuri Santhamma Center for Vitreoretinal Diseases, Kallam Anji Reddy Campus, L.V. Prasad Eye Institute, Hyderabad, India.,Center of Excellence for Rare Eye Diseases, Kallam Anji Reddy Campus, L V Prasad Eye Institute, Hyderabad, India
| | - Raja Narayanan
- Srimati Kanuri Santhamma Center for Vitreoretinal Diseases, Kallam Anji Reddy Campus, L.V. Prasad Eye Institute, Hyderabad, India
| | - Pradeep Venkatesh
- Dr RP Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Subhadra Jalali
- Srimati Kanuri Santhamma Center for Vitreoretinal Diseases, Kallam Anji Reddy Campus, L.V. Prasad Eye Institute, Hyderabad, India.,Jasti V. Ramanamma Childrens' Eye Care Centre, Kallam Anji Reddy Campus, L V Prasad Eye Institute, Hyderabad, India
| |
Collapse
|
16
|
Han IC, Cheng JL, Burnight ER, Ralston CL, Fick JL, Thomsen GJ, Tovar EF, Russell SR, Sohn EH, Mullins RF, Stone EM, Tucker BA, Wiley LA. Retinal Tropism and Transduction of Adeno-Associated Virus Varies by Serotype and Route of Delivery (Intravitreal, Subretinal, or Suprachoroidal) in Rats. Hum Gene Ther 2020; 31:1288-1299. [PMID: 32948113 DOI: 10.1089/hum.2020.043] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Viral-mediated gene augmentation offers tremendous promise for the treatment of inherited retinal diseases. The development of effective gene therapy requires an understanding of the vector's tissue-specific behavior, which may vary depending on serotype, route of delivery, or target species. Using an ex vivo organotypic explant system, we previously demonstrated that retinal tropism and transduction of adeno-associated virus type 2 (AAV2) vary significantly depending on serotype in human eyes. However, the ex vivo system has limited ability to assess route of ocular delivery, and relatively little literature exists on tropic differences between serotypes and routes of delivery in vivo. In this study, we demonstrate that retinal tropism and transduction efficiency of five different AAV2 serotypes (AAV2/1, AAV2/2, AAV2/6, AAV2/8, and AAV2/9) expressing enhanced green fluorescent protein driven by a cytomegalovirus promoter vary greatly depending on serotype and route of delivery (intravitreal, subretinal, or suprachoroidal) in rats. With subretinal delivery, all serotypes successfully transduced the retinal pigmented epithelium and outer nuclear layer (ONL), with AAV2/1 displaying the highest transduction efficiency and AAV2/2 and AAV2/6 showing lower ONL transduction. There was minimal transduction of the inner retina through subretinal delivery for any serotype. Tropism by suprachoroidal delivery mirrored that of subretinal delivery for all AAV serotypes but resulted in a wider distribution and greater ONL transduction. With intravitreal delivery, retinal transduction was seen primarily in the inner retina (retinal nerve fiber, ganglion cell, and inner nuclear layers) for AAV2/1 and AAV2/6, with AAV2/6 showing the highest transduction. When compared with data from human explant models, there are substantial differences in tropism and transduction that are important to consider when using rats as preclinical models for the development of ocular gene therapies for humans.
Collapse
Affiliation(s)
- Ian C Han
- Institute for Vision Research, Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Justine L Cheng
- Institute for Vision Research, Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Erin R Burnight
- Institute for Vision Research, Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Christy L Ralston
- Institute for Vision Research, Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Jessica L Fick
- Institute for Vision Research, Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Gabriella J Thomsen
- Institute for Vision Research, Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Emilio F Tovar
- Institute for Vision Research, Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Stephen R Russell
- Institute for Vision Research, Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Elliott H Sohn
- Institute for Vision Research, Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Robert F Mullins
- Institute for Vision Research, Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Edwin M Stone
- Institute for Vision Research, Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Budd A Tucker
- Institute for Vision Research, Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Luke A Wiley
- Institute for Vision Research, Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
17
|
Wang SK, Lapan SW, Hong CM, Krause TB, Cepko CL. In Situ Detection of Adeno-associated Viral Vector Genomes with SABER-FISH. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 19:376-386. [PMID: 33209963 PMCID: PMC7658570 DOI: 10.1016/j.omtm.2020.10.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 10/07/2020] [Indexed: 12/31/2022]
Abstract
Gene therapy with recombinant adeno-associated viral (AAV) vectors is a promising modality for the treatment of a variety of human diseases. Nonetheless, there remain significant gaps in our understanding of AAV vector biology, due in part to the lack of robust methods to track AAV capsids and genomes. In this study, we describe a novel application of signal amplification by exchange reaction fluorescence in situ hybridization (SABER-FISH) that enabled the visualization and quantification of individual AAV genomes after vector administration in mice. These genomes could be seen in retinal cells within 3 h of subretinal AAV delivery, were roughly full length, and correlated with vector expression in both photoreceptors and the retinal pigment epithelium. SABER-FISH readily detected AAV genomes in the liver and muscle following retro-orbital and intramuscular AAV injections, respectively, demonstrating its utility in different tissues. Using SABER-FISH, we also found that retinal microglia, a cell type deemed refractory to AAV transduction, are in fact efficiently infected by multiple AAV serotypes, but appear to degrade AAV genomes prior to nuclear localization. Our findings show that SABER-FISH can be used to visualize AAV genomes in situ, allowing for studies of AAV vector biology and the tracking of transduced cells following vector administration.
Collapse
Affiliation(s)
- Sean K Wang
- Departments of Genetics and Ophthalmology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Sylvain W Lapan
- Departments of Genetics and Ophthalmology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Christin M Hong
- Departments of Genetics and Ophthalmology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Tyler B Krause
- Departments of Genetics and Ophthalmology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Constance L Cepko
- Departments of Genetics and Ophthalmology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| |
Collapse
|
18
|
De Silva SR, Arno G, Robson AG, Fakin A, Pontikos N, Mohamed MD, Bird AC, Moore AT, Michaelides M, Webster AR, Mahroo OA. The X-linked retinopathies: Physiological insights, pathogenic mechanisms, phenotypic features and novel therapies. Prog Retin Eye Res 2020; 82:100898. [PMID: 32860923 DOI: 10.1016/j.preteyeres.2020.100898] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 08/07/2020] [Accepted: 08/21/2020] [Indexed: 02/08/2023]
Abstract
X-linked retinopathies represent a significant proportion of monogenic retinal disease. They include progressive and stationary conditions, with and without syndromic features. Many are X-linked recessive, but several exhibit a phenotype in female carriers, which can help establish diagnosis and yield insights into disease mechanisms. The presence of affected carriers can misleadingly suggest autosomal dominant inheritance. Some disorders (such as RPGR-associated retinopathy) show diverse phenotypes from variants in the same gene and also highlight limitations of current genetic sequencing methods. X-linked disease frequently arises from loss of function, implying potential for benefit from gene replacement strategies. We review X-inactivation and X-linked inheritance, and explore burden of disease attributable to X-linked genes in our clinically and genetically characterised retinal disease cohort, finding correlation between gene transcript length and numbers of families. We list relevant genes and discuss key clinical features, disease mechanisms, carrier phenotypes and novel experimental therapies. We consider in detail the following: RPGR (associated with retinitis pigmentosa, cone and cone-rod dystrophy), RP2 (retinitis pigmentosa), CHM (choroideremia), RS1 (X-linked retinoschisis), NYX (complete congenital stationary night blindness (CSNB)), CACNA1F (incomplete CSNB), OPN1LW/OPN1MW (blue cone monochromacy, Bornholm eye disease, cone dystrophy), GPR143 (ocular albinism), COL4A5 (Alport syndrome), and NDP (Norrie disease and X-linked familial exudative vitreoretinopathy (FEVR)). We use a recently published transcriptome analysis to explore expression by cell-type and discuss insights from electrophysiology. In the final section, we present an algorithm for genes to consider in diagnosing males with non-syndromic X-linked retinopathy, summarise current experimental therapeutic approaches, and consider questions for future research.
Collapse
Affiliation(s)
- Samantha R De Silva
- UCL Institute of Ophthalmology, University College London, UK; Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Gavin Arno
- UCL Institute of Ophthalmology, University College London, UK; Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Anthony G Robson
- UCL Institute of Ophthalmology, University College London, UK; Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Ana Fakin
- UCL Institute of Ophthalmology, University College London, UK; Moorfields Eye Hospital NHS Foundation Trust, London, UK; Ljubljana University Medical Centre, Ljubljana, Slovenia
| | - Nikolas Pontikos
- UCL Institute of Ophthalmology, University College London, UK; Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Moin D Mohamed
- Department of Ophthalmology, Guy's & St Thomas' NHS Foundation Trust, London, UK
| | - Alan C Bird
- UCL Institute of Ophthalmology, University College London, UK; Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Anthony T Moore
- UCL Institute of Ophthalmology, University College London, UK; Moorfields Eye Hospital NHS Foundation Trust, London, UK; Department of Ophthalmology, UCSF School of Medicine, San Francisco, CA, USA
| | - Michel Michaelides
- UCL Institute of Ophthalmology, University College London, UK; Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Andrew R Webster
- UCL Institute of Ophthalmology, University College London, UK; Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Omar A Mahroo
- UCL Institute of Ophthalmology, University College London, UK; Moorfields Eye Hospital NHS Foundation Trust, London, UK; Department of Ophthalmology, Guy's & St Thomas' NHS Foundation Trust, London, UK; Section of Ophthalmology, King's College London, UK; Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
| |
Collapse
|
19
|
Greenwald SH, Brown EE, Scandura MJ, Hennessey E, Farmer R, Pawlyk BS, Xiao R, Vandenberghe LH, Pierce EA. Gene Therapy Preserves Retinal Structure and Function in a Mouse Model of NMNAT1-Associated Retinal Degeneration. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 18:582-594. [PMID: 32775493 PMCID: PMC7397406 DOI: 10.1016/j.omtm.2020.07.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/06/2020] [Indexed: 12/17/2022]
Abstract
No treatment is available for nicotinamide mononucleotide adenylyltransferase 1 (NMNAT1)-associated retinal degeneration, an inherited disease that leads to severe vision loss early in life. Although the causative gene, NMNAT1, plays an essential role in nuclear nicotinamide adenine dinucleotide (NAD)+ metabolism in tissues throughout the body, NMNAT1-associated disease is isolated to the retina. Since this condition is recessive, supplementing the retina with a normal copy of NMNAT1 should protect vulnerable cells from disease progression. We tested this hypothesis in a mouse model that harbors the p.Val9Met mutation in Nmnat1 and consequently develops a retinal degenerative phenotype that recapitulates key features of the human disease. Gene augmentation therapy, delivered by subretinal injection of adeno-associated virus (AAV) carrying a normal human copy of NMNAT1, rescued retinal structure and function. Due to the early-onset profile of the phenotype, a rapidly activating self-complementary AAV was required to initiate transgene expression during the narrow therapeutic window. These data represent the first proof of concept for a therapy to treat patients with NMNAT1-associated disease.
Collapse
Affiliation(s)
- Scott H Greenwald
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA
| | - Emily E Brown
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA
| | - Michael J Scandura
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA
| | - Erin Hennessey
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA
| | - Raymond Farmer
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA
| | - Basil S Pawlyk
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA
| | - Ru Xiao
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA.,Ocular Genomics Institute, Grousebeck Gene Therapy Center, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA
| | - Luk H Vandenberghe
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA.,Ocular Genomics Institute, Grousebeck Gene Therapy Center, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA
| | - Eric A Pierce
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
20
|
Song H, Zeng Y, Sardar Pasha SPB, Bush RA, Vijayasarathy C, Qian H, Wei L, Wiley HE, Wu Z, Sieving PA. Trans-Ocular Electric Current In Vivo Enhances AAV-Mediated Retinal Transduction in Large Animal Eye After Intravitreal Vector Administration. Transl Vis Sci Technol 2020; 9:28. [PMID: 32844051 PMCID: PMC7416894 DOI: 10.1167/tvst.9.7.28] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 05/06/2020] [Indexed: 01/25/2023] Open
Abstract
Purpose Electric micro-current has been shown to enhance penetration and transduction of adeno-associated viral (AAV) vectors in mouse retina after intravitreal administration. We termed this: “electric-current vector mobility (ECVM).” The present study considered whether ECVM could augment retinal transduction efficiency of intravitreal AAV8-CMV-EGFP in normal rabbit and nonhuman primate (NHP) macaque. Potential mechanisms underlying enhanced retinal transduction by ECVM were also studied. Methods We applied an electric micro-current across the intact eye of normal rabbit and monkey in vivo for a brief period immediately after intravitreal injection of AAV8-CMV-EGFP. Retinal GFP expression was evaluated by fundus imaging in vivo. Retinal immunohistochemistry was performed to assess the distribution of retinal cells transduced by the AAV8-EGFP. Basic fibroblast growth factor (bFGF) was analyzed by quantitative RT-polymerase chain reaction (PCR). Müller glial reactivity and inner limiting membrane (ILM) were examined by the glial fibrillary acidic protein (GFAP) and vimentin staining in mouse retina, respectively. Results ECVM significantly increased the efficiency of AAV reaching and transducing the rabbit retina following intravitreal injection, with gene expression in inner nuclear layer, ganglion cells, and Müller cells. Similar trend of improvement was observed in the ECVM-treated monkey eye. The electric micro-current upregulated bFGF expression in Müller cells and vimentin showed ILM structural changes in mouse retina. Conclusions ECVM promotes the transduction efficiency of AAV8-CMV-GFP in normal rabbit and monkey retinas following intravitreal injection. Translational Relevance This work has potential translational relevance to human ocular gene therapy by increasing retinal expression of therapeutic vectors given by intravitreal administration.
Collapse
Affiliation(s)
- Hongman Song
- Section for Translational Research on Retinal and Macular Degeneration, National Institute on Deafness and Other Communication Disorders, Bethesda, MD, USA.,National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yong Zeng
- Section for Translational Research on Retinal and Macular Degeneration, National Institute on Deafness and Other Communication Disorders, Bethesda, MD, USA.,National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Ronald A Bush
- Section for Translational Research on Retinal and Macular Degeneration, National Institute on Deafness and Other Communication Disorders, Bethesda, MD, USA.,National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Camasamudram Vijayasarathy
- Section for Translational Research on Retinal and Macular Degeneration, National Institute on Deafness and Other Communication Disorders, Bethesda, MD, USA.,National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Haohua Qian
- National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lisa Wei
- National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Henry E Wiley
- National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Zhijian Wu
- National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Paul A Sieving
- Section for Translational Research on Retinal and Macular Degeneration, National Institute on Deafness and Other Communication Disorders, Bethesda, MD, USA.,National Eye Institute, National Institutes of Health, Bethesda, MD, USA.,Department of Ophthalmology, School of Medicine, University of California at Davis, Sacramento, CA, USA
| |
Collapse
|
21
|
Chung SH, Mollhoff IN, Nguyen U, Nguyen A, Stucka N, Tieu E, Manna S, Meleppat RK, Zhang P, Nguyen EL, Fong J, Zawadzki R, Yiu G. Factors Impacting Efficacy of AAV-Mediated CRISPR-Based Genome Editing for Treatment of Choroidal Neovascularization. Mol Ther Methods Clin Dev 2020; 17:409-417. [PMID: 32128346 PMCID: PMC7044682 DOI: 10.1016/j.omtm.2020.01.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 01/14/2020] [Indexed: 12/12/2022]
Abstract
Frequent injections of anti-vascular endothelial growth factor (anti-VEGF) agents are a clinical burden for patients with neovascular age-related macular degeneration (AMD). Genomic disruption of VEGF-A using adeno-associated viral (AAV) delivery of clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 has the potential to permanently suppress aberrant angiogenesis, but the factors that determine the optimal efficacy are unknown. Here, we investigate two widely used Cas9 endonucleases, SpCas9 and SaCas9, and evaluate the relative contribution of AAV-delivery efficiency and genome-editing rates in vivo to determine the mechanisms that drive successful CRISPR-based suppression of VEGF-A, using a mouse model of laser-induced choroidal neovascularization (CNV). We found that SpCas9 demonstrated higher genome-editing rates, greater VEGF reduction, and more effective CNV suppression than SaCas9, despite similar AAV transduction efficiency between a dual-vector approach for SpCas9 and single-vector system for SaCas9 to deliver the Cas9 orthologs and single guide RNAs (gRNAs). Our results suggest that successful VEGF knockdown using AAV-mediated CRISPR systems may be determined more by the efficiency of genome editing rather than viral transduction and that SpCas9 may be more effective than SaCas9 as a potential therapeutic strategy for CRISPR-based treatment of CNV in neovascular AMD.
Collapse
Affiliation(s)
- Sook Hyun Chung
- Department of Ophthalmology & Vision Science, University of California, Davis, Davis, CA, USA
| | - Iris Natalie Mollhoff
- Department of Ophthalmology & Vision Science, University of California, Davis, Davis, CA, USA
| | - Uyen Nguyen
- Department of Ophthalmology & Vision Science, University of California, Davis, Davis, CA, USA
| | - Amy Nguyen
- Department of Ophthalmology & Vision Science, University of California, Davis, Davis, CA, USA
| | - Natalie Stucka
- Department of Ophthalmology & Vision Science, University of California, Davis, Davis, CA, USA
| | - Eric Tieu
- Department of Ophthalmology & Vision Science, University of California, Davis, Davis, CA, USA
| | - Suman Manna
- Department of Ophthalmology & Vision Science, University of California, Davis, Davis, CA, USA
| | - Ratheesh Kumar Meleppat
- Department of Ophthalmology & Vision Science, University of California, Davis, Davis, CA, USA
| | - Pengfei Zhang
- Department of Ophthalmology & Vision Science, University of California, Davis, Davis, CA, USA
| | - Emerald Lovece Nguyen
- Department of Ophthalmology & Vision Science, University of California, Davis, Davis, CA, USA
| | - Jared Fong
- Department of Ophthalmology & Vision Science, University of California, Davis, Davis, CA, USA
| | - Robert Zawadzki
- Department of Ophthalmology & Vision Science, University of California, Davis, Davis, CA, USA
| | - Glenn Yiu
- Department of Ophthalmology & Vision Science, University of California, Davis, Davis, CA, USA
| |
Collapse
|
22
|
Tan J, Zhang X, Li D, Liu G, Wang Y, Zhang D, Wang X, Tian W, Dong X, Zhou L, Zhu X, Liu X, Fan N. scAAV2-Mediated C3 Transferase Gene Therapy in a Rat Model with Retinal Ischemia/Reperfusion Injuries. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 17:894-903. [PMID: 32382585 PMCID: PMC7200613 DOI: 10.1016/j.omtm.2020.04.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 04/22/2020] [Indexed: 11/26/2022]
Abstract
Glaucoma is characterized by retinal ganglion cell (RGC) death and axonal loss. Therefore, neuroprotection is important in treating glaucoma. In this study, we explored whether exoenzyme C3 transferase (C3)-based gene therapy could protect retinas in an ischemia/reperfusion (I/R) injury rat model. Self-complementary adeno-associated virus 2 (scAAV2) vectors encoding either C3 protein (scAAV2-C3) or enhanced green fluorescence protein (scAAV2-EGFP) were intravitreally delivered into both eyes of rats, and I/R models (acute ocular hypertension) were made in one eye of each rat at day 7 after the injection. The rats were divided into six groups: scAAV2-C3, scAAV2-C3 with I/R, scAAV2-EGFP, scAAV2-EGFP with I/R, blank control, and blank control with I/R. TUNEL (terminal deoxynucleotidyltransferase-mediated deoxyuridine triphosphate nick end labeling), immunohistochemistry of cleaved caspase-3, NeuN and Brn-3a, and H&E staining were used to detect apoptotic cells and other changes in the retina. The results showed that scAAV2-C3 significantly reduced the number of apoptotic RGCs and decreased cell loss in the ganglion cell layer after I/R injury, and the I/R-injured retinas treated with scAAV2-C3 were the thickest in all I/R groups. These results suggest that scAAV2-mediated C3 gene therapy is able to protect the rat retina from I/R injury and has potential in the treatment of glaucoma in the future.
Collapse
Affiliation(s)
- Junkai Tan
- Xiamen Eye Center, Xiamen University, Xiamen 361006, China
| | - Xiaoguang Zhang
- Department of Medicine, Nanchang University, Nanchang 330006, China.,Shenzhen Key Laboratory of Ophthalmology, Shenzhen Eye Hospital, School of Optometry, Shenzhen University, Shenzhen 518000, China
| | - Danli Li
- Shenzhen Key Laboratory of Ophthalmology, Shenzhen Eye Hospital, School of Optometry, Shenzhen University, Shenzhen 518000, China
| | - Guo Liu
- Shenzhen Key Laboratory of Ophthalmology, Shenzhen Eye Hospital, School of Optometry, Shenzhen University, Shenzhen 518000, China
| | - Yun Wang
- Shenzhen Key Laboratory of Ophthalmology, Shenzhen Eye Hospital, School of Optometry, Shenzhen University, Shenzhen 518000, China
| | - Daren Zhang
- Xiamen Eye Center, Xiamen University, Xiamen 361006, China
| | - Xizhen Wang
- Shenzhen Key Laboratory of Ophthalmology, Shenzhen Eye Hospital, School of Optometry, Shenzhen University, Shenzhen 518000, China
| | - Wenhong Tian
- Beijing FivePlus Molecular Medicine Institute Co., Ltd., Beijing 102600, China
| | - Xiaoyan Dong
- Beijing FivePlus Molecular Medicine Institute Co., Ltd., Beijing 102600, China
| | - Liang Zhou
- Institute of Laboratory Animal Sciences, Sichuan Academy of Medical Sciences and Sichuan Provincial Hospital, Chengdu, Sichuan 610212, China
| | - Xianjun Zhu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China.,Institute of Laboratory Animal Sciences, Sichuan Academy of Medical Sciences and Sichuan Provincial Hospital, Chengdu, Sichuan 610212, China
| | - Xuyang Liu
- Xiamen Eye Center, Xiamen University, Xiamen 361006, China.,Shenzhen Key Laboratory of Ophthalmology, Shenzhen Eye Hospital, School of Optometry, Shenzhen University, Shenzhen 518000, China
| | - Ning Fan
- Shenzhen Key Laboratory of Ophthalmology, Shenzhen Eye Hospital, School of Optometry, Shenzhen University, Shenzhen 518000, China
| |
Collapse
|
23
|
Garita-Hernandez M, Routet F, Guibbal L, Khabou H, Toualbi L, Riancho L, Reichman S, Duebel J, Sahel JA, Goureau O, Dalkara D. AAV-Mediated Gene Delivery to 3D Retinal Organoids Derived from Human Induced Pluripotent Stem Cells. Int J Mol Sci 2020; 21:ijms21030994. [PMID: 32028585 PMCID: PMC7036814 DOI: 10.3390/ijms21030994] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 01/29/2020] [Accepted: 01/30/2020] [Indexed: 01/01/2023] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) promise a great number of future applications to investigate retinal development, pathophysiology and cell therapies for retinal degenerative diseases. Specific approaches to genetically modulate hiPSC would be valuable for all of these applications. Vectors based on adeno-associated virus (AAV) have shown the ability for gene delivery to retinal organoids derived from hiPSCs. Thus far, little work has been carried out to investigate mechanisms of AAV-mediated gene delivery and the potential advantages of engineered AAVs to genetically modify retinal organoids. In this study, we compared the early transduction efficiency of several recombinant and engineered AAVs in hiPSC-derived RPE cells and retinal organoids in relation to the availability of their cell-surface receptors and as a function of time. The genetic variant AAV2-7m8 had a superior transduction efficiency when applied at day 44 of differentiation on retinal organoids and provided long-lasting expressions for at least 4 weeks after infection without compromising cell viability. All of the capsids we tested transduced the hiPSC-RPE cells, with the AAV2-7m8 variant being the most efficient. Transduction efficiency was correlated with the presence of primary cell-surface receptors on the hiPS-derived organoids. Our study explores some of the mechanisms of cell attachment of AAVs and reports long-term gene expression resulting from gene delivery in retinal organoids.
Collapse
Affiliation(s)
- Marcela Garita-Hernandez
- Sorbonne Université,, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France; (M.G.-H.); (F.R.); (L.G.); (H.K.); (L.T.); (L.R.); (S.R.); (J.D.); (J.-A.S.); (O.G.)
- Institut de Neurosciences de Montpellier, Université de Montpellier, INSERM, 34090 Montpellier, France
| | - Fiona Routet
- Sorbonne Université,, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France; (M.G.-H.); (F.R.); (L.G.); (H.K.); (L.T.); (L.R.); (S.R.); (J.D.); (J.-A.S.); (O.G.)
| | - Laure Guibbal
- Sorbonne Université,, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France; (M.G.-H.); (F.R.); (L.G.); (H.K.); (L.T.); (L.R.); (S.R.); (J.D.); (J.-A.S.); (O.G.)
| | - Hanen Khabou
- Sorbonne Université,, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France; (M.G.-H.); (F.R.); (L.G.); (H.K.); (L.T.); (L.R.); (S.R.); (J.D.); (J.-A.S.); (O.G.)
| | - Lyes Toualbi
- Sorbonne Université,, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France; (M.G.-H.); (F.R.); (L.G.); (H.K.); (L.T.); (L.R.); (S.R.); (J.D.); (J.-A.S.); (O.G.)
| | - Luisa Riancho
- Sorbonne Université,, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France; (M.G.-H.); (F.R.); (L.G.); (H.K.); (L.T.); (L.R.); (S.R.); (J.D.); (J.-A.S.); (O.G.)
| | - Sacha Reichman
- Sorbonne Université,, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France; (M.G.-H.); (F.R.); (L.G.); (H.K.); (L.T.); (L.R.); (S.R.); (J.D.); (J.-A.S.); (O.G.)
| | - Jens Duebel
- Sorbonne Université,, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France; (M.G.-H.); (F.R.); (L.G.); (H.K.); (L.T.); (L.R.); (S.R.); (J.D.); (J.-A.S.); (O.G.)
- Department of Ophthalmology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Jose-Alain Sahel
- Sorbonne Université,, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France; (M.G.-H.); (F.R.); (L.G.); (H.K.); (L.T.); (L.R.); (S.R.); (J.D.); (J.-A.S.); (O.G.)
- CHNO des Quinze−Vingts, DHU Sight Restore, INSERM-DGOS CIC 1423, 75012 Paris, France
- Department of Ophthalmology, The University of Pittsburgh School of Medicine, Pittsburgh, PA 15106, USA
| | - Olivier Goureau
- Sorbonne Université,, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France; (M.G.-H.); (F.R.); (L.G.); (H.K.); (L.T.); (L.R.); (S.R.); (J.D.); (J.-A.S.); (O.G.)
| | - Deniz Dalkara
- Sorbonne Université,, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France; (M.G.-H.); (F.R.); (L.G.); (H.K.); (L.T.); (L.R.); (S.R.); (J.D.); (J.-A.S.); (O.G.)
- Correspondence:
| |
Collapse
|
24
|
De La Camara CMF, Cehajic-Kapetanovic J, MacLaren RE. RPGR gene therapy presents challenges in cloning the coding sequence. Expert Opin Biol Ther 2020; 20:63-71. [PMID: 31612744 PMCID: PMC7104355 DOI: 10.1080/14712598.2020.1680635] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Introduction: Currently, there are three Phase I/II clinical trials based on gene therapy ongoing to test different AAV.RPGR or deleted RPGR vectors on patients affected by X-linked retinitis pigmentosa. These three vectors differ in the adeno-associated viral (AAV) vector capsid used, and the coding sequences: two contain codon optimized versions of RPGR which give the full-length protein, whilst the third uses a wild-type sequence that contains a large deletion encoding part of the functional domain of the RPGR protein.Areas covered: This review approaches the different studies that have led to the initiation of three different clinical trials for RPGR related X-linked retinitis pigmentosa.Expert opinion: The development of a gene therapy vector to deliver a normal copy of the RPGR gene into the photoreceptors has presented a challenge for the scientific community. The instability of its sequence and the fact that its function is not well understood can lead to the production of a nonfunctional or deleterious protein for the human retina. Since the RPGR protein undergoes post-translational glutamylation in the protein domain that may be particularly affected by gene instability, a functional assay of glutamylation is essential to verify the correct coding sequence.
Collapse
Affiliation(s)
- Cristina Martinez-Fernandez De La Camara
- Department of Clinical Neurosciences, Nuffield Laboratory of Ophthalmology, University of Oxford, John Radcliffe Hospital, Headley Way, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Trust, John Radcliffe Hospital, Headley Way, UK
| | - Jasmina Cehajic-Kapetanovic
- Department of Clinical Neurosciences, Nuffield Laboratory of Ophthalmology, University of Oxford, John Radcliffe Hospital, Headley Way, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Trust, John Radcliffe Hospital, Headley Way, UK
| | - Robert E. MacLaren
- Department of Clinical Neurosciences, Nuffield Laboratory of Ophthalmology, University of Oxford, John Radcliffe Hospital, Headley Way, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Trust, John Radcliffe Hospital, Headley Way, UK
| |
Collapse
|
25
|
Zhang Y, Wang S, Xu M, Pang J, Yuan Z, Zhao C. AAV-mediated human CNGB3 restores cone function in an all-cone mouse model of CNGB3 achromatopsia. J Biomed Res 2020; 34:114-121. [PMID: 32305965 DOI: 10.7555/jbr.33.20190056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Complete congenital achromatopsia is a devastating hereditary visual disorder. Mutations in the CNGB3 gene account for more than 50% of all known cases of achromatopsia. This work investigated the efficiency of subretinal (SR) delivered AAV8 (Y447, 733F) vector containing a human PR2.1 promoter and a human CNGB3 cDNA in Cngb3 -/-/ Nrl -/- mice. The Cngb3 -/-/ Nrl -/- mouse was a cone-dominant model with Cngb3 channel deficiency, which partially mimicked the all-cone foveal structure of human achromatopsia with CNGB3 mutations. Following SR delivery of the vector, AAV-mediated CNGB3 expression restored cone function which was assessed by the restoration of the cone-mediated electroretinogram (ERG) and immunohistochemistry. This therapeutic rescue resulted in long-term improvement of retinal function with the restoration of cone ERG amplitude. This study demonstrated an AAV-mediated gene therapy in a cone-dominant mouse model using a human gene construct and provided the potential to be utilized in clinical trials.
Collapse
Affiliation(s)
- Yuxin Zhang
- Department of Ophthalmology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Shanshan Wang
- Department of Ophthalmology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Miao Xu
- Department of Ophthalmology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Jijing Pang
- Department of Ophthalmology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China;Department of Ophthalmology, University of Florida, Gainesville, FL 32610, USA
| | - Zhilan Yuan
- Department of Ophthalmology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Chen Zhao
- Department of Ophthalmology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| |
Collapse
|
26
|
Zeng Y, Qian H, Wu Z, Marangoni D, Sieving PA, Bush RA. AAVrh-10 transduces outer retinal cells in rodents and rabbits following intravitreal administration. Gene Ther 2019; 26:386-398. [PMID: 31308478 PMCID: PMC11388630 DOI: 10.1038/s41434-019-0094-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 04/09/2019] [Accepted: 04/28/2019] [Indexed: 01/11/2023]
Abstract
Recombinant adeno-associated virus (rAAV) has been widely used for gene delivery in animal models and successfully applied in clinical trials for treating inherited retinal disease. Although subretinal delivery of AAVs can effectively transduce photoreceptors and/or retinal pigmental epithelium (RPE), cells most affected by inherited retinal diseases, the procedure is invasive and complicated, and only delivers the gene to a limited retinal area. AAVs can also be delivered intravitreally to the retina, a much less invasive nonsurgical procedure. However, intravitreal administration of non-modified AAV serotypes tends to transduce only ganglion cells and inner nuclear layer cells. To date, most non-modified AAV serotypes that have been identified are incapable of efficiently transducing photoreceptors and/or RPE when delivered intravitreally. In this study, we investigate the retinal tropism of AAVrh10 vector administered by intravitreal injection to mouse, rat, and rabbit eyes. Our results demonstrate that AAVrh10 is capable of transducing not only inner retinal cells, but also outer retinal cells in all three species, though the transduction efficiency in rabbit was low. In addition, AAVrh10 preferentially transduced outer retinal cells in mouse models of retinal disease. Therefore, AAVrh10 vector could be a useful candidate to intravitreally deliver genes to photoreceptor and RPE cells.
Collapse
Affiliation(s)
- Yong Zeng
- Section on Translational Research for Retinal and Macular Degeneration, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Haohua Qian
- National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Zhijian Wu
- National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Dario Marangoni
- Section on Translational Research for Retinal and Macular Degeneration, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Paul A Sieving
- Section on Translational Research for Retinal and Macular Degeneration, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
- National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ronald A Bush
- Section on Translational Research for Retinal and Macular Degeneration, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
27
|
Soluble CX3CL1 gene therapy improves cone survival and function in mouse models of retinitis pigmentosa. Proc Natl Acad Sci U S A 2019; 116:10140-10149. [PMID: 31036641 DOI: 10.1073/pnas.1901787116] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Retinitis pigmentosa (RP) is a disease that initially presents as night blindness due to genetic deficits in the rod photoreceptors of the retina. Rods then die, causing dysfunction and death of cone photoreceptors, the cell type that mediates high acuity and color vision, ultimately leading to blindness. We investigated immune responses in mouse models of RP and found evidence of microglia activation throughout the period of cone degeneration. Using adeno-associated vectors (AAVs), delivery of genes encoding microglial regulatory signals led to the identification of AAV serotype 8 (AAV8) soluble CX3CL1 (sCX3CL1) as a promising therapy for degenerating cones. Subretinal injection of AAV8-sCX3CL1 significantly prolonged cone survival in three strains of RP mice. Rescue of cones was accompanied by improvements in visual function. AAV8-sCX3CL1 did not affect rod survival, microglia localization, or inflammatory cytokine levels in the retina. Furthermore, although RNA sequencing of microglia demonstrated marked transcriptional changes with AAV8-sCX3CL1, pharmacological depletion of up to ∼99% of microglia failed to abrogate the effect of AAV8-sCX3CL1 on cone survival. These findings indicate that AAV8-sCX3CL1 can rescue cones in multiple mouse models of RP via a pathway that does not require normal numbers of microglia. Gene therapy with sCX3CL1 is a promising mutation-independent approach to preserve vision in RP and potentially other forms of retinal degeneration.
Collapse
|
28
|
Song H, Bush RA, Zeng Y, Qian H, Wu Z, Sieving PA. Trans-ocular Electric Current In Vivo Enhances AAV-Mediated Retinal Gene Transduction after Intravitreal Vector Administration. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2018; 13:77-85. [PMID: 30719486 PMCID: PMC6350231 DOI: 10.1016/j.omtm.2018.12.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 12/14/2018] [Indexed: 01/31/2023]
Abstract
Adeno-associated virus (AAV) vector-mediated gene delivery is a promising approach for therapy, but implementation in the eye currently is hampered by the need for delivering the vector underneath the retina, using surgical application into the subretinal space. This limits the extent of the retina that is treated and may cause surgical injury. Vector delivery into the vitreous cavity would be preferable because it is surgically less invasive and would reach more of the retina. Unfortunately, most conventional, non-modified AAV vector serotypes penetrate the retina poorly from the vitreous; this limits efficient transduction and expression by target cells (retinal pigment epithelium and photoreceptors). We developed a method of applying a small and safe electric current across the intact eye in vivo for a brief period following intravitreal vector administration. This significantly improved AAV-mediated transduction of retinal cells in wild-type mice following intravitreal delivery, with gene expression in retinal pigment epithelium and photoreceptor cells. The low-level current had no adverse effects on retinal structure and function. This method should be generally applicable for other AAV serotypes and may have broad application in both basic research and clinical studies.
Collapse
Affiliation(s)
- Hongman Song
- Section for Translational Research on Retinal and Macular Degeneration, National Institute on Deafness and Other Communication Disorders, Bethesda, MD 20892, USA
| | - Ronald A Bush
- Section for Translational Research on Retinal and Macular Degeneration, National Institute on Deafness and Other Communication Disorders, Bethesda, MD 20892, USA
| | - Yong Zeng
- Section for Translational Research on Retinal and Macular Degeneration, National Institute on Deafness and Other Communication Disorders, Bethesda, MD 20892, USA
| | - Haohua Qian
- National Eye Institute, NIH, Bethesda, MD 20892, USA
| | - Zhijian Wu
- National Eye Institute, NIH, Bethesda, MD 20892, USA
| | - Paul A Sieving
- Section for Translational Research on Retinal and Macular Degeneration, National Institute on Deafness and Other Communication Disorders, Bethesda, MD 20892, USA.,National Eye Institute, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
29
|
Lenis TL, Hu J, Ng SY, Jiang Z, Sarfare S, Lloyd MB, Esposito NJ, Samuel W, Jaworski C, Bok D, Finnemann SC, Radeke MJ, Redmond TM, Travis GH, Radu RA. Expression of ABCA4 in the retinal pigment epithelium and its implications for Stargardt macular degeneration. Proc Natl Acad Sci U S A 2018; 115:E11120-E11127. [PMID: 30397118 PMCID: PMC6255167 DOI: 10.1073/pnas.1802519115] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recessive Stargardt disease (STGD1) is an inherited blinding disorder caused by mutations in the Abca4 gene. ABCA4 is a flippase in photoreceptor outer segments (OS) that translocates retinaldehyde conjugated to phosphatidylethanolamine across OS disc membranes. Loss of ABCA4 in Abca4-/- mice and STGD1 patients causes buildup of lipofuscin in the retinal pigment epithelium (RPE) and degeneration of photoreceptors, leading to blindness. No effective treatment currently exists for STGD1. Here we show by several approaches that ABCA4 is additionally expressed in RPE cells. (i) By in situ hybridization analysis and by RNA-sequencing analysis, we show the Abca4 mRNA is expressed in human and mouse RPE cells. (ii) By quantitative immunoblotting, we show that the level of ABCA4 protein in homogenates of wild-type mouse RPE is about 1% of the level in neural retina homogenates. (iii) ABCA4 immunofluorescence is present in RPE cells of wild-type and Mertk-/- but not Abca4-/- mouse retina sections, where it colocalizes with endolysosomal proteins. To elucidate the role of ABCA4 in RPE cells, we generated a line of genetically modified mice that express ABCA4 in RPE cells but not in photoreceptors. Mice from this line on the Abca4-/- background showed partial rescue of photoreceptor degeneration and decreased lipofuscin accumulation compared with nontransgenic Abca4-/- mice. We propose that ABCA4 functions to recycle retinaldehyde released during proteolysis of rhodopsin in RPE endolysosomes following daily phagocytosis of distal photoreceptor OS. ABCA4 deficiency in the RPE may play a role in the pathogenesis of STGD1.
Collapse
Affiliation(s)
- Tamara L Lenis
- Stein Eye Institute, Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Jane Hu
- Stein Eye Institute, Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Sze Yin Ng
- Stein Eye Institute, Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Zhichun Jiang
- Stein Eye Institute, Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Shanta Sarfare
- Stein Eye Institute, Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Marcia B Lloyd
- Stein Eye Institute, Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | | | - William Samuel
- Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD 20814
| | - Cynthia Jaworski
- Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD 20814
| | - Dean Bok
- Stein Eye Institute, Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | | | - Monte J Radeke
- Neuroscience Research Institute, University of California, Santa Barbara, CA 93106
| | - T Michael Redmond
- Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD 20814
| | - Gabriel H Travis
- Stein Eye Institute, Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Roxana A Radu
- Stein Eye Institute, Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095;
| |
Collapse
|
30
|
Maddalena A, Dell'Aquila F, Giovannelli P, Tiberi P, Wanderlingh LG, Montefusco S, Tornabene P, Iodice C, Visconte F, Carissimo A, Medina DL, Castoria G, Auricchio A. High-Throughput Screening Identifies Kinase Inhibitors That Increase Dual Adeno-Associated Viral Vector Transduction In Vitro and in Mouse Retina. Hum Gene Ther 2018; 29:886-901. [PMID: 29641320 PMCID: PMC6098407 DOI: 10.1089/hum.2017.220] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 03/11/2018] [Indexed: 01/06/2023] Open
Abstract
Retinal gene therapy based on adeno-associated viral (AAV) vectors is safe and efficient in humans. The low intrinsic DNA transfer capacity of AAV has been expanded by dual vectors where a large expression cassette is split in two halves independently packaged in two AAV vectors. Dual AAV transduction efficiency, however, is greatly reduced compared to that obtained with a single vector. As AAV intracellular trafficking and processing are negatively affected by phosphorylation, this study set to identify kinase inhibitors that can increase dual AAV vector transduction. By high-throughput screening of a kinase inhibitors library, three compounds were identified that increase AAV transduction in vitro, one of which has a higher effect on dual than on single AAV vectors. Importantly, the transduction enhancement is exerted on various AAV serotypes and is not transgene dependent. As kinase inhibitors are promiscuous, siRNA-mediated silencing of targeted kinases was performed, and AURKA and B, PLK1, and PTK2 were among those involved in the increase of AAV transduction levels. The study shows that kinase inhibitor administration reduces AAV serotype 2 (AAV2) capsid phosphorylation and increases the activity of DNA-repair pathways involved in AAV DNA processing. Importantly, the kinase inhibitor PF-00562271 improves dual AAV8 transduction in photoreceptors following sub-retinal delivery in mice. The study identifies kinase inhibitors that increase dual and single AAV transduction by modulating AAV entry and post-entry steps.
Collapse
Affiliation(s)
- Andrea Maddalena
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Fabio Dell'Aquila
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Pia Giovannelli
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Paola Tiberi
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | | | - Sandro Montefusco
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | | | - Carolina Iodice
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | | | - Annamaria Carissimo
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
- Institute for Applied Mathematics “Mauro Picone,” National Research Council, Naples, Italy
| | - Diego Luis Medina
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Gabriella Castoria
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Alberto Auricchio
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
- Medical Genetics, Department of Advanced Biomedicine, Federico II University, Naples, Italy
| |
Collapse
|
31
|
Carvalho LS, Xiao R, Wassmer SJ, Langsdorf A, Zinn E, Pacouret S, Shah S, Comander JI, Kim LA, Lim L, Vandenberghe LH. Synthetic Adeno-Associated Viral Vector Efficiently Targets Mouse and Nonhuman Primate Retina In Vivo. Hum Gene Ther 2018; 29:771-784. [PMID: 29325457 DOI: 10.1089/hum.2017.154] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Gene therapy is a promising approach in the treatment of inherited and common complex disorders of the retina. Preclinical and clinical studies have validated the use of adeno-associated viral vectors (AAV) as a safe and efficient delivery vehicle for gene transfer. Retinal pigment epithelium and rods-and to a lesser extent, cone photoreceptors-can be efficiently targeted with AAV. Other retinal cell types however are more challenging targets. The aim of this study was to characterize the transduction profile and efficiency of in silico designed, synthetic Anc80 AAVs for retinal gene transfer. Three Anc80 variants were evaluated for retinal targeting in mice and primates following subretinal delivery. In the murine retina Anc80L65 demonstrated high level of retinal pigment epithelium and photoreceptor targeting with comparable cone photoreceptor affinity compared to other AAVs. Remarkably, Anc80L65 enhanced transduction kinetics with visible expression as early as day 1 and steady state mRNA levels at day 3. Inner retinal tropism of Anc80 variants demonstrated distinct transduction patterns of Müller glia, retinal ganglion cells and inner nuclear layer neurons. Finally, murine findings with Anc80L65 qualitatively translated to the Rhesus macaque in terms of cell targets, levels and onset of expression. Our findings support the use of Anc80L65 for therapeutic subretinal gene delivery.
Collapse
Affiliation(s)
- Livia S Carvalho
- 1 Grousbeck Gene Therapy Center, Boston, Massachusetts.,2 Ocular Genomics Institute , Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts.,3 Schepens Eye Research Institute, Boston, Massachusetts.,4 Massachusetts Eye and Ear Infirmary, Boston, Massachusetts
| | - Ru Xiao
- 1 Grousbeck Gene Therapy Center, Boston, Massachusetts.,2 Ocular Genomics Institute , Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts.,3 Schepens Eye Research Institute, Boston, Massachusetts.,4 Massachusetts Eye and Ear Infirmary, Boston, Massachusetts
| | - Sarah J Wassmer
- 1 Grousbeck Gene Therapy Center, Boston, Massachusetts.,2 Ocular Genomics Institute , Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts.,3 Schepens Eye Research Institute, Boston, Massachusetts.,4 Massachusetts Eye and Ear Infirmary, Boston, Massachusetts
| | - Aliete Langsdorf
- 2 Ocular Genomics Institute , Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts.,4 Massachusetts Eye and Ear Infirmary, Boston, Massachusetts
| | - Eric Zinn
- 1 Grousbeck Gene Therapy Center, Boston, Massachusetts.,2 Ocular Genomics Institute , Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts.,3 Schepens Eye Research Institute, Boston, Massachusetts.,4 Massachusetts Eye and Ear Infirmary, Boston, Massachusetts
| | - Simon Pacouret
- 1 Grousbeck Gene Therapy Center, Boston, Massachusetts.,2 Ocular Genomics Institute , Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts.,3 Schepens Eye Research Institute, Boston, Massachusetts.,4 Massachusetts Eye and Ear Infirmary, Boston, Massachusetts.,6 INSERM UMR 1089, University of Nantes, Nantes University Hospital , Nantes, France
| | - Samiksha Shah
- 1 Grousbeck Gene Therapy Center, Boston, Massachusetts.,2 Ocular Genomics Institute , Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts.,3 Schepens Eye Research Institute, Boston, Massachusetts.,4 Massachusetts Eye and Ear Infirmary, Boston, Massachusetts
| | - Jason I Comander
- 2 Ocular Genomics Institute , Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts.,4 Massachusetts Eye and Ear Infirmary, Boston, Massachusetts
| | - Leo A Kim
- 3 Schepens Eye Research Institute, Boston, Massachusetts.,4 Massachusetts Eye and Ear Infirmary, Boston, Massachusetts
| | - Laurence Lim
- 4 Massachusetts Eye and Ear Infirmary, Boston, Massachusetts
| | - Luk H Vandenberghe
- 1 Grousbeck Gene Therapy Center, Boston, Massachusetts.,2 Ocular Genomics Institute , Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts.,3 Schepens Eye Research Institute, Boston, Massachusetts.,4 Massachusetts Eye and Ear Infirmary, Boston, Massachusetts.,5 Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts
| |
Collapse
|
32
|
Petit L, Ma S, Cheng SY, Gao G, Punzo C. Rod Outer Segment Development Influences AAV-Mediated Photoreceptor Transduction After Subretinal Injection. Hum Gene Ther 2018; 28:464-481. [PMID: 28510482 PMCID: PMC5488363 DOI: 10.1089/hum.2017.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Vectors based on the adeno-associated virus (AAV) are currently the preferred tools for delivering genes to photoreceptors (PR) in small and large animals. AAVs have been applied successfully in various models of PR dystrophies. However, unknown barriers still limit AAV's efficient application in several forms of severe PR degenerations due to insufficient transgene expression and/or treated cells at the time of injection. Optimizations of PR gene therapy strategies will likely benefit from the identification of the cellular factors that influence PR transduction. Interestingly, recent studies have shown that the AAV transduction profile of PRs differs significantly between neonatal and adult mouse retinas after subretinal injection. This phenomenon may provide clues to identify host factors that influence the efficiency of AAV-mediated PR transduction. This study demonstrates that rod outer segments are critical modulators of efficient AAV-mediated rod transduction. During retinal development, rod transduction correlated temporally and spatially with the differentiation order of PRs when vectors were introduced subretinally but not when introduced intravitreally. All subretinally injected vectors had an initial preference to transduce cones in the absence of formed rod outer segments and then displayed a preference for rods as the cells matured, independently of the expression cassette or AAV serotype. Consistent with this observation, altered development of rod outer segments was associated with a strong reduction of rod transduction and an increase in the percentage of transduced cones by 2- to 2.8-fold. A similar increase of cone transduction was observed in the adult retinal degeneration 1 (rd1) retina compared to wild-type mice. These results suggest that the loss of rod outer segments in diseased retinas could markedly affect gene transfer efficiency of AAV vectors by limiting the ability of AAVs to infect dying rods efficiently. This information could be exploited for the development of more efficient AAV-based PR gene delivery procedures.
Collapse
Affiliation(s)
- Lolita Petit
- 1 Department of Ophthalmology and Gene Therapy Center, University of Massachusetts Medical School , Worcester, Massachusetts
| | - Shan Ma
- 1 Department of Ophthalmology and Gene Therapy Center, University of Massachusetts Medical School , Worcester, Massachusetts
| | - Shun-Yun Cheng
- 1 Department of Ophthalmology and Gene Therapy Center, University of Massachusetts Medical School , Worcester, Massachusetts
| | - Guangping Gao
- 3 Department of Microbiology and Physiological Systems and Gene Therapy Center, University of Massachusetts Medical School , Worcester, Massachusetts
| | - Claudio Punzo
- 1 Department of Ophthalmology and Gene Therapy Center, University of Massachusetts Medical School , Worcester, Massachusetts.,2 Department of Neurobiology, University of Massachusetts Medical School , Worcester, Massachusetts
| |
Collapse
|
33
|
Wiley LA, Burnight ER, Kaalberg EE, Jiao C, Riker MJ, Halder JA, Luse MA, Han IC, Russell SR, Sohn EH, Stone EM, Tucker BA, Mullins RF. Assessment of Adeno-Associated Virus Serotype Tropism in Human Retinal Explants. Hum Gene Ther 2018; 29:424-436. [PMID: 29160116 DOI: 10.1089/hum.2017.179] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Advances in the discovery of the causes of monogenic retinal disorders, combined with technologies for the delivery of DNA to the retina, offer enormous opportunities for the treatment of previously untreatable blinding diseases. However, for gene augmentation to be most effective, vectors that have the correct cell-type specificity are needed. While animal models are very useful, they often exhibit differences in retinal cell surface receptors compared to the human retina. This study evaluated the use of an ex vivo organotypic explant system to test the transduction efficiency and tropism of seven different adeno-associated virus type 2 (AAV2) serotypes in the human retina and retinal pigment epithelium-choroid-AAV2/1, AAV2/2, AAV2/4, AAV2/5, AAV2/6, AAV2/8, and AAV2/9-all driving expression of GFP under control of the cytomegalovirus promoter. After 7 days in culture, it was found that AAV2/4 and AAV2/5 were particularly efficient at transducing photoreceptor cells and that AAV2/5 was highly specific to the outer nuclear layer, whereas AAV2/8 displayed consistently low transduction of photoreceptors. To validate the authenticity of the organotypic culture system, the transduction of the same set of AAVs was also compared in a pig model, in which sub-retinal injections in vivo were compared to cultured and transduced organotypic cultures ex vivo. This study shows how different AAV serotypes behave in the human retina and provides insight for further investigation of each of these serotypes for gene augmentation-based treatment of inherited retinal degeneration.
Collapse
Affiliation(s)
- Luke A Wiley
- 1 Stephen A. Wynn Institute for Vision Research, University of Iowa , Iowa City, Iowa.,2 Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - Erin R Burnight
- 1 Stephen A. Wynn Institute for Vision Research, University of Iowa , Iowa City, Iowa.,2 Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - Emily E Kaalberg
- 1 Stephen A. Wynn Institute for Vision Research, University of Iowa , Iowa City, Iowa.,2 Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - Chunhua Jiao
- 1 Stephen A. Wynn Institute for Vision Research, University of Iowa , Iowa City, Iowa.,2 Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - Megan J Riker
- 1 Stephen A. Wynn Institute for Vision Research, University of Iowa , Iowa City, Iowa.,2 Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - Jennifer A Halder
- 1 Stephen A. Wynn Institute for Vision Research, University of Iowa , Iowa City, Iowa.,2 Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - Meagan A Luse
- 1 Stephen A. Wynn Institute for Vision Research, University of Iowa , Iowa City, Iowa.,2 Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - Ian C Han
- 1 Stephen A. Wynn Institute for Vision Research, University of Iowa , Iowa City, Iowa.,2 Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - Stephen R Russell
- 1 Stephen A. Wynn Institute for Vision Research, University of Iowa , Iowa City, Iowa.,2 Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - Elliott H Sohn
- 1 Stephen A. Wynn Institute for Vision Research, University of Iowa , Iowa City, Iowa.,2 Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - Edwin M Stone
- 1 Stephen A. Wynn Institute for Vision Research, University of Iowa , Iowa City, Iowa.,2 Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - Budd A Tucker
- 1 Stephen A. Wynn Institute for Vision Research, University of Iowa , Iowa City, Iowa.,2 Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - Robert F Mullins
- 1 Stephen A. Wynn Institute for Vision Research, University of Iowa , Iowa City, Iowa.,2 Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| |
Collapse
|
34
|
Schön C, Becirovic E, Biel M, Michalakis S. Design and Development of AAV-based Gene Supplementation Therapies for Achromatopsia and Retinitis Pigmentosa. Methods Mol Biol 2018; 1715:33-46. [PMID: 29188504 DOI: 10.1007/978-1-4939-7522-8_3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Achromatopsia (ACHM) and retinitis pigmentosa (RP) are inherited disorders caused by mutations in cone and rod photoreceptor-specific genes, respectively. ACHM strongly impairs daylight vision, whereas RP initially affects night vision and daylight vision at later stages. Currently, gene supplementation therapies utilizing recombinant adeno-associated virus (rAAV) vectors are being developed for various forms of ACHM and RP. In this chapter, we describe the procedure of designing and developing specific and efficient rAAV vectors for cone- and rod-specific gene supplementation.
Collapse
Affiliation(s)
- Christian Schön
- Department of Pharmacy, Center for Drug Research, Center for Integrated Protein Science Munich CiPSM, Ludwig-Maximilian-University, Munich, Germany
| | - Elvir Becirovic
- Department of Pharmacy, Center for Drug Research, Center for Integrated Protein Science Munich CiPSM, Ludwig-Maximilian-University, Munich, Germany
| | - Martin Biel
- Department of Pharmacy, Center for Drug Research, Center for Integrated Protein Science Munich CiPSM, Ludwig-Maximilian-University, Munich, Germany
| | - Stylianos Michalakis
- Department of Pharmacy, Center for Drug Research, Center for Integrated Protein Science Munich CiPSM, Ludwig-Maximilian-University, Munich, Germany.
| |
Collapse
|
35
|
Maddalena A, Tornabene P, Tiberi P, Minopoli R, Manfredi A, Mutarelli M, Rossi S, Simonelli F, Naggert JK, Cacchiarelli D, Auricchio A. Triple Vectors Expand AAV Transfer Capacity in the Retina. Mol Ther 2017; 26:524-541. [PMID: 29292161 PMCID: PMC5835116 DOI: 10.1016/j.ymthe.2017.11.019] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 11/23/2017] [Accepted: 11/28/2017] [Indexed: 01/05/2023] Open
Abstract
Retinal gene transfer with adeno-associated viral (AAV) vectors holds great promise for the treatment of inherited retinal degenerations (IRDs). One limit of AAV is its transfer capacity of about 5 kb, which can be expanded to about 9 kb, using dual AAV vectors. This strategy would still not suffice for treatment of IRDs such as Usher syndrome type 1D or Alström syndrome type I (ALMS) due to mutations in CDH23 or ALMS1, respectively. To overcome this limitation, we generated triple AAV vectors, with a maximal transfer capacity of about 14 kb. Transcriptomic analysis following triple AAV transduction showed the expected full-length products along a number of aberrant transcripts. However, only the full-length transcripts are efficiently translated in vivo. We additionally showed that approximately 4% of mouse photoreceptors are transduced by triple AAV vectors and showed correct localization of recombinant ALMS1. The low-photoreceptor transduction levels might justify the modest and transient improvement we observe in the retina of a mouse model of ALMS. However, the levels of transduction mediated by triple AAV vectors in pig retina reached 40% of those observed with single vectors, and this bodes well for further improving the efficiency of triple AAV vectors in the retina.
Collapse
Affiliation(s)
- Andrea Maddalena
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli 80078, Italy
| | - Patrizia Tornabene
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli 80078, Italy
| | - Paola Tiberi
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli 80078, Italy
| | - Renato Minopoli
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli 80078, Italy
| | - Anna Manfredi
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli 80078, Italy; Armenise/Harvard Laboratory of Integrative Genomics, TIGEM, Pozzuoli 80078, Italy
| | | | - Settimio Rossi
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, Second University of Naples, Naples 80121, Italy
| | - Francesca Simonelli
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, Second University of Naples, Naples 80121, Italy
| | | | - Davide Cacchiarelli
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli 80078, Italy; Armenise/Harvard Laboratory of Integrative Genomics, TIGEM, Pozzuoli 80078, Italy
| | - Alberto Auricchio
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli 80078, Italy; Medical Genetics, Department of Advanced Biomedicine, Federico II University, Naples 80131, Italy.
| |
Collapse
|
36
|
Hickey DG, Edwards TL, Barnard AR, Singh MS, de Silva SR, McClements ME, Flannery JG, Hankins MW, MacLaren RE. Tropism of engineered and evolved recombinant AAV serotypes in the rd1 mouse and ex vivo primate retina. Gene Ther 2017; 24:787-800. [PMID: 28872643 PMCID: PMC5746594 DOI: 10.1038/gt.2017.85] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 07/19/2017] [Accepted: 08/23/2017] [Indexed: 11/09/2022]
Abstract
There is much debate on the adeno-associated virus (AAV) serotype that best targets specific retinal cell types and the route of surgical delivery-intravitreal or subretinal. This study compared three of the most efficacious AAV vectors known to date in a mouse model of retinal degeneration (rd1 mouse) and macaque and human retinal explants. Green fluorescent protein (GFP) driven by a ubiquitous promoter was packaged into three AAV capsids: AAV2/8(Y733F), AAV2/2(quad Y-F) and AAV2/2(7m8). Overall, AAV2/2(7m8) transduced the largest area of retina and resulted in the highest level of GFP expression, followed by AAV2/2(quad Y-F) and AAV2/8(Y733F). AAV2/2(7m8) and AAV2/2(quad Y-F) both resulted in similar patterns of transduction whether they were injected intravitreally or subretinally. AAV2/8(Y733F) transduced a significantly smaller area of retina when injected intravitreally compared with subretinally. Retinal ganglion cells, horizontal cells and retinal pigment epithelium expressed relatively high levels of GFP in the mouse retina, whereas amacrine cells expressed low levels of GFP and bipolar cells were infrequently transduced. Cone cells were the most frequently transduced cell type in macaque retina explants, whereas Müller cells were the predominant transduced cell type in human retinal explants. Of the AAV serotypes tested, AAV2/2(7m8) was the most effective at transducing a range of cell types in degenerate mouse retina and macaque and human retinal explants.
Collapse
Affiliation(s)
- D G Hickey
- Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford, UK
| | - T L Edwards
- Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford, UK
| | - A R Barnard
- Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford, UK
| | - M S Singh
- Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford, UK.,Moorfields Eye Hospital NHS Foundation Trust NIHR Biomedical Research Centre, London, UK
| | - S R de Silva
- Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford, UK
| | - M E McClements
- Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford, UK
| | - J G Flannery
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| | - M W Hankins
- Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford, UK.,Sleep and Circadian Neuroscience Institute, University of Oxford, Oxford, UK
| | - R E MacLaren
- Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford, UK.,Moorfields Eye Hospital NHS Foundation Trust NIHR Biomedical Research Centre, London, UK.,Oxford University Hospitals NHS Trust Biomedical Research Centre, Oxford, UK
| |
Collapse
|
37
|
Sharon D, Kamen A. Advancements in the design and scalable production of viral gene transfer vectors. Biotechnol Bioeng 2017; 115:25-40. [PMID: 28941274 DOI: 10.1002/bit.26461] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 09/16/2017] [Accepted: 09/19/2017] [Indexed: 01/22/2023]
Abstract
The last 10 years have seen a rapid expansion in the use of viral gene transfer vectors, with approved therapies and late stage clinical trials underway for the treatment of genetic disorders, and multiple forms of cancer, as well as prevention of infectious diseases through vaccination. With this increased interest and widespread adoption of viral vectors by clinicians and biopharmaceutical industries, there is an imperative to engineer safer and more efficacious vectors, and develop robust, scalable and cost-effective production platforms for industrialization. This review will focus on major innovations in viral vector design and production systems for three of the most widely used viral vectors: Adenovirus, Adeno-Associated Virus, and Lentivirus.
Collapse
Affiliation(s)
- David Sharon
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada
| | - Amine Kamen
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
38
|
Gupta PR, Huckfeldt RM. Gene therapy for inherited retinal degenerations: initial successes and future challenges. J Neural Eng 2017; 14:051002. [DOI: 10.1088/1741-2552/aa7a27] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
39
|
Sengillo JD, Justus S, Tsai YT, Cabral T, Tsang SH. Gene and cell-based therapies for inherited retinal disorders: An update. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2016; 172:349-366. [PMID: 27862925 DOI: 10.1002/ajmg.c.31534] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Retinal degenerations present a unique challenge as disease progression is irreversible and the retina has little regenerative potential. No current treatments for inherited retinal disease have the ability to reverse blindness, and current dietary supplement recommendations only delay disease progression with varied results. However, the retina is anatomically accessible and capable of being monitored at high resolution in vivo. This, in addition to the immune-privileged status of the eye, has put ocular disease at the forefront of advances in gene- and cell-based therapies. This review provides an update on gene therapies and randomized control trials for inherited retinal disease, including Leber congenital amaurosis, choroideremia, retinitis pigmentosa, Usher syndrome, X-linked retinoschisis, Leber hereditary optic neuropathy, and achromatopsia. New gene-modifying and cell-based strategies are also discussed. © 2016 Wiley Periodicals, Inc.
Collapse
|
40
|
Heparan Sulfate Binding Promotes Accumulation of Intravitreally Delivered Adeno-associated Viral Vectors at the Retina for Enhanced Transduction but Weakly Influences Tropism. J Virol 2016; 90:9878-9888. [PMID: 27558418 DOI: 10.1128/jvi.01568-16] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 08/15/2016] [Indexed: 12/20/2022] Open
Abstract
Many adeno-associated virus (AAV) serotypes efficiently transduce the retina when delivered to the subretinal space but show limited success when delivered to the vitreous due to the inner limiting membrane (ILM). Subretinal delivery of AAV serotype 2 (AAV2) and its heparan sulfate (HS)-binding-deficient capsid led to similar expression, indicating transduction of the outer retina occurred by HS-independent mechanisms. However, intravitreal delivery of HS-ablated recombinant AAV2 (rAAV2) led to a 300-fold decrease in transduction compared to AAV2. Fluorescence in situ hybridization of AAV transgenes was used to identify differences in retinal trafficking and revealed that HS binding was responsible for AAV2 accumulation at the ILM. This mechanism was tested on human ex vivo retinas and showed similar accumulation with HS-binding AAV2 capsid only. To evaluate if HS binding could be applied to other AAV serotypes to enhance their transduction, AAV1 and AAV8 were modified to bind HS with a single-amino-acid mutation and tested in mice. Both HS-binding mutants of AAV1 and AAV8 had higher intravitreal transduction than their non-HS-binding parent capsid due to increased retinal accumulation. To understand the influence that HS binding has on tropism, chimeric AAV2 capsids with dual-glycan usage were tested intravitreally in mice. Compared to HS binding alone, these chimeric capsids displayed enhanced transduction that was correlated with a change in tropism. Taken together, these data indicate that HS binding serves to sequester AAV capsids from the vitreous to the ILM but does not influence retinal tropism. The enhanced retinal transduction of HS-binding capsids provides a rational design strategy for engineering capsids for intravitreal delivery. IMPORTANCE Adeno-associated virus (AAV) has become the vector of choice for viral gene transfer and has shown great promise in clinical trials. The need for development of an easy, less invasive injection route for ocular gene therapy is met by intravitreal delivery, but delivery of AAV by this route results in poor transduction outcomes. The inner limiting membrane (ILM) creates a barrier separating the vitreous and the retina. Binding of AAV to heparan sulfate proteoglycan (HSPG) at the ILM may allow the virus to traverse this barrier for better retinal transduction. We show that HSPG binding is correlated with greater accumulation and penetration of AAV in the retina. We demonstrated that this accumulation is conserved across mouse and human retinas and that the addition of HSPG binding to other AAV capsids can increase the number of vectors accumulating at the ILM without dictating tropism.
Collapse
|
41
|
Khabou H, Desrosiers M, Winckler C, Fouquet S, Auregan G, Bemelmans AP, Sahel JA, Dalkara D. Insight into the mechanisms of enhanced retinal transduction by the engineered AAV2 capsid variant -7m8. Biotechnol Bioeng 2016; 113:2712-2724. [PMID: 27259396 DOI: 10.1002/bit.26031] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 05/26/2016] [Accepted: 05/29/2016] [Indexed: 01/20/2023]
Abstract
Recently, we described a modified AAV2 vector-AAV2-7m8-having a capsid-displayed peptide insertion of 10 amino acids with enhanced retinal transduction properties. The insertion of the peptide referred to as 7m8 is responsible for high-level gene delivery into deep layers of the retina when virus is delivered into the eye's vitreous. Here, we further characterize AAV2-7m8 mediated gene delivery to neural tissue and investigate the mechanisms by which the inserted peptide provides better transduction away from the injection site. First, in order to understand if the peptide exerts its effect on its own or in conjunction with the neighboring amino acids, we inserted the 7m8 peptide at equivalent positions on three other AAV capsids, AAV5, AAV8, and AAV9, and evaluated its effect on their infectivity. Intravitreal delivery of these peptide insertion vectors revealed that only AAV9 benefited from 7m8 insertion in the context of the retina. We then investigated AAV2-7m8 and AAV9-7m8 properties in the brain, to better evaluate the spread and efficacy of viral transduction in view of the peptide insertion. While 7m8 insertion led to higher intensity gene expression, the spread of gene expression remained unchanged compared to the parental serotypes. Our results indicate that the 7m8 peptide insertion acts by increasing efficacy of cellular entry, with little effect on the spread of viral particles in neural tissue. The effects of peptide insertion are capsid and tissue dependent, highlighting the importance of the microenvironment in gene delivery using AAV. Biotechnol. Bioeng. 2016;113: 2712-2724. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hanen Khabou
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, Paris 75012, France
| | - Mélissa Desrosiers
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, Paris 75012, France
| | - Céline Winckler
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, Paris 75012, France
| | - Stéphane Fouquet
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, Paris 75012, France
| | - Gwenaëlle Auregan
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Département des Sciences du Vivant (DSV), Institut d'Imagerie Biomédicale (I2BM), Molecular Imaging Research Center (MIRCen), F-92260 Fontenay-aux-Roses, France.,Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud, Université Paris-Saclay, UMR 9199, Neurodegenerative Diseases Laboratory, F-92260 Fontenay-aux-Roses, France
| | - Alexis-Pierre Bemelmans
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Département des Sciences du Vivant (DSV), Institut d'Imagerie Biomédicale (I2BM), Molecular Imaging Research Center (MIRCen), F-92260 Fontenay-aux-Roses, France.,Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud, Université Paris-Saclay, UMR 9199, Neurodegenerative Diseases Laboratory, F-92260 Fontenay-aux-Roses, France
| | - José-Alain Sahel
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, Paris 75012, France.,CHNO des Quinze-Vingts, DHU Sight Restore, INSERM-DHOS CIC, 28 rue de Charenton, Paris, France
| | - Deniz Dalkara
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, Paris 75012, France.
| |
Collapse
|
42
|
Self-Complementary Adeno-Associated Virus Vectors Improve Transduction Efficiency of Corneal Endothelial Cells. PLoS One 2016; 11:e0152589. [PMID: 27023329 PMCID: PMC4811580 DOI: 10.1371/journal.pone.0152589] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 03/16/2016] [Indexed: 12/13/2022] Open
Abstract
Transplantation of a donor cornea to restore vision is the most frequently performed transplantation in the world. Corneal endothelial cells (CEC) are crucial for the outcome of a graft as they maintain corneal transparency and avoid graft failure due to corneal opaqueness. Given the characteristic of being a monolayer and in direct contact with culture medium during cultivation in eye banks, CEC are specifically suitable for gene therapeutic approaches prior to transplantation. Recombinant adeno-associated virus 2 (rAAV2) vectors represent a promising tool for gene therapy of CEC. However, high vector titers are needed to achieve sufficient gene expression. One of the rate-limiting steps for transgene expression is the conversion of single-stranded (ss-) DNA vector genome into double-stranded (ds-) DNA. This step can be bypassed by using self-complementary (sc-) AAV2 vectors. Aim of this study was to compare for the first time transduction efficiencies of ss- and scAAV2 vectors in CEC. For this purpose AAV2 vectors containing enhanced green fluorescent protein (GFP) as transgene were used. Both in CEC and in donor corneas, transduction with scAAV2 resulted in significantly higher transgene expression compared to ssAAV2. The difference in transduction efficiency decreased with increasing vector titer. In most cases, only half the vector titer of scAAV2 was required for equal or higher gene expression rates than those of ssAAV2. In human donor corneas, GFP expression was 64.7±11.3% (scAAV) and 38.0±8.6% (ssAAV) (p<0.001), respectively. Furthermore, transduced cells maintained their viability and showed regular morphology. Working together with regulatory authorities, a translation of AAV2 vector-mediated gene therapy to achieve a temporary protection of corneal allografts during cultivation and transplantation could therefore become more realistic.
Collapse
|
43
|
Wang Z, Iida A, Miyake N, Nishiguchi KM, Fujita K, Nakazawa T, Alswaid A, Albalwi MA, Kim OH, Cho TJ, Lim GY, Isidor B, David A, Rustad CF, Merckoll E, Westvik J, Stattin EL, Grigelioniene G, Kou I, Nakajima M, Ohashi H, Smithson S, Matsumoto N, Nishimura G, Ikegawa S. Axial Spondylometaphyseal Dysplasia Is Caused by C21orf2 Mutations. PLoS One 2016; 11:e0150555. [PMID: 26974433 PMCID: PMC4790905 DOI: 10.1371/journal.pone.0150555] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 02/15/2016] [Indexed: 12/19/2022] Open
Abstract
Axial spondylometaphyseal dysplasia (axial SMD) is an autosomal recessive disease characterized by dysplasia of axial skeleton and retinal dystrophy. We conducted whole exome sequencing and identified C21orf2 (chromosome 21 open reading frame 2) as a disease gene for axial SMD. C21orf2 mutations have been recently found to cause isolated retinal degeneration and Jeune syndrome. We found a total of five biallelic C21orf2 mutations in six families out of nine: three missense and two splicing mutations in patients with various ethnic backgrounds. The pathogenic effects of the splicing (splice-site and branch-point) mutations were confirmed on RNA level, which showed complex patterns of abnormal splicing. C21orf2 mutations presented with a wide range of skeletal phenotypes, including cupped and flared anterior ends of ribs, lacy ilia and metaphyseal dysplasia of proximal femora. Analysis of patients without C21orf2 mutation indicated genetic heterogeneity of axial SMD. Functional data in chondrocyte suggest C21orf2 is implicated in cartilage differentiation. C21orf2 protein was localized to the connecting cilium of the cone and rod photoreceptors, confirming its significance in retinal function. Our study indicates that axial SMD is a member of a unique group of ciliopathy affecting skeleton and retina.
Collapse
Affiliation(s)
- Zheng Wang
- Laboratory of Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, 108–8639, Japan
- McKusick-Zhang Center for Genetic Medicine and State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Aritoshi Iida
- Laboratory of Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, 108–8639, Japan
| | - Noriko Miyake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, 236–0004, Japan
| | - Koji M. Nishiguchi
- Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Sendai, 980–8574, Japan
| | - Kosuke Fujita
- Department of Retinal Disease Control, Tohoku University Graduate School of Medicine, Sendai, 980–8574, Japan
| | - Toru Nakazawa
- Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Sendai, 980–8574, Japan
- Department of Retinal Disease Control, Tohoku University Graduate School of Medicine, Sendai, 980–8574, Japan
- Department of Opthalmology, Tohoku University Graduate School of Medicine, Sendai, 980–8574, Japan
| | - Abdulrahman Alswaid
- Department of Pediatrics, King Abdulaziz Medical City for National Guard Health Affairs, Riyadh, 22490, Saudi Arabia
| | - Mohammed A. Albalwi
- Department of Pathology and Laboratory Medicine, King Abdulaziz Medical City, National Guard Health Affairs, Riyadh, 22490, Saudi Arabia
| | - Ok-Hwa Kim
- Department of Radiology, Woorisoa Children's Hospital, Seoul, 08291, Republic of Korea
| | - Tae-Joon Cho
- Department of Orthopaedic Surgery, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Gye-Yeon Lim
- Department of Radiology, St. Mary’s Hospital, The Catholic University, Seoul, 07345, Republic of Korea
| | - Bertrand Isidor
- CHU Nantes, Service de Génétique Médicale and INSERM, UMR-S 957, Nantes, 44093, France
| | - Albert David
- CHU Nantes, Service de Génétique Médicale and INSERM, UMR-S 957, Nantes, 44093, France
| | - Cecilie F. Rustad
- Department of Medical Genetics, Section for Clinical Genetics, Oslo University Hospital, Oslo, 0424, Norway
| | - Else Merckoll
- Department of Radiology, Oslo University Hospital, Oslo, 0424, Norway
| | - Jostein Westvik
- Department of Radiology, Oslo University Hospital, Oslo, 0424, Norway
| | - Eva-Lena Stattin
- Department of Medical Biosciences, Medical and Clinical Genetics, Umeå University, Umeå, 90187, Sweden
| | - Giedre Grigelioniene
- Department of Clinical Genetics and Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital, Stockholm, 17176, Sweden
| | - Ikuyo Kou
- Laboratory of Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, 108–8639, Japan
| | - Masahiro Nakajima
- Laboratory of Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, 108–8639, Japan
| | - Hirohumi Ohashi
- Division of Medical Genetics, Saitama Children’s Medical Center, Saitama, 339–8551, Japan
| | - Sarah Smithson
- Department of Clinical Genetics, St. Michaels Hospital, Bristol, BS2 8EG, United Kingdom
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, 236–0004, Japan
| | - Gen Nishimura
- Department of Pediatric Imaging, Tokyo Metropolitan Children's Medical Center, Fuchu, 183–8561, Japan
| | - Shiro Ikegawa
- Laboratory of Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, 108–8639, Japan
- * E-mail:
| |
Collapse
|
44
|
Yang H, Zheng S, Mao Y, Chen Z, Zheng C, Li H, Sumners C, Li Q, Yang P, Lei B. Modulating of ocular inflammation with macrophage migration inhibitory factor is associated with notch signalling in experimental autoimmune uveitis. Clin Exp Immunol 2015; 183:280-93. [PMID: 26400205 DOI: 10.1111/cei.12710] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 09/11/2015] [Accepted: 09/22/2015] [Indexed: 12/29/2022] Open
Abstract
The aim of this study was to examine whether macrophage migration inhibitory factor (MIF) could exaggerate inflammatory response in a mouse model of experimental autoimmune uveitis (EAU) and to explore the underlying mechanism. Mutant serotype 8 adeno-associated virus (AAV8) (Y733F)-chicken β-actin (CBA)-MIF or AAV8 (Y733F)-CBA-enhanced green fluorescent protein (eGFP) vector was delivered subretinally into B10.RIII mice, respectively. Three weeks after vector delivery, EAU was induced with a subcutaneous injection of a mixture of interphotoreceptor retinoid binding protein (IRBP) peptide with CFA. The levels of proinflammatory cytokines were detected by real-time polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay (ELISA). Retinal function was evaluated with electroretinography (ERG). We found that the expression of MIF and its two receptors CD74 and CD44 was increased in the EAU mouse retina. Compared to AAV8.CBA.eGFP-injected and untreated EAU mice, the level of proinflammatory cytokines, the expression of Notch1, Notch4, delta-like ligand 4 (Dll4), Notch receptor intracellular domain (NICD) and hairy enhancer of split-1 (Hes-1) increased, but the ERG a- and b-wave amplitudes decreased in AAV8.CBA.MIF-injected EAU mice. The Notch inhibitor N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester (DAPT) reduced the expression of NICD, Hes-1 and proinflammatory cytokines. Further, a MIF antagonist ISO-1 attenuated intraocular inflammation, and inhibited the differentiation of T helper type 1 (Th1) and Th17 in EAU mice. We demonstrated that over-expression of MIF exaggerated ocular inflammation, which was associated with the activation of the Notch signalling. The expression of both MIF and its receptors are elevated in EAU mice. Over-expression of MIF exaggerates ocular inflammation, and this exaggerated inflammation is associated with the activation of the Notch signalling and Notch pathway. Our data suggest that the MIF-Notch axis may play an important role in the pathogenesis of EAU. Both the MIF signalling pathways may be promising targets for developing novel therapeutic interventions for uveitis.
Collapse
Affiliation(s)
- H Yang
- Department of Ophthalmology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing, China
| | - S Zheng
- Department of Ophthalmology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing, China
| | - Y Mao
- School of Biotechnology, Southern Medical University, Guangzhou, China
| | - Z Chen
- Department of Ophthalmology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing, China
| | - C Zheng
- Department of Ophthalmology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing, China
| | - H Li
- School of Biotechnology, Southern Medical University, Guangzhou, China
| | - C Sumners
- Department of Physiology and Functional Genomics and McKnight Brain Institute, Gainesville, FL, USA
| | - Q Li
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - P Yang
- Department of Ophthalmology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing, China
| | - B Lei
- Department of Ophthalmology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing, China
| |
Collapse
|
45
|
Mookherjee S, Hiriyanna S, Kaneshiro K, Li L, Li Y, Li W, Qian H, Li T, Khanna H, Colosi P, Swaroop A, Wu Z. Long-term rescue of cone photoreceptor degeneration in retinitis pigmentosa 2 (RP2)-knockout mice by gene replacement therapy. Hum Mol Genet 2015; 24:6446-58. [PMID: 26358772 DOI: 10.1093/hmg/ddv354] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 09/01/2015] [Indexed: 11/14/2022] Open
Abstract
Retinal neurodegenerative diseases are especially attractive targets for gene replacement therapy, which appears to be clinically effective for several monogenic diseases. X-linked forms of retinitis pigmentosa (XLRP) are relatively severe blinding disorders, resulting from progressive photoreceptor dysfunction primarily caused by mutations in RPGR or RP2 gene. With a goal to develop gene therapy for the XLRP-RP2 disease, we first performed detailed characterization of the Rp2-knockout (Rp2-KO) mice and observed early-onset cone dysfunction, which was followed by progressive cone degeneration, mimicking cone vision impairment in XLRP patients. The mice also exhibited distinct and significantly delayed falling phase of photopic b-wave of electroretinogram (ERG). Concurrently, we generated a self-complementary adeno-associated viral (AAV) vector carrying human RP2-coding sequence and demonstrated its ability to mediate stable RP2 protein expression in mouse photoreceptors. A long-term efficacy study was then conducted in Rp2-KO mice following AAV-RP2 vector administration. Preservation of cone function was achieved with a wide dose range over 18-month duration, as evidenced by photopic ERG and optomotor tests. The slower b-wave kinetics was also completely restored. Morphologically, the treatment preserved cone viability, corrected mis-trafficking of M-cone opsin and restored cone PDE6 expression. The therapeutic effect was achieved even in mice that received treatment at an advanced disease stage. The highest AAV-RP2 dose group demonstrated retinal toxicity, highlighting the importance of careful vector dosing in designing future human trials. The wide range of effective dose, a broad treatment window and long-lasting therapeutic effects should make the RP2 gene therapy attractive for clinical development.
Collapse
Affiliation(s)
| | - Suja Hiriyanna
- National Eye Institute, National Institutes of Health, Bethesda, MD, USA and
| | - Kayleigh Kaneshiro
- National Eye Institute, National Institutes of Health, Bethesda, MD, USA and
| | - Linjing Li
- Department of Ophthalmology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Yichao Li
- National Eye Institute, National Institutes of Health, Bethesda, MD, USA and
| | - Wei Li
- National Eye Institute, National Institutes of Health, Bethesda, MD, USA and
| | - Haohua Qian
- National Eye Institute, National Institutes of Health, Bethesda, MD, USA and
| | - Tiansen Li
- National Eye Institute, National Institutes of Health, Bethesda, MD, USA and
| | - Hemant Khanna
- Department of Ophthalmology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Peter Colosi
- National Eye Institute, National Institutes of Health, Bethesda, MD, USA and
| | - Anand Swaroop
- National Eye Institute, National Institutes of Health, Bethesda, MD, USA and
| | - Zhijian Wu
- National Eye Institute, National Institutes of Health, Bethesda, MD, USA and
| |
Collapse
|
46
|
Photoreceptor rescue by an abbreviated human RPGR gene in a murine model of X-linked retinitis pigmentosa. Gene Ther 2015; 23:196-204. [PMID: 26348595 PMCID: PMC4863462 DOI: 10.1038/gt.2015.93] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Revised: 07/05/2015] [Accepted: 08/21/2015] [Indexed: 11/08/2022]
Abstract
The X-linked RP3 gene codes for the ciliary protein RPGR and accounts for over 10% of inherited retinal degenerations. The critical RPGR-ORF15 splice variant contains a highly repetitive purine-rich linker region that renders it unstable and difficult to adapt for gene therapy. To test the hypothesis that the precise length of the linker region is not critical for function, we evaluated whether AAV-mediated replacement gene therapy with a human ORF15 variant containing in-frame shortening of the linker region could reconstitute RPGR function in vivo. We delivered human RPGR-ORF15 replacement genes with deletion of most (314-codons, “short form”) or 1/3 (126-codons, “long form”) of the linker region to Rpgr null mice. Human RPGR-ORF15 expression was detected post-treatment with both forms of ORF15 transgenes. However, only the long form correctly localized to the connecting cilia and led to significant functional and morphological rescue of rods and cones. Thus the highly repetitive region of RPGR is functionally important but that moderate shortening of its length, which confers the advantage of added stability, preserves its function. These findings provide a theoretical basis for optimizing replacement gene design in clinical trials for X-linked RP3.
Collapse
|
47
|
Retinal gene delivery by adeno-associated virus (AAV) vectors: Strategies and applications. Eur J Pharm Biopharm 2015; 95:343-52. [DOI: 10.1016/j.ejpb.2015.01.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 01/10/2015] [Accepted: 01/12/2015] [Indexed: 11/20/2022]
|
48
|
Choi VW, Bigelow CE, McGee TL, Gujar AN, Li H, Hanks SM, Vrouvlianis J, Maker M, Leehy B, Zhang Y, Aranda J, Bounoutas G, Demirs JT, Yang J, Ornberg R, Wang Y, Martin W, Stout KR, Argentieri G, Grosenstein P, Diaz D, Turner O, Jaffee BD, Police SR, Dryja TP. AAV-mediated RLBP1 gene therapy improves the rate of dark adaptation in Rlbp1 knockout mice. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2015. [PMID: 26199951 PMCID: PMC4495722 DOI: 10.1038/mtm.2015.22] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Recessive mutations in RLBP1 cause a form of retinitis pigmentosa in which the retina, before its degeneration leads to blindness, abnormally slowly recovers sensitivity after exposure to light. To develop a potential gene therapy for this condition, we tested multiple recombinant adeno-associated vectors (rAAVs) composed of different promoters, capsid serotypes, and genome conformations. We generated rAAVs in which sequences from the promoters of the human RLBP1, RPE65, or BEST1 genes drove the expression of a reporter gene (green fluorescent protein). A promoter derived from the RLBP1 gene mediated expression in the retinal pigment epithelium and Müller cells (the intended target cell types) at qualitatively higher levels than in other retinal cell types in wild-type mice and monkeys. With this promoter upstream of the coding sequence of the human RLBP1 gene, we compared the potencies of vectors with an AAV2 versus an AAV8 capsid in transducing mouse retinas, and we compared vectors with a self-complementary versus a single-stranded genome. The optimal vector (scAAV8-pRLBP1-hRLBP1) had serotype 8 capsid and a self-complementary genome. Subretinal injection of scAAV8-pRLBP1-hRLBP1 in Rlbp1 nullizygous mice improved the rate of dark adaptation based on scotopic (rod-plus-cone) and photopic (cone) electroretinograms (ERGs). The effect was still present after 1 year.
Collapse
Affiliation(s)
- Vivian W Choi
- Ophthalmology Disease Area, Novartis Institutes for BioMedical Research , Cambridge, Massachusetts, USA
| | - Chad E Bigelow
- Ophthalmology Disease Area, Novartis Institutes for BioMedical Research , Cambridge, Massachusetts, USA
| | - Terri L McGee
- Ophthalmology Disease Area, Novartis Institutes for BioMedical Research , Cambridge, Massachusetts, USA
| | - Akshata N Gujar
- Ophthalmology Disease Area, Novartis Institutes for BioMedical Research , Cambridge, Massachusetts, USA
| | - Hui Li
- Ophthalmology Disease Area, Novartis Institutes for BioMedical Research , Cambridge, Massachusetts, USA
| | - Shawn M Hanks
- Ophthalmology Disease Area, Novartis Institutes for BioMedical Research , Cambridge, Massachusetts, USA
| | - Joanna Vrouvlianis
- Ophthalmology Disease Area, Novartis Institutes for BioMedical Research , Cambridge, Massachusetts, USA
| | - Michael Maker
- Ophthalmology Disease Area, Novartis Institutes for BioMedical Research , Cambridge, Massachusetts, USA
| | - Barrett Leehy
- Ophthalmology Disease Area, Novartis Institutes for BioMedical Research , Cambridge, Massachusetts, USA
| | - Yiqin Zhang
- Ophthalmology Disease Area, Novartis Institutes for BioMedical Research , Cambridge, Massachusetts, USA
| | - Jorge Aranda
- Ophthalmology Disease Area, Novartis Institutes for BioMedical Research , Cambridge, Massachusetts, USA
| | - George Bounoutas
- Ophthalmology Disease Area, Novartis Institutes for BioMedical Research , Cambridge, Massachusetts, USA
| | - John T Demirs
- Ophthalmology Disease Area, Novartis Institutes for BioMedical Research , Cambridge, Massachusetts, USA
| | - Junzheng Yang
- Ophthalmology Disease Area, Novartis Institutes for BioMedical Research , Cambridge, Massachusetts, USA
| | - Richard Ornberg
- Ophthalmology Disease Area, Novartis Institutes for BioMedical Research , Fort Worth, Texas, USA
| | - Yu Wang
- Ophthalmology Disease Area, Novartis Institutes for BioMedical Research , Fort Worth, Texas, USA
| | - Wendy Martin
- Preclinical Safety, Alcon , Fort Worth, Texas, USA
| | | | - Gregory Argentieri
- Preclinical Safety, Novartis Institutes for BioMedical Research , East Hanover, New Jersey, USA
| | - Paul Grosenstein
- Preclinical Safety, Novartis Institutes for BioMedical Research , East Hanover, New Jersey, USA
| | - Danielle Diaz
- Preclinical Safety, Novartis Institutes for BioMedical Research , East Hanover, New Jersey, USA
| | - Oliver Turner
- Preclinical Safety, Novartis Institutes for BioMedical Research , East Hanover, New Jersey, USA
| | - Bruce D Jaffee
- Ophthalmology Disease Area, Novartis Institutes for BioMedical Research , Cambridge, Massachusetts, USA
| | - Seshidhar R Police
- Ophthalmology Disease Area, Novartis Institutes for BioMedical Research , Cambridge, Massachusetts, USA
| | - Thaddeus P Dryja
- Ophthalmology Disease Area, Novartis Institutes for BioMedical Research , Cambridge, Massachusetts, USA
| |
Collapse
|
49
|
Khabou H, Dalkara D. [Developments in gene delivery vectors for ocular gene therapy]. Med Sci (Paris) 2015; 31:529-37. [PMID: 26059304 DOI: 10.1051/medsci/20153105015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Gene therapy is quickly becoming a reality applicable in the clinic for inherited retinal diseases. Its remarkable success in safety and efficacy, in clinical trials for Leber's congenital amaurosis (LCA) type II generated significant interest and opened up possibilities for a new era of retinal gene therapies. Success in these clinical trials was mainly due to the favorable characteristics of the retina as a target organ. The eye offers several advantages as it is readily accessible and has some degree of immune privilege making it suitable for application of viral vectors. The viral vectors most frequently used for retinal gene delivery are lentivirus, adenovirus and adeno-associated virus (AAV). Here we will discuss the use of these viral vectors in retinal gene delivery with a strong focus on favorable properties of AAV. Thanks to its small size, AAV diffuses well in the inter-neural matrix making it suitable for applications in neural retina. Building on this initial clinical success with LCA II, we have now many opportunities to extend this proof-of-concept to other retinal diseases using AAV as a vector. This article will discuss what are some of the most imminent cellular targets for such therapies and the AAV toolkit that has been built to target these cells successfully. We will also discuss some of the challenges that we face in translating AAV-based gene therapies to the clinic.
Collapse
Affiliation(s)
- Hanen Khabou
- Inserm UMR S968, Institut de la vision, 17, rue Moreau, 75012 Paris, France - Sorbonne universités, UPMC université Paris 6, UMR S968, 75012 Paris, France - CNRS, UMR 7210, 75012 Paris, France
| | - Deniz Dalkara
- Inserm UMR S968, Institut de la vision, 17, rue Moreau, 75012 Paris, France - Sorbonne universités, UPMC université Paris 6, UMR S968, 75012 Paris, France - CNRS, UMR 7210, 75012 Paris, France
| |
Collapse
|
50
|
Du W, Tao Y, Deng WT, Zhu P, Li J, Dai X, Zhang Y, Shi W, Liu X, Chiodo VA, Ding XQ, Zhao C, Michalakis S, Biel M, Zhang Z, Qu J, Hauswirth WW, Pang JJ. Vitreal delivery of AAV vectored Cnga3 restores cone function in CNGA3-/-/Nrl-/- mice, an all-cone model of CNGA3 achromatopsia. Hum Mol Genet 2015; 24:3699-707. [PMID: 25855802 DOI: 10.1093/hmg/ddv114] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 03/30/2015] [Indexed: 11/14/2022] Open
Abstract
The CNGA3(-/-)/Nrl(-/-) mouse is a cone-dominant model with Cnga3 channel deficiency, which partially mimics the all cone foveal structure of human achromatopsia 2 with CNGA3 mutations. Although subretinal (SR) AAV vector administration can transfect retinal cells efficiently, the injection-induced retinal detachment can cause retinal damage, particularly when SR vector bleb includes the fovea. We therefore explored whether cone function-structure could be rescued in CNGA3(-/-)/Nrl(-/-) mice by intravitreal (IVit) delivery of tyrosine to phenylalanine (Y-F) capsid mutant AAV8. We find that AAV-mediated CNGA3 expression can restore cone function and rescue structure following IVit delivery of AAV8 (Y447, 733F) vector. Rescue was assessed by restoration of the cone-mediated electroretinogram (ERG), optomotor responses, and cone opsin immunohistochemistry. Demonstration of gene therapy in a cone-dominant mouse model by IVit delivery provides a potential alternative vector delivery mode for safely transducing foveal cones in achromatopsia patients and in other human retinal diseases affecting foveal function.
Collapse
Affiliation(s)
- Wei Du
- Deparment of Ophthalmology, University of Florida, Gainesville, FL 32610, USA
| | - Ye Tao
- Deparment of Ophthalmology, University of Florida, Gainesville, FL 32610, USA
| | - Wen-Tao Deng
- Deparment of Ophthalmology, University of Florida, Gainesville, FL 32610, USA
| | - Ping Zhu
- Deparment of Ophthalmology, University of Florida, Gainesville, FL 32610, USA
| | - Jie Li
- Deparment of Ophthalmology, University of Florida, Gainesville, FL 32610, USA
| | - Xufeng Dai
- Deparment of Ophthalmology, University of Florida, Gainesville, FL 32610, USA, School of Ophthalmology and Optometry, The Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yuxin Zhang
- Deparment of Ophthalmology, University of Florida, Gainesville, FL 32610, USA, Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University and State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Wei Shi
- Deparment of Ophthalmology, University of Florida, Gainesville, FL 32610, USA
| | - Xuan Liu
- Deparment of Ophthalmology, University of Florida, Gainesville, FL 32610, USA
| | - Vince A Chiodo
- Deparment of Ophthalmology, University of Florida, Gainesville, FL 32610, USA
| | - Xi-Qin Ding
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Chen Zhao
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University and State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Stylianos Michalakis
- Munich Center for Integrated Protein Science and Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München, 81377 Munich, Germany and
| | - Martin Biel
- Munich Center for Integrated Protein Science and Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München, 81377 Munich, Germany and
| | - Zuoming Zhang
- Department of Clinical Aerospace Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Jia Qu
- School of Ophthalmology and Optometry, The Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China,
| | - William W Hauswirth
- Deparment of Ophthalmology, University of Florida, Gainesville, FL 32610, USA,
| | - Ji-Jing Pang
- Deparment of Ophthalmology, University of Florida, Gainesville, FL 32610, USA, School of Ophthalmology and Optometry, The Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China, Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University and State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China,
| |
Collapse
|