1
|
Qi Y, Xu Y, Wang H, Wang Q, Li M, Han B, Liu H. Network Reorganization for Neurophysiological and Behavioral Recovery Following Stroke. Cent Nerv Syst Agents Med Chem 2024; 24:117-128. [PMID: 38299298 DOI: 10.2174/0118715249277597231226064144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/15/2023] [Accepted: 12/06/2023] [Indexed: 02/02/2024]
Abstract
Stroke continues to be the main cause of motor disability worldwide. While rehabilitation has been promised to improve recovery after stroke, efficacy in clinical trials has been mixed. We need to understand the cortical recombination framework to understand how biomarkers for neurophysiological reorganized neurotechnologies alter network activity. Here, we summarize the principles of the movement network, including the current evidence of changes in the connections and function of encephalic regions, recovery from stroke and the therapeutic effects of rehabilitation. Overall, improvements or therapeutic effects in limb motor control following stroke are correlated with the effects of interhemispheric competition or compensatory models of the motor supplementary cortex. This review suggests that future research should focus on cross-regional communication and provide fundamental insights into further treatment and rehabilitation for post-stroke patients.
Collapse
Affiliation(s)
- Yuan Qi
- Department of Neurology, Xuanwu Hospital Capital Medical University, Beijing CN, China
| | - Yujie Xu
- Chengde Medical College Affiliated Hospital, Chengde, Hebei, CN, China
| | - Huailu Wang
- Department of Neurology, Xuanwu Hospital Capital Medical University, Beijing CN, China
| | - Qiujia Wang
- Department of Neurology, Xuanwu Hospital Capital Medical University, Beijing CN, China
| | - Meijie Li
- Department of Neurology, Xuanwu Hospital Capital Medical University, Beijing CN, China
| | - Bo Han
- Department of Neurology, Xuanwu Hospital Capital Medical University, Beijing CN, China
| | - Haijie Liu
- Department of Neurology, Xuanwu Hospital Capital Medical University, Beijing CN, China
| |
Collapse
|
2
|
Gómez-de Frutos MC, García-Suárez I, Laso-García F, Diekhorst L, Otero-Ortega L, Alonso de Leciñana M, Fuentes B, Gutiérrez-Fernández M, Díez-Tejedor E, Ruíz-Ares G. B-Mode Ultrasound, a Reliable Tool for Monitoring Experimental Intracerebral Hemorrhage. Front Neurol 2022; 12:771402. [PMID: 35002926 PMCID: PMC8733327 DOI: 10.3389/fneur.2021.771402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/29/2021] [Indexed: 11/25/2022] Open
Abstract
Background: Magnetic resonance imaging (MRI) is currently used for the study of intracerebral hemorrhage (ICH) in animal models. However, ultrasound is an inexpensive, non-invasive and rapid technique that could facilitate the diagnosis and follow-up of ICH. This study aimed to evaluate the feasibility and reliability of B-mode ultrasound as an alternative tool for in vivo monitoring of ICH volume and brain structure displacement in an animal model. Methods: A total of 31 male and female Sprague-Dawley rats were subjected to an ICH model using collagenase-IV in the striatum following stereotaxic references. The animals were randomly allocated into 3 groups: healthy (n = 10), sham (n = 10) and ICH (n = 11). B-mode ultrasound studies with a 13-MHz probe were performed pre-ICH and at 5 h, 48 h, 4 d and 1 mo post-ICH for the assessment of ICH volume and displacement of brain structures, considering the distance between the subarachnoid cisterns and the dura mater. The same variables were studied by MRI at 48 h and 1 mo post-ICH. Results: Both imaging techniques showed excellent correlation in measuring ICH volume at 48 h (r = 0.905) and good at 1 mo (r = 0.656). An excellent correlation was also observed in the measured distance between the subarachnoid cisterns and the dura mater at 1 mo between B-mode ultrasound and MRI, on both the ipsilateral (r = 0.870) and contralateral (r = 0.906) sides of the lesion. Conclusion: B-mode ultrasound imaging appears to be a reliable tool for in vivo assessment of ICH volume and displacement of brain structures in animal models.
Collapse
Affiliation(s)
- Mari Carmen Gómez-de Frutos
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Center, Neuroscience Area of IdiPAZ Health Research Institute, La Paz University Hospital, Universidad Autónoma de Madrid, Madrid, Spain
| | - Iván García-Suárez
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Center, Neuroscience Area of IdiPAZ Health Research Institute, La Paz University Hospital, Universidad Autónoma de Madrid, Madrid, Spain.,Department of Emergency Service, San Agustín Hospital, University of San Agustin, Asturias, Spain
| | - Fernando Laso-García
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Center, Neuroscience Area of IdiPAZ Health Research Institute, La Paz University Hospital, Universidad Autónoma de Madrid, Madrid, Spain
| | - Luke Diekhorst
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Center, Neuroscience Area of IdiPAZ Health Research Institute, La Paz University Hospital, Universidad Autónoma de Madrid, Madrid, Spain
| | - Laura Otero-Ortega
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Center, Neuroscience Area of IdiPAZ Health Research Institute, La Paz University Hospital, Universidad Autónoma de Madrid, Madrid, Spain
| | - María Alonso de Leciñana
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Center, Neuroscience Area of IdiPAZ Health Research Institute, La Paz University Hospital, Universidad Autónoma de Madrid, Madrid, Spain
| | - Blanca Fuentes
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Center, Neuroscience Area of IdiPAZ Health Research Institute, La Paz University Hospital, Universidad Autónoma de Madrid, Madrid, Spain
| | - María Gutiérrez-Fernández
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Center, Neuroscience Area of IdiPAZ Health Research Institute, La Paz University Hospital, Universidad Autónoma de Madrid, Madrid, Spain
| | - Exuperio Díez-Tejedor
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Center, Neuroscience Area of IdiPAZ Health Research Institute, La Paz University Hospital, Universidad Autónoma de Madrid, Madrid, Spain
| | - Gerardo Ruíz-Ares
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Center, Neuroscience Area of IdiPAZ Health Research Institute, La Paz University Hospital, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
3
|
Farrher E, Chiang CW, Cho KH, Grinberg F, Buschbeck RP, Chen MJ, Wu KJ, Wang Y, Huang SM, Abbas Z, Choi CH, Shah NJ, Kuo LW. Spatiotemporal characterisation of ischaemic lesions in transient stroke animal models using diffusion free water elimination and mapping MRI with echo time dependence. Neuroimage 2021; 244:118605. [PMID: 34592438 DOI: 10.1016/j.neuroimage.2021.118605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 09/14/2021] [Accepted: 09/19/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND AND PURPOSE The excess fluid as a result of vasogenic oedema and the subsequent tissue cavitation obscure the microstructural characterisation of ischaemic tissue by conventional diffusion and relaxometry MRI. They lead to a pseudo-normalisation of the water diffusivity and transverse relaxation time maps in the subacute and chronic phases of stroke. Within the context of diffusion MRI, the free water elimination and mapping method (FWE) with echo time dependence has been proposed as a promising approach to measure the amount of free fluid in brain tissue robustly and to eliminate its biasing effect on other biomarkers. In this longitudinal study of transient middle cerebral artery occlusion (MCAo) in the rat brain, we investigated the use of FWE MRI with echo time dependence for the characterisation of the tissue microstructure and explored the potential of the free water fraction as a novel biomarker of ischaemic tissue condition. METHODS Adult rats received a transient MCAo. Diffusion- and transverse relaxation-weighted MRI experiments were performed longitudinally, pre-occlusion and on days 1, 3, 4, 5, 6, 7 and 10 after MCAo on four rats. Histology was performed for non-stroke and 1, 3 and 10 days after MCAo on three different rats at each time point. RESULTS The free water fraction was homogeneously increased in the ischaemic cortex one day after stroke. Between three and ten days after stroke, the core of the ischaemic tissue showed a progressive normalisation in the amount of free water, whereas the inner and outer border zones of the ischaemic cortex depicted a large, monotonous increase with time. The specific lesions in brain sections were verified by H&E and immunostaining. The tissue-specific diffusion and relaxometry MRI metrics in the ischaemic cortex were significantly different compared to their conventional counterpart. CONCLUSIONS Our results demonstrate that the free water fraction in FWE MRI with echo time dependence is a valuable biomarker, sensitive to the progressive degeneration in ischaemic tissue. We showed that part of the heterogeneity previously observed in conventional parameter maps can be accounted for by a heterogeneous distribution of free water in the tissue. Our results suggest that the temporal evolution of the free fluid fraction map at the core and inner border zone can be associated with the pathological changes linked to the evolution of vasogenic oedema. Namely, the homogeneous increase in free water one day after stroke and its tendency to normalise in the core of the ischaemic cortex starting three days after stroke, followed by a progressive increase in free water at the inner border zone from three to ten days after stroke. Finally, the monotonous increase in free fluid in the outer border zone of the cortex reflects the formation of fluid-filled cysts.
Collapse
Affiliation(s)
- Ezequiel Farrher
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich, Germany.
| | - Chia-Wen Chiang
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli, Taiwan
| | - Kuan-Hung Cho
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli, Taiwan
| | - Farida Grinberg
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich, Germany
| | - Richard P Buschbeck
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich, Germany
| | - Ming-Jye Chen
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli, Taiwan
| | - Kuo-Jen Wu
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, Taiwan
| | - Yun Wang
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, Taiwan
| | - Sheng-Min Huang
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli, Taiwan
| | - Zaheer Abbas
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich, Germany
| | - Chang-Hoon Choi
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich, Germany
| | - N Jon Shah
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich, Germany; Department of Neurology, RWTH Aachen University, Aachen, Germany; JARA - BRAIN - Translational Medicine, Aachen, Germany; Institute of Neuroscience and Medicine 11, INM-11, JARA, Forschungszentrum Jülich, Germany
| | - Li-Wei Kuo
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli, Taiwan; Institute of Medical Device and Imaging, National Taiwan University College of Medicine, Taipei, Taiwan.
| |
Collapse
|
4
|
Jirak D, Ziolkowska N, Turnovcova K, Karova K, Sykova E, Jendelova P, Romanyuk N. Metabolic Changes in Focal Brain Ischemia in Rats Treated With Human Induced Pluripotent Stem Cell-Derived Neural Precursors Confirm the Beneficial Effect of Transplanted Cells. Front Neurol 2019; 10:1074. [PMID: 31695666 PMCID: PMC6818685 DOI: 10.3389/fneur.2019.01074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 09/23/2019] [Indexed: 12/12/2022] Open
Abstract
There is currently no treatment for restoring lost neurological function after stroke. A growing number of studies have highlighted the potential of stem cells. However, the mechanisms underlying their beneficial effect have yet to be explored in sufficient detail. In this study, we transplanted human induced pluripotent stem cell-derived neural precursors (iPSC-NPs) in rat temporary middle cerebral artery occlusion (MCAO) model. Using magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) we monitored the effect of cells and assessed lesion volume and metabolite changes in the brain. We monitored concentration changes of myo-inositol (Ins), Taurine (Tau), Glycerophosphocholine+Phosphocholine (GPC+PCh), N-acetyl-aspartate+N-acetyl-aspartyl-glutamate (NAA+NAAG), Creatine+Phosphocreatine (Cr+PCr), and Glutamate+Glutamine (Glu+Gln) in the brains of control and iPSC-NP-transplanted rats. Based on initial lesion size, animals were divided into small lesion and big lesion groups. In the small lesion control group (SCL), lesion size after 4 months was three times smaller than initial measurements. In the small lesion iPSC-NP-treated group, lesion volume decreased after 1 month and then increased after 4 months. Although animals with small lesions significantly improved their motor skills after iPSC-NP transplantation, animals with big lesions showed no improvement. However, our MRI data demonstrate that in the big lesion iPSC-NP-treated (BTL) group, lesion size increased only up until 1 month after MCAO induction and then decreased. In contrast, in the big lesion control group, lesion size increased throughout the whole experiment. Significantly higher concentrations of Ins, Tau, GPC+PCh, NAA+NAAG, Cr+PCr, and Glu+Gln were found in in contralateral hemisphere in BTL animals 4 months after cell injection. Lesion volume decreased at this time point. Spectroscopic results of metabolite concentrations in lesion correlated with volumetric measurements of lesion, with the highest negative correlation observed for NAA+NAAG. Altogether, our results suggest that iPSC-NP transplantation decreases lesion volume and regulates metabolite concentrations within the normal range expected in healthy tissue. Further research into the ability of iPSC-NPs to differentiate into tissue-specific neurons and its effect on the long-term restoration of lesioned tissue is necessary.
Collapse
Affiliation(s)
- Daniel Jirak
- MR Unit, Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Prague, Czechia
- First Faculty of Medicine, Institute of Biophysics and Informatics, Charles University, Prague, Czechia
- Faculty of Health Studies, Technical University of Liberec, Liberec, Czechia
| | - Natalia Ziolkowska
- MR Unit, Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Prague, Czechia
- First Faculty of Medicine, Institute of Biophysics and Informatics, Charles University, Prague, Czechia
| | - Karolina Turnovcova
- Department of Neuroregeneration, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
| | - Kristyna Karova
- Department of Neuroregeneration, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
| | - Eva Sykova
- Department of Neuroscience, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
| | - Pavla Jendelova
- Department of Neuroregeneration, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
- Department of Neuroscience, Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Nataliya Romanyuk
- Department of Neuroregeneration, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
5
|
Abstract
Stroke consists of the loss of cerebral functions resulting from the interruption of blood supply to a region of the brain, and represents the second cause of death and the leading cause of major disability in adults in Europe. Stroke is a very active field of research at preclinical and clinical levels, and Magnetic Resonance Imaging (MRI) is one of the most powerful tools that scientist and clinicians have for the study of the onset, evolution and consequences of this devastating disease, as well as for the monitoring of the success of available treatments, or for the development of novel therapeutic strategies.MRI can tackle the study of stroke from different points of view, and at scales ranging from subcellular to systems biology level. Magnetic resonance spectroscopy (MRS) allows the noninvasive measurement of the levels of principal metabolites in the brain, and how they change during the course of the disease, or in response to therapy. Glutamate, in particular, is very important in the field of stroke. Several anatomical MR techniques allow the characterization of the lesion volumes, the formation of cytotoxic and vasogenic edema, changes in cerebral blood flow and volume, structural changes in gray and white matter, the obtaining of the vascular architecture and status, etc. At functional level, diverse modalities of functional MRI (fMRI) allow the assessment of the alteration in the function and organization of neuronal networks of the subject under study, as a consequence of the disease or in response to treatment. Finally, emerging imaging modalities that include temperature and pH mapping of the brain, imaging by chemical exchange saturation transfer effect (CEST), all of them closely related to tissue status, or the use of contrast agents for the targeting of tissue in theranostic approaches or for cell tracking studies in cell-based therapies, etc., are only a few examples of the power and versatility of MRI as a definitive tool for the study of stroke.In this work we will set our focus on preclinical imaging of stroke models, emphasizing the most commonly used imaging modalities in a stroke-dedicated research laboratory. However, advanced techniques will be briefly discussed, providing references to specialized literature for more advanced readers. Thus, the aim of this chapter consist in the description of a simple imaging protocol for the study of the most important and common aspects of stroke in a research laboratory.
Collapse
Affiliation(s)
- Pedro Ramos-Cabrer
- Molecular Imaging Unit, CIC biomaGUNE, Paseo de Miramón 182, 20009, Donostia-San Sebastián, Spain.
- Ikerbasque, Basque Foundation for Science, María Díaz de Haro 3, 48013, Bilbao, Spain.
| | - Daniel Padro
- Molecular Imaging Unit, CIC biomaGUNE, Paseo de Miramón 182, 20009, Donostia-San Sebastián, Spain
| |
Collapse
|
6
|
A general protocol of ultra-high resolution MR angiography to image the cerebro-vasculature in 6 different rats strains at high field. J Neurosci Methods 2017; 289:75-84. [PMID: 28694213 DOI: 10.1016/j.jneumeth.2017.07.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 07/06/2017] [Accepted: 07/06/2017] [Indexed: 11/23/2022]
Abstract
BACKGROUND Differences in the cerebro-vasculature among strains as well as individual animals might explain variability in animal models and thus, a non-invasive method tailored to image cerebral vessel of interest with high signal to noise ratio is required. NEW METHOD Experimentally, we describe a new general protocol of three-dimensional time-of-flight magnetic resonance angiography to visualize non-invasively the cerebral vasculature in 6 different rat strains. Flow compensated angiograms of Sprague Dawley, Wistar Kyoto, Lister Hooded, Long Evans, Fisher 344 and Spontaneous Hypertensive Rat strains were obtained without the use of contrast agents. At 11.7T using a repetition time of 60ms, an isotropic resolution of up to 62μm was achieved; total imaging time was 98min for a 3D data set. RESULTS The visualization of the cerebral arteries was improved by removing extra-cranial vessels prior to the calculation of maximum intensity projection to obtain the angiograms. Ultimately, we demonstrate that the newly implemented method is also suitable to obtain angiograms following middle cerebral artery occlusion, despite the presence of intense vasogenic edema 24h after reperfusion. COMPARISON WITH EXISTING METHODS The careful selection of the excitation profile and repetition time at a higher static magnetic field allowed an increase in spatial resolution to reliably detect of the hypothalamic artery, the anterior choroidal artery as well as arterial branches of the peri-amygdoidal complex and the optical nerve in six different rat strains. CONCLUSIONS MR angiography without contrast agent can be utilized to study cerebro-vascular abnormalities in various animal models.
Collapse
|
7
|
Mulder IA, Khmelinskii A, Dzyubachyk O, de Jong S, Rieff N, Wermer MJH, Hoehn M, Lelieveldt BPF, van den Maagdenberg AMJM. Automated Ischemic Lesion Segmentation in MRI Mouse Brain Data after Transient Middle Cerebral Artery Occlusion. Front Neuroinform 2017; 11:3. [PMID: 28197090 PMCID: PMC5281583 DOI: 10.3389/fninf.2017.00003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 01/05/2017] [Indexed: 11/13/2022] Open
Abstract
Magnetic resonance imaging (MRI) has become increasingly important in ischemic stroke experiments in mice, especially because it enables longitudinal studies. Still, quantitative analysis of MRI data remains challenging mainly because segmentation of mouse brain lesions in MRI data heavily relies on time-consuming manual tracing and thresholding techniques. Therefore, in the present study, a fully automated approach was developed to analyze longitudinal MRI data for quantification of ischemic lesion volume progression in the mouse brain. We present a level-set-based lesion segmentation algorithm that is built using a minimal set of assumptions and requires only one MRI sequence (T2) as input. To validate our algorithm we used a heterogeneous data set consisting of 121 mouse brain scans of various age groups and time points after infarct induction and obtained using different MRI hardware and acquisition parameters. We evaluated the volumetric accuracy and regional overlap of ischemic lesions segmented by our automated method against the ground truth obtained in a semi-automated fashion that includes a highly time-consuming manual correction step. Our method shows good agreement with human observations and is accurate on heterogeneous data, whilst requiring much shorter average execution time. The algorithm developed here was compiled into a toolbox and made publically available, as well as all the data sets.
Collapse
Affiliation(s)
- Inge A Mulder
- Department of Neurology, Leiden University Medical Center Leiden, Netherlands
| | - Artem Khmelinskii
- Division of Image Processing (LKEB), Department of Radiology, Leiden University Medical CenterLeiden, Netherlands; Percuros B.V.Enschede, Netherlands
| | - Oleh Dzyubachyk
- Division of Image Processing (LKEB), Department of Radiology, Leiden University Medical Center Leiden, Netherlands
| | - Sebastiaan de Jong
- Department of Human Genetics, Leiden University Medical Center Leiden, Netherlands
| | - Nathalie Rieff
- Department of Human Genetics, Leiden University Medical Center Leiden, Netherlands
| | - Marieke J H Wermer
- Department of Neurology, Leiden University Medical Center Leiden, Netherlands
| | - Mathias Hoehn
- Division of Image Processing (LKEB), Department of Radiology, Leiden University Medical CenterLeiden, Netherlands; Percuros B.V.Enschede, Netherlands; In-vivo-NMR Laboratory, Max Planck Institute for Metabolism ResearchCologne, Germany
| | - Boudewijn P F Lelieveldt
- Division of Image Processing (LKEB), Department of Radiology, Leiden University Medical CenterLeiden, Netherlands; Intelligent Systems Group, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of TechnologyDelft, Netherlands
| | - Arn M J M van den Maagdenberg
- Department of Neurology, Leiden University Medical CenterLeiden, Netherlands; Department of Human Genetics, Leiden University Medical CenterLeiden, Netherlands
| |
Collapse
|
8
|
Dai HY, He R, Zhang Y, Wu RH, Xiao YY. Adenoviral vector mediated ferritin over-expression in mesenchymal stem cells detected by 7T MRI in vitro. PLoS One 2017; 12:e0185260. [PMID: 28945778 PMCID: PMC5612726 DOI: 10.1371/journal.pone.0185260] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 09/08/2017] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVE The aim of the present work was to verify whether adenoviral vector mediated ferritin over-expression in mesenchymal stem cells could be detected by 7T MRI device, and to explore the relationship between ferritin content and MRI signal intensities. METHODS A recombined adenoviral vector (rAdV) encoding ferritin heavy chain (FTH1) subunit was specially designed for the aim of infecting bone marrow mesenchymal stem cells (BMSCs). Ferritin over-expression in BMSCs was determined by cell immunocytochemistry and the ferritin content in cells was determined by ELISA assay. BMSCs were subjected to cell viability, proliferation and multi-differentiation analyses as well as 7T MRI test using fast spin-echo pulse sequence. The R2 value andδR2 were calculated according to T2 mapping images. RESULTS As was confirmed by cell immunocytochemistry and ELISA assay, rAdV mediated ferritin was over-expressed in BMSCs. Ferritin over-expression did not interfere with stem cell viability or pluripotent differentiation but slowed cell proliferation. The R2 value of BMSCs-FTH1 vs control BMSCs from 1-4 weeks was16.65±1.28 s-1 vs 13.99±0.80 s-1, (t = 3.94, p = 0.004), 15.63±1.37 s-1 vs 13.87±0.83 s-1 (t = 2.47, p = 0.039), 15.53±0.88 s-1 vs 14.25±0.53 s-1 (t = 2.80, p = 0.023) and 14.61±1.28 s-1 vs 13.69±1.03 s-1 (t = 1.25, p = 0.24), respectively. δR2 gradually decreased from 1-4 weeks and the difference between the groups had statistical significance (F = 12.45, p<0.01).δR2 was positively correlated with OD value (r = 0.876, p<0.01) and ferritin concentration (r = 0.899, p<0.01) as determined by Pearson correlation. CONCLUSIONS Our study confirms that ferritin could be over-expressed in BMSCs as a result of rAdV mediated infection and could be quantitatively detected by 7T MRI device. The differences in T2 signal intensities and R2 values stem from internal contrast generated by endogenous ferritin over-expression. The correlation between δR2, OD and ferritin concentration suggests that MRI can detect ferritin signal change accurately.
Collapse
Affiliation(s)
- Hai-yang Dai
- Department of Medical Imaging, Huizhou Municipal Central Hospital, Huizhou, China
| | - Rong He
- Department of Medical Imaging, the 2 Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Ying Zhang
- Department of Medical Imaging, the 2 Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Ren-hua Wu
- Department of Medical Imaging, the 2 Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Ye-yu Xiao
- Department of Medical Imaging, the 2 Affiliated Hospital of Shantou University Medical College, Shantou, China
- * E-mail:
| |
Collapse
|
9
|
Zhang Y, Hao D, Lv X, Li S, Tian Y, Zheng D, Zeng Y. Quantification of MRI and MRS characteristics changes in a rat model at different stage of cerebral ischemia. Neurol Res 2016; 38:640-6. [PMID: 27214576 DOI: 10.1080/01616412.2016.1181345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
BACKGROUND A better understanding the mechanisms of cerebral ischemia is important both for diagnosis and treatment. OBJECTIVE The study aimed to quantify several characteristics of magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) to indicate the brain tissue changes at different stage of cerebral ischemia in rats. METHODS In the present study, a rat model of cerebral ischemia was established by middle cerebral artery occlusion (MCAO) in the left hemisphere. MRI and MRS were performed on 15 Sprague Dawley rats 4 H, 24 H, and 1 W after MCAO. Apparent diffusion coefficient (ADC), relative ADC including FNR, PNR, PNF, and metabolite ratio NCC were proposed to reflect the changes of water diffusion and metabolism in brain tissue. RESULTS ADCs of focal zone and penumbra zone from 1 W group were significantly larger than those from 4H group, respectively (both p < 0.05). PNR and PNF of 24H and 1 W groups were significantly less than 4H group (all p < 0.01). NCCs of focal zone and penumbra zone were significantly less than the normal zone within 4H, 24H, and 1 W groups, respectively (both p < 0.01). While NCCs of penumbra zone from 24H and 1 W groups were significantly larger than 4H group (both p < 0.01). CONCLUSION We conclude that combination of MRI and MRS characteristics can provide significant indicators for ischemic damage at different stage of cerebral ischemia in a rat model.
Collapse
Affiliation(s)
- Yan Zhang
- a College of Life Science and Bioengineering , Beijing University of Technology , Beijing , China
| | - Dongmei Hao
- a College of Life Science and Bioengineering , Beijing University of Technology , Beijing , China
| | - Xiuhua Lv
- a College of Life Science and Bioengineering , Beijing University of Technology , Beijing , China
| | - Shaowu Li
- b Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University , Beijing , China
| | - Yunqing Tian
- c State Intellectual Property Office of the P.R.C , Beijing , China
| | - Dingchang Zheng
- d Faculty of Medical Science, Health and Wellbeing Academy , Anglia Ruskin University , Chelmsford , UK
| | - Yanjun Zeng
- b Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University , Beijing , China
| |
Collapse
|
10
|
Kang BM, Mun CW, Chun SI, Kim TH, Son DB, Kim HD. Noninvasive and repetitive measurement of cellular metabolite from human osteosarcoma cells (MG-63) using 3.0 tesla proton ( 1 H) MR spectroscopy. Magn Reson Med 2016; 76:1912-1918. [PMID: 26762686 DOI: 10.1002/mrm.26075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 10/18/2015] [Accepted: 11/06/2015] [Indexed: 01/14/2023]
Abstract
PURPOSE This study suggests a noninvasive and repetitive measurement method using 1 H magnetic resonance spectroscopy to monitor changes in cellular metabolites within a single sample. METHODS Longitudinal acquisition of cellular metabolites from three-dimensional cultured human osteosarcoma (MG-63) cells was conducted using 3.0 Tesla 1 H MRS for 2 weeks at three time points: days 1, 7, and 14. During the MR spectroscopy (MRS) scan, cell specimen temperatures were kept constant at 37°C by a lab-developed magnetic resonance compatible thermostatic device. A DNA assay and live/dead staining of the cell specimens were carried out at each time point to verify the MRS measurements. RESULTS Cell viability in the proposed device did not significantly differ from that of cells in a conventional incubator (P = 0.946). Cell proliferation and choline concentration increased during the first week, but remained constant during the second week. Lactate did not change during the first week, but increased during the second week. Likewise, cell viability remained constant until day 7, then decreased. CONCLUSION The proposed MRS technique results in a survivable environment for longitudinal studies of cells and provides a new way to measure metabolomic changes over time in single specimens of cells. Magn Reson Med 76:1912-1918, 2016. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Bok-Man Kang
- Department of Biomedical Engineering/u-HARC, Inje University, Gyeongnam, Republic of Korea
| | - Chi-Woong Mun
- Department of Biomedical Engineering/u-HARC, Inje University, Gyeongnam, Republic of Korea.,Department of Health Science and Technology, Inje University, Gyeongnam, Republic of Korea
| | - Song-I Chun
- Department of Biomedical Engineering/u-HARC, Inje University, Gyeongnam, Republic of Korea
| | - Tae-Hyung Kim
- Department of Health Science and Technology, Inje University, Gyeongnam, Republic of Korea
| | - Doo-Beum Son
- Department of Radiolgoy, Haeundae Paik Hospital, Inje University, Haeundae-gu, Busan, Republic of Korea
| | - Hong-Dae Kim
- Department of Radiolgoy, Haeundae Paik Hospital, Inje University, Haeundae-gu, Busan, Republic of Korea
| |
Collapse
|
11
|
Kim DH, Seo YK, Thambi T, Moon GJ, Son JP, Li G, Park JH, Lee JH, Kim HH, Lee DS, Bang OY. Enhancing neurogenesis and angiogenesis with target delivery of stromal cell derived factor-1α using a dual ionic pH-sensitive copolymer. Biomaterials 2015; 61:115-25. [PMID: 26001076 DOI: 10.1016/j.biomaterials.2015.05.025] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 05/03/2015] [Accepted: 05/14/2015] [Indexed: 12/20/2022]
Abstract
In this study, we hypothesized that the delivery of molecules that regulate the microenvironment after a cerebral infarction can influence regeneration potential after a stroke. Stromal cell-derived factor-1α (SDF-1α) is a chemoattractant molecule that plays a pivotal role in recruiting endothelial progenitor cells (EPCs) to the infarct region after stroke. Increased SDF-1α expression leads to increased EPCs homing at the infarct region and induces neurogenesis, angiogenesis, neuroprotection, and stem cell homing. Thus, we evaluated the effects of targeted delivery of SDF-1α using a pH-sensitive polymer poly (urethane amino sulfamethazine) (PUASM), a synthetic macromolecule with potential for targeted drug delivery in acidic conditions, to enhance therapeutic neurogenesis and angiogenesis in a rat model of permanent middle cerebral artery occlusion. A dual ionic pH-sensitive copolymer PUASM-based random copolymer was designed and synthesized for the controlled release of SDF-1α in stroke. Owing to the unique characteristics of PUASM, it exhibited a dual ionic pH-sensitive property in an aqueous solution. At pH 8.5, the copolymer exhibited a negative charge and was water soluble. Interestingly, when the pH decreased to 7.4, PUASM could form a micelle and encapsulate protein effectively via the ionic interaction between a negatively charged polymer and a positively charged protein. At pH 5.5, the ionization of tertiary amines led to the disassembly of the micellar structure and released the protein rapidly. Then, we investigated the effect of systemic administration of SDF-1α-loaded pH-sensitive polymeric micelles in a stroke induced rat model. An enzyme-linked immunosorbent assay showed increased expression of SDF-1α in the ischemic region, indicating that the pH-sensitive micelles effectively delivered SDF-1α into the ischemic region. In order to observe the biodistribution of SDF-1α in the ischemic region, it was labeled with the near-infrared dye, Cy5.5. Optical imaging showed that the Cy5.5 signal increased in the infarct region 24 h after administration. Immunohistochemistry data showed that targeted delivery of SDF-1α enhanced neurogenesis and angiogenesis, but did not influence cell survival or inflammation. These observations suggest that SDF-1α-loaded pH-sensitive polymeric micelles can be used as pH-triggered targeting agents and can effectively modify the microenvironment to increase innate neurorestorative processes.
Collapse
Affiliation(s)
- Dong Hee Kim
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, Republic of Korea
| | - Young Kyu Seo
- School of Chemical Engineering, Theranostic Macromolecules Research Center, Sungkyunkwan University, Suwon, Republic of Korea
| | - Thavasyappan Thambi
- School of Chemical Engineering, Theranostic Macromolecules Research Center, Sungkyunkwan University, Suwon, Republic of Korea
| | - Gyeong Joon Moon
- Stem Cell and Regenerative Medicine Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, Republic of Korea
| | - Jung Pyo Son
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, Republic of Korea
| | - Guangri Li
- School of Chemical Engineering, Theranostic Macromolecules Research Center, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jae Hyung Park
- School of Chemical Engineering, Theranostic Macromolecules Research Center, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jung Hee Lee
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, Republic of Korea; Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea; Center for Molecular and Cellular Imaging, Samsung Biomechanical Research Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Hyeon Ho Kim
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, Republic of Korea; Samsung Biomechanical Research Institute, Institute for Future Medicine, Samsung Medical Center, Seoul, Republic of Korea
| | - Doo Sung Lee
- School of Chemical Engineering, Theranostic Macromolecules Research Center, Sungkyunkwan University, Suwon, Republic of Korea.
| | - Oh Young Bang
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, Republic of Korea; Stem Cell and Regenerative Medicine Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, Republic of Korea; Departments of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
12
|
Shemesh N, Rosenberg JT, Dumez JN, Grant SC, Frydman L. Metabolic T1 dynamics and longitudinal relaxation enhancement in vivo at ultrahigh magnetic fields on ischemia. J Cereb Blood Flow Metab 2014; 34:1810-7. [PMID: 25204392 PMCID: PMC4269758 DOI: 10.1038/jcbfm.2014.149] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 07/25/2014] [Accepted: 07/28/2014] [Indexed: 01/02/2023]
Abstract
Interruptions in cerebral blood flow may lead to devastating neural outcomes. Magnetic resonance has a central role in diagnosing and monitoring these insufficiencies, as well as in understanding their underlying metabolic consequences. Magnetic resonance spectroscopy (MRS) in particular can probe ischemia via the signatures of endogenous metabolites including lactic acid (Lac), N-acetylaspartate, creatine (Cre), and cholines. Typically, MRS reports on these metabolites' concentrations. This study focuses on establishing the potential occurrence of in vivo longitudinal relaxation enhancement (LRE) effects-a phenomenon involving a reduction of the apparent T1 with selective bandwidth excitations- in a rat stroke model at 21.1 T. Statistically significant reductions in Cre's apparent T1s were observed at all the examined post-ischemia time points for both ipsi- and contralateral hemispheres, thereby establishing the existence of LREs for this metabolite in vivo. Ischemia-dependent LRE trends were also noted for Lac in the ipsilateral hemisphere only 24 hours after ischemia. Metabolic T1s were also found to vary significantly as a function of post-stroke recovery time, with the most remarkable and rapid changes observed for Lac T1s. The potential of such measurements to understand stroke at a molecular level and assist in its diagnosis, is discussed.
Collapse
Affiliation(s)
- Noam Shemesh
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Jens T Rosenberg
- 1] National High Magnetic Field Laboratory, The Florida State University, Tallahassee, Florida, USA [2] Chemical & Biomedical Engineering, The Florida State University, Tallahassee, Florida, USA
| | - Jean-Nicolas Dumez
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Samuel C Grant
- 1] National High Magnetic Field Laboratory, The Florida State University, Tallahassee, Florida, USA [2] Chemical & Biomedical Engineering, The Florida State University, Tallahassee, Florida, USA
| | - Lucio Frydman
- 1] Department of Chemical Physics, Weizmann Institute of Science, Rehovot, Israel [2] National High Magnetic Field Laboratory, The Florida State University, Tallahassee, Florida, USA
| |
Collapse
|
13
|
Brain connectivity plasticity in the motor network after ischemic stroke. Neural Plast 2013; 2013:924192. [PMID: 23738150 PMCID: PMC3655657 DOI: 10.1155/2013/924192] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 04/07/2013] [Indexed: 01/06/2023] Open
Abstract
The motor function is controlled by the motor system that comprises a series of cortical and subcortical areas interacting via anatomical connections. The motor function will be disturbed when the stroke lesion impairs either any of these areas or their connections. More and more evidence indicates that the reorganization of the motor network including both areas and their anatomical and functional connectivity might contribute to the motor recovery after stroke. Here, we review recent studies employing models of anatomical, functional, and effective connectivity on neuroimaging data to investigate how ischemic stroke influences the connectivity of motor areas and how changes in connectivity relate to impaired function and functional recovery. We suggest that connectivity changes constitute an important pathophysiological aspect of motor impairment after stroke and important mechanisms of motor recovery. We also demonstrate that therapeutic interventions may facilitate motor recovery after stroke by modulating the connectivity among the motor areas. In conclusion, connectivity analyses improved our understanding of the mechanisms of motor recovery after stroke and may help to design hypothesis-driven treatment strategies and sensitive measures for outcome prediction in stroke patients.
Collapse
|
14
|
Grinberg F, Ciobanu L, Farrher E, Shah NJ. Diffusion kurtosis imaging and log-normal distribution function imaging enhance the visualisation of lesions in animal stroke models. NMR IN BIOMEDICINE 2012; 25:1295-304. [PMID: 22461260 DOI: 10.1002/nbm.2802] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 02/22/2012] [Accepted: 02/29/2012] [Indexed: 05/16/2023]
Abstract
In this work, we report a case study of a stroke model in animals using two methods of quantification of the deviations from Gaussian behaviour: diffusion kurtosis imaging (DKI) and log-normal distribution function imaging (LNDFI). The affected regions were predominantly in grey rather than in white matter. The parameter maps were constructed for metrics quantifying the apparent diffusivity (evaluated from conventional diffusion tensor imaging, DKI and LNDFI) and for those quantifying the degree of deviations (mean kurtosis and a parameter σ characterising the width of the distribution). We showed that both DKI and LNDFI were able to dramatically enhance the visualisation of ischaemic lesions in comparison with conventional methods. The largest relative change in the affected versus healthy regions was observed in the mean kurtosis values. The average changes in the mean kurtosis and σ values in the lesions were a factor of two to three larger than the relative changes observed in the mean diffusivity. In conclusion, the applied methods promise valuable perspectives in the assessment of stroke.
Collapse
Affiliation(s)
- Farida Grinberg
- Institute of Neuroscience and Medicine - 4, Forschungszentrum Juelich GmbH, Juelich, Germany.
| | | | | | | |
Collapse
|
15
|
Wahajuddin, Arora S. Superparamagnetic iron oxide nanoparticles: magnetic nanoplatforms as drug carriers. Int J Nanomedicine 2012; 7:3445-71. [PMID: 22848170 PMCID: PMC3405876 DOI: 10.2147/ijn.s30320] [Citation(s) in RCA: 553] [Impact Index Per Article: 46.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
A targeted drug delivery system is the need of the hour. Guiding magnetic iron oxide nanoparticles with the help of an external magnetic field to its target is the principle behind the development of superparamagnetic iron oxide nanoparticles (SPIONs) as novel drug delivery vehicles. SPIONs are small synthetic γ-Fe2O3 (maghemite) or Fe3O4 (magnetite) particles with a core ranging between 10 nm and 100 nm in diameter. These magnetic particles are coated with certain biocompatible polymers, such as dextran or polyethylene glycol, which provide chemical handles for the conjugation of therapeutic agents and also improve their blood distribution profile. The current research on SPIONs is opening up wide horizons for their use as diagnostic agents in magnetic resonance imaging as well as for drug delivery vehicles. Delivery of anticancer drugs by coupling with functionalized SPIONs to their targeted site is one of the most pursued areas of research in the development of cancer treatment strategies. SPIONs have also demonstrated their efficiency as nonviral gene vectors that facilitate the introduction of plasmids into the nucleus at rates multifold those of routinely available standard technologies. SPION-induced hyperthermia has also been utilized for localized killing of cancerous cells. Despite their potential biomedical application, alteration in gene expression profiles, disturbance in iron homeostasis, oxidative stress, and altered cellular responses are some SPION-related toxicological aspects which require due consideration. This review provides a comprehensive understanding of SPIONs with regard to their method of preparation, their utility as drug delivery vehicles, and some concerns which need to be resolved before they can be moved from bench top to bedside.
Collapse
Affiliation(s)
- Wahajuddin
- Pharmacokinetics and Metabolism Division, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India.
| | | |
Collapse
|
16
|
Functional MRI and diffusion tensor imaging of brain reorganization after experimental stroke. Transl Stroke Res 2012; 3:36-43. [PMID: 22408692 PMCID: PMC3284658 DOI: 10.1007/s12975-011-0143-8] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 12/23/2011] [Accepted: 12/27/2011] [Indexed: 11/27/2022]
Abstract
The potential of the adult brain to reorganize after ischemic injury is critical for functional recovery and provides a significant target for therapeutic strategies to promote brain repair. Despite the accumulating evidence of brain plasticity, the interaction and significance of morphological and physiological modifications in post-stroke brain tissue remain mostly unclear. Neuroimaging techniques such as functional MRI (fMRI) and diffusion tensor imaging (DTI) enable in vivo assessment of the spatial and temporal pattern of functional and structural changes inside and outside ischemic lesion areas. This can contribute to the elucidation of critical aspects in post-stroke brain remodeling. Task/stimulus-related fMRI, resting-state fMRI, or pharmacological MRI enables direct or indirect measurement of neuronal activation, functional connectivity, or neurotransmitter system responses, respectively. DTI allows estimation of the structural integrity and connectivity of white matter tracts. Together, these MRI methods provide an unprecedented means to (a) measure longitudinal changes in tissue structure and function close by and remote from ischemic lesion areas, (b) evaluate the organizational profile of neural networks after stroke, and (c) identify degenerative and restorative processes that affect post-stroke functional outcome. Besides, the availability of MRI in clinical institutions as well as research laboratories provides an optimal basis for translational research on stroke recovery. This review gives an overview of the current status and perspectives of fMRI and DTI applications to study brain reorganization in experimental stroke models.
Collapse
|
17
|
Cheung JS, Wang X, Zhe Sun P. Magnetic resonance characterization of ischemic tissue metabolism. Open Neuroimag J 2011; 5:66-73. [PMID: 22216079 PMCID: PMC3245409 DOI: 10.2174/1874440001105010066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Revised: 02/23/2011] [Accepted: 03/13/2011] [Indexed: 11/22/2022] Open
Abstract
Magnetic resonance imaging (MRI) and spectroscopy (MRS) are versatile diagnostic techniques capable of characterizing the complex stroke pathophysiology, and hold great promise for guiding stroke treatment. Particularly, tissue viability and salvageability are closely associated with its metabolic status. Upon ischemia, ischemic tissue metabolism is disrupted including altered metabolism of glucose and oxygen, elevated lactate production/accumulation, tissue acidification and eventually, adenosine triphosphate (ATP) depletion and energy failure. Whereas metabolism impairment during ischemic stroke is complex, it may be monitored non-invasively with magnetic resonance (MR)-based techniques. Our current article provides a concise overview of stroke pathology, conventional and emerging imaging and spectroscopy techniques, and data analysis tools for characterizing ischemic tissue damage.
Collapse
Affiliation(s)
- Jerry S Cheung
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | | | | |
Collapse
|
18
|
Dhawan J, Benveniste H, Luo Z, Nawrocky M, Smith SD, Biegon A. A new look at glutamate and ischemia: NMDA agonist improves long-term functional outcome in a rat model of stroke. FUTURE NEUROLOGY 2011; 6:823-834. [PMID: 22140354 DOI: 10.2217/fnl.11.55] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ischemic stroke triggers a massive, although transient, glutamate efflux and excessive activation of NMDA receptors (NMDARs), possibly leading to neuronal death. However, multiple clinical trials with NMDA antagonists failed to improve, or even worsened, stroke outcome. Recent findings of a persistent post-stroke decline in NMDAR density, which plays a pivotal role in plasticity and memory formation, suggest that NMDAR stimulation, rather than inhibition, may prove beneficial in the subacute period after stroke. AIM: This study aims to examine the effect of the NMDAR partial agonist d-cycloserine (DCS) on long-term structural, functional and behavioral outcomes in rats subjected to transient middle cerebral artery occlusion, an animal model of ischemic stroke. MATERIALS #ENTITYSTARTX00026; METHODS: Rats (n = 36) that were subjected to 90 min of middle cerebral artery occlusion were given a single injection of DCS (10 mg/kg) or vehicle (phosphate-buffered saline) 24 h after occlusion and followed up for 30 days. MRI (structural and functional) was used to measure infarction, atrophy and cortical activation due to electrical forepaw stimulation. Memory function was assessed on days 7, 21 and 30 postocclusion using the novel object recognition test. A total of 20 nonischemic controls were included for comparison. RESULTS: DCS treatment resulted in significant improvement of somatosensory and cognitive function relative to vehicle treatment. By day 30, cognitive performance of the DCS-treated animals was indistinguishable from nonischemic controls, while vehicle-treated animals demonstrated a stable memory deficit. DCS had no significant effect on infarction or atrophy. CONCLUSION: These results support a beneficial role for NMDAR stimulation during the recovery period after stroke, most likely due to enhanced neuroplasticity rather than neuroprotection.
Collapse
Affiliation(s)
- Jasbeer Dhawan
- Medical Department, Brookhaven National Laboratory, Building 490, Upton, NY 11973, USA
| | | | | | | | | | | |
Collapse
|
19
|
Brain irradiation improves focal cerebral ischemia recovery in aged rats. J Neurol Sci 2011; 306:143-53. [DOI: 10.1016/j.jns.2011.02.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Revised: 01/21/2011] [Accepted: 02/28/2011] [Indexed: 12/14/2022]
|
20
|
Berthet C, Lei H, Gruetter R, Hirt L. Early Predictive Biomarkers for Lesion After Transient Cerebral Ischemia. Stroke 2011; 42:799-805. [DOI: 10.1161/strokeaha.110.603647] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background and Purpose—
Despite the improving imaging techniques, it remains challenging to predict the outcome early after transient cerebral ischemia. The aim of this study was thus to identify early metabolic biomarkers for outcome prediction.
Methods—
We modeled transient ischemic attacks and strokes in mice. Using high-field MR spectroscopy, we correlated early changes in the neurochemical profile of the ischemic striatum with histopathologic alterations at a later time point.
Results—
A significant increase in glutamine was measured between 3 hours and 8 hours after all ischemic events followed by reperfusion independently of the outcome and can thus be considered as an indicator of recent transient ischemia. On the other hand, a reduction of the score obtained by summing the concentrations of N-acetyl aspartate, glutamate, and taurine was a good predictor of an irreversible lesion as early as 3 hours after ischemia.
Conclusions—
We identified biomarkers of reversible and irreversible ischemic damage, which can be used in an early predictive evaluation of stroke outcome.
Collapse
Affiliation(s)
- Carole Berthet
- From the Department of Clinical Neurosciences (C.B., L.H.), Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland; the Laboratory of Functional and Metabolic Imaging (H.L., R.G.), Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; the Department of Radiology (H.L., R.G.), University of Lausanne, Lausanne, Switzerland; and the Department of Radiology (R.G.), University of Geneva, Geneva, Switzerland
| | - Hongxia Lei
- From the Department of Clinical Neurosciences (C.B., L.H.), Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland; the Laboratory of Functional and Metabolic Imaging (H.L., R.G.), Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; the Department of Radiology (H.L., R.G.), University of Lausanne, Lausanne, Switzerland; and the Department of Radiology (R.G.), University of Geneva, Geneva, Switzerland
| | - Rolf Gruetter
- From the Department of Clinical Neurosciences (C.B., L.H.), Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland; the Laboratory of Functional and Metabolic Imaging (H.L., R.G.), Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; the Department of Radiology (H.L., R.G.), University of Lausanne, Lausanne, Switzerland; and the Department of Radiology (R.G.), University of Geneva, Geneva, Switzerland
| | - Lorenz Hirt
- From the Department of Clinical Neurosciences (C.B., L.H.), Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland; the Laboratory of Functional and Metabolic Imaging (H.L., R.G.), Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; the Department of Radiology (H.L., R.G.), University of Lausanne, Lausanne, Switzerland; and the Department of Radiology (R.G.), University of Geneva, Geneva, Switzerland
| |
Collapse
|
21
|
Karki K, Knight RA, Shen LH, Kapke A, Lu M, Li Y, Chopp M. Chronic brain tissue remodeling after stroke in rat: a 1-year multiparametric magnetic resonance imaging study. Brain Res 2010; 1360:168-76. [PMID: 20828544 DOI: 10.1016/j.brainres.2010.08.098] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 08/27/2010] [Accepted: 08/30/2010] [Indexed: 11/17/2022]
Abstract
Rats subjected to 2h of transient middle cerebral artery occlusion were studied temporally over 1 year by magnetic resonance imaging (MRI) and behavioral testing. Multiparameter MRI measures of T(2), T(1), T(1) in the presence of off-resonance saturation of the bound proton signal (T(1sat)), apparent diffusion coefficient (ADC) and susceptibility-weighted imaging (SWI) were obtained at 1 day, 1, 2, 3 and 4 weeks, and 3, 6, 9 and 12 months post-ischemia. Regions of interest included: ischemic core (damaged both at 1 day and later); new lesion (normal at 1 day, but damaged later); and recovery (damaged at 1 day, but normal later) areas. Hematoxylin and eosin, Prussian blue and ED-1, a monoclonal antibody murine macrophage marker, stainings were performed for histological assessment. Core area T(2) and ADC values increased until ~6 months, and T(1) and T(1sat) until ~12 months. New lesion area MRI parameter values increased until ~6 months (T(2), T(1) and ADC), or ~1 year (T(1sat)). Lesion area was largest at 1day (mean±SD: 37.0±13.7mm(2)) and smallest at 1 year (18.1±10.5mm(2)). Recovery area was largest at 3 weeks (8.9±3.8mm(2)) and smallest at 1year (6.4±3.3mm(2)). The ipsilateral/contralateral ventricle area ratio was 0.7±0.2 at 1 day and increased significantly at 1 year (2.4±0.7). Iron-laden macrophages, histologically confirmed at 1 year, were detected in the lesion borders by SWI at 3, 6, 9 and 12 months. Our data indicate that MRI detectable changes of ischemia-damaged brain tissue continue for at least 1 year post-ischemia.
Collapse
Affiliation(s)
- Kishor Karki
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Yang D, Knight RA, Han Y, Karki K, Zhang J, Ding C, Chopp M, Seyfried DM. Vascular recovery promoted by atorvastatin and simvastatin after experimental intracerebral hemorrhage: magnetic resonance imaging and histological study. J Neurosurg 2010; 114:1135-42. [PMID: 20722611 DOI: 10.3171/2010.7.jns10163] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
OBJECT Longitudinal multiparametric MR imaging and histological studies were performed on simvastatin- or atorvastatin-treated rats to evaluate vascular repair mechanisms after experimental intracerebral hemorrhage (ICH). METHODS Primary ICH was induced in adult Wistar rats by direct infusion of 100 μl of autologous blood into the striatal region adjacent to the subventricular zone. Atorvastatin (2 mg/kg), simvastatin (2 mg/kg), or phosphate-buffered saline was given orally at 24 hours post-ICH and continued daily for 7 days. The temporal evolution of ICH in each group was assessed by MR imaging measurements of T2, T1(sat), and cerebral blood flow in brain areas corresponding to the bulk of the hemorrhage (core) and edematous border (rim). Rats were killed after the final MR imaging examination at 28 days, and histological studies were performed. A small group of sham-operated animals was also studied. Neurobehavioral testing was performed in all animals. Analysis of variance methods were used to compare results from the treatment and control groups, with significance inferred at p ≤ 0.05. RESULTS Using histological indices, animals treated with simvastatin and atorvastatin had significantly increased angiogenesis and synaptogenesis in the hematoma rim compared with the control group (p ≤ 0.05). The statin-treated animals exhibited significantly increased cerebral blood flow in the hematoma rim at 4 weeks, while blood-brain barrier permeability (T1(sat)) and edema (T2) in the corresponding regions were reduced. Both statin-treated groups showed significant neurological improvement from 2 weeks post-ICH onward. CONCLUSIONS The results of the present study demonstrate that simvastatin and atorvastatin significantly improve the recovery of rats from ICH, possibly via angiogenesis and synaptic plasticity. In addition, in vivo multiparametric MR imaging measurements over time can be effectively applied to the experimental ICH model for longitudinal assessment of the therapeutic intervention.
Collapse
Affiliation(s)
- Dongmei Yang
- Departments of Neurosurgery, Henry Ford Hospital, Detroit, Michigan 48202, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Dhawan J, Benveniste H, Nawrocky M, Smith SD, Biegon A. Transient focal ischemia results in persistent and widespread neuroinflammation and loss of glutamate NMDA receptors. Neuroimage 2010; 51:599-605. [PMID: 20206701 DOI: 10.1016/j.neuroimage.2010.02.073] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Revised: 02/22/2010] [Accepted: 02/25/2010] [Indexed: 10/19/2022] Open
Abstract
Stroke is accompanied by neuroinflammation in humans and animal models. To examine the temporal and anatomical profile of neuroinflammation and NMDA receptors (NMDAR) in a stroke model, rats (N=17) were subjected to a 90 min occlusion of the middle cerebral artery (MCAO) and compared to sham (N=5) and intact (N=4) controls. Striatal and parietal cortical infarction was confirmed by MRI 24h after reperfusion. Animals were killed 14 or 30-40 days later and consecutive coronal cryostat sections were processed for quantitative autoradiography with the neuroinflammation marker [(3)H]PK11195 and the NMDAR antagonist [(3)H]MK801. Significantly increased specific binding of [(3)H]PK11195 relative to non-ischemic controls was observed in the ipsilateral striatum (>3 fold, p<0.0001), substantia innominata (>2 fold) with smaller (20%-80%) but statistically significant (p=0.002-0.04) ipsilateral increases in other regions partially involved in the infarct such as the parietal and piriform cortex, and in the lateral septum, which was not involved in the infarct. Trends for increases in PBR density were also observed in the contralateral hemisphere. In the same animals, NMDAR specific binding was significantly decreased bilaterally in the septum, substantia innominata and ventral pallidum. Significant decreases were also seen in the ipsilateral striatum, accumbens, frontal and parietal cortex. The different anatomical distribution of the two phenomena suggests that neuroinflammation does not cause the observed reduction in NMDAR, though loss of NMDAR may be locally augmented in ipsilateral regions with intense neuroinflammation. Persistent, bilateral loss of NMDAR, probably reflecting receptor down regulation and internalization, may be responsible for some of the effects of stroke on cognitive function which cannot be explained by infarction alone.
Collapse
Affiliation(s)
- Jasbeer Dhawan
- Medical Department, Brookhaven National Laboratory, Building 490, Upton, NY 11973, USA
| | | | | | | | | |
Collapse
|
24
|
Chin Y, Sato Y, Mase M, Kato T, Herculano B, Sekino M, Ohsaki H, Ageyama N, Ono F, Terao K, Yoshikawa Y, Hisatsune T. Transient decrease in cerebral motor pathway fractional anisotropy after focal ischemic stroke in monkey. Neurosci Res 2010; 66:406-11. [PMID: 20117152 DOI: 10.1016/j.neures.2010.01.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Revised: 12/22/2009] [Accepted: 01/05/2010] [Indexed: 11/17/2022]
Abstract
In this study, diffusion tensor MRI was used to examine the restoration of the cerebral white matter of macaque monkeys after unilateral cerebral multiple microinfarctions. Post-stroke, the monkeys showed deficits in several neurological functions, including motor functions, but most of the deficits resolved within 6 weeks. Very interestingly, the fractional anisotropy (a value determined by diffusion tensor MRI), of the monkeys' affected motor pathways dropped transiently, indicating a damage in the neural tracts. However, it returned to normal levels within 6 weeks after the stroke, concomitant with the gradual recovery of motor functions at subacute phase.
Collapse
Affiliation(s)
- Yo Chin
- Department of Integrated Biosciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Planas AM. Noninvasive Brain Imaging in Small Animal Stroke Models: MRI and PET. NEUROMETHODS 2010. [DOI: 10.1007/978-1-60761-750-1_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
26
|
Superparamagnetic iron oxide nanoparticles: diagnostic magnetic resonance imaging and potential therapeutic applications in neurooncology and central nervous system inflammatory pathologies, a review. J Cereb Blood Flow Metab 2010; 30:15-35. [PMID: 19756021 PMCID: PMC2949106 DOI: 10.1038/jcbfm.2009.192] [Citation(s) in RCA: 305] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Superparamagnetic iron oxide nanoparticles have diverse diagnostic and potential therapeutic applications in the central nervous system (CNS). They are useful as magnetic resonance imaging (MRI) contrast agents to evaluate: areas of blood-brain barrier (BBB) dysfunction related to tumors and other neuroinflammatory pathologies, the cerebrovasculature using perfusion-weighted MRI sequences, and in vivo cellular tracking in CNS disease or injury. Novel, targeted, nanoparticle synthesis strategies will allow for a rapidly expanding range of applications in patients with brain tumors, cerebral ischemia or stroke, carotid atherosclerosis, multiple sclerosis, traumatic brain injury, and epilepsy. These strategies may ultimately improve disease detection, therapeutic monitoring, and treatment efficacy especially in the context of antiangiogenic chemotherapy and antiinflammatory medications. The purpose of this review is to outline the current status of superparamagnetic iron oxide nanoparticles in the context of biomedical nanotechnology as they apply to diagnostic MRI and potential therapeutic applications in neurooncology and other CNS inflammatory conditions.
Collapse
|
27
|
Qiao M, Zhao Z, Barber P, Foniok T, Sun S, Tuor U. Development of a model of recurrent stroke consisting of a mild transient stroke followed by a second moderate stroke in rats. J Neurosci Methods 2009; 184:244-50. [DOI: 10.1016/j.jneumeth.2009.08.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Revised: 07/24/2009] [Accepted: 08/13/2009] [Indexed: 11/28/2022]
|
28
|
Kaur J, Tuor UI, Zhao Z, Petersen J, Jin AY, Barber PA. Quantified T1 as an adjunct to apparent diffusion coefficient for early infarct detection: a high-field magnetic resonance study in a rat stroke model. Int J Stroke 2009; 4:159-68. [PMID: 19659815 DOI: 10.1111/j.1747-4949.2009.00288.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Thrombolytic treatment for acute stroke has focused attention on accurate identification of injured vs. salvageable brain tissue, particularly if reperfusion occurs. However, our knowledge of differences in acute magnetic resonance imaging changes between transient and permanent ischemia and how they reflect permanently damaged tissue remain incomplete. AIMS AND/OR HYPOTHESIS Magnetic resonance imaging characteristics vary widely following ischemia and, at acute times, T1, T2 or apparent diffusion coefficient quantification may differentiate viable tissue from that destined to infarct. METHODS High-resolution magnetic resonance imaging was performed at 9.4 T following permanent or transient (90 min) middle cerebral artery occlusion in spontaneously hypertensive male rats or Wistar rats. Within 30 min, quantified maps of the apparent diffusion coefficient, T1, and T2 were performed and measures determined for sequences in the infarct and compared with that in the contralateral region. Lesion area for each magnetic resonance imaging sequence (T1, T2, apparent diffusion coefficient, and perfusion maps) was delineated for different time points using quantitative threshold measures and compared with final histological damage. RESULTS Early extensive changes in T1 following both transient and permanent middle cerebral artery occlusion provided a sensitive early indicator of the final infarct area. Following reperfusion, small but measurable early T2 changes indicative of early development of vasogenic edema occurred in the transient but not permanent groups. In transient middle cerebral artery occlusion, at 70 min apparent diffusion coefficient decreased (P<0.001) and then pseudonormalized at 150 min. In permanent middle cerebral artery occlusion, apparent diffusion coefficient declined over time. Lesion area detected using T1 maps exceeded that with T2 and apparent diffusion coefficient at 70 and 150 min in both groups (P<0.001). CONCLUSIONS The results indicate that, independent of reperfusion, quantified T1 is superior for detecting early ischemic changes that are not necessarily detected with T2 or apparent diffusion coefficient.
Collapse
Affiliation(s)
- J Kaur
- Department of Clinical Neurosciences, Experimental Imaging Centre, Faculty of Medicine, University of Calgary, Calgary, AB, Canada
| | | | | | | | | | | |
Collapse
|
29
|
Qiao M, Meng S, Foniok T, Tuor UI. Mild cerebral hypoxia–ischemia produces a sub‐acute transient inflammatory response that is less selective and prolonged after a substantial insult. Int J Dev Neurosci 2009; 27:691-700. [PMID: 19631731 DOI: 10.1016/j.ijdevneu.2009.07.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Revised: 07/08/2009] [Accepted: 07/15/2009] [Indexed: 10/20/2022] Open
Affiliation(s)
- Min Qiao
- MR Technology, National Research Council Institute for Biodiagnostics (West)CalgaryAlbertaCanada
| | - Shuzhen Meng
- Experimental Imaging CentreFaculty of MedicineUniversity of CalgaryCanada
- Department of PediatricsThe Second Clinical HospitalChina Medical UniversityChina
| | - Tadeusz Foniok
- MR Technology, National Research Council Institute for Biodiagnostics (West)CalgaryAlbertaCanada
| | - Ursula I. Tuor
- MR Technology, National Research Council Institute for Biodiagnostics (West)CalgaryAlbertaCanada
- Experimental Imaging CentreFaculty of MedicineUniversity of CalgaryCanada
| |
Collapse
|
30
|
Lei H, Berthet C, Hirt L, Gruetter R. Evolution of the neurochemical profile after transient focal cerebral ischemia in the mouse brain. J Cereb Blood Flow Metab 2009; 29:811-9. [PMID: 19223915 DOI: 10.1038/jcbfm.2009.8] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Evolution of the neurochemical profile consisting of 19 metabolites after 30 mins of middle cerebral artery occlusion was longitudinally assessed at 3, 8 and 24 h in 6 to 8 microL volumes in the striatum using localized 1H-magnetic resonance spectroscopy at 14.1 T. Profound changes were detected as early as 3 h after ischemia, which include elevated lactate levels in the presence of significant glucose concentrations, decreases in glutamate and a transient twofold glutamine increase, likely to be linked to the excitotoxic release of glutamate and conversion into glial glutamine. Interestingly, decreases in N-acetyl-aspartate (NAA), as well as in taurine, exceeded those in neuronal glutamate, suggesting that the putative neuronal marker NAA is rather a sensitive marker of neuronal viability. With further ischemia evolution, additional, more profound concentration decreases were detected, reflecting a disruption of cellular functions. We conclude that early changes in markers of energy metabolism, glutamate excitotoxicity and neuronal viability can be detected with high precision non-invasively in mice after stroke. Such investigations should lead to a better understanding and insight into the sequential early changes in the brain parenchyma after ischemia, which could be used for identifying new targets for neuroprotection.
Collapse
Affiliation(s)
- Hongxia Lei
- Laboratory of Functional and Metabolic Imaging, Institute of the Physics of Biological System, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| | | | | | | |
Collapse
|
31
|
Kang BT, Jang DP, Lee JH, Jung DI, Gu SH, Lim CY, Kim YB, Quan FS, Kim HJ, Woo EJ, Cho ZH, Park HM. Detection of cerebral metabolites in a canine model of ischemic stroke using 1H magnetic resonance spectroscopy. Res Vet Sci 2009; 87:300-6. [PMID: 19278700 DOI: 10.1016/j.rvsc.2009.01.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2008] [Revised: 11/26/2008] [Accepted: 01/22/2009] [Indexed: 11/15/2022]
Abstract
Proton magnetic resonance spectroscopy ((1)H MRS) provides in vivo biochemical information on tissue metabolites. The purpose of this study was to investigate the serial metabolic changes of (1)H MRS in the cerebrum of ischemic dogs. An ischemic stroke was induced in five health laboratory beagle dogs by permanent middle cerebral artery occlusion using a silicone plug. (1)H MRS was serially performed three times with a 1.5-T MR system: before, three days after and 10days after the stroke. Immunohistochemical staining was performed to determine the expression of neuronal nuclei (NeuN) and glial fibrillary acidic protein (GFAP) at both the ipsilateral and contralateral cerebral cortex. Reduced levels of N-acetyl-asparate (p<0.05), choline (Cho), creatine (Cr) and myo-inositol (mI), and a marked increase in the lactate (Lac) level (p<0.01) were found at three days after the stroke. At 10days after the stroke, the levels of Lac significantly increased (p<0.01); however, the other metabolites were partially elevated. The changes of Cr, Cho and mI were not statistically significant (p>0.05) when the before and after stroke values were compared. There was a significant loss of NeuN and GFAP immunoreactivity at the ischemic core. (1)H MRS may be to a useful diagnostic tool for the evaluation of ischemic stroke in dogs.
Collapse
Affiliation(s)
- Byeong-Teck Kang
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Konkuk University, #1 Hwayang-dong, Gwang-jin-gu, Seoul 143-701, South Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Ashwal S, Obenaus A, Snyder EY. Neuroimaging as a basis for rational stem cell therapy. Pediatr Neurol 2009; 40:227-36. [PMID: 19218036 DOI: 10.1016/j.pediatrneurol.2008.09.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Revised: 09/04/2008] [Accepted: 09/25/2008] [Indexed: 02/02/2023]
Abstract
Neonatal global or focal hypoxic-ischemic brain injury remains a frequent and devastating condition, with serious long-term sequelae. An important issue in any neonatal clinical trial of neuroprotective agents relates to developing accurate measures of injury severity and also suitable measures of the response to treatment. Advanced magnetic resonance imaging techniques can acquire serial and noninvasive data about brain structure, metabolic activity, and the response to injury or treatment. These imaging methods need validation in appropriate animal models for translational research studies in human newborns. This review describes several approaches that use imaging as well as proton magnetic resonance spectroscopy to assess the severity of ischemic injury (e.g., for possible candidate selection) and for monitoring the progression and evolution of injury over time and as an indicator of recovery or response to treatment. Preliminary data are presented on how imaging can be used after neural stem cell implantation to characterize the migration rate, the magnitude of stem cell proliferation, and their final location. Imaging has the potential to allow monitoring of many dimensions of neuroprotective treatments and can be expected to contribute to efficacy and safety when clinical trials using neural stem cells or other neuroprotective agents become available.
Collapse
Affiliation(s)
- Stephen Ashwal
- Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, California 92354, USA.
| | | | | |
Collapse
|
33
|
Li N, Jia X, Murari K, Parlapalli R, Rege A, Thakor NV. High spatiotemporal resolution imaging of the neurovascular response to electrical stimulation of rat peripheral trigeminal nerve as revealed by in vivo temporal laser speckle contrast. J Neurosci Methods 2009; 176:230-6. [DOI: 10.1016/j.jneumeth.2008.07.013] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Revised: 07/15/2008] [Accepted: 07/15/2008] [Indexed: 11/28/2022]
|
34
|
Tuor UI, Meng S, Qiao M, Webster NB, Crowley SM, Dyck RH, Tomanek B. Differential progression of magnetization transfer imaging changes depending on severity of cerebral hypoxic-ischemic injury. J Cereb Blood Flow Metab 2008; 28:1613-23. [PMID: 18506197 DOI: 10.1038/jcbfm.2008.49] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We hypothesized that magnetic resonance magnetization transfer (MT) imaging would be sensitive for detecting cerebral ischemic injury in white matter of neonatal brain. We compared the progression of changes in T(2) and the MT ratio (MTR) after cerebral hypoxic-ischemic insults of differing severity in neonatal rats. Magnetization transfer imaging parameters were first optimized, and then MTR and T(2) maps were acquired at various times after a mild (rather selective white matter) or substantial insult produced by unilateral cerebral hypoxia-ischemia. Depending on insult severity, time after insult, and region (e.g., subcortical white matter or cortex), cerebral hypoxia-ischemia produced reductions in MTR and an increase in T(2). The exception was acutely at 1 to 5 h at which time points MTR was reduced ipsilaterally in white matter, whereas T(2) was not affected significantly. Progression of imaging changes differed in rats grouped according to whether gross damage was present after chronic recovery. Behavioral changes were generally associated with chronic reductions in MTR and gross brain damage. Magnetization transfer imaging was capable of early detection of hypoxic-ischemic injury and particularly sensitive for identifying the progression of cerebral injury in white matter. Magnetization transfer ratio has potential for assisting with early diagnosis and treatment assessment for infants affected by perinatal hypoxia-ischemia.
Collapse
Affiliation(s)
- Ursula I Tuor
- MR Technology, Institute for Biodiagnostics (West), Calgary, Alberta, Canada.
| | | | | | | | | | | | | |
Collapse
|
35
|
Lin CY, Chang C, Cheung WM, Lin MH, Chen JJ, Hsu CY, Chen JH, Lin TN. Dynamic changes in vascular permeability, cerebral blood volume, vascular density, and size after transient focal cerebral ischemia in rats: evaluation with contrast-enhanced magnetic resonance imaging. J Cereb Blood Flow Metab 2008; 28:1491-501. [PMID: 18478021 DOI: 10.1038/jcbfm.2008.42] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Postischemic cerebral blood flow and blood volume changes have been associated with angiogenesis; nevertheless, the spatiotemporal changes in vascular permeability, vascular density, and vessel size have not been investigated. Here we report a prolonged increase in vascular permeability from day 3 to day 21 after ischemia, in particular in the reperfused outer cortical layers and leptomeninges. Increased cerebral blood volume (CBV) was observed from day 3 to day 14, whereas increased blood volume in small vessels, primarily capillaries, was noticed from day 7 to day 14 in the reperfused cortex. An initial decrease in vascular density and a reciprocal increase in vessel size were observed within the reperfused cortex at days 1 and 3 after ischemia. Immunohistological analysis confirmed a similar decrease in microvessel density and an increase in vessel size in vessels with a diameter greater than 30 microm. These large-sized vessels exhibited intense basic fibroblast growth factor and endothelial nitric oxide synthase immunoreactivity, suggesting the growth of collateral vessels. By contrast, a late increase in vascular density was noticed in the reperfused outer cortex at days 14 and 21 after ischemia. Together, these findings suggest that the early phase of CBV increase is likely because of the improvement in collateral circulation, whereas the late phase of CBV increase is attributed to the surge of angiogenesis.
Collapse
Affiliation(s)
- Chien-Yuan Lin
- Interdisciplinary MRI/MRS Lab, Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan, ROC
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Obenaus A, Ashwal S. Magnetic resonance imaging in cerebral ischemia: focus on neonates. Neuropharmacology 2008; 55:271-80. [PMID: 18601935 DOI: 10.1016/j.neuropharm.2008.06.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2007] [Revised: 05/30/2008] [Accepted: 06/02/2008] [Indexed: 10/21/2022]
Abstract
Magnetic resonance imaging (MRI) has dramatically changed our ability to diagnose and treat stroke as well as follow its evolution and response to treatment. Early stroke and ischemia can be visualized using diffusion-weighted imaging (DWI), which utilizes proton diffusion within tissues as a reporter for evolving neuropathology that reflects cytotoxic edema, particularly during the first several days after injury. Historically, T2-weighted imaging (T2WI) has been used for evaluation of vasogenic edema and also is a reliable indicator of injured tissue late after injury. While visual analysis of MR data can provide information about the evolution of injury, quantitative analyses allow definitive and objective evaluations of injury size and location and the effectiveness of novel therapeutic strategies. We review the clinical basis of imaging for stroke and ischemia diagnosis and the methods for post-processing of MR data that could provide novel insights into the evolution and pathophysiology of stroke in the newborn.
Collapse
Affiliation(s)
- Andre Obenaus
- Department of Radiation Medicine, Loma Linda University, Loma Linda, CA 92354, USA.
| | | |
Collapse
|
37
|
Soria G, Wiedermann D, Justicia C, Ramos-Cabrer P, Hoehn M. Reproducible imaging of rat corticothalamic pathway by longitudinal manganese-enhanced MRI (L-MEMRI). Neuroimage 2008; 41:668-74. [PMID: 18445533 DOI: 10.1016/j.neuroimage.2008.03.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Revised: 02/17/2008] [Accepted: 03/08/2008] [Indexed: 11/16/2022] Open
Abstract
Manganese-enhanced MRI (MEMRI) has been described as a powerful tool to depict the architecture of neuronal circuits. The aim of the present study was to optimize the experimental conditions of MEMRI that permits the study of insult-induced alterations of the somatosensory pathway in a longitudinal way, and to provide functional information on rat corticothalamic connectivity or disturbances thereof. A guidance screw was implanted in the skull of the rats, over the forelimb representation area of the primary somatosensory cortex (S1fl), allowing repetitive injections at the same stereotactic coordinates. MnCl2 (200 nL, 0.3 M) was injected 1.5 mm below the dura using a calibrated microcapillary. Animals received MnCl2 injections 3 times at 15 day intervals. Spatiotemporal patterns showed a significant hyperintensity on T1-weighted images induced by manganese transport in structures related to the somatosensory pathway, i.e. globus pallidus, caudate putamen, thalamus and substantia nigra. 7 days after MnCl2 injection hyperintensity was only evident at some points surrounding the injection site. Complete loss of manganese-induced contrast was achieved after 15 days after injection. Functional MRI (fMRI) experiments were performed under the same conditions, 24 h after MnCl2 injection. Activation of S1fl was observed showing that fMRI and MEMRI studies are compatible and can be performed in parallel in the same animals. The present study shows, for the first time, a robust and reproducible technique to perform longitudinal MEMRI (L-MEMRI) experiments and to study the time course of alterations of the corticothalamic connections following stroke in the rat.
Collapse
Affiliation(s)
- Guadalupe Soria
- In-vivo-NMR-Laboratory, Max-Planck-Institute for Neurological Research, Köln, Germany
| | | | | | | | | |
Collapse
|
38
|
Leithner C, Gertz K, Schröck H, Priller J, Prass K, Steinbrink J, Villringer A, Endres M, Lindauer U, Dirnagl U, Royl G. A flow sensitive alternating inversion recovery (FAIR)-MRI protocol to measure hemispheric cerebral blood flow in a mouse stroke model. Exp Neurol 2008; 210:118-27. [DOI: 10.1016/j.expneurol.2007.10.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2007] [Revised: 09/21/2007] [Accepted: 10/10/2007] [Indexed: 10/22/2022]
|
39
|
Rodríguez-González R, Hurtado O, Sobrino T, Castillo J. Neuroplasticity and cellular therapy in cerebral infarction. Cerebrovasc Dis 2007; 24 Suppl 1:167-80. [PMID: 17971653 DOI: 10.1159/000107393] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Stroke is the second to third most common cause of death in adults, and more than a third of people who survive a stroke will have severe disability. Therapeutic options currently centre on fibrinolytic treatment, but its limitations restrict use to a small proportion of patients. Although a wide range of neuroprotective substances has been effective in experimental models, they have repeatedly failed in clinical trials because of toxicity or loss of effectiveness. Recent strategies based on neuroplasticity and cellular therapy have shown significant efficacy in improving functional recovery in experimental models, although further study is still necessary to clarify how the brain responds to ischaemic damage and is able to reorganize itself in the long term. Although steps must still be taken to ensure the safety and feasibility of treatments based on neuroplasticity and cellular therapy, neurorepair strategies provide promising future therapeutic options for stroke.
Collapse
Affiliation(s)
- Raquel Rodríguez-González
- Clinical Neuroscience Research Laboratory, Division of Vascular Neurology, Department of Neurology, Hospital Clínico Universitario, University of Santiago de Compostela, Santiago de Compostela, Spain
| | | | | | | |
Collapse
|
40
|
Magnitsky S, Walton RM, Wolfe JH, Poptani H. Magnetic resonance imaging as a tool for monitoring stem cell migration. NEURODEGENER DIS 2007; 4:314-21. [PMID: 17627135 DOI: 10.1159/000101888] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Noninvasive monitoring of stem cells is an important step in developing stem-cell-based therapies. Among several imaging techniques available, magnetic resonance imaging (MRI) provides an effective way to detect implanted stem cells in live animals. In this mini-review, we discuss the available MRI contrast agents and different cell-labeling strategies used for detection of stem cell migration in the brain. The potential effects of MRI contrast agents on stem cell viability and differentiation are also discussed.
Collapse
Affiliation(s)
- S Magnitsky
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | |
Collapse
|
41
|
Fernández-López D, Pazos MR, Tolón RM, Moro MA, Romero J, Lizasoain I, Martínez-Orgado J. The cannabinoid agonist WIN55212 reduces brain damage in an in vivo model of hypoxic-ischemic encephalopathy in newborn rats. Pediatr Res 2007; 62:255-60. [PMID: 17622949 DOI: 10.1203/pdr.0b013e318123fbb8] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Neonatal hypoxic-ischemic encephalopathy (NHIE) is a devastating condition for which effective therapeutic treatments are still unavailable. Cannabinoids emerge as neuroprotective substances in adult animal studies; therefore, we aimed herein to test whether cannabinoids might reduce brain damage induced by hypoxiaischemia (HI) in newborn rats. Thus, 7-d-old Wistar rats (P7) were exposed to 8% O2 for 120 min after left carotid artery ligature, then received s.c. vehicle (VEH) (HI+VEH), the cannabinoid agonist WIN55212 (WIN) (0.1 mg/kg), or WIN with the CB1 or CB2 receptor antagonist SR141617 (SR1) (3 mg/kg) or SR141588 (SR2) (2 mg/kg). Brain damage was assessed by magnetic resonance imaging (MRI) at 1, 3, and 7 d after the insult. At the end of the experiment, MRI findings were corroborated by histology (Nissl staining). HI+VEH showed an area of cytotoxic and vasogenic edema at 24 h after the insult, then evolving to necrosis. HI+WIN showed a similar damaged area at 24 h after the insult, but the final necrotic area was reduced by 66%. Coadministration of either SR1 or SR2 reversed the effects of WIN. In conclusion, likely by activating CB1 and CB2 receptors, WIN afforded robust neuroprotection in newborn rats after HI.
Collapse
Affiliation(s)
- David Fernández-López
- Departamento de Farmacología, Facultad de Medicina, Universidad Complutense, 28040 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
42
|
Mowry EM, Woo JH, Ances BM. Technology insight: can neuroimaging provide insights into the role of ischemia in Baló's concentric sclerosis? ACTA ACUST UNITED AC 2007; 3:341-8. [PMID: 17549060 DOI: 10.1038/ncpneuro0519] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2007] [Accepted: 03/22/2007] [Indexed: 12/21/2022]
Abstract
Baló's concentric sclerosis (BCS) has long been considered to be a variant of multiple sclerosis. Although BCS was initially described over 100 years ago, relatively few antemortem cases have been identified, and the exact pathogenesis remains unknown. Inflammatory protective ischemic preconditioning has recently been suggested as a mechanism by which the typical concentric rings of the BCS lesion are formed. Advanced neuroimaging can provide important in vivo markers of disease progression that can assist in the diagnosis and management of patients with BCS. In this Review, we discuss evidence from longitudinal neuroimaging studies that supports the role of ischemic preconditioning in BCS.
Collapse
Affiliation(s)
- Ellen M Mowry
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | | | | |
Collapse
|
43
|
Abstract
The classic definition of the ischemic penumbra is a hypoperfused region in which metabolism is impaired, but still sufficient to maintain cellular polarization. Perfusion- and diffusion-weighted MRI (PWI, DWI) can identify regions of reduced perfusion and cellular depolarization, respectively, but it often remains unclear whether a PWI-DWI mismatch corresponds to benign oligemia or a true penumbra. We hypothesized that pH-weighted MRI (pHWI) can subdivide the PWI-DWI mismatch into these regions. Twenty-one rats underwent permanent middle cerebral artery occlusion and ischemic evolution over the first 3.5 h post-occlusion was studied using multiparametric MRI. End point was the stroke area defined by T(2)-hyperintensity at 24 h. In the acute phase, areas of reduced pH were always larger than or equal to DWI deficits and smaller than or equal to PWI deficits. Group analysis showed that pHWI deficits during this phase coincided with the resulting infarct area at endpoint. Final infarcts were smaller than PWI deficits (range 65% to 90%, depending on the severity of the occlusion) and much larger than acute DWI deficits. These data suggest that the outer boundary of the hypoperfused area showing a decrease in pH without DWI abnormality may correspond to the outer boundary of the ischemic penumbra, while the hypoperfused region at normal pH may correspond to benign oligemia. These first results show that pHWI can provide information complementary to PWI and DWI in the delineation of ischemic tissue.
Collapse
Affiliation(s)
- Phillip Zhe Sun
- Division of MRI Research, Neurosection, Russell H Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | |
Collapse
|
44
|
Abstract
MRI has contributed to significant advances in the understanding of neurological diseases in humans. It has also been used to evaluate the spectrum of mouse models spanning from developmental abnormalities during embryogenesis, evaluation of transgenic and knockout models, through various neurological diseases such as stroke, tumors, degenerative and inflammatory diseases. The MRI techniques used clinically are technically more challenging in the mouse because of the size of the brain; however, mouse imaging provides researchers with the ability to explore cellular and molecular imaging that one day may translate into clinical practice. This article presents an overview of the use of MRI in mouse models of a variety of neurological disorders and a brief review of cellular imaging using magnetically tagged cells in the mouse central nervous system.
Collapse
Affiliation(s)
- Stasia A Anderson
- Animal MRI/Imaging Core, National Heart Lung and Blood Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA.
| | | |
Collapse
|
45
|
Fisher M, Henninger N. Translational research in stroke: Taking advances in the pathophysiology and treatment of stroke from the experimental setting to clinical trials. Curr Neurol Neurosci Rep 2007; 7:35-41. [PMID: 17217852 DOI: 10.1007/s11910-007-0019-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Many advances have occurred regarding an increased understanding of the basic pathophysiology of ischemic brain injury that could lead to enhanced therapy for this disorder. Among the more important basic science advances are enhanced knowledge of the components of the ischemic cascade, the phenomenon of ischemic preconditioning, the potential relevance of hibernation, studies on gene expression in ischemic tissue, and imaging identification of the ischemic penumbra. The large number of unsuccessful prior clinical trials with a wide range of purported acute stroke therapies has provided many insights and lessons regarding how to perform better trials in the future. Translating these basic science and clinical trial design advances into effective and safe therapies will require increased interaction and cooperation between basic scientists and clinical researchers.
Collapse
Affiliation(s)
- Marc Fisher
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | | |
Collapse
|
46
|
Martínez-Murillo R, Fernández AP, Serrano J, Rodrigo J, Salas E, Mourelle M, Martínez A. The nitric oxide donor LA 419 decreases brain damage in a focal ischemia model. Neurosci Lett 2007; 415:149-53. [PMID: 17239538 DOI: 10.1016/j.neulet.2007.01.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2006] [Revised: 01/04/2007] [Accepted: 01/04/2007] [Indexed: 01/09/2023]
Abstract
Stroke affects a large number of people, especially in developed countries, but treatment options are limited. Over the years, it has become clear that nitric oxide (NO) plays a major role in this pathology and that treatments that either reduce or increase NO presence may provide an alternative route for reducing the sequelae of brain ischemia. The NO donor LA 419 previously has been shown to protect the brain tissue from ischemic damage in an experimental model of global brain ischemia. Here we study whether this holds true for focal ischemia, a condition closer to the more common form of human stroke. Ischemia was induced in rats by a stereotaxic injection of endothelin-1, a potent vasoconstrictor, in the striatum. Seven days after the injection, magnetic resonance imaging (MRI) found a significant elevation in apparent diffusion coefficient (ADC) in the injected striatum of untreated rats, due to ischemia-induced vascular edema. Animals that received LA 419 prior to injection with endothelin-1 showed an ADC undistinguishable from the contralateral striatum or from the striatum of rats not treated with LA 419. In addition, immunohistochemistry with antibodies against neuronal nitric oxide synthase (nNOS), inducible NOS (iNOS), and nitrotyrosine showed a marked increase in the expression of these markers of NO production following ischemic treatment that was dampened by treatment with LA 419. In summary, our results clearly show that the NO donor LA 419 may be a useful compound for the prevention and/or treatment of focal brain ischemia.
Collapse
Affiliation(s)
- Ricardo Martínez-Murillo
- Department of Neuroanatomy and Cell Biology, Instituto Cajal, CSIC, Avenida del Doctor Arce 37, 28002 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
47
|
Alger JR. Assessment of Neurobiological Diseases with Magnetic Resonance Spectroscopy. Neurobiol Dis 2007. [DOI: 10.1016/b978-012088592-3/50074-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
48
|
Wang X, Qian J, He R, Wei L, Liu N, Zhang Z, Huang Y, Lei H. Delayed changes in T1-weighted signal intensity in a rat model of 15-minute transient focal ischemia studied by magnetic resonance imaging/spectroscopy and synchrotron radiation X-ray fluorescence. Magn Reson Med 2006; 56:474-80. [PMID: 16894583 DOI: 10.1002/mrm.20985] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Previous studies have found that rats subjected to 15-min transient middle cerebral artery occlusion (MCAO) show neurodegeneration in the dorsolateral striatum only, and the resulting striatal lesion is associated with increased T1-weighted (T1W) signal intensity (SI) and decreased T2-weighted (T2W) SI at 2-8 weeks after the initial ischemia. It has been shown that the delayed increase in T1W SI in the ischemic region is associated with deposition of paramagnetic manganese ions. However, it has been suggested that other mechanisms, such as tissue calcification and lipid accumulation, also contribute to the relaxation time changes. To clarify this issue, we measured changes in relaxation times, lipid accumulation, and elemental distributions in the brain of rats subjected to 15-min MCAO using MRI, in vivo 1H MR spectroscopy (MRS), and synchrotron radiation X-ray fluorescence (SRXRF). The results show that a delayed (2 weeks after ischemia) increase in T1W SI in the ischemic striatum is associated with significant increases in manganese, calcium, and iron, but without evident accumulation of MRS-visible lipids or hydroxyapatite precipitation. It was also found that 15-min MCAO results in acutely reduced N-acetylaspartate (NAA)/creatine (Cr) ratio in the ipsilateral striatum, which recovers to the control level at 2 weeks after ischemia.
Collapse
Affiliation(s)
- Xuxia Wang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | | | | | | | | | | | | | | |
Collapse
|