1
|
Li WW, Yang Y, Shi XY, Guo TZ, Guang Q, Kingery WS, Herzenberg LA, Clark JD. Germinal center formation, immunoglobulin production and hindlimb nociceptive sensitization after tibia fracture. Brain Behav Immun 2020; 88:725-734. [PMID: 32413559 PMCID: PMC7416484 DOI: 10.1016/j.bbi.2020.05.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/22/2020] [Accepted: 05/09/2020] [Indexed: 12/12/2022] Open
Abstract
Emerging evidence suggests that Complex Regional Pain Syndrome (CRPS) is in part a post-traumatic autoimmune disease mediated by an adaptive immune response after limb injuries. We previously observed in a murine tibial fracture model of CRPS that pain-related behaviors were dependent upon adaptive immune mechanisms including the neuropeptide-dependent production of IgM for 5 months after injury. However, the time course of induction of this immune response and the demonstration of germinal center formation in lymphoid organs has not been evaluated. Using the murine fracture model, we employed behavioral tests of nociceptive sensitization and limb dysfunction, serum passive transfer techniques, western blot analysis of IgM accumulation, fluorescence-activated cell sorting (FACS) of lymphoid tissues and immunohistochemistry to follow the temporal activation of the adaptive immune response over the first 3 weeks after fracture. We observed that: 1) IgM protein levels in the skin of the fractured mice were elevated at 3 weeks post fracture, but not at earlier time points, 2) serum from fracture mice at 3 weeks, but not 1 and 2 weeks post fracture, had pro-nociceptive effects when passively transferred to fractured muMT mice lacking B cells, 3) fracture induced popliteal lymphadenopathy occurred ipsilateral to fracture beginning at 1 week and peaking at 3 weeks post fracture, 4) a germinal center reaction was detected by FACS analysis in the popliteal lymph nodes from injured limbs by 3 weeks post fracture but not in other lymphoid tissues, 5) germinal center formation was characterized by the induction of T follicular helper cells (Tfh) and germinal center B cells in the popliteal lymph nodes of the injured but not contralateral limbs, and 6) fracture mice treated with the Tfh signaling inhibitor FK506 had impaired germinal center reactions, reduced IgM levels, reduced nociceptive sensitization, and no pronociceptive serum effects after administration to fractured muMT mice. Collectively these data demonstrate that tibia fracture induces an adaptive autoimmune response characterized by popliteal lymph node germinal center formation and Tfh cell dependent B cell activation, resulting in nociceptive sensitization within 3 weeks.
Collapse
Affiliation(s)
- Wen-Wu Li
- Veterans Affairs Palo Alto Health Care System 3801 Miranda Ave., Palo Alto, California 94304,Department of Anesthesiology, Stanford University School of Medicine, 300 Pasture Drive, Stanford, California 94304
| | - Yang Yang
- Department of Genetics, Stanford University School of Medicine, 300 Pasture Drive, Stanford, CA 94304, United States.
| | - Xiao-you Shi
- Veterans Affairs Palo Alto Health Care System 3801 Miranda Ave., Palo Alto, California 94304,Department of Anesthesiology, Stanford University School of Medicine, 300 Pasture Drive, Stanford, California 94304
| | - Tian-Zhi Guo
- Veterans Affairs Palo Alto Health Care System 3801 Miranda Ave., Palo Alto, California 94304,Veterans Affairs Institute for Research, 3801 Miranda Ave., Palo Alto, California 94304
| | - Qin Guang
- Department of Genetics, Stanford University School of Medicine, 300 Pasture Drive, Stanford, California 94304
| | - Wade S. Kingery
- Veterans Affairs Palo Alto Health Care System 3801 Miranda Ave., Palo Alto, California 94304,Veterans Affairs Institute for Research, 3801 Miranda Ave., Palo Alto, California 94304
| | - Leonore A. Herzenberg
- Department of Genetics, Stanford University School of Medicine, 300 Pasture Drive, Stanford, California 94304
| | - J. David Clark
- Veterans Affairs Palo Alto Health Care System 3801 Miranda Ave., Palo Alto, California 94304,Department of Anesthesiology, Stanford University School of Medicine, 300 Pasture Drive, Stanford, California 94304
| |
Collapse
|
2
|
Nattes E, Karaa D, Dehoux L, Peuchmaur M, Kwon T, Deschênes G. Remission of proteinuria in multidrug-resistant idiopathic nephrotic syndrome following immunoglobulin immunoadsorption. Acta Paediatr 2019; 108:757-762. [PMID: 30230027 DOI: 10.1111/apa.14582] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 09/13/2018] [Accepted: 09/14/2018] [Indexed: 12/20/2022]
Abstract
AIM Complete or partial resistance to prednisone and calcineurin inhibitors in children with idiopathic nephrotic syndrome often leads to end-stage renal disease. The aim of the study was to report the outcome of patients with multidrug-resistant nephrotic syndrome treated with an association of immunoglobulin immunoadsorption, intravenous immunoglobulins and B-cell depletion. METHODS At treatment initiation, patients received ten sessions of immunoglobulin immunoadsorption and intravenous immunoglobulins in two weeks followed by one rituximab in case of remission. RESULTS A remission of proteinuria was obtained in nine out of 14 patients at the end of the initial phase and in two additional patients after an extended period. The remission was stable in three patients and after additional IgIA and heavy immunosuppression in six. Two patients that initially responded relapsed after IgIA withdrawal and remained with an uncontrolled disease at last follow-up. Three patients did not respond to the treatment including two who were found to have a genetic podocytopathy. CONCLUSION Patients with multidrug-resistant idiopathic nephrotic syndrome can be successfully led into remission by IgIA prior to reaching end-stage renal disease. However, IgIA does not suppress the need for heavy additional immunosuppression to control INS in most cases.
Collapse
Affiliation(s)
- Elodie Nattes
- Pediatric Nephrology Unit; Hôpital Robert Debré; APHP; Sorbonne Paris Cité University; Paris France
| | - Danièle Karaa
- Pediatric Nephrology Unit; Hôpital Robert Debré; APHP; Sorbonne Paris Cité University; Paris France
| | - Laurène Dehoux
- Pediatric Nephrology Unit; Hôpital Robert Debré; APHP; Sorbonne Paris Cité University; Paris France
| | - Michel Peuchmaur
- Laboratory of Pathology; Hôpital Robert Debré; APHP; Sorbonne Paris Cité University; Paris France
| | - Theresa Kwon
- Pediatric Nephrology Unit; Hôpital Robert Debré; APHP; Sorbonne Paris Cité University; Paris France
| | - Georges Deschênes
- Pediatric Nephrology Unit; Hôpital Robert Debré; APHP; Sorbonne Paris Cité University; Paris France
| |
Collapse
|
3
|
Quail DF, Bowman RL, Akkari L, Quick ML, Schuhmacher AJ, Huse JT, Holland EC, Sutton JC, Joyce JA. The tumor microenvironment underlies acquired resistance to CSF-1R inhibition in gliomas. Science 2016; 352:aad3018. [PMID: 27199435 DOI: 10.1126/science.aad3018] [Citation(s) in RCA: 477] [Impact Index Per Article: 59.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 04/08/2016] [Indexed: 11/02/2022]
Abstract
Macrophages accumulate with glioblastoma multiforme (GBM) progression and can be targeted via inhibition of colony-stimulating factor-1 receptor (CSF-1R) to regress high-grade tumors in animal models of this cancer. However, whether and how resistance emerges in response to sustained CSF-1R blockade is unknown. We show that although overall survival is significantly prolonged, tumors recur in >50% of mice. Gliomas reestablish sensitivity to CSF-1R inhibition upon transplantation, indicating that resistance is tumor microenvironment-driven. Phosphatidylinositol 3-kinase (PI3K) pathway activity was elevated in recurrent GBM, driven by macrophage-derived insulin-like growth factor-1 (IGF-1) and tumor cell IGF-1 receptor (IGF-1R). Combining IGF-1R or PI3K blockade with CSF-1R inhibition in recurrent tumors significantly prolonged overall survival. Our findings thus reveal a potential therapeutic approach for treating resistance to CSF-1R inhibitors.
Collapse
Affiliation(s)
- Daniela F Quail
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA
| | - Robert L Bowman
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA
| | - Leila Akkari
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA. Department of Oncology, University of Lausanne, CH-1066, Lausanne, Switzerland. Ludwig Institute for Cancer Research, University of Lausanne, CH-1066, Lausanne, Switzerland
| | - Marsha L Quick
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA
| | - Alberto J Schuhmacher
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA
| | - Jason T Huse
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Eric C Holland
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, WA 98109, USA
| | - James C Sutton
- Novartis Institutes for Biomedical Research, Emeryville, CA 94608, USA
| | - Johanna A Joyce
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA. Department of Oncology, University of Lausanne, CH-1066, Lausanne, Switzerland. Ludwig Institute for Cancer Research, University of Lausanne, CH-1066, Lausanne, Switzerland.
| |
Collapse
|
4
|
Zidan AS, Rahman Z, Sayeed V, Raw A, Yu L, Khan MA. Crystallinity evaluation of tacrolimus solid dispersions by chemometric analysis. Int J Pharm 2011; 423:341-50. [PMID: 22100517 DOI: 10.1016/j.ijpharm.2011.11.003] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Revised: 11/01/2011] [Accepted: 11/03/2011] [Indexed: 11/15/2022]
Abstract
Different destructive and nondestructive analytical methods, namely powder X-ray diffractometry (PXRD), differential scanning calorimetry (DSC), Raman and near-infrared (NIR) spectroscopy and imaging, to detect and characterize tacrolimus trace crystallinity in an amorphous solid dispersion (SD) using chemometric analysis were developed. The SD was spiked with different percentages of the crystalline drug to construct an array of SDs with different crystallinity percentages. Partial least square (PLS) regression analysis was employed to compare the performance of the calibration models created using these analytical methods. The obtained results indicated a significant interaction between tacrolimus and the employed polymer and a drug dissolution dependency on the crystalline fraction within the SDs. Using two PLS factors, these analytical methods were ranked according to its specificity to detect the trace crystallinity of SDs as NIR>PXRD>Raman>DSC. Through the application of PLS, root-mean-squared error of calibration values of 2.91%, 5.36%, 7.07% and 11.58% were calculated for the calibration models constructed by NIR, PXRD, Raman and DSC, respectively. Having a prediction error of 2.1% and a correlation coefficient of 0.99, it is demonstrated that combined NIR imaging and chemometric analysis outperformed the other methods in detecting trace crystallinity in tacrolimus amorphous systems. The spatial distributions of amorphous and crystalline drug were also obtained in order to allow for studying the crystallization dissemination in the solid dispersions. Consequently, NIR and NIR imaging coupled with chemometry was shown to be a powerful tool for the prediction of drug crystallinity within SDs.
Collapse
Affiliation(s)
- Ahmed S Zidan
- Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | | | | | | | | | | |
Collapse
|
5
|
|
6
|
Generation of Epstein-Barr virus-specific cytotoxic T lymphocytes resistant to the immunosuppressive drug tacrolimus (FK506). Blood 2009; 114:4784-91. [PMID: 19759356 DOI: 10.1182/blood-2009-07-230482] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Adoptive transfer of autologous Epstein-Barr virus-specific cytotoxic T lymphocytes (EBV-CTLs) to solid organ transplant (SOT) recipients has been shown safe and effective for the treatment of EBV-associated posttransplantation lymphoproliferative disorders (PTLDs). SOT recipients, however, require the continuous administration of immunosuppressive drugs to prevent graft rejection, and these agents may significantly limit the long-term persistence of transferred EBV-CTLs, precluding their use as prophylaxis. Tacrolimus (FK506) is one of the most widely used immunosuppressive agents in SOT recipients, and its immunosuppressive effects are largely dependent on its interaction with the 12-kDa FK506-binding protein (FKBP12). We have knocked down the expression of FKBP12 in EBV-CTLs using a specific small interfering RNA (siRNA) stably expressed from a retroviral vector and found that FKBP12-silenced EBV-CTLs are FK506 resistant. These cells continue to expand in the presence of the drug without measurable impairment of their antigen specificity or cytotoxic activity. We confirmed their FK506 resistance and anti-PTLD activity in vivo using a xenogenic mouse model, suggesting that the proposed strategy may be of value to enhance EBV-specific immune surveillance in patients at high risk of PTLD after transplantation.
Collapse
|
7
|
Loser K, Beissert S. Regulation of cutaneous immunity by the environment: an important role for UV irradiation and vitamin D. Int Immunopharmacol 2009; 9:587-9. [PMID: 19539561 DOI: 10.1016/j.intimp.2009.01.024] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Accepted: 01/22/2009] [Indexed: 10/21/2022]
Abstract
Cutaneous immunity can be controlled by environmental factors such as ultraviolet (UV) irradiation. UV irradiation affects keratinocytes, antigen presenting cells, such as epidermal Langerhans cells (LC), and T lymphocytes. LC are specialized in antigen presentation. Upon encountering exogenous antigens they migrate to skin draining lymph nodes where they present skin-acquired antigens to naive T cells resulting in effector T cell differentiation. T cell effector functions depend on the activation state of LC, which can be influenced by UV irradiation. After completion T cell mediated cutaneous immune responses need to be downregulated. In this context, CD4(+)CD25(+) regulatory T cells have been shown to play an important role in the suppression of cellular immune responses via inhibition of T cell proliferation. Naturally occurring regulatory T cells develop in the thymus and on the molecular level members of the B7- and TNF-superfamilies are critically involved in the peripheral maintenance of CD4(+)CD25(+) T cells. Substantial evidence exists that peripheral regulatory T cells are responsive to environmental stimuli including UV irradiation. UV-induced regulatory T cells are expanded by UV-exposed cutaneous LC and recently, epidermal expression of vitamin D3 or RANKL (CD254) has been shown to connect the environment to the immune system via expansion of CD4(+)CD25(+) regulatory T cells.
Collapse
Affiliation(s)
- Karin Loser
- Department of Dermatology and Interdisciplinary Center of Clinical Research (IZKF), University of Münster, Münster, Germany.
| | | |
Collapse
|
8
|
Dutz JP. T-Cell-Mediated Injury to Keratinocytes: Insights from Animal Models of the Lichenoid Tissue Reaction. J Invest Dermatol 2009; 129:309-14. [DOI: 10.1038/jid.2008.242] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
9
|
|
10
|
Loser K, Mehling A, Loeser S, Apelt J, Kuhn A, Grabbe S, Schwarz T, Penninger JM, Beissert S. Epidermal RANKL controls regulatory T-cell numbers via activation of dendritic cells. Nat Med 2006; 12:1372-9. [PMID: 17143276 DOI: 10.1038/nm1518] [Citation(s) in RCA: 300] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2006] [Accepted: 11/06/2006] [Indexed: 02/07/2023]
Abstract
Regulatory CD4(+)CD25(+) T cells are important in suppressing immune responses. The requirements for the maintenance of peripheral CD4(+)CD25(+) T cells remain incompletely understood. Receptor activator of NF-kappaB (RANK) and its ligand (RANKL; also known as CD254, OPGL and TRANCE) are key regulators of bone remodeling, mammary gland formation, lymph node development and T-cell/dendritic cell communication. Here we report that RANKL is expressed in keratinocytes of the inflamed skin. RANKL overexpression in keratinocytes resulted in functional alterations of epidermal dendritic cells and systemic increases of regulatory CD4(+)CD25(+) T cells. Thus, epidermal RANKL expression can change dendritic cell functions to maintain the number of peripheral CD4(+)CD25(+) regulatory T cells. Epidermal RANKL mediated ultraviolet-induced immunosuppression and overexpression of epidermal RANKL suppressed allergic contact hypersensitivity responses and the development of systemic autoimmunity. Therefore, environmental stimuli at the skin can rewire the local and systemic immune system by means of RANKL.
Collapse
Affiliation(s)
- Karin Loser
- Department of Dermatology, University of Münster, D-48149 Münster, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Dutz JP. The skin as a site of initiation of systemic autoimmune disease: new opportunities for treatment. J Invest Dermatol 2006; 126:1209-12. [PMID: 16702968 DOI: 10.1038/sj.jid.5700238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Dendritic cells are the coordinators of the adaptive immune response. Chronic activation of skin dendritic cells by keratinocyte expression of CD40 ligand (CD40L; CD154) leads to autoimmunity. In this issue, systemic administration of tacrolimus is shown by Loser et al. to effectively treat autoimmunity in a murine model involving transgenic keratinocyte expression of CD40L.
Collapse
Affiliation(s)
- Jan P Dutz
- Departments of Dermatology and Medicine and Child & Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|