1
|
Wang W, Zhang X, Garcia S, Leitch AR, Kovařík A. Intragenomic rDNA variation - the product of concerted evolution, mutation, or something in between? Heredity (Edinb) 2023; 131:179-188. [PMID: 37402824 PMCID: PMC10462631 DOI: 10.1038/s41437-023-00634-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 06/12/2023] [Accepted: 06/12/2023] [Indexed: 07/06/2023] Open
Abstract
The classical model of concerted evolution states that hundreds to thousands of ribosomal DNA (rDNA) units undergo homogenization, making the multiple copies of the individual units more uniform across the genome than would be expected given mutation frequencies and gene redundancy. While the universality of this over 50-year-old model has been confirmed in a range of organisms, advanced high throughput sequencing techniques have also revealed that rDNA homogenization in many organisms is partial and, in rare cases, even apparently failing. The potential underpinning processes leading to unexpected intragenomic variation have been discussed in a number of studies, but a comprehensive understanding remains to be determined. In this work, we summarize information on variation or polymorphisms in rDNAs across a wide range of taxa amongst animals, fungi, plants, and protists. We discuss the definition and description of concerted evolution and describe whether incomplete concerted evolution of rDNAs predominantly affects coding or non-coding regions of rDNA units and if it leads to the formation of pseudogenes or not. We also discuss the factors contributing to rDNA variation, such as interspecific hybridization, meiotic cycles, rDNA expression status, genome size, and the activity of effector genes involved in genetic recombination, epigenetic modifications, and DNA editing. Finally, we argue that a combination of approaches is needed to target genetic and epigenetic phenomena influencing incomplete concerted evolution, to give a comprehensive understanding of the evolution and functional consequences of intragenomic variation in rDNA.
Collapse
Affiliation(s)
- Wencai Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Xianzhi Zhang
- Department of Horticulture, College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Sònia Garcia
- Institut Botànic de Barcelona, IBB (CSIC - Ajuntament de Barcelona), Barcelona, Spain
| | - Andrew R Leitch
- School of Biological and Behavioral Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Aleš Kovařík
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, CZ-61200, Czech Republic.
| |
Collapse
|
2
|
Lardelli M. An Alternative View of Familial Alzheimer's Disease Genetics. J Alzheimers Dis 2023; 96:13-39. [PMID: 37718800 DOI: 10.3233/jad-230313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Probabilistic and parsimony-based arguments regarding available genetics data are used to propose that Hardy and Higgin's amyloid cascade hypothesis is valid but is commonly interpreted too narrowly to support, incorrectly, the primacy of the amyloid-β peptide (Aβ) in driving Alzheimer's disease pathogenesis. Instead, increased activity of the βCTF (C99) fragment of AβPP is the critical pathogenic determinant altered by mutations in the APP gene. This model is consistent with the regulation of APP mRNA translation via its 5' iron responsive element. Similar arguments support that the pathological effects of familial Alzheimer's disease mutations in the genes PSEN1 and PSEN2 are not exerted directly via changes in AβPP cleavage to produce different ratios of Aβ length. Rather, these mutations likely act through effects on presenilin holoprotein conformation and function, and possibly the formation and stability of multimers of presenilin holoprotein and/or of the γ-secretase complex. All fAD mutations in APP, PSEN1, and PSEN2 likely find unity of pathological mechanism in their actions on endolysosomal acidification and mitochondrial function, with detrimental effects on iron homeostasis and promotion of "pseudo-hypoxia" being of central importance. Aβ production is enhanced and distorted by oxidative stress and accumulates due to decreased lysosomal function. It may act as a disease-associated molecular pattern enhancing oxidative stress-driven neuroinflammation during the cognitive phase of the disease.
Collapse
Affiliation(s)
- Michael Lardelli
- Alzheimer's Disease Genetics Laboratory, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
3
|
Fatira E, Havelka M, Labbé C, Depincé A, Iegorova V, Pšenička M, Saito T. Application of interspecific Somatic Cell Nuclear Transfer (iSCNT) in sturgeons and an unexpectedly produced gynogenetic sterlet with homozygous quadruple haploid. Sci Rep 2018; 8:5997. [PMID: 29662093 PMCID: PMC5902484 DOI: 10.1038/s41598-018-24376-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 03/22/2018] [Indexed: 11/09/2022] Open
Abstract
Somatic cell nuclear transfer (SCNT) is a very promising cloning technique for reconstruction of endangered animals. The aim of the present research is to implement the interspecific SCNT (iSCNT) technique to sturgeon; one fish family bearing some of the most critically endangered species. We transplanted single cells enzymatically isolated from a dissociated fin-fragment of the Russian sturgeon (Acipenser gueldenstaedtii) into non-enucleated eggs of the sterlet (Acipenser ruthenus), two species bearing different ploidy (4n and 2n, respectively). Up to 6.7% of the transplanted eggs underwent early development, and one feeding larva (0.5%) was successfully produced. Interestingly, although this transplant displayed tetraploidism (4n) as the donor species, the microsatellite and species-specific analysis showed recipient-exclusive homozygosis without any donor markers. Namely, with regards to this viable larva, host genome duplication occurred twice to form tetraploidism during its early development, probably due to iSCNT manipulation. The importance of this first attempt is to apply iSCNT in sturgeon species, establishing the crucial first steps by adjusting the cloning-methodology in sturgeon's biology. Future improvements in sturgeon's cloning are necessary for providing with great hope in sturgeon's reproduction.
Collapse
Affiliation(s)
- Effrosyni Fatira
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in Ceske Budejovice, Zátiší 728/II, 389 25, Vodňany, Czech Republic.
| | - Miloš Havelka
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in Ceske Budejovice, Zátiší 728/II, 389 25, Vodňany, Czech Republic
- Faculty and Graduate School of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate, Hokkaido, 041-8611, Japan
| | - Catherine Labbé
- INRA, Fish Physiology and Genomics department, Campus de Beaulieu, F-35000, Rennes, France
| | - Alexandra Depincé
- INRA, Fish Physiology and Genomics department, Campus de Beaulieu, F-35000, Rennes, France
| | - Viktoriia Iegorova
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in Ceske Budejovice, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Martin Pšenička
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in Ceske Budejovice, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Taiju Saito
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in Ceske Budejovice, Zátiší 728/II, 389 25, Vodňany, Czech Republic
- Nishiura Station, South Ehime Fisheries Research Center, Ehime University, Uchidomari, Ainan, Ehime, 798-4206, Japan
| |
Collapse
|
4
|
Bytyutskyy D, Kholodnyy V, Flajšhans M. 3-D structure, volume, and DNA content of erythrocyte nuclei of polyploid fish. Cell Biol Int 2014; 38:708-15. [PMID: 24446105 DOI: 10.1002/cbin.10247] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Accepted: 01/07/2014] [Indexed: 11/11/2022]
Abstract
We have explored the potential relationship between ploidy level, DNA content (pg DNA nucleus(-1)), and dimensional characteristics, such as volume (μm(3)), surface area (μm(2)), and 3-D structure of erythrocyte nuclei in a series of fish ploidy level models using Feulgen image analysis densitometry, flow cytometry, and confocal laser scanning microscopy. The species were diploid tench (Tinca tinca) (2n), Cuban gar (Atractosteus tristoechus) (2n), triploid tench (3n), evolutionary tetraploid sterlet (Acipenser ruthenus) (4n), evolutionary octaploid Siberian sturgeon (A. baerii) (8n), triploid Siberian sturgeon exhibiting dodecaploidy (12n), evolutionary 12n shortnose sturgeon (A. brevirostrum), and experimentally obtained sturgeon hybrids that were tetraploid, hexaploid (6n), heptaploid (7n), octaploid, decaploid (10n), dodecaploid and/or tetradecaploid (14n). Increase in ploidy was accompanied by growth of the nucleus and an increase in the number of flattened ellipsoid nuclei with increased transverse diameter. The volume (Vvoxel ) of erythrocyte nuclei, as the sum of voxels calculated from live cells, seems more accurate than volume (Vaxis ) calculated from measuring the major and minor axis, especially at higher and odd ploidy levels. Data of absolute and relative DNA content were in agreement with previously published reports. Species of the same ploidy level, but differing in DNA content, had a similar mean erythrocyte nuclear volume (Vvoxel ), as demonstrated in sterlet and a hybrid of sterlet and beluga (48.3 and 48.9 μm(3), respectively), with a respective mean DNA content of 3.74 and 3.10 pg DNA nucleus(-1). A similar relationship was found for the ploidy 6n, 10n, 12n. The surface-to-volume ratio decreased non-linearly with increasing ploidy. The DNA in erythrocyte nuclei appeared to be more densely packed with increase in ploidy level.
Collapse
Affiliation(s)
- Dmytro Bytyutskyy
- University of South Bohemia České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, Vodňany, 389 25, Czech Republic
| | | | | |
Collapse
|
5
|
Havelka M, Kašpar V, Hulák M, Flajšhans M. Sturgeon genetics and cytogenetics: a review related to ploidy levels and interspecific hybridization. FOLIA ZOOLOGICA 2011. [DOI: 10.25225/fozo.v60.i2.a3.2011] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Miloš Havelka
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses and Research Institute of Fish Culture and Hydrobiology, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Vojtěch Kašpar
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses and Research Institute of Fish Culture and Hydrobiology, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Martin Hulák
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses and Research Institute of Fish Culture and Hydrobiology, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Martin Flajšhans
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses and Research Institute of Fish Culture and Hydrobiology, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| |
Collapse
|
6
|
Vishnyakova KS, Mugue NS, Zelenina DA, Mikodina EV, Kovaleva OA, Madan GV, Yegorov YE. Cell culture and karyotype of Sakhalin sturgeon Acipenser mikadoi. BIOCHEMISTRY MOSCOW SUPPLEMENT SERIES A-MEMBRANE AND CELL BIOLOGY 2009. [DOI: 10.1134/s1990747809010061] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Molecular organization of 5S rDNA in sharks of the genus Rhizoprionodon: insights into the evolutionary dynamics of 5S rDNA in vertebrate genomes. Genet Res (Camb) 2009; 91:61-72. [PMID: 19220932 DOI: 10.1017/s0016672308009993] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In this study, we attempted a molecular characterization of the 5S rDNA in two closely related species of carcharhiniform sharks, Rhizoprionodon lalandii and Rhizoprionodon porosus, as well as a further comparative analysis of available data on lampreys, several fish groups and other vertebrates. Our data show that Rhizoprionodon sharks carry two 5S rDNA classes in their genomes: a short repeat class (termed class I) composed of approximately 185 bp repeats, and a large repeat class (termed class II) arrayed in approximately 465 bp units. These classes were differentiated by several base substitutions in the 5S coding region and by completely distinct non-transcribed spacers (NTS). In class II, both species showed a similar composition for both the gene coding region and the NTS region. In contrast, class I varied extensively both within and between the two shark species. A comparative analysis of 5S rRNA gene sequences of elasmobranchs and other vertebrates showed that class I is closely related to the bony fishes, whereas the class II gene formed a separate cartilaginous clade. The presence of two variant classes of 5S rDNA in sharks likely maintains the tendency for dual ribosomal classes observed in other fish species. The present data regarding the 5S rDNA organization provide insights into the dynamics and evolution of this multigene family in the fish genome, and they may also be useful in clarifying aspects of vertebrate genome evolution.
Collapse
|
8
|
Fontana F, Lanfredi M, Kirschbaum F, Garrido-Ramos MA, Robles F, Forlani A, Congiu L. Comparison of karyotypes of Acipenser oxyrinchus and A. sturio by chromosome banding and fluorescent in situ hybridization. Genetica 2007; 132:281-6. [PMID: 17624498 DOI: 10.1007/s10709-007-9171-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2006] [Accepted: 01/29/2007] [Indexed: 10/23/2022]
Abstract
A highly debated problem in Acipenseridae taxonomy is whether Acipenser oxyrinchus (North American Atlantic sturgeon) and A. sturio (European Atlantic sturgeon) are true species: a detailed comparison of their karyotypes could provide relevant information. Here we describe for the first time the karyotype of A. oxyrinchus (2n = 121 +/- 3), and its features, among which the constitutive heterochromatin, revealed by C-banding technique, the distribution of telomeric regions, and the 5S rRNA genes, detected by FISH. The results reveal that A. oxyrinchus and A. sturio karyotypes and features are quite similar. Moreover, comparing the results obtained through hybridization by FISH with HindIII and PstI satellite DNA in these and in other sturgeon species, no hybridization signals are detected in A. sturio and A. oxyrinchus, while A. stellatus and A. gueldenstaedtii show hybridization. Thus A. sturio and A. oxyrinchus appear very similar from a cytogenetic point of view: these and molecular data repeatedly point out that A. sturio and A. oxyrinchus represent a sister clade in comparison to all other sturgeon species up to now studied.
Collapse
Affiliation(s)
- Francesco Fontana
- Department of Biology, University of Ferrara, Via L. Borsari 46, 44100 Ferrara, Italy.
| | | | | | | | | | | | | |
Collapse
|
9
|
Morescalchi MA, Liguori I, Rocco L, Stingo V. Karyotypic characterization and genomic organization of the 5S rDNA in Erpetoichthys calabaricus (Osteichthyes, Polypteridae). Genetica 2006; 131:209-16. [PMID: 17136578 DOI: 10.1007/s10709-006-9119-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2006] [Accepted: 10/20/2006] [Indexed: 10/23/2022]
Abstract
Polypterids are a group of Osteichthyan fish whose evolutionary relationships with closer basal ray-finned and lobe-finned fish have been disputed since their discovery. Very little is known about the evolutive karyology in the whole Polypteriformes group. In order to fill this gap, a cytogenetic analysis of Erpetoichthys calabaricus species was performed, using both classical and molecular techniques. Karyotype structure (2n = 36; FN = 72), chromosome location of telomeric sequences (TTAGGG)n and ribosomal 5S and 18S rRNA genes were examined in twenty specimens of E. calabaricus by using Ag-NOR, classical C-banding, sequential CMA3/4',6-diaminidino-2-phenylindole (DAPI) staining and fluorescent in situ hybridization (FISH). CMA3 marked all centromerical and some (no. 1 and no. 15) telomeric regions. Staining with Ag-NOR and CMA3 showed the presence of two NORs on the p arm of the chromosome pair no. 1. Hybridization with telomeric probes (TTAGGG)n showed signals at the end of all chromosomes. 5S rDNA was cloned and sequenced. After the alignment, the 5S rRNA sequences revealed an organization made up of two different classes of tandem arrays (type I and type II). FISH with 5S rDNA marked the telomeric regions of the small chromosome pair no. 15, while FISH with 18S rDNA marked the telomeric region of the pair no. 1. The results obtained were compared with cariological data on closer species now available in literature.
Collapse
Affiliation(s)
- Maria Alessandra Morescalchi
- Dipartimento di Scienze della Vita, Seconda Università degli Studi di Napoli, Via Vivaldi 43, 81100, Caserta, Italy.
| | | | | | | |
Collapse
|
10
|
Hett AK, Ludwig A. SRY-related (Sox) genes in the genome of European Atlantic sturgeon (Acipenser sturio). Genome 2005; 48:181-6. [PMID: 15838539 DOI: 10.1139/g04-112] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The Sox-gene family represents an ancient group of transcription factors involved in numerous developmental processes and sex determination in vertebrates. SOX proteins are characterized by a conserved high mobility group (HMG)-box domain, which is responsible for DNA binding and bending. We studied Sox genes in sturgeon, one of the most primitive groups of fishes characterized by a high chromosome number. Male and female genomes were screened for Sox genes using highly degenerate primers that amplified a broad range of HMG boxes. A total of 102 clones, representing 22 different sequences coding for 8 Sox genes, was detected and classified according to their orthologues. Sox2, Sox3, Sox4, Sox9, Sox11, Sox17, Sox19, and Sox21 were found in sturgeon; these genes represent Sox groups B, C, E, and F. In a phylogenetic analysis (neighbor-joining, maximum likelihood, maximum parsimony), these genes clustered with their mouse orthologues. In the case of Sox4, Sox17, and Sox21, we found evidence of gene duplication.
Collapse
Affiliation(s)
- Anne Kathrin Hett
- Institute for Zoo and Wildlife Research, Department of Evolutionary Genetics, Berlin, Germany
| | | |
Collapse
|
11
|
Hett AK, Pitra C, Jenneckens I, Ludwig A. Characterization of Sox9 in European Atlantic sturgeon (Acipenser sturio). ACTA ACUST UNITED AC 2005; 96:150-4. [PMID: 15710905 DOI: 10.1093/jhered/esi008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
The Sox9 gene of Acipenser sturio, one of the most primitive vertebrates, was analyzed. No sex-specific differences were observed. Sturgeon Sox9 consists of three exons and two introns with completely conserved exon-intron boundaries showing high levels of homology to other vertebrate Sox9 sequences, especially in the N-terminus region containing the HMG box. We found strong evidence for negative (purifying) selection. In contrast to previous studies of other fishes, we observed no evidence for gene duplication in sturgeon. Phylogenetic analyses of Sox9 evolution revealed a basal position for sturgeon Sox9.
Collapse
Affiliation(s)
- A K Hett
- Department of Evolutionary Genetics, Leibniz-Institute for Zoo and Wildlife Research, Alfred-Kowalke-Strasse 17, 10315 Berlin, Germany
| | | | | | | |
Collapse
|
12
|
Fontana F, Bruch RM, Binkowski FP, Lanfredi M, Chicca M, Beltrami N, Congiu L. Karyotype characterization of the lake sturgeon, Acipenser fulvescens (Rafinesque 1817) by chromosome banding and fluorescent in situ hybridization. Genome 2004; 47:742-6. [PMID: 15284879 DOI: 10.1139/g04-028] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A karyotype analysis using several staining techniques was carried out on the North American lake sturgeon, Acipenser fulvescens. The chromosome number was found to be 2n = 262 ± 6. A representative karyotype of 264 chromosomes was composed of 134 meta- and submetacentrics, 70 telo- and acrocentrics, and 60 microchromosomes. The constitutive heterochromatin, revealed by C banding, was localized in various positions on several chromosomes, including microchromosomes. The signals of fluorescent in situ hybridization (FISH) with a HindIII satellite DNA probe were visible as centromeric heterochromatin blocks on 48 chromosomes. The telomeric repeat (TTAGGG)n detected by FISH was localized at both ends of all chromosomes and two chromosomes were entirely marked. Fluorescent staining with GC-specific chromomycin A3 showed recognizable fluorescent regions, whereas a more uniform base composition was revealed by the AT-specific 4',6-diamidino-2-phenylindole (DAPI). After silver staining, the active nucleolar organizer regions (NORs) were detected on 12 chromosomes. FISH with the 5S probe showed four signals on four small chromosomes. Our data suggest that A. fulvescens is a tetraploid species.Key words: karyotype, C banding, telomeric sequence, fluorochrome staining, satellite DNA, 5S rDNA.
Collapse
Affiliation(s)
- Francesco Fontana
- Department of Biology, University of Ferrara, Via L. Borsari 46, 44100 Ferrara, Italy.
| | | | | | | | | | | | | |
Collapse
|
13
|
Messias LHV, Ferreira DC, Wasko AP, Oliveira C, Foresti F, Martins C. 5S rDNA organization in the fish Synbranchus marmoratus (Synbranchidae, Synbranchiformes). Hereditas 2004; 139:228-31. [PMID: 15061806 DOI: 10.1111/j.1601-5223.2003.01759.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Luciano Henrique Vieira Messias
- Departamento de Morfologia, Instituto de Biociências, Universidade Estadual Paulista, 18618-000, Botucatu, São Paulo, Brazil. E-mail:
| | | | | | | | | | | |
Collapse
|
14
|
Fontana F, Lanfredi M, Congiu L, Leis M, Chicca M, Rossi R. Chromosomal mapping of 18S-28S and 5S rRNA genes by two-colour fluorescent in situ hybridization in six sturgeon species. Genome 2003; 46:473-7. [PMID: 12834065 DOI: 10.1139/g03-007] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The number and distribution of the 18S-28S and 5S rRNA (rDNA) gene sequences were examined on mitotic chromosomes of six sturgeon species by two-colour in situ hybridization. Four of the six species, Huso huso, Acipenser stellatus, Acipenser sturio, and Acipenser ruthenus, with about 120 chromosomes, showed from six to eight 18S-28S rDNA signals, while 5S rDNA signals were on only one chromosome pair. The two species with 250-270 chromosomes, Acipenser baerii and Acipenser transmontanus, showed from 10 to 12 18S-28S sites and two chromosome pairs bearing 5S rDNA signals. In all examined species, the rather intense 5S rDNA signals apparently overlapped those of 18S-28S rDNA. These data support the diploid-tetraploid relationships between the two chromosome groups of sturgeons. The close association between the two rDNA families in species belonging to an ancestral fish order, such as Acipenseriformes, supports the hypothesis that the association represents a primitive condition.
Collapse
Affiliation(s)
- Francesco Fontana
- Department of Biology, University of Ferrara, via L. Borsari, 46 I-44100 Ferrara, Italy.
| | | | | | | | | | | |
Collapse
|
15
|
Fontana F, Tagliavini J, Congiu L. Sturgeon genetics and cytogenetics: recent advancements and perspectives. Genetica 2002; 111:359-73. [PMID: 11841180 DOI: 10.1023/a:1013711919443] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The aim of this review is to introduce current knowledge in the field of sturgeon genetics. The first section deals with sturgeon cytogenetics, reviewing karyotype organization and polyploidization events during evolution of Acipenseriformes. The second section concerns the results of applications of molecular biology to studies of phylogenetic relationships between extant species, intraspecific analysis of wild populations and stocks for conservation purposes, together with characterization of molecular markers for species identification, relevant to forensic and conservation issues.
Collapse
Affiliation(s)
- F Fontana
- Dipartimento di Biologia Università di Ferrara, Italy.
| | | | | |
Collapse
|
16
|
Martins C, Galetti PM. Two 5S rDNA arrays in neotropical fish species: is it a general rule for fishes? Genetica 2002; 111:439-46. [PMID: 11841188 DOI: 10.1023/a:1013799516717] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In this paper we describe Southern blot hybridization results probed with 5S rRNA genes for several Neotropical fish species representing different taxonomic groups. All the studied species showed a general trend with the 5S rDNA tandem repeats organized in two distinct size-classes. At the same time, data on 5S rDNA organization in fish genome were summarized. Previous information on the organization and evolution of 5S rRNA gene arrays in the genome of this vertebrate group are in agreement with the Southern results here presented. Sequences obtained for several fish species have revealed the occurrence of two distinct 5S rDNA classes characterized by distinct nontranscribed spacer sequences, which are clustered in different chromosomes in some species. Moreover, the 5S rDNA loci are generally distributed in an interstitial position in the chromosomes and they are usually not syntenic to the 45S rDNA. The presence of two classes of 5S rDNA in several non-related fish species suggests that this could be a common condition for the 5S rRNA gene organization in the fish genome.
Collapse
Affiliation(s)
- C Martins
- Departamento de Morfologia, Instituto de Biociências, Universidade Estadual Paulista, Botucatu, SP, Brazil.
| | | |
Collapse
|
17
|
Ludwig A, Belfiore NM, Pitra C, Svirsky V, Jenneckens I. Genome duplication events and functional reduction of ploidy levels in sturgeon (Acipenser, Huso and Scaphirhynchus). Genetics 2001; 158:1203-15. [PMID: 11454768 PMCID: PMC1461728 DOI: 10.1093/genetics/158.3.1203] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Sturgeon (order Acipenserformes) provide an ideal taxonomic context for examination of genome duplication events. Multiple levels of ploidy exist among these fish. In a novel microsatellite approach, data from 962 fish from 20 sturgeon species were used for analysis of ploidy in sturgeon. Allele numbers in a sample of individuals were assessed at six microsatellite loci. Species with approximately 120 chromosomes are classified as functional diploid species, species with approximately 250 chromosomes as functional tetraploid species, and with approximately 500 chromosomes as functional octaploids. A molecular phylogeny of the sturgeon was determined on the basis of sequences of the entire mitochondrial cytochrome b gene. By mapping the estimated levels of ploidy on this proposed phylogeny we demonstrate that (I) polyploidization events independently occurred in the acipenseriform radiation; (II) the process of functional genome reduction is nearly finished in species with approximately 120 chromosomes and more active in species with approximately 250 chromosomes and approximately 500 chromosomes; and (III) species with approximately 250 and approximately 500 chromosomes arose more recently than those with approximately 120 chromosomes. These results suggest that gene silencing, chromosomal rearrangements, and transposition events played an important role in the acipenseriform genome formation. Furthermore, this phylogeny is broadly consistent with previous hypotheses but reveals a highly supported oceanic (Atlantic-Pacific) subdivision within the Acipenser/Huso complex.
Collapse
Affiliation(s)
- A Ludwig
- Institute of Freshwater Ecology and Inland Fisheries, 12561 Berlin, Germany.
| | | | | | | | | |
Collapse
|
18
|
Lanfredi M, Congiu L, Garrido-Ramos MA, de la Herrán R, Leis M, Chicca M, Rossi R, Tagliavini J, Ruiz Rejón C, Ruiz Rejón M, Fontana F. Chromosomal location and evolution of a satellite DNA family in seven sturgeon species. Chromosome Res 2001; 9:47-52. [PMID: 11272791 DOI: 10.1023/a:1026739616749] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The Hind III satellite DNA family, isolated from the Acipenser naccarii genome, was used as a probe for fluorescent in-situ hybridization (FISH) on the karyotype of seven sturgeon species, six belonging to the genus Acipenser and one to Huso. All species except one (A. sturio) exhibit from 8 to 80 chromosome hybridization signals, mainly localized at the pericentromeric regions. Eight chromosomes with weak hybridization signals are present in H. huso and A. ruthenus, which are characterized by a karyotype with about 120 chromosomes. The species with 240-260 chromosomes, A. transmontanus, A. naccarii, A. gueldenstaedtii, and A. baerii, show from 50 to 80 signals, prevalently localized around centromeres. Moreover, A. transmontanus and A. gueldenstaedtii show from 4 to 8 chromosomes with a double signal. The phylogenetic and evolutionary relationships among sturgeon species are discussed on the basis of number and morphology of signal-bearing chromosomes and on the localization of signals.
Collapse
Affiliation(s)
- M Lanfredi
- Department of Biology, University of Ferrara, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
de La Herrán R, Fontana F, Lanfredi M, Congiu L, Leis M, Rossi R, Ruiz Rejón C, Ruiz Rejón M, Garrido-Ramos MA. Slow rates of evolution and sequence homogenization in an ancient satellite DNA family of sturgeons. Mol Biol Evol 2001; 18:432-6. [PMID: 11230545 DOI: 10.1093/oxfordjournals.molbev.a003820] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- R de La Herrán
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, Granada, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|