1
|
Kang JI, Choi YK, Han SC, Hyun JW, Koh YS, Oh J, Boo HJ, Yoo ES, Kang HK. 5-Fluorouracil induces hair loss by inhibiting β-catenin signaling and angiogenesis. Chem Biol Interact 2025; 408:111416. [PMID: 39922517 DOI: 10.1016/j.cbi.2025.111416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/24/2025] [Accepted: 02/05/2025] [Indexed: 02/10/2025]
Abstract
Chemotherapy-induced alopecia (CIA) is a side effect of the anticancer drug 5-fluorouracil (5-FU). However, the mechanism of action in hair follicle cells is unclear. This study investigated the mechanism of action of 5-FU on the hair cycle and growth in vitro and in vivo. Intraperitoneal injection of 5-FU into C57BL/6 mice delayed anagen initiation, resulting in small hair follicles. 5-FU inhibited angiogenesis by reducing cluster of differentiation 31+ cells, vascular endothelial growth factor, and fetal liver kinase-1 expression in mouse skin tissue and rat vibrissa dermal papilla (rDP) cells. 5-FU induced cell death in rDP cells and keratinocytes by enhancing cell cycle arrest or reducing the ratio of B-cell lymphoma 2 (Bcl-2) to Bcl-2-associated X levels. Immunoblotting and confocal microscopy showed that 5-FU inhibited the nuclear translocation of β-catenin in rDP cells and decreased fibroblast growth factor 7 and 10 secretion. Conversely, molecule-specific inhibitors did not prevent rDP cell death despite protein kinase B and Jun N-terminal kinase activation by 5-FU, indicating their indirect involvement. These results suggest that 5-FU inhibits wingless-related integration site/β-catenin signaling and angiogenesis, resulting in anagen-to-catagen transition and delaying anagen initiation. This study provides foundational data for developing treatments against CIA in patients with cancer undergoing 5-FU chemotherapy.
Collapse
Affiliation(s)
- Jung-Il Kang
- Jeju Research Center for Natural Medicine, Jeju National University, 102 Jejudaehakno, Jeju, 63243, South Korea; Department of Medicine, College of Medicine, Jeju National University, 102 Jejudaehakno, Jeju, 63243, South Korea
| | - Youn Kyung Choi
- Jeju Research Center for Natural Medicine, Jeju National University, 102 Jejudaehakno, Jeju, 63243, South Korea; Department of Medicine, College of Medicine, Jeju National University, 102 Jejudaehakno, Jeju, 63243, South Korea
| | - Sang-Chul Han
- Department of Medicine, College of Medicine, Jeju National University, 102 Jejudaehakno, Jeju, 63243, South Korea
| | - Jin Won Hyun
- Jeju Research Center for Natural Medicine, Jeju National University, 102 Jejudaehakno, Jeju, 63243, South Korea; Department of Medicine, College of Medicine, Jeju National University, 102 Jejudaehakno, Jeju, 63243, South Korea
| | - Young-Sang Koh
- Jeju Research Center for Natural Medicine, Jeju National University, 102 Jejudaehakno, Jeju, 63243, South Korea; Department of Medicine, College of Medicine, Jeju National University, 102 Jejudaehakno, Jeju, 63243, South Korea
| | - Jaeseong Oh
- Department of Medicine, College of Medicine, Jeju National University, 102 Jejudaehakno, Jeju, 63243, South Korea
| | - Hye-Jin Boo
- Jeju Research Center for Natural Medicine, Jeju National University, 102 Jejudaehakno, Jeju, 63243, South Korea; Department of Medicine, College of Medicine, Jeju National University, 102 Jejudaehakno, Jeju, 63243, South Korea
| | - Eun-Sook Yoo
- Jeju Research Center for Natural Medicine, Jeju National University, 102 Jejudaehakno, Jeju, 63243, South Korea; Department of Medicine, College of Medicine, Jeju National University, 102 Jejudaehakno, Jeju, 63243, South Korea
| | - Hee-Kyoung Kang
- Jeju Research Center for Natural Medicine, Jeju National University, 102 Jejudaehakno, Jeju, 63243, South Korea; Department of Medicine, College of Medicine, Jeju National University, 102 Jejudaehakno, Jeju, 63243, South Korea.
| |
Collapse
|
2
|
Chen D, Yu F, Wang C, Chen H, Tan J, Shi Q, He X, Liu X, Wang F, Zhao H. Anti-hair loss effect of a shampoo containing caffeine and adenosine. J Cosmet Dermatol 2024; 23:2927-2933. [PMID: 38764299 DOI: 10.1111/jocd.16347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/03/2024] [Accepted: 04/15/2024] [Indexed: 05/21/2024]
Abstract
BACKGROUND Hair loss is a widespread health problem that affects numerous individuals and is associated with age, lack of sleep, stress, endocrine problems, and other problems. Caffeine exerts various pharmacological effects, particularly after ingestion. The caffeine-induced inhibition of phosphodiesterases can increase intracellular cAMP concentrations, ultimately resulting in stimulatory effects on cell metabolism and proliferation. Hence, caffeine has been confirmed to inhibit hair loss caused by premature termination of the hair growth phase. Adenosine also improves hair loss by stimulating hair growth and thickening hair shafts. However, further empirical evidence is required to comprehensively assess the efficacy of hair loss treatment and prevention using a formulation of caffeine and adenosine in specific proportions in shampoos. OBJECTIVES This study aimed to evaluate a shampoo with caffeine and adenosine as a daily scalp care product for hair loss in 77 subjects aged 18-60 years. METHODS The overall and local hair densities were assessed using professional cameras and dermoscopes at different magnifications and distances. Five hairs that came off the participant's head were randomly selected to measure hair diameter. The self-assessment questionnaires were filled on third month of product use. RESULTS The combination of caffeine and adenosine in the shampoo significantly enhanced hair density compared to that of the baseline. The results revealed a significant reduction in hair loss. The hair diameters of the subjects did not change significantly. Most of the participants (71.05%) were satisfied with their hair after using the product. CONCLUSIONS Shampoos containing caffeine and adenosine have been demonstrated to exert therapeutic benefits for reducing hair loss.
Collapse
Affiliation(s)
- Dongxiao Chen
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Fanglu Yu
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Congcong Wang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Haowei Chen
- Dingmageili Biotechnology Ltd., Beijing, China
| | - Jie Tan
- Dingmageili Biotechnology Ltd., Beijing, China
| | - Qingying Shi
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Xihong He
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, China
| | - Xinyan Liu
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Fang Wang
- Dingmageili Biotechnology Ltd., Beijing, China
| | - Huabing Zhao
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
3
|
Kim J, Shin JY, Choi YH, Joo JH, Kwack MH, Sung YK, Kang NG. Hair Thickness Growth Effect of Adenosine Complex in Male-/Female-Patterned Hair Loss via Inhibition of Androgen Receptor Signaling. Int J Mol Sci 2024; 25:6534. [PMID: 38928239 PMCID: PMC11204140 DOI: 10.3390/ijms25126534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Aging (senescence) is an unavoidable biological process that results in visible manifestations in all cutaneous tissues, including scalp skin and hair follicles. Previously, we evaluated the molecular function of adenosine in promoting alopecia treatment in vitro. To elucidate the differences in the molecular mechanisms between minoxidil (MNX) and adenosine, gene expression changes in dermal papilla cells were examined. The androgen receptor (AR) pathway was identified as a candidate target of adenosine for hair growth, and the anti-androgenic activity of adenosine was examined in vitro. In addition, ex vivo examination of human hair follicle organ cultures revealed that adenosine potently elongated the anagen stage. According to the severity of alopecia, the ratio of the two peaks (terminal hair area/vellus hair area) decreased continuously. We further investigated the adenosine hair growth promoting effect in vivo to examine the hair thickness growth effects of topical 5% MNX and the adenosine complex (0.75% adenosine, 1% penthenol, and 2% niacinamide; APN) in vivo. After 4 months of administration, both the MNX and APN group showed significant increases in hair density (MNX + 5.01% (p < 0.01), APN + 6.20% (p < 0.001)) and thickness (MNX + 5.14% (p < 0.001), APN + 10.32% (p < 0.001)). The inhibition of AR signaling via adenosine could have contributed to hair thickness growth. We suggest that the anti-androgenic effect of adenosine, along with the evaluation of hair thickness distribution, could help us to understand hair physiology and to investigate new approaches for drug development.
Collapse
Affiliation(s)
- Jaeyoon Kim
- LG Household & Health Care (LG H&H) R&D Center, 70, Magokjoongang 10-ro, Gangseo-gu, Seoul 07795, Republic of Korea; (J.K.); (J.y.S.); (Y.-H.C.); (J.H.J.)
| | - Jae young Shin
- LG Household & Health Care (LG H&H) R&D Center, 70, Magokjoongang 10-ro, Gangseo-gu, Seoul 07795, Republic of Korea; (J.K.); (J.y.S.); (Y.-H.C.); (J.H.J.)
| | - Yun-Ho Choi
- LG Household & Health Care (LG H&H) R&D Center, 70, Magokjoongang 10-ro, Gangseo-gu, Seoul 07795, Republic of Korea; (J.K.); (J.y.S.); (Y.-H.C.); (J.H.J.)
| | - Jang Ho Joo
- LG Household & Health Care (LG H&H) R&D Center, 70, Magokjoongang 10-ro, Gangseo-gu, Seoul 07795, Republic of Korea; (J.K.); (J.y.S.); (Y.-H.C.); (J.H.J.)
| | - Mi Hee Kwack
- Department of Immunology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; (M.H.K.); (Y.K.S.)
| | - Young Kwan Sung
- Department of Immunology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; (M.H.K.); (Y.K.S.)
| | - Nae Gyu Kang
- LG Household & Health Care (LG H&H) R&D Center, 70, Magokjoongang 10-ro, Gangseo-gu, Seoul 07795, Republic of Korea; (J.K.); (J.y.S.); (Y.-H.C.); (J.H.J.)
| |
Collapse
|
4
|
Lee S, Kim SY, Lee S, Jang S, Hwang ST, Kwon Y, Choi J, Kwon O. Ganoderma lucidum extract attenuates corticotropin-releasing hormone-induced cellular senescence in human hair follicle cells. iScience 2024; 27:109675. [PMID: 38706837 PMCID: PMC11068553 DOI: 10.1016/j.isci.2024.109675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/15/2024] [Accepted: 04/03/2024] [Indexed: 05/07/2024] Open
Abstract
Corticotropin-releasing hormone (CRH) is a key mediator in stress-induced hair growth inhibition. Here, we investigated the impact of stress-induced senescence and evaluated the potential of Ganoderma lucidum (GL) extract in mitigating CRH-induced senescence in human hair follicle cells (hHFCs). We show that CRH treatment increased the senescence-associated beta-galactosidase (SA-β-GAL) activity and reactive oxygen species (ROS) formation in hHFCs and suppressed alkaline phosphatase (ALP) activity and anagen-inducing genes. However, GL extract restored ALP activity and decreased the expression levels of anagen-related genes in CRH-treated hHFCs. It decreased SA-β-GAL activity, reduced ROS production, and prevented the phosphorylation of MAPK signaling pathways in CRH-related stress response. Moreover, GL reversed the CRH-induced inhibition of two-cell assemblage (TCA) elongation and Ki67 expression. GL extract attenuates stress-induced hair follicular senescence by delaying catagen entry and scavenging ROS. Our findings suggest that GL extract could be used for treating stress-induced hair loss.
Collapse
Affiliation(s)
- Sunhyoung Lee
- Department of Dermatology, Seoul National University College of Medicine, Laboratory of Cutaneous Aging and Hair Research, Biomedical Research Institute, Seoul National University Hospital, Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul 03080, South Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, South Korea
| | - So Young Kim
- Department of Dermatology, Seoul National University College of Medicine, Laboratory of Cutaneous Aging and Hair Research, Biomedical Research Institute, Seoul National University Hospital, Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul 03080, South Korea
| | - Seunghee Lee
- Department of Dermatology, Seoul National University College of Medicine, Laboratory of Cutaneous Aging and Hair Research, Biomedical Research Institute, Seoul National University Hospital, Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul 03080, South Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, South Korea
| | - Sunhyae Jang
- Department of Dermatology, Seoul National University College of Medicine, Laboratory of Cutaneous Aging and Hair Research, Biomedical Research Institute, Seoul National University Hospital, Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul 03080, South Korea
| | | | - Youngji Kwon
- R&I Center, COSMAX BTI, Seongnam, Gyeonggi-do, South Korea
| | - Jaehwan Choi
- R&I Center, COSMAX BTI, Seongnam, Gyeonggi-do, South Korea
| | - Ohsang Kwon
- Department of Dermatology, Seoul National University College of Medicine, Laboratory of Cutaneous Aging and Hair Research, Biomedical Research Institute, Seoul National University Hospital, Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul 03080, South Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, South Korea
| |
Collapse
|
5
|
Iwabuchi T, Ogura K, Hagiwara K, Ueno S, Kitamura H, Yamanishi H, Tsunekawa Y, Kiso A. Ginsenosides in Panax ginseng Extract Promote Anagen Transition by Suppressing BMP4 Expression and Promote Human Hair Growth by Stimulating Follicle-Cell Proliferation. Biol Pharm Bull 2024; 47:240-244. [PMID: 38246611 DOI: 10.1248/bpb.b23-00276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Studies showing that Panax ginseng promotes hair growth have largely been conducted using mice; there are few reports on how P. ginseng affects human hair growth. In particular, little is known about its effect on the telogen to anagen transition. To determine the effect of P. ginseng on human hair growth and the transition from the telogen to the anagen phase. The effects of P. ginseng extract (PGE) and the three major ginsenoside components, Rb1, Rg1, and Re, on the proliferation of human dermal papilla cells (DPCs) and human outer root sheath cells (ORSCs) were investigated. The effects of these compounds on the cell expression of bone morphogenetic protein 4 (BMP4), fibroblast growth factor 18 (FGF18) and Noggin were assessed by real-time PCR. The effect of PGE on hair-shaft elongation was determined in a human hair follicle organ-culture system. PGE and the three ginsenosides stimulated the proliferation of DPCs and ORSCs and suppressed BMP4 expression in DPCs but did not affect FGF18 expression in ORSCs and Noggin expression in DPCs. PGE stimulated hair-shaft growth. PGE and the ginsenosides Rb1, Rg1, and Re stimulate the transition from the telogen phase to anagen phase of the hair cycle by suppressing BMP4 expression in DPCs. These compounds might be useful for promoting the growth of human hair.
Collapse
Affiliation(s)
- Tokuro Iwabuchi
- Faculty of Bioscience and Biotechnology, Tokyo University of Technology
| | - Kazuki Ogura
- Faculty of Bioscience and Biotechnology, Tokyo University of Technology
| | - Kenta Hagiwara
- Faculty of Bioscience and Biotechnology, Tokyo University of Technology
| | - Shogo Ueno
- Faculty of Bioscience and Biotechnology, Tokyo University of Technology
| | - Hiroaki Kitamura
- Faculty of Bioscience and Biotechnology, Tokyo University of Technology
| | - Haruyo Yamanishi
- Faculty of Bioscience and Biotechnology, Tokyo University of Technology
| | - Yuki Tsunekawa
- Faculty of Bioscience and Biotechnology, Tokyo University of Technology
| | - Akinori Kiso
- Research Center, Maruzen Pharmaceuticals Co., Ltd
| |
Collapse
|
6
|
Nakane A, Hirose S, Kawai N, Fujimoto N, Kondo E, Asano K. Salmon nasal cartilage proteoglycan stimulates hair growth. Biosci Biotechnol Biochem 2023; 88:107-110. [PMID: 37881018 DOI: 10.1093/bbb/zbad149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/13/2023] [Indexed: 10/27/2023]
Abstract
Hair loss is a commonly encountered problem. In this study, hair growth was enhanced by daily oral ingestion of salmon nasal cartilage proteoglycan (PG) in mice. Proteoglycan stimulated vesicular endothelial growth factor production in human follicle dermal papilla cells through insulin growth factor-1 receptor signaling, suggesting the possibility of hair loss improvement by PG ingestion.
Collapse
Affiliation(s)
- Akio Nakane
- Department of Biopolymer and Health Science, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Shouhei Hirose
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Noriaki Kawai
- Department of Biopolymer and Health Science, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Naoki Fujimoto
- Department of Healthcare, DyDo DRINCO, Inc., Osaka, Japan
| | - Eriko Kondo
- Department of Healthcare, DyDo DRINCO, Inc., Osaka, Japan
| | - Krisana Asano
- Department of Biopolymer and Health Science, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| |
Collapse
|
7
|
Prugsakij W, Numsawat S, Netchareonsirisuk P, Tengamnuay P, De-Eknamkul W. Mechanistic synergy of hair growth promotion by the Avicennia marina extract and its active constituent (avicequinone C) in dermal papilla cells isolated from androgenic alopecia patients. PLoS One 2023; 18:e0284853. [PMID: 37083946 PMCID: PMC10121027 DOI: 10.1371/journal.pone.0284853] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 03/31/2023] [Indexed: 04/22/2023] Open
Abstract
Androgenic alopecia (AGA) is associated with an increased production of 5α-dihydrotestosterone (DHT) by steroid-5α-reductase (5α-R). Crude extracts from Avicennia marina (AM) and its active constituent, avicequinone C (AC), can inhibit 5α-R. We have, herein, explored the potential use of the AM extract and of AC as anti-AGA agents. To this end, we employed human dermal papilla cells (DPCs) isolated from AGA patients' hair that express 5α-R type-1 as well as the androgenic receptor (AR) at high levels. Our in vitro experiments revealed that the AM extract (10 μg/mL) and the AC (10 μM) exhibit multiple actions that interfere with the mechanism that causes AGA. Beside acting as 5α-R inhibitors, both preparations were able to inhibit either the DHT-AR complex formation or its translocation from the cytoplasm into the nucleus (the site of DHT's action). The treatments also increased the gene expression of growth factors in DPCs; these factors play important roles in the angiogenesis associated with hair growth. Moreover, the AM extract suppressed the apoptotic pathway, thereby postponing the initiation of the catagen phase. Taken together, our findings suggest that the AM extract and the AC could serve as natural sources for hair growth promotion and AGA treatment.
Collapse
Affiliation(s)
- Woraanong Prugsakij
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Sukanya Numsawat
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Bureau of Drug Control, Food and Drug Administration, Ministry of Public Health, Nonthaburi, Thailand
| | - Ponsawan Netchareonsirisuk
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Natural Product Biotechnology Research Unit, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Parkpoom Tengamnuay
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Wanchai De-Eknamkul
- Natural Product Biotechnology Research Unit, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
8
|
Kang JI, Choi YK, Han SC, Kim HG, Hong SW, Kim J, Kim JH, Hyun JW, Yoo ES, Kang HK. Limonin, a Component of Immature Citrus Fruits, Activates Anagen Signaling in Dermal Papilla Cells. Nutrients 2022; 14:nu14245358. [PMID: 36558517 PMCID: PMC9787355 DOI: 10.3390/nu14245358] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/14/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Hair loss remains a significant problem that is difficult to treat; therefore, there is a need to identify safe natural materials that can help patients with hair loss. We evaluated the hair anagen activation effects of limonin, which is abundant in immature citrus fruits. Limonin increased the proliferation of rat dermal papilla cells (rDPC) by changing the levels of cyclin D1 and p27, and increasing the number of BrdU-positive cells. Limonin increased autophagy by decreasing phosphorylated mammalian target of rapamycin levels and increasing the phospho-Raptor, ATG7 and LC3B. Limonin also activated the Wnt/β-catenin pathway by increasing phospho-β-catenin levels. XAV939, a Wnt/β-catenin inhibitor, inhibited these limonin-induced changes, including induced autophagy, BrdU-positive cells, and cell proliferation. Limonin increased the phosphorylated AKT levels in both two-dimensional cultured rDPC and three-dimensional spheroids. Treatment with the PI3K inhibitor wortmannin inhibited limonin-induced proliferation, and disrupted other limonin-mediated changes, including decreased p27, increased BrdU-positive cells, induced autophagy, and increased ATG7 and LC3B levels. Wortmannin also inhibited limonin-induced cyclin D1 and LC3 expression in spheroids. Collectively, these results indicate that limonin can enhance anagen signaling by activating autophagy via targeting the Wnt/β-catenin and/or PI3K/AKT pathways in rDPC, highlighting a candidate nutrient for hair loss treatment.
Collapse
Affiliation(s)
- Jung-Il Kang
- Jeju Research Center for Natural Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Youn Kyoung Choi
- Jeju Research Center for Natural Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Sang-Chul Han
- Department of Medicine, School of Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Hyeon Gyu Kim
- Department of Medicine, School of Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Seok Won Hong
- Department of Medicine, School of Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Jungeun Kim
- Department of Chemistry & Cosmetics, Jeju National University, Jeju 63243, Republic of Korea
| | - Jae Hoon Kim
- Department of Biotechnology, College of Applied Life Science, SARI, Jeju National University, Jeju 63243, Republic of Korea
- Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju 63243, Republic of Korea
| | - Jin Won Hyun
- Jeju Research Center for Natural Medicine, Jeju National University, Jeju 63243, Republic of Korea
- Department of Medicine, School of Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Eun-Sook Yoo
- Jeju Research Center for Natural Medicine, Jeju National University, Jeju 63243, Republic of Korea
- Department of Medicine, School of Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Hee-Kyoung Kang
- Jeju Research Center for Natural Medicine, Jeju National University, Jeju 63243, Republic of Korea
- Department of Medicine, School of Medicine, Jeju National University, Jeju 63243, Republic of Korea
- Correspondence: ; Tel.: +82-64-754-3846; Fax: +82-64-702-2687
| |
Collapse
|
9
|
Activation of cAMP Signaling in Response to α-Phellandrene Promotes Vascular Endothelial Growth Factor Levels and Proliferation in Human Dermal Papilla Cells. Int J Mol Sci 2022; 23:ijms23168959. [PMID: 36012223 PMCID: PMC9409021 DOI: 10.3390/ijms23168959] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 11/17/2022] Open
Abstract
Dermal papilla cells (DPCs) are growth factor reservoirs that are specialized for hair morphogenesis and regeneration. Due to their essential role in hair growth, DPCs are commonly used as an in vitro model to investigate the effects of hair growth-regulating compounds and their molecular mechanisms of action. Cyclic adenosine monophosphate (cAMP), an intracellular second messenger, is currently employed as a growth-promoting target molecule. In a pilot test, we found that α-phellandrene, a naturally occurring phytochemical, increased cAMP levels in DPCs. Therefore, we sought to determine whether α-phellandrene increases growth factors and proliferation in human DPCs and to identify the underlying mechanisms. We demonstrated that α-phellandrene promotes cell proliferation concentration-dependently. In addition, it increases the cAMP downstream effectors, such as protein kinase A catalytic subunit (PKA Cα) and phosphorylated cAMP-responsive element-binding protein (CREB). Also, among the CREB-dependent growth factor candidates, we identified that α-phellandrene selectively upregulated vascular endothelial growth factor (VEGF) mRNA expression in DPCs. Notably, the beneficial effects of α-phellandrene were nullified by a cAMP inhibitor. This study demonstrated the cAMP-mediated growth effects in DPCs and the therapeutic potential of α-phellandrene for preventing hair loss.
Collapse
|
10
|
Li S, Liu G, Liu L, Li F. Methionine can subside hair follicle development prejudice of heat-stressed rex rabbits. FASEB J 2022; 36:e22464. [PMID: 35881391 DOI: 10.1096/fj.202200520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/11/2022] [Indexed: 11/11/2022]
Abstract
In the present experiment, we study the function of methionine on hair follicle development in heat-stressed Rex Rabbits and its potential molecular mechanism. Rex rabbits were randomly divided into 5 groups (30 replicates per group): control group (20-25°C, fed basic diet), heat stress group (30-34°C, fed basic diet), heat stress + methionine group (30-34°C, fed 0.15% methionine in addition to the basic diet). fed basic diet (control), heat stress + methionine group (30-34°C, fed 0.3% methionine in addition to the basic diet), heat stress + methionine group (30-34°C, fed 0.45% methionine in addition to the basic diet). The results show that heat stress decreases the hair follicle density of Rex rabbits, and the diet methionine addition significantly increases the hair follicle density of heat-stressed Rabbits (p < .05). Heat stress increased serum HSP70 concentration and skin HSP70 gene expression, 0.15%-0.3% methionine but not 0.45% addition alleviated the effect of heat stress. Dietary 0.15% methionine addition significantly increases the gene expression of Wnt10b, β-catenin, LEF, FZD4, LRP6, Shh, HGF, EGF, and Noggin in heat-stressed Rex rabbits and observably decreases the gene expression of BMP2/4 and TGFb. There was no significant effect of methionine on the expression of IGF1 and FGF5/7 gene expression. In conclusion, methionine maybe promotes hair follicle development via TGFβ-BMP/Shh-Noggin, Wnt10b/β-catenin, EGF, and HGF signaling pathways in heat-stressed rabbits.
Collapse
Affiliation(s)
- Shu Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science, Shandong Agriculture University, Taian, China
| | - Gongyan Liu
- Shandong Academy of Agricultural Sciences Institute of Animal Husbandry and Veterinary Medicine, Jinan, China
| | - Lei Liu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science, Shandong Agriculture University, Taian, China
| | - Fuchang Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science, Shandong Agriculture University, Taian, China
| |
Collapse
|
11
|
Kim J, Shin JY, Choi YH, Kang NG, Lee S. Anti-Hair Loss Effect of Adenosine Is Exerted by cAMP Mediated Wnt/β-Catenin Pathway Stimulation via Modulation of Gsk3β Activity in Cultured Human Dermal Papilla Cells. Molecules 2022; 27:molecules27072184. [PMID: 35408582 PMCID: PMC9000365 DOI: 10.3390/molecules27072184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/22/2022] [Accepted: 03/25/2022] [Indexed: 11/30/2022] Open
Abstract
In the present study, we investigated the molecular mechanisms of adenosine for its hair growth promoting effect. Adenosine stimulated the Wnt/β-catenin pathway by modulating the activity of Gsk3β in cultured human dermal papilla cells. It also activated adenosine receptor signaling, increasing intracellular cAMP level, and subsequently stimulating the cAMP mediated cellular energy metabolism. The phosphorylation of CREB, mTOR, and GSK3β was increased. Furthermore, the expression of β-catenin target genes such as Axin2, Lef1, and growth factors (bFGF, FGF7, IGF-1) was also enhanced. The inhibitor study data conducted in Wnt reporter cells and in cultured human dermal papilla cells demonstrated that adenosine stimulates Wnt/β-catenin signaling through the activation of the adenosine receptor and Gsk3β plays a critical role in transmitting the signals from the adenosine receptor to β-catenin, possibly via the Gαs/cAMP/PKA/mTOR signaling cascade.
Collapse
Affiliation(s)
| | | | | | - Nae Gyu Kang
- Correspondence: (N.G.K.); (S.L.); Tel.: +82-10-8462-7763 (S.L.)
| | - Sanghwa Lee
- Correspondence: (N.G.K.); (S.L.); Tel.: +82-10-8462-7763 (S.L.)
| |
Collapse
|
12
|
Chen J, Fan ZX, Zhu DC, Guo YL, Ye K, Dai D, Guo Z, Hu ZQ, Miao Y, Qu Q. Emerging Role of Dermal White Adipose Tissue in Modulating Hair Follicle Development During Aging. Front Cell Dev Biol 2021; 9:728188. [PMID: 34722509 PMCID: PMC8554130 DOI: 10.3389/fcell.2021.728188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/01/2021] [Indexed: 11/24/2022] Open
Abstract
Hair follicle stem cells are extensively reprogrammed by the aging process, manifesting as diminished self-renewal and delayed responsiveness to activating cues, orchestrated by both intrinsic microenvironmental and extrinsic macroenvironmental regulators. Dermal white adipose tissue (dWAT) is one of the peripheral tissues directly adjacent to hair follicles (HFs) and acts as a critical macroenvironmental niche of HF. dWAT directly contributes to HF aging by paracrine signal secretion. However, the altered interrelationship between dWAT and HF with aging has not been thoroughly understood. Here, through microdissection, we separated dWAT from the skin of aged mice (18 months) and young mice (2 months) in telogen and depilation-induced anagen for transcriptome comparing. Notably, compared with young dWAT, aberrant inflammatory regulators were recapitulated in aging dWAT in telogen, including substantial overexpressed inflammatory cytokines, matrix metalloproteinases, and prostaglandin members. Nonetheless, with anagen initiation, inflammation programs were mostly abolished in aging dWAT, and instead of which, impaired collagen biosynthesis, angiogenesis, and melanin synthesis were identified. Furthermore, we confirmed the inhibitory effect on hair growth of CXCL1, one of the most significantly upregulated inflammation cytokines in aging dWAT. Besides this, we also identified the under-expressed genes related to Wnt signaling fibroblast growth factor family members and increased BMP signaling in aging dWAT, further unraveling the emerging role of dWAT in aging HFs malfunction. Finally, we proved that relieving inflammation of aging dWAT by injecting high-level veratric acid stimulated HF regenerative behavior in aged mice. Concomitantly, significantly decreased TNF-a, CCL2, IL-5, CSF2, and increased IL10 in dWAT was identified. Overall, the results elaborated on the complex physiological cycling changes of dWAT during aging, providing a basis for the potential regulatory effect of dWAT on aging HFs.
Collapse
Affiliation(s)
- Jian Chen
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Zhe-Xiang Fan
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - De-Cong Zhu
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Yi-Long Guo
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Ke Ye
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Damao Dai
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Zhi Guo
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Zhi-Qi Hu
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Yong Miao
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Qian Qu
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China
| |
Collapse
|
13
|
Ohn J, Been KW, Kim JY, Kim EJ, Park T, Yoon H, Ji JS, Okada‐Iwabu M, Iwabu M, Yamauchi T, Kim YK, Seok C, Kwon O, Kim KH, Lee HH, Chung JH. Discovery of a transdermally deliverable pentapeptide for activating AdipoR1 to promote hair growth. EMBO Mol Med 2021; 13:e13790. [PMID: 34486824 PMCID: PMC8495455 DOI: 10.15252/emmm.202013790] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 07/30/2021] [Accepted: 08/20/2021] [Indexed: 11/09/2022] Open
Abstract
Alopecia induced by aging or side effects of medications affects millions of people worldwide and impairs the quality of life; however, there is a limit to the current medications. Here, we identify a small transdermally deliverable 5-mer peptide (GLYYF; P5) that activates adiponectin receptor 1 (AdipoR1) and promotes hair growth. P5 sufficiently reproduces the biological effect of adiponectin protein via AMPK signaling pathway, increasing the expression of hair growth factors in the dermal papilla cells of human hair follicle. P5 accelerates hair growth ex vivo and induces anagen hair cycle in mice in vivo. Furthermore, we elucidate a key spot for the binding between AdipoR1 and adiponectin protein using docking simulation and mutagenesis studies. This study suggests that P5 could be used as a topical peptide drug for alleviating pathological conditions, which can be improved by adiponectin protein, such as alopecia.
Collapse
Affiliation(s)
- Jungyoon Ohn
- Department of Translational MedicineSeoul National University College of MedicineSeoulKorea
- Department of DermatologySeoul National University College of MedicineSeoulKorea
- Department of DermatologySeoul National University HospitalSeoulKorea
- Institute of Human‐Environment Interface BiologySeoul National UniversitySeoulKorea
| | - Kyung Wook Been
- Department of ChemistryCollege of Natural SciencesSeoul National UniversitySeoulKorea
| | - Jin Yong Kim
- Department of DermatologySeoul National University College of MedicineSeoulKorea
- Department of DermatologySeoul National University HospitalSeoulKorea
- Institute of Human‐Environment Interface BiologySeoul National UniversitySeoulKorea
| | - Eun Ju Kim
- Department of DermatologySeoul National University College of MedicineSeoulKorea
- Department of DermatologySeoul National University HospitalSeoulKorea
- Institute of Human‐Environment Interface BiologySeoul National UniversitySeoulKorea
| | - Taeyong Park
- Department of ChemistryCollege of Natural SciencesSeoul National UniversitySeoulKorea
| | - Hye‐Jin Yoon
- Department of ChemistryCollege of Natural SciencesSeoul National UniversitySeoulKorea
| | - Jeong Seok Ji
- Department of ChemistryCollege of Natural SciencesSeoul National UniversitySeoulKorea
| | - Miki Okada‐Iwabu
- Department of Diabetes and Metabolic DiseasesGraduate School of MedicineThe University of TokyoTokyoJapan
| | - Masato Iwabu
- Department of Diabetes and Metabolic DiseasesGraduate School of MedicineThe University of TokyoTokyoJapan
| | - Toshimasa Yamauchi
- Department of Diabetes and Metabolic DiseasesGraduate School of MedicineThe University of TokyoTokyoJapan
| | - Yeon Kyung Kim
- Department of DermatologySeoul National University College of MedicineSeoulKorea
- Department of DermatologySeoul National University HospitalSeoulKorea
- Institute of Human‐Environment Interface BiologySeoul National UniversitySeoulKorea
| | - Chaok Seok
- Department of ChemistryCollege of Natural SciencesSeoul National UniversitySeoulKorea
| | - Ohsang Kwon
- Department of DermatologySeoul National University College of MedicineSeoulKorea
- Department of DermatologySeoul National University HospitalSeoulKorea
- Institute of Human‐Environment Interface BiologySeoul National UniversitySeoulKorea
| | - Kyu Han Kim
- Department of Translational MedicineSeoul National University College of MedicineSeoulKorea
- Department of DermatologySeoul National University College of MedicineSeoulKorea
- Department of DermatologySeoul National University HospitalSeoulKorea
- Institute of Human‐Environment Interface BiologySeoul National UniversitySeoulKorea
| | - Hyung Ho Lee
- Department of ChemistryCollege of Natural SciencesSeoul National UniversitySeoulKorea
| | - Jin Ho Chung
- Department of DermatologySeoul National University College of MedicineSeoulKorea
- Department of DermatologySeoul National University HospitalSeoulKorea
- Institute of Human‐Environment Interface BiologySeoul National UniversitySeoulKorea
| |
Collapse
|
14
|
Park YJ, Ryu JM, Na HH, Jung HS, Kim B, Park JS, Ahn BS, Kim KC. Regulatory Effect of Cannabidiol (CBD) on Decreased β-Catenin Expression in Alopecia Models by Testosterone and PMA Treatment in Dermal Papilla Cells. J Pharmacopuncture 2021; 24:68-75. [PMID: 34249397 PMCID: PMC8220510 DOI: 10.3831/kpi.2021.24.2.68] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 05/31/2021] [Accepted: 06/04/2021] [Indexed: 11/09/2022] Open
Abstract
Objectives The hair follicle is composed of more than 20 kinds of cells, and mesoderm derived dermal papilla cells and keratinocytes cooperatively contribute hair growth via Wnt/β-catenin signaling pathway. We are to investigate β-catenin expression and regulatory mechanism by CBD in alopecia hair tissues and dermal papilla cells. Methods We performed structural and anatomical analyses on alopecia patients derived hair tissues using microscopes. Pharmacological effect of CBD was evaluated by β-catenin expression using RT-PCR and immunostaining experiment. Results Morphological deformation and loss of cell numbers in hair shaft were observed in alopecia hair tissues. IHC experiment showed that loss of β-catenin expression was shown in inner shaft of the alopecia hair tissues, indicating that β-catenin expression is a key regulatory function during alopecia progression. Consistently, β-catenin expression was decreased in testosterone or PMA treated dermal papilla cells, suggesting that those treatments are referred as a model on molecular mechanism of alopecia using dermal papilla cells. RT-PCR and immunostaining experiments showed that β-catenin expression was decreased in RNA level, as well as decreased β-catenin protein might be resulted from ubiquitination. However, CBD treatment has no changes in gene expression including β-catenin, but the decreased β-catenin expression by testosterone or PMA was restored by CBD pretreatment, suggesting that potential regulatory effect on alopecia induction of testosterone and PMA. Conclusion CBD might have a modulating function on alopecia caused by hormonal or excess of signaling pathway, and be a promising application for on alopecia treatment.
Collapse
Affiliation(s)
- Yoon-Jong Park
- Department of Biological Sciences, College of Natural Sciences, Kangwon National University, Chuncheon, Republic of Korea
| | - Jae-Min Ryu
- Department of Biological Sciences, College of Natural Sciences, Kangwon National University, Chuncheon, Republic of Korea
| | - Han-Heom Na
- Department of Biological Sciences, College of Natural Sciences, Kangwon National University, Chuncheon, Republic of Korea.,Kangwon Center for System Imaging, Kangwon National University, Chuncheon, Republic of Korea
| | - Hyun-Suk Jung
- Kangwon Center for System Imaging, Kangwon National University, Chuncheon, Republic of Korea.,Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Republic of Korea
| | - Bokhye Kim
- Kangwon Center for System Imaging, Kangwon National University, Chuncheon, Republic of Korea
| | - Jin-Sung Park
- Korean Pharmacopuncture Institute, Seoul, Republic of Korea
| | - Byung-Soo Ahn
- Korean Pharmacopuncture Institute, Seoul, Republic of Korea.,Department of Pharmacy, College of Pharmacy, Ajou University, Suwon, Republic of Korea
| | - Keun-Cheol Kim
- Department of Biological Sciences, College of Natural Sciences, Kangwon National University, Chuncheon, Republic of Korea.,Kangwon Center for System Imaging, Kangwon National University, Chuncheon, Republic of Korea
| |
Collapse
|
15
|
Akiyama M. Isolated autosomal recessive woolly hair/hypotrichosis: genetics, pathogenesis and therapies. J Eur Acad Dermatol Venereol 2021; 35:1788-1796. [PMID: 33988877 DOI: 10.1111/jdv.17350] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 04/16/2021] [Indexed: 01/05/2023]
Abstract
Isolated autosomal recessive woolly hair/hypotrichosis (ARWH) is a rare hereditary hair disease characterized by tightly curled sparse hair at birth or in early infancy. Patients with ARWH consist of genetically heterogeneous groups. Woolly hair autosomal recessive 1 (ARWH1) (MIM #278150), woolly hair autosomal recessive 2 (ARWH2) (MIM #604379) and woolly hair autosomal recessive 3 (ARWH3) (MIM #616760) are caused by mutations in LPAR6, LIPH and KRT25, respectively. In addition, nonsense variants in C3ORF52 (*611956) were identified in ARWH patients. The frequencies of the mutations in the causative genes in ARWH patients are thought to differ by ethnicity and country/geographical area. Large numbers of ARWH families with LIPH mutations have been described only in populations from Japan, Pakistan and the Volga-Ural region of Russia. In that region of Russia, most ARWH families have an extremely prevalent founder mutation, the deletion of exon 4, in LIPH. In the Pakistani population, 47.2% of ARWH families had the disease due to LIPH mutations and 52.8% of them carried LPAR6 mutations. The prevalent, recurrent LIPH mutation c.659_660delTA (p.Ile220Argfs*29) was found in more than half of Pakistani ARWH families with LIPH mutations. Most Japanese ARWH families (98.7%) harbour LIPH mutations, including the two highly prevalent, recurrent LIPH mutations c.736T>A (p.Cys246Ser) and c.742C>A (p.His248Asn). In ARWH patients whose disease was due to LIPH, LPAR6 or C3ORF52 mutations, the loss of function of LIPH, LPAR6 or C3ORF52 leads to reduced LIPH-LPA-LPAR6 signalling, resulting in the decreased transactivation of EGFR signalling and the phenotype of underdeveloped hairs. Our recent prospective interventional study suggests that topical minoxidil might be a promising treatment for ARWH due to LIPH mutations, although sufficiently effective treatments have not been established for ARWH yet.
Collapse
Affiliation(s)
- M Akiyama
- Department of Dermatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
16
|
Agrawal S, Maity S, AlRaawi Z, Al-Ameer M, Kumar TKS. Targeting Drugs Against Fibroblast Growth Factor(s)-Induced Cell Signaling. Curr Drug Targets 2021; 22:214-240. [PMID: 33045958 DOI: 10.2174/1389450121999201012201926] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/17/2020] [Accepted: 08/21/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The fibroblast growth factor (FGF) family is comprised of 23 highly regulated monomeric proteins that regulate a plethora of developmental and pathophysiological processes, including tissue repair, wound healing, angiogenesis, and embryonic development. Binding of FGF to fibroblast growth factor receptor (FGFR), a tyrosine kinase receptor, is facilitated by a glycosaminoglycan, heparin. Activated FGFRs phosphorylate the tyrosine kinase residues that mediate induction of downstream signaling pathways, such as RAS-MAPK, PI3K-AKT, PLCγ, and STAT. Dysregulation of the FGF/FGFR signaling occurs frequently in cancer due to gene amplification, FGF activating mutations, chromosomal rearrangements, integration, and oncogenic fusions. Aberrant FGFR signaling also affects organogenesis, embryonic development, tissue homeostasis, and has been associated with cell proliferation, angiogenesis, cancer, and other pathophysiological changes. OBJECTIVE This comprehensive review will discuss the biology, chemistry, and functions of FGFs, and its current applications toward wound healing, diabetes, repair and regeneration of tissues, and fatty liver diseases. In addition, specific aberrations in FGFR signaling and drugs that target FGFR and aid in mitigating various disorders, such as cancer, are also discussed in detail. CONCLUSION Inhibitors of FGFR signaling are promising drugs in the treatment of several types of cancers. The clinical benefits of FGF/FGFR targeting therapies are impeded due to the activation of other RTK signaling mechanisms or due to the mutations that abolish the drug inhibitory activity on FGFR. Thus, the development of drugs with a different mechanism of action for FGF/FGFR targeting therapies is the recent focus of several preclinical and clinical studies.
Collapse
Affiliation(s)
- Shilpi Agrawal
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas, United States
| | - Sanhita Maity
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas, United States
| | - Zeina AlRaawi
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas, United States
| | - Musaab Al-Ameer
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas, United States
| | | |
Collapse
|
17
|
Jang S, Ohn J, Kang BM, Park M, Kim KH, Kwon O. "Two-Cell Assemblage" Assay: A Simple in vitro Method for Screening Hair Growth-Promoting Compounds. Front Cell Dev Biol 2020; 8:581528. [PMID: 33330459 PMCID: PMC7732514 DOI: 10.3389/fcell.2020.581528] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/30/2020] [Indexed: 11/13/2022] Open
Abstract
Alopecia arises due to inadequate hair follicle (HF) stem cell activation or proliferation, resulting in prolongation of the telogen phase of the hair cycle. Increasing therapeutic and cosmetic demand for alleviating alopecia has driven research toward the discovery or synthesis of novel compounds that can promote hair growth by inducing HF stem cell activation or proliferation and initiating the anagen phase. Although several methods for evaluating the hair growth-promoting effects of candidate compounds are being used, most of these methods are difficult to use for large scale simultaneous screening of various compounds. Herein, we introduce a simple and reliable in vitro assay for the simultaneous screening of the hair growth-promoting effects of candidate compounds on a large scale. In this study, we first established a 3D co-culture system of human dermal papilla (hDP) cells and human outer root sheath (hORS) cells in an ultra-low attachment 96-well plate, where the two cell types constituted a polar elongated structure, named "two-cell assemblage (TCA)." We observed that the long axis length of the TCA gradually increased for 5 days, maintaining biological functional integrity as reflected by the increased expression levels of hair growth-associated genes after treatment with hair growth-promoting molecules. Interestingly, the elongation of the TCA was more prominent following treatment with the hair growth-promoting molecules (which occurred in a dose-dependent manner), compared to the control group (p < 0.05). Accordingly, we set the long axis length of the TCA as an endpoint of this assay, using a micro confocal high-content imaging system to measure the length, which can provide reproducible and reliable results in an adequate timescale. The advantages of this assay are: (i) it is physiologically and practically advantageous as it uses 3D cultured two-type human cells which are easily available; (ii) it is simple as it uses length as the only endpoint; and (iii) it is a high throughput system, which screens various compounds simultaneously. In conclusion, the "TCA" assay could serve as an easy and reliable method to validate the hair growth-promoting effect of a large volume of library molecules.
Collapse
Affiliation(s)
- Sunhyae Jang
- Laboratory of Cutaneous Aging and Hair Research, Clinical Research Institute, Seoul National University Hospital, Seoul, South Korea.,Institute of Human Environment Interface Biology, Seoul National University, Seoul, South Korea.,Department of Dermatology, Seoul National University College of Medicine, Seoul, South Korea
| | - Jungyoon Ohn
- Laboratory of Cutaneous Aging and Hair Research, Clinical Research Institute, Seoul National University Hospital, Seoul, South Korea.,Institute of Human Environment Interface Biology, Seoul National University, Seoul, South Korea.,Department of Dermatology, Seoul National University College of Medicine, Seoul, South Korea
| | - Bo Mi Kang
- Laboratory of Cutaneous Aging and Hair Research, Clinical Research Institute, Seoul National University Hospital, Seoul, South Korea.,Institute of Human Environment Interface Biology, Seoul National University, Seoul, South Korea.,Department of Dermatology, Seoul National University College of Medicine, Seoul, South Korea
| | - Minji Park
- Laboratory of Cutaneous Aging and Hair Research, Clinical Research Institute, Seoul National University Hospital, Seoul, South Korea.,Institute of Human Environment Interface Biology, Seoul National University, Seoul, South Korea.,Department of Dermatology, Seoul National University College of Medicine, Seoul, South Korea
| | - Kyu Han Kim
- Laboratory of Cutaneous Aging and Hair Research, Clinical Research Institute, Seoul National University Hospital, Seoul, South Korea.,Institute of Human Environment Interface Biology, Seoul National University, Seoul, South Korea.,Department of Dermatology, Seoul National University College of Medicine, Seoul, South Korea
| | - Ohsang Kwon
- Laboratory of Cutaneous Aging and Hair Research, Clinical Research Institute, Seoul National University Hospital, Seoul, South Korea.,Institute of Human Environment Interface Biology, Seoul National University, Seoul, South Korea.,Department of Dermatology, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
18
|
Kim J, Kim SR, Choi YH, Shin JY, Kim CD, Kang NG, Park BC, Lee S. Quercitrin Stimulates Hair Growth with Enhanced Expression of Growth Factors via Activation of MAPK/CREB Signaling Pathway. Molecules 2020; 25:molecules25174004. [PMID: 32887384 PMCID: PMC7504764 DOI: 10.3390/molecules25174004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 01/28/2023] Open
Abstract
The present study aimed to investigate the molecular mechanism of quercitrin, a major constituent of Hottuynia cordata extract, for its hair growth stimulating activities in cultured human dermal papilla cells (hDPCs). Quercitrin enhanced the cell viability and cellular energy metabolism in cultured hDPCs by stimulating the production of NAD(P)H and mitochondrial membrane potential (ΔΨ). The expression of Bcl2, an essential marker for anagen hair follicle and cell survival, was increased by quercitrin treatment. Quercitrin also increased the cell proliferation marker Ki67. The expression of growth factors—such as bFGF, KGF, PDGF-AA, and VEGF—were increased by quercitrin both in mRNA and protein levels. In addition, quercitrin was found to increase the phosphorylation of Akt, Erk, and CREB in cultured hDPCs, while inhibitors of MAPKs reversed the effects of quercitrin. Finally, quercitrin stimulated hair shaft growth in cultured human hair follicles. Our data obtained from present study are in line with those previously reported and demonstrate that quercitrin is (one of) the active compound(s) of Hottuynia cordata extract which showed hair growth promoting effects. It is strongly suggested that the hair growth stimulating activity of quercitrin was exerted by enhancing the cellular energy metabolism, increasing the production of growth factors via activation of MAPK/CREB signaling pathway.
Collapse
Affiliation(s)
- Jaeyoon Kim
- LG Household & Health Care (LG H&H) R&D Center, 70, Magokjoongang 10-ro, Gangseo-gu, Seoul 07795, Korea; (J.K.); (Y.-H.C.); (J.y.S.); (N.-G.K.)
- Department of Dermatology, School of Medicine, Chungnam National University, 266, Munwha-ro, Jung-gu, Deajeon 35015, Korea;
| | - Soon Re Kim
- Basic and clinical Hair institute, Dankook University, 201, Manghyang-ro, Dongnam-gu, Cheonan-si, Chungcheongnam-do 31116, Korea; (S.R.K.); (B.C.P.)
| | - Yun-Ho Choi
- LG Household & Health Care (LG H&H) R&D Center, 70, Magokjoongang 10-ro, Gangseo-gu, Seoul 07795, Korea; (J.K.); (Y.-H.C.); (J.y.S.); (N.-G.K.)
| | - Jae young Shin
- LG Household & Health Care (LG H&H) R&D Center, 70, Magokjoongang 10-ro, Gangseo-gu, Seoul 07795, Korea; (J.K.); (Y.-H.C.); (J.y.S.); (N.-G.K.)
| | - Chang Deok Kim
- Department of Dermatology, School of Medicine, Chungnam National University, 266, Munwha-ro, Jung-gu, Deajeon 35015, Korea;
| | - Nae-Gyu Kang
- LG Household & Health Care (LG H&H) R&D Center, 70, Magokjoongang 10-ro, Gangseo-gu, Seoul 07795, Korea; (J.K.); (Y.-H.C.); (J.y.S.); (N.-G.K.)
| | - Byung Cheol Park
- Basic and clinical Hair institute, Dankook University, 201, Manghyang-ro, Dongnam-gu, Cheonan-si, Chungcheongnam-do 31116, Korea; (S.R.K.); (B.C.P.)
- Department of Dermatology, Dankook University Hospital, 201, Manghyang-ro, Dongnam-gu, Cheonan-si, Chungcheongnam-do 31116, Korea
| | - Sanghwa Lee
- LG Household & Health Care (LG H&H) R&D Center, 70, Magokjoongang 10-ro, Gangseo-gu, Seoul 07795, Korea; (J.K.); (Y.-H.C.); (J.y.S.); (N.-G.K.)
- Correspondence: ; Tel.: +82-2-6980-1210
| |
Collapse
|
19
|
Szabó IL, Lisztes E, Béke G, Tóth KF, Paus R, Oláh A, Bíró T. The Phytocannabinoid (–)-Cannabidiol Operates as a Complex, Differential Modulator of Human Hair Growth: Anti-Inflammatory Submicromolar versus Hair Growth Inhibitory Micromolar Effects. J Invest Dermatol 2020; 140:484-488.e5. [DOI: 10.1016/j.jid.2019.07.690] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 06/08/2019] [Accepted: 07/02/2019] [Indexed: 12/21/2022]
|
20
|
Stimulating hair growth via hormesis: Experimental foundations and clinical implications. Pharmacol Res 2019; 152:104599. [PMID: 31857242 DOI: 10.1016/j.phrs.2019.104599] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/11/2019] [Accepted: 12/11/2019] [Indexed: 12/19/2022]
Abstract
Numerous agents (approximately 90) are shown to stimulate hair growth in cellular and animal models in a hormetic-like biphasic dose response manner. These hormetic dose responses occur within the framework of direct stimulatory responses as well as in preconditioning experimental protocols. These findings have important implications for experimental and clinical investigations with respect to study design strategies, dose selection and dose spacing along with sample size and statistical power issues. These findings further reflect the general occurrence of hormetic dose responses within the biological and biomedical literature that consistently appear to be independent of biological model, level of biological organization (i.e., cell, organ, and organism), endpoint, inducing agent, potency of the inducing agent, and mechanism.
Collapse
|
21
|
Lisztes E, Tóth BI, Bertolini M, Szabó IL, Zákány N, Oláh A, Szöllősi AG, Paus R, Bíró T. Adenosine Promotes Human Hair Growth and Inhibits Catagen Transition In Vitro: Role of the Outer Root Sheath Keratinocytes. J Invest Dermatol 2019; 140:1085-1088.e6. [PMID: 31730764 DOI: 10.1016/j.jid.2019.08.456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 08/22/2019] [Accepted: 08/23/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Erika Lisztes
- DE-MTA 'Lendület' Cellular Physiology Research Group, Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; Doctoral School of Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Balázs István Tóth
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Marta Bertolini
- Department of Dermatology, University of Münster, Münster, Germany; Monasterium Laboratory - Skin and Hair Research Solutions GmbH, Münster, Germany
| | - Imre Lőrinc Szabó
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Nóra Zákány
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Attila Oláh
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Attila Gábor Szöllősi
- DE-MTA 'Lendület' Cellular Physiology Research Group, Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ralf Paus
- Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida; Centre for Dermatology Research, University of Manchester, Manchester, United Kingdom
| | - Tamás Bíró
- DE-MTA 'Lendület' Cellular Physiology Research Group, Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; Hungarian Center of Excellence for Molecular Medicine, Szeged, Hungary.
| |
Collapse
|
22
|
Alam M, Bertolini M, Gherardini J, Keren A, Ponce L, Chéret J, Alenfall J, Dunér P, Nilsson AH, Gilhar A, Paus R. An osteopontin-derived peptide inhibits human hair growth at least in part by decreasing fibroblast growth factor-7 production in outer root sheath keratinocytes. Br J Dermatol 2019; 182:1404-1414. [PMID: 31487385 DOI: 10.1111/bjd.18479] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Given that unwanted hair growth (hirsutism, hypertrichosis) can cause major psychological distress, new pharmacological treatment strategies with safe and effective hair growth inhibitors that do not destroy the hair follicle (HF) and its stem cells need to be developed. OBJECTIVES To establish if osteopontin-derived fragments may modulate human hair growth given that human HFs express the multifunctional, immunomodulatory glycoprotein, osteopontin. METHODS Our hypothesis was tested ex vivo and in vivo by using a newly generated, toxicologically well-characterized, modified osteopontin-derived peptide (FOL-005), which binds to the HF. RESULTS In organ-cultured human HFs and scalp skin, and in human scalp skin xenotransplants onto SCID mice, FOL-005 treatment (60 nmol L-1 to 3 μmol L-1 ) significantly promoted premature catagen development without reducing the number of keratin 15-positive HF stem cells or showing signs of drug toxicity. Genome-wide DNA microarray, quantitative reverse-transcriptase polymerase chain reaction and immunohistochemistry revealed decreased expression of the hair growth promoter, fibroblast growth factor-7 (FGF7) by FOL-005, while cotreatment of HFs with recombinant FGF7 partially abrogated FOL-005-induced catagen promotion. CONCLUSIONS With caveats in mind, our study identifies this osteopontin-derived peptide as an effective, novel inhibitory principle for human hair growth ex vivo and in vivo, which deserves systematic clinical testing in hirsutism and hypertrichosis. What's already known about this topic? The treatment of unwanted hair growth (hypertrichosis, hirsutism) lacks pharmacological intervention, with only few and often unsatisfactory treatments available. Osteopontin is prominently expressed in human HFs and has been reported to be elevated during catagen in the murine hair cycle. What does this study add? We tested the effects on hair growth of a novel, osteopontin-derived fragment (FOL-005) ex vivo and in vivo. In human hair follicles, high-dose FOL-005 significantly reduces hair growth both ex vivo and in vivo. What is the translational message? High-dose FOL-005 may provide a new therapeutic opportunity as a treatment for unwanted hair growth.
Collapse
Affiliation(s)
- M Alam
- Monasterium Laboratory - Skin and Hair Research Solutions GmbH, Münster, Germany.,Mediteknia Skin & Hair Lab, Las Palmas de Gran Canaria, Spain.,Universidad Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
| | - M Bertolini
- Monasterium Laboratory - Skin and Hair Research Solutions GmbH, Münster, Germany
| | - J Gherardini
- Monasterium Laboratory - Skin and Hair Research Solutions GmbH, Münster, Germany
| | - A Keren
- Laboratory for Skin Research, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - L Ponce
- Monasterium Laboratory - Skin and Hair Research Solutions GmbH, Münster, Germany
| | - J Chéret
- Monasterium Laboratory - Skin and Hair Research Solutions GmbH, Münster, Germany
| | | | - P Dunér
- Follicum AB, Lund, Sweden.,Department of Clinical Sciences, Lund University, Lund, Sweden
| | - A H Nilsson
- Follicum AB, Lund, Sweden.,Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - A Gilhar
- Laboratory for Skin Research, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - R Paus
- Centre for Dermatology Research, University of Manchester and NIHR Manchester Biomedical Research Centre, Manchester, U.K.,Dr. Philip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, U.S.A
| |
Collapse
|
23
|
Zhang R, Wu H, Lian Z. Bioinformatics analysis of evolutionary characteristics and biochemical structure of FGF5 Gene in sheep. Gene 2019; 702:123-132. [PMID: 30926307 DOI: 10.1016/j.gene.2019.03.040] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 01/26/2023]
Abstract
Fibroblast growth factor (FGF) 5 regulates the development and periodicity of hair follicles, which can affect hair traits. Loss-of-function mutations associated with long-hair phenotypes have been described in several mammalian species. Sheep is an important economic animal, however, the evolution characterizations and biological mechanism of oFGF5 (Ovis aries FGF5) gene are still poorly understood. In this study, oFGF5 gene was obtained by resequencing the whole genome of three Dorper sheep and RACE of two Kazakh sheep FGF5. We proposed FGF5 was phylogenetically related to FGF4 family and oFGF5 clearly orthologed to goat FGF5. Six loci were found from the positive selection results of FGF5 and half of them located on signal peptide. The basically similar rates of function-altering substitutions in sheep and goat lineage and the rest of the mammalian lineage of 365 SNPs indicated that the FGF5 gene was quite conservative during evolution. Homology modeling of the oFGF5 suggested that it has a highly conserved FGF superfamily domain containing 10 β-strands. Furthermore, the protein-protein docking analysis revealed that oFGF5 have the potential to form heterodimers with oFGFR1, the predicted interaction interface of FGF5-FGFR1 heterodimer was formed mainly by residues from FGF superfamily domain. Our observations suggested the evolutionary and structural biology features of oFGF5 might be relevant to its function about hair follicle development and modulating hair growth, and we confirmed our speculation by using the FGF5 gene editing sheep produced by CRISPR/Cas9 technology.
Collapse
Affiliation(s)
- Rui Zhang
- Beijing Key Laboratory of Animal Genetic Improvement, China Agricultural University, Beijing 100193, China.
| | - Hongping Wu
- Beijing Key Laboratory of Animal Genetic Improvement, China Agricultural University, Beijing 100193, China.
| | - Zhengxing Lian
- Beijing Key Laboratory of Animal Genetic Improvement, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
24
|
Abstract
This study investigated the effect of cupuassu butter on the cell number of human skin fibroblasts, as well as the gene expression profiles of certain growth factors in these fibroblasts. Cupuassu butter is a triglyceride composed of saturated and unsaturated fatty acids extracted from the fruit of Theobroma grandiflorum. The dataset includes expression profiles for genes encoding basic fibroblast growth factor (bFGF), stem cell factor (SCF), vascular endothelial growth factor (VEGF), hepatocyte growth factor (HGF), fibroblast growth factor-7 (FGF7), and epidermal growth factor (EGF). Cell viability profile is presented as a line graph, and the expression profiles are shown as bar graphs. Furthermore, this article also describes the effects of cupuassu butter on wound healing in vitro. The wound healing effects are shown as a bar graph accompanied with representative microscopic images.
Collapse
|
25
|
Madaan A, Verma R, Singh AT, Jaggi M. Review of Hair Follicle Dermal Papilla cells as in vitro screening model for hair growth. Int J Cosmet Sci 2018; 40:429-450. [PMID: 30144361 DOI: 10.1111/ics.12489] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 08/20/2018] [Indexed: 12/15/2022]
Abstract
Hair disorders such as hair loss (alopecia) and androgen dependent, excessive hair growth (hirsutism, hypertrichosis) may impact the social and psychological well-being of an individual. Recent advances in understanding the biology of hair have accelerated the research and development of novel therapeutic and cosmetic hair growth agents. Preclinical models aid in dermocosmetic efficacy testing and claim substantiation of hair growth modulators. The in vitro models to investigate hair growth utilize the hair follicle Dermal Papilla cells (DPCs), specialized mesenchymal cells located at the base of hair follicle that play essential roles in hair follicular morphogenesis and postnatal hair growth cycles. In this review, we have compiled and discussed the extensively reported literature citing DPCs as in vitro model to study hair growth promoting and inhibitory effects. A variety of agents such as herbal and natural extracts, growth factors and cytokines, platelet-rich plasma, placental extract, stem cells and conditioned medium, peptides, hormones, lipid-nanocarrier, light, electrical and electromagnetic field stimulation, androgens and their analogs, stress-serum and chemotherapeutic agents etc. have been examined for their hair growth modulating effects in DPCs. Effects on DPCs' activity were determined from untreated (basal) or stress induced levels. Cell proliferation, apoptosis and secretion of growth factors were included as primary end-point markers. Effects on a wide range of biomolecules and mechanistic pathways that play key role in the biology of hair growth were also investigated. This consolidated and comprehensive review summarizes the up-to-date information and understanding regarding DPCs based screening models for hair growth and may be helpful for researchers to select the appropriate assay system and biomarkers. This review highlights the pivotal role of DPCs in the forefront of hair research as screening platforms by providing insights into mechanistic action at cellular level, which may further direct the development of novel hair growth modulators.
Collapse
Affiliation(s)
- Alka Madaan
- Cell Biology Lab, Dabur Research Foundation, 22, Site IV, Sahibabad, Ghaziabad, Uttar Pradesh, 201010, India
| | - Ritu Verma
- Cell Biology Lab, Dabur Research Foundation, 22, Site IV, Sahibabad, Ghaziabad, Uttar Pradesh, 201010, India
| | - Anu T Singh
- Cell Biology Lab, Dabur Research Foundation, 22, Site IV, Sahibabad, Ghaziabad, Uttar Pradesh, 201010, India
| | - Manu Jaggi
- Cell Biology Lab, Dabur Research Foundation, 22, Site IV, Sahibabad, Ghaziabad, Uttar Pradesh, 201010, India
| |
Collapse
|
26
|
Choi HI, Kim DY, Choi SJ, Shin CY, Hwang ST, Kim KH, Kwon O. The effect of cilostazol, a phosphodiesterase 3 (PDE3) inhibitor, on human hair growth with the dual promoting mechanisms. J Dermatol Sci 2018; 91:60-68. [DOI: 10.1016/j.jdermsci.2018.04.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 03/23/2018] [Accepted: 04/03/2018] [Indexed: 02/07/2023]
|
27
|
Someya T, Sano K, Hara K, Sagane Y, Watanabe T, Wijesekara RGS. Fibroblast and keratinocyte gene expression following exposure to the extracts of holy basil plant ( Ocimum tenuiflorum), malabar nut plant ( Justicia adhatoda), and emblic myrobalan plant ( Phyllanthus emblica). Data Brief 2018; 17:24-46. [PMID: 29876372 PMCID: PMC5988028 DOI: 10.1016/j.dib.2017.12.055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 12/20/2017] [Accepted: 12/28/2017] [Indexed: 01/08/2023] Open
Abstract
This data article provides gene expression profiles, determined by using real-time PCR, of fibroblasts and keratinocytes treated with 0.01% and 0.001% extracts of holy basil plant (Ocimum tenuiflorum), sri lankan local name “maduruthala”, 0.1% and 0.01% extracts of malabar nut plant (Justicia adhatoda), sri lankan local name “adayhoda” and 0.003% and 0.001% extracts of emblic myrobalan plant (Phyllanthus emblica), sri lankan local name “nelli”, harvested in Sri Lanka. For fibroblasts, the dataset includes expression profiles for genes encoding hyaluronan synthase 1 (HAS1), hyaluronan synthase 2 (HAS2), hyaluronidase-1 (HYAL1), hyaluronidase-2 (HYAL2), versican, aggrecan, CD44, collagen, type I, alpha 1 (COL1A1), collagen, type III, alpha 1 (COL3A1), collagen, type VII, alpha 1 (COL7A1), matrix metalloproteinase 1 (MMP1), acid ceramidase, basic fibroblast growth factor (bFGF), fibroblast growth factor-7 (FGF7), vascular endothelial growth factor (VEGF), interleukin-1 alpha (IL-1α), cyclooxygenase-2 (cox2), transforming growth factor beta (TGF-β), and aquaporin 3 (AQP3). For keratinocytes, the expression profiles are for genes encoding HAS1, HAS2, HYAL1, HYAL2, versican, CD44, IL-1α, cox2, TGF-β, AQP3, Laminin5, collagen, type XVII, alpha 1 (COL17A1), integrin alpha-6 (ITGA6), ceramide synthase 3 (CERS3), elongation of very long chain fatty acids protein 1 (ELOVL1), elongation of very long chain fatty acids protein 4 (ELOVL4), filaggrin (FLG), transglutaminase 1 (TGM1), and keratin 1 (KRT1). The expression profiles are provided as bar graphs.
Collapse
Affiliation(s)
- Takao Someya
- ALBION Co. Ltd., 1-7-10 Ginza, Chuo-ku, Tokyo 104-0061, Japan
| | - Katsura Sano
- ALBION Co. Ltd., 1-7-10 Ginza, Chuo-ku, Tokyo 104-0061, Japan
| | - Kotaro Hara
- ALBION Co. Ltd., 1-7-10 Ginza, Chuo-ku, Tokyo 104-0061, Japan
| | - Yoshimasa Sagane
- Department of food and Cosmetic Science, Faculty of Bioindustry, Tokyo University of Agriculture, 196 Yasaka, Abashiri, Hokkaido 099-2493, Japan
| | - Toshihiro Watanabe
- Department of food and Cosmetic Science, Faculty of Bioindustry, Tokyo University of Agriculture, 196 Yasaka, Abashiri, Hokkaido 099-2493, Japan
| | - R G S Wijesekara
- Department of Aquaculture and Fisheries, Faculty of Livestock, Fisheries and Nutrition, Wayamba University of Sri Lanka, Makandura, Gonawila 60170, Sri Lanka
| |
Collapse
|
28
|
Nakamura T, Yamamura H, Park K, Pereira C, Uchida Y, Horie N, Kim M, Itami S. Naturally Occurring Hair Growth Peptide: Water-Soluble Chicken Egg Yolk Peptides Stimulate Hair Growth Through Induction of Vascular Endothelial Growth Factor Production. J Med Food 2018; 21:701-708. [PMID: 29583066 DOI: 10.1089/jmf.2017.4101] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Alopecia is divided into two categories: androgenic alopecia and nonandrogenic alopecia. An androgen-dependent abnormality of biological functions causes alopecia in males, but the role of androgens is not yet elucidated in female pattern hair loss (FPHL). Modulation of androgenic activity is not effective in certain kinds of androgenic alopecia in females, as well as in cases of nonandrogenic alopecia in males and females. The hair growth drug, minoxidil, stimulates vascular endothelial growth factor (VEGF) production as well as vascularization and hair growth in females. Yet, because minoxidil has side effects with long-term use, a safe alternative hair growth agent is needed. Whereas hair develops after birth in mammalian species, hair mostly grows in a precocial bird, in the chicken, between hatching days 14 and 15. Therefore, we hypothesized that the chicken egg contains a key hair growth factor. In this study, we demonstrated that water-soluble peptides derived from the egg yolk stimulate VEGF production and human hair follicle dermal papilla cell growth. We also found that these peptides enhance murine hair growth and improve hair growth in FPHL. Finally, we characterized that water-soluble egg yolk peptides induce VEGF expression through insulin growth factor-1 receptor activation-induced hypoxia-inducible factor-1α transcription pathway. We have given the name "hair growth peptide (HGP)" to this water-soluble egg yolk peptide.
Collapse
Affiliation(s)
| | | | - Kyungho Park
- 3 Department of Food Science and Nutrition, Hallym University , Gangwon-do, Republic of Korea
| | | | | | - Noriko Horie
- 1 Pharma Foods International Co. Ltd. , Kyoto, Japan
| | - Mujo Kim
- 1 Pharma Foods International Co. Ltd. , Kyoto, Japan
| | - Satoshi Itami
- 4 Department of Regenerative Dermatology, Osaka University Graduate School of Medicine , Osaka, Japan
| |
Collapse
|
29
|
Someya T, Sano K, Hara K, Sagane Y, Watanabe T, Wijesekara R. Fibroblast and keratinocyte gene expression following exposure to extracts of neem plant ( Azadirachta indica). Data Brief 2017; 16:982-992. [PMID: 29322079 PMCID: PMC5752095 DOI: 10.1016/j.dib.2017.12.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 12/05/2017] [Accepted: 12/14/2017] [Indexed: 01/08/2023] Open
Abstract
This data article provides gene expression profiles, determined by using real-time PCR, of fibroblasts and keratinocytes treated with 0.01% and 0.001% extracts of neem plant (Azadirachta indica), local name “Kohomba” in Sri Lanka, harvested in Sri Lanka. For fibroblasts, the dataset includes expression profiles for genes encoding hyaluronan synthase 1 (HAS1), hyaluronan synthase 2 (HAS2), hyaluronidase-1 (HYAL1), hyaluronidase-2 (HYAL2), versican, aggrecan, CD44, collagen, type I, alpha 1 (COL1A1), collagen, type III, alpha 1 (COL3A1), collagen, type VII, alpha 1 (COL7A1), matrix metalloproteinase 1 (MMP1), acid ceramidase, basic fibroblast growth factor (bFGF), fibroblast growth factor-7 (FGF7), vascular endothelial growth factor (VEGF), interleukin-1 alpha (IL-1α), cyclooxygenase-2 (cox2), transforming growth factor beta (TGF-β), and aquaporin 3 (AQP3). For keratinocytes, the expression profiles are for genes encoding HAS1, HAS2, HYAL1, HYAL2, versican, CD44, IL-1α, cox2, TGF-β, AQP3, Laminin5, collagen, type XVII, alpha 1 (COL17A1), integrin alpha-6 (ITGA6), ceramide synthase 3 (CERS3), elongation of very long chain fatty acids protein 1 (ELOVL1), elongation of very long chain fatty acids protein 4 (ELOVL4), filaggrin (FLG), transglutaminase 1 (TGM1), and keratin 1 (KRT1). The expression profiles are provided as bar graphs.
Collapse
Affiliation(s)
- Takao Someya
- ALBION Co. Ltd., 1–7-10 Ginza, Chuo-ku, Tokyo 104-0061, Japan
- Corresponding author.
| | - Katsura Sano
- ALBION Co. Ltd., 1–7-10 Ginza, Chuo-ku, Tokyo 104-0061, Japan
| | - Kotaro Hara
- ALBION Co. Ltd., 1–7-10 Ginza, Chuo-ku, Tokyo 104-0061, Japan
| | - Yoshimasa Sagane
- Department of food and Cosmetic Science, Faculty of Bioindustry, Tokyo University of Agriculture, 196 Yasaka, Abashiri, Hokkaido 099–2493, Japan
| | - Toshihiro Watanabe
- Department of food and Cosmetic Science, Faculty of Bioindustry, Tokyo University of Agriculture, 196 Yasaka, Abashiri, Hokkaido 099–2493, Japan
| | - R.G.S. Wijesekara
- Department of Aquaculture and Fisheries, Faculty of Livestock, Fisheries and Nutrition, Wayamba University of Sri Lanka, Makandura, Gonawila 60170, Sri Lanka
| |
Collapse
|
30
|
Choi YM, An S, Lee J, Lee JH, Lee JN, Kim YS, Ahn KJ, An IS, Bae S. Titrated extract of Centella asiatica increases hair inductive property through inhibition of STAT signaling pathway in three-dimensional spheroid cultured human dermal papilla cells. Biosci Biotechnol Biochem 2017; 81:2323-2329. [DOI: 10.1080/09168451.2017.1385383] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Abstract
Dermal papilla (DP) is a pivotal part of hair follicle, and the smaller size of the DP is related with the hair loss. In this study, we investigated the effect of titrated extract of Centella asiatica (TECA) on hair growth inductive property on 3D spheroid cultured human DP cells (HDP cells). Significantly increased effect of TECA on cell viability was only shown in 3D sphered HPD cells, not in 2D cultured HDP cells. Also, TECA treatment increased the sphere size of HDP cells. The luciferase activity of STAT reporter genes and the expression of STAT-targeted genes, SOCS1 and SOCS3, were significantly decreased. Also, TECA treatment increased the expression of the hair growth-related signature genes in 3D sphered HDP cells. Furthermore, TECA led to downregulation of the level of phosphorylated STAT proteins in 3D sphered HDP cells. Overall, TECA activates the potential of hair inductive capacity in HDP cells.
Collapse
Affiliation(s)
- Yeong Min Choi
- Department of Cosmetics Engineering, Research Institute for Molecular-Targeted Drugs, Konkuk University, Seoul, Republic of Korea
- Korea Institute for Skin and Clinical Sciences, Gene Cell Pharm Corporation, Seoul, Republic of Korea
| | - Sungkwan An
- Korea Institute for Skin and Clinical Sciences, Gene Cell Pharm Corporation, Seoul, Republic of Korea
| | - Junwoo Lee
- Korea Institute for Skin and Clinical Sciences, Gene Cell Pharm Corporation, Seoul, Republic of Korea
| | - Jae Ho Lee
- Laboratory of Molecular Oncology, Cheil General Hospital and Women’s Healthcare Center, Dankook University College of Medicine, Seoul, Republic of Korea
| | - Jae Nam Lee
- Department of Cosmetology, Graduate School of Engineering, Konkuk University, Seoul, Republic of Korea
| | - Young Sam Kim
- Department of Image Industry, Graduate School of Engineering, Konkuk University, Seoul, Republic of Korea
| | - Kyu Joong Ahn
- Department of Dermatology, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - In-Sook An
- Korea Institute for Skin and Clinical Sciences, Gene Cell Pharm Corporation, Seoul, Republic of Korea
| | - Seunghee Bae
- Department of Cosmetics Engineering, Research Institute for Molecular-Targeted Drugs, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
31
|
Li H, Karmouty-Quintana H, Chen NY, Mills T, Molina J, Blackburn MR, Davies J. Loss of CD73-mediated extracellular adenosine production exacerbates inflammation and abnormal alveolar development in newborn mice exposed to prolonged hyperoxia. Pediatr Res 2017; 82:pr2017176. [PMID: 28832580 DOI: 10.1038/pr.2017.176] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 06/20/2017] [Indexed: 12/15/2022]
Abstract
BackgroundHyperoxic lung injury is characterized by cellular damage from high oxygen concentrations that lead to an inflammatory response and it disrupts normal alveolarization in the developing newborn lung. Adenosine is a signaling molecule that is generated extracellularly by ecto-5'-nucleotidase (CD73) in response to injury. Extracellular adenosine signals through cell surface receptors and has been found to have a protective role in acute injury situations; however, chronic elevations have been associated with detrimental changes in chronic lung diseases. We hypothesized that hyperoxia-induced lung injury leads to CD73-mediated increases in extracellular adenosine, which are detrimental to the newborn lung.MethodsC57Bl/6 and CD73-/- mice were exposed to 95% oxygen, 70% oxygen, or room air. Adenosine concentration and markers of pulmonary inflammation and lung development were measured.ResultsExposure to hyperoxia caused pulmonary inflammation and disrupted normal alveolar development in association with increased pulmonary adenosine levels. Loss of CD73-mediated extracellular adenosine production led to decreased survival with exposure to 95% oxygen, and exacerbated pulmonary inflammation and worsened lung development with 70% oxygen exposure.ConclusionExposure to hyperoxia causes lung injury associated with an increase in adenosine concentration, and loss of CD73-mediated adenosine production leads to worsening of hyperoxic lung injury.Pediatric Research advance online publication, 23 August 2017; doi:10.1038/pr.2017.176.
Collapse
Affiliation(s)
- Huiling Li
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Harry Karmouty-Quintana
- Department of Biochemistry and Molecular Biology, The University of Texas-Houston Medical School, Houston, Texas
| | - Ning-Yuan Chen
- Department of Biochemistry and Molecular Biology, The University of Texas-Houston Medical School, Houston, Texas
| | - Tingting Mills
- Department of Biochemistry and Molecular Biology, The University of Texas-Houston Medical School, Houston, Texas
| | - Jose Molina
- Department of Biochemistry and Molecular Biology, The University of Texas-Houston Medical School, Houston, Texas
| | - Michael R Blackburn
- Department of Biochemistry and Molecular Biology, The University of Texas-Houston Medical School, Houston, Texas
| | - Jonathan Davies
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
32
|
Guo H, Gao WV, Endo H, McElwee KJ. Experimental and early investigational drugs for androgenetic alopecia. Expert Opin Investig Drugs 2017; 26:917-932. [DOI: 10.1080/13543784.2017.1353598] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Hongwei Guo
- Department of Dermatology and Skin Science, University of British Columbia, Vancouver, Canada
- Department of Dermatology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Wendi Victor Gao
- Department of Dermatology and Skin Science, University of British Columbia, Vancouver, Canada
| | - Hiromi Endo
- Department of Dermatology and Skin Science, University of British Columbia, Vancouver, Canada
- Department of Dermatology, Ohashi Hospital, Toho University, Tokyo, Japan
| | - Kevin John McElwee
- Department of Dermatology and Skin Science, University of British Columbia, Vancouver, Canada
- Vancouver Coastal Health Research Institute, Vancouver, Canada
| |
Collapse
|
33
|
Industrial-scale processing of activated platelet-rich plasma from specific pathogen-free pigs and its effect on promoting human hair follicle dermal papilla cell cultivation. J Taiwan Inst Chem Eng 2017. [DOI: 10.1016/j.jtice.2016.12.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
34
|
Li Z, Shang C. Where have the organizers gone? – The growth control system as a foundation of physiology. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2017; 123:42-47. [DOI: 10.1016/j.pbiomolbio.2016.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Accepted: 09/04/2016] [Indexed: 01/24/2023]
|
35
|
Kinoshita‐Ise M, Kubo A, Sasaki T, Umegaki‐Arao N, Amagai M, Ohyama M. Identification of factors contributing to phenotypic divergence via quantitative image analyses of autosomal recessive woolly hair/hypotrichosis with homozygous c.736T>A
LIPH
mutation. Br J Dermatol 2016; 176:138-144. [DOI: 10.1111/bjd.14836] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2016] [Indexed: 11/27/2022]
Affiliation(s)
- M. Kinoshita‐Ise
- Department of Dermatology Keio University School of Medicine Tokyo Japan
- Department of Dermatology Kyorin University School of Medicine Tokyo Japan
| | - A. Kubo
- Department of Dermatology Keio University School of Medicine Tokyo Japan
| | - T. Sasaki
- Department of Dermatology Keio University School of Medicine Tokyo Japan
- KOSÉ Endowed Program for Skin Care and Allergy Prevention Keio University School of Medicine Tokyo Japan
| | - N. Umegaki‐Arao
- Department of Dermatology Keio University School of Medicine Tokyo Japan
| | - M. Amagai
- Department of Dermatology Keio University School of Medicine Tokyo Japan
| | - M. Ohyama
- Department of Dermatology Keio University School of Medicine Tokyo Japan
- Department of Dermatology Kyorin University School of Medicine Tokyo Japan
| |
Collapse
|
36
|
Song YH, Zhu YT, Ding J, Zhou FY, Xue JX, Jung JH, Li ZJ, Gao WY. Distribution of fibroblast growth factors and their roles in skin fibroblast cell migration. Mol Med Rep 2016; 14:3336-42. [PMID: 27572477 DOI: 10.3892/mmr.2016.5646] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 05/11/2016] [Indexed: 11/05/2022] Open
Abstract
Fibroblast growth factor (FGF)2/basic FGF is a member of the fibroblast growth factor family. Its function in skin wound healing has been well-characterized. However, the function of other FGFs in skin tissues remains to be elucidated. In the present study, FGF expression patterns in heart, liver, skin and kidney tissues were analyzed. Notably, in contrast to other tissues, only four FGFs, FGF2, 7, 10 and 21, were dominant in the skin. To examine FGF function in the wound healing process, mouse NIH3T3 fibroblast cells were treated with FGF2, FGF10 and FGF21, and cell migration was monitored. The results revealed that FGF treatment promoted cell migration, which is an important step in wound healing. In addition, FGF treatment enhanced the activity of c-Jun N-terminal kinase (JNK), a key regulator of fibroblast cell migration. To analyze its role in cell migration, FGF7 was overexpressed in fibroblast cells via a lentivirus system; however, this did not change cell migration speed. FGF2, 7, 10 and 21 were highly expressed in skin tissue, and all except FGF7 regulated fibroblast cell migration and activated JNK. The results of the present study increase our understanding of the role of FGFs in skin wound healing.
Collapse
Affiliation(s)
- Yong Huan Song
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Yu Ting Zhu
- The Key Zhejiang Province Laboratory of Biomedicine, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Jian Ding
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Fei Ya Zhou
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Ji Xin Xue
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Jin Hee Jung
- Molecular Evolution Team, Department of Biotechnology R&D, Amicogen, Inc., Jinju, South Gyeongsang 660701, Republic of Korea
| | - Zhi Jie Li
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Wei Yang Gao
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| |
Collapse
|
37
|
Iwabuchi T, Takeda S, Yamanishi H, Ideta R, Ehama R, Tsuruda A, Shibata H, Ito T, Komatsu N, Terai K, Oka S. The topical penta-peptide Gly-Pro-Ile-Gly-Ser increases the proportion of thick hair in Japanese men with androgenetic alopecia. J Cosmet Dermatol 2016; 15:176-84. [PMID: 27030543 DOI: 10.1111/jocd.12216] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2016] [Indexed: 11/27/2022]
Abstract
BACKGROUND A penta-peptide, Gly-Pro-Ile-Gly-Ser (GPIGS), promotes proliferation of mouse hair keratinocytes and accelerates hair growth in mice. AIM OF THIS STUDY This study focused on the ability of the peptide to promote human hair growth. METHODS We used a human hair keratinocyte proliferation assay and organ cultures of human hair follicle as in vitro systems. The lotions with and without the penta-peptide were administered to 22 Japanese men with androgenetic alopecia (AGA) for 4 months in a double-blind and randomized clinical study. RESULTS The penta-peptide significantly stimulated the proliferation of human hair keratinocytes at a concentration of 2.3 μm (P < 0.01), and 5.0 μm of this peptide had a marked effect on hair shaft elongation in the organ culture (P < 0.05). The change in the proportion of thick hair (≥60 μm) compared to baseline in patients that received the peptide was significantly higher than in the placebo (P = 0.006). The change in the proportion of vellus hair (<40 μm) was also significantly lower in the peptide group than in the placebo (P = 0.029). The penta-peptide also significantly improved the appearance of baldness (P = 0.020) when blinded reviewers graded photographs of the participants according to a standardized baldness scale. No adverse dermatological effects due to treatment were noted during this clinical study. CONCLUSIONS This penta-peptide promotes proliferation of human hair keratinocytes and hair shaft elongation of human hair follicles, in vitro. This peptide increases thick hair ratio in vivo, and this compound is useful for the improvement of AGA.
Collapse
Affiliation(s)
- Tokuro Iwabuchi
- Shiseido Global Innovation Center, Hayabuchi, Tsuzuki, Yokohama, Japan
| | - Shunsuke Takeda
- Shiseido Global Innovation Center, Hayabuchi, Tsuzuki, Yokohama, Japan
| | - Haruyo Yamanishi
- Shiseido Global Innovation Center, Hayabuchi, Tsuzuki, Yokohama, Japan
| | - Ritsuro Ideta
- Shiseido Global Innovation Center, Hayabuchi, Tsuzuki, Yokohama, Japan
| | - Ritsuko Ehama
- Shiseido Global Innovation Center, Hayabuchi, Tsuzuki, Yokohama, Japan
| | - Akinori Tsuruda
- National Institute of Advanced Industrial Science and Technology, Central 6, Tsukuba, Ibaraki, Japan
| | - Hideaki Shibata
- Frontier Technology Laboratory, Inc., Minato-ku, Tokyo, Japan
| | - Tomoko Ito
- Frontier Technology Laboratory, Inc., Minato-ku, Tokyo, Japan
| | | | - Keiko Terai
- Keiyu Hospital, Hiyoshi, Kohku-ku, Yokohama, Japan
| | - Syuichi Oka
- National Institute of Advanced Industrial Science and Technology, Central 6, Tsukuba, Ibaraki, Japan
| |
Collapse
|
38
|
Gao Y, Wang X, Yan H, Zeng J, Ma S, Niu Y, Zhou G, Jiang Y, Chen Y. Comparative Transcriptome Analysis of Fetal Skin Reveals Key Genes Related to Hair Follicle Morphogenesis in Cashmere Goats. PLoS One 2016; 11:e0151118. [PMID: 26959817 PMCID: PMC4784850 DOI: 10.1371/journal.pone.0151118] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 02/22/2016] [Indexed: 11/18/2022] Open
Abstract
Cashmere goat skin contains two types of hair follicles (HF): primary hair follicles (PHF) and secondary hair follicles (SHF). Although multiple genetic determinants associated with HF formation have been identified, the molecules that determine the independent morphogenesis of HF in cashmere goats remain elusive. The growth and development of SHF directly influence the quantity and quality of cashmere production. Here, we report the transcriptome profiling analysis of nine skin samples from cashmere goats using 60- and 120-day-old embryos (E60 and E120, respectively), as well as newborns (NB), through RNA-sequencing (RNA-seq). HF morphological changes indicated that PHF were initiated at E60, with maturation from E120, while differentiation of SHF was identified at E120 until formation of cashmere occurred after birth (NB). The RNA-sequencing analysis generated over 20.6 million clean reads from each mRNA library. The number of differentially expressed genes (DEGs) in E60 vs. E120, E120 vs. NB, and E60 vs. NB were 1,024, 0 and 1,801, respectively, indicating that no significant differences were found at transcriptomic levels between E120 and NB. Key genes including B4GALT4, TNC, a-integrin, and FGFR1, were up-regulated and expressed in HF initiation from E60 to E120, while regulatory genes such as GPRC5D, PAD3, HOXC13, PRR9, VSIG8, LRRC15, LHX2, MSX-2, and FOXN1 were up-regulated and expressed in HF keratinisation and hair shaft differentiation from E120 and NB to E60. Several genes belonging to the KRT and KRTAP gene families were detected throughout the three HF developmental stages. The transcriptional trajectory analyses of all DEGs indicated that immune privilege, glycosaminoglycan biosynthesis, extracellular matrix receptor interaction, and growth factor receptors all played dominant roles in the epithelial-mesenchymal interface and HF formation. We found that the Wnt, transforming growth factor-beta/bone morphogenetic protein, and Notch family members played vital roles in HF differentiation and maturation. The DEGs we found could be attributed to the generation and development of HF, and thus will be critically important for improving the quantity and quality of fleece production in animals for fibres.
Collapse
Affiliation(s)
- Ye Gao
- College of Animal Science and Technology, Northwest A&F University, Yangling, People’s Republic of China
- College of Life Science, Yulin University, Yulin, People’s Republic of China
| | - Xiaolong Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, People’s Republic of China
| | - Hailong Yan
- College of Animal Science and Technology, Northwest A&F University, Yangling, People’s Republic of China
- College of Life Science, Yulin University, Yulin, People’s Republic of China
| | - Jie Zeng
- College of Animal Science and Technology, Northwest A&F University, Yangling, People’s Republic of China
| | - Sen Ma
- College of Animal Science and Technology, Northwest A&F University, Yangling, People’s Republic of China
| | - Yiyuan Niu
- College of Animal Science and Technology, Northwest A&F University, Yangling, People’s Republic of China
| | - Guangxian Zhou
- College of Animal Science and Technology, Northwest A&F University, Yangling, People’s Republic of China
| | - Yu Jiang
- College of Animal Science and Technology, Northwest A&F University, Yangling, People’s Republic of China
| | - Yulin Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, People’s Republic of China
- * E-mail:
| |
Collapse
|
39
|
Munkhbayar S, Jang S, Cho AR, Choi SJ, Shin CY, Eun HC, Kim KH, Kwon O. Role of Arachidonic Acid in Promoting Hair Growth. Ann Dermatol 2016; 28:55-64. [PMID: 26848219 PMCID: PMC4737836 DOI: 10.5021/ad.2016.28.1.55] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 05/15/2015] [Accepted: 05/21/2015] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Arachidonic acid (AA) is an omega-6 polyunsaturated fatty acid present in all mammalian cell membranes, and involved in the regulation of many cellular processes, including cell survival, angiogenesis, and mitogenesis. The dermal papilla, composed of specialized fibroblasts located in the bulb of the hair follicle, contributes to the control of hair growth and the hair cycle. OBJECTIVE This study investigated the effect of AA on hair growth by using in vivo and in vitro models. METHODS The effect of AA on human dermal papilla cells (hDPCs) and hair shaft elongation was evaluated by MTT assay and hair follicle organ culture, respectively. The expression of various growth and survival factors in hDPCs were investigated by western blot or immunohistochemistry. The ability of AA to induce and prolong anagen phase in C57BL/6 mice was analyzed. RESULTS AA was found to enhance the viability of hDPCs and promote the expression of several factors responsible for hair growth, including fibroblast growth factor-7 (FGF-7) and FGF-10. Western blotting identified the role of AA in the phosphorylation of various transcription factors (ERK, CREB, and AKT) and increased expression of Bcl-2 in hDPCs. In addition, AA significantly promoted hair shaft elongation, with increased proliferation of matrix keratinocytes, during ex vivo hair follicle culture. It was also found to promote hair growth by induction and prolongation of anagen phase in telogen-stage C57BL/6 mice. CONCLUSION This study concludes that AA plays a role in promoting hair growth by increasing the expression of growth factors in hDPCs and enhancing follicle proliferation and survival.
Collapse
Affiliation(s)
- Semchin Munkhbayar
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Korea
| | - Sunhyae Jang
- Institute of Human-Environment Interface Biology, Seoul National University Medical Research Center, Seoul, Korea
- Laboratory of Cutaneous Aging and Hair Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - A-Ri Cho
- Institute of Human-Environment Interface Biology, Seoul National University Medical Research Center, Seoul, Korea
- Laboratory of Cutaneous Aging and Hair Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Soon-Jin Choi
- Institute of Human-Environment Interface Biology, Seoul National University Medical Research Center, Seoul, Korea
- Laboratory of Cutaneous Aging and Hair Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Chang Yup Shin
- Institute of Human-Environment Interface Biology, Seoul National University Medical Research Center, Seoul, Korea
- Laboratory of Cutaneous Aging and Hair Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Hee Chul Eun
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Korea
| | - Kyu Han Kim
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Korea
- Institute of Human-Environment Interface Biology, Seoul National University Medical Research Center, Seoul, Korea
- Laboratory of Cutaneous Aging and Hair Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Ohsang Kwon
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Korea
- Institute of Human-Environment Interface Biology, Seoul National University Medical Research Center, Seoul, Korea
- Laboratory of Cutaneous Aging and Hair Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
40
|
Jain R, Monthakantirat O, Tengamnuay P, De-Eknamkul W. Identification of a new plant extract for androgenic alopecia treatment using a non-radioactive human hair dermal papilla cell-based assay. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 16:18. [PMID: 26796631 PMCID: PMC4721057 DOI: 10.1186/s12906-016-1004-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 01/19/2016] [Indexed: 11/10/2022]
Abstract
BACKGROUND Androgenic alopecia (AGA) is a major type of human scalp hair loss, which is caused by two androgens: testosterone (T) and 5α-dihydrotestosterone (5α-DHT). Both androgens bind to the androgen receptor (AR) and induce androgen-sensitive genes within the human hair dermal papilla cells (HHDPCs), but 5α-DHT exhibits much higher binding affinity and potency than T does in inducing the involved androgen-sensitive genes. Changes in the induction of androgen-sensitive genes during AGA are caused by the over-production of 5α-DHT by the 5α-reductase (5α-R) enzyme; therefore, one possible method to treat AGA is to inhibit this enzymatic reaction. METHODS RT-PCR was used to identify the presence of the 5α-R and AR within HHDPCs. A newly developed AGA-relevant HHDPC-based assay combined with non-radioactive thin layer chromatography (TLC) detection was used for screening crude plant extracts for the identification of new 5α-R inhibitors. RESULTS HHDPCs expressed both 5α-R type 1 isoform of the enzyme (5α-R1) and AR in all of the passages used in this study. Among the thirty tested extracts, Avicennia marina (AM) displayed the highest inhibitory activity at the final concentration of 10 μg/ml, as the production of 5α-DHT decreased by 52% (IC50 = 9.21 ± 0.38 μg/ml). CONCLUSIONS Avicennia marina (AM) was identified as a potential candidate for the treatment of AGA based on its 5α-R1-inhibitory activity.
Collapse
Affiliation(s)
- Ruchy Jain
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Research Unit of Natural Product Biotechnology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Orawan Monthakantirat
- Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Parkpoom Tengamnuay
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Wanchai De-Eknamkul
- Research Unit of Natural Product Biotechnology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
41
|
Iwabuchi T, Ideta R, Ehama R, Yamanishi H, Iino M, Nakazawa Y, Kobayashi T, Ohyama M, Kishimoto J. Topical adenosine increases the proportion of thick hair in Caucasian men with androgenetic alopecia. J Dermatol 2015; 43:567-70. [DOI: 10.1111/1346-8138.13159] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 08/25/2015] [Indexed: 11/29/2022]
Affiliation(s)
| | | | | | | | | | | | - Takashi Kobayashi
- Department of Dermatology; Teikyo University Medical Center; Chiba Japan
| | - Manabu Ohyama
- Department of Dermatology; Keio University School of Medicine; Tokyo Japan
| | | |
Collapse
|
42
|
Takahashi T, Ishino A, Arai T, Hamada C, Nakazawa Y, Iwabuchi T, Tajima M. Improvement of androgenetic alopecia with topicalSophora flavescensAiton extract, and identification of the two active compounds in the extract that stimulate proliferation of human hair keratinocytes. Clin Exp Dermatol 2015; 41:302-7. [DOI: 10.1111/ced.12753] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2015] [Indexed: 11/29/2022]
Affiliation(s)
- T. Takahashi
- Shiseido Research Center; Hayabuchi Tsuzuki Yokohama Japan
| | - A. Ishino
- Shiseido Research Center; Hayabuchi Tsuzuki Yokohama Japan
| | - T. Arai
- Shiseido Research Center; Hayabuchi Tsuzuki Yokohama Japan
| | - C. Hamada
- Shiseido Research Center; Hayabuchi Tsuzuki Yokohama Japan
| | - Y. Nakazawa
- Shiseido Research Center; Hayabuchi Tsuzuki Yokohama Japan
| | - T. Iwabuchi
- Shiseido Research Center; Hayabuchi Tsuzuki Yokohama Japan
| | - M. Tajima
- Shiseido Research Center; Hayabuchi Tsuzuki Yokohama Japan
| |
Collapse
|
43
|
Watanabe Y, Nagashima T, Hanzawa N, Ishino A, Nakazawa Y, Ogo M, Iwabuchi T, Tajima M. Topical adenosine increases thick hair ratio in Japanese men with androgenetic alopecia. Int J Cosmet Sci 2015; 37:579-87. [DOI: 10.1111/ics.12235] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 04/18/2015] [Indexed: 12/01/2022]
Affiliation(s)
| | | | - N. Hanzawa
- Shiseido Research Center; Yokohama Japan
| | - A. Ishino
- Shiseido Research Center; Yokohama Japan
| | | | - M. Ogo
- Shiseido Research Center; Yokohama Japan
| | | | - M. Tajima
- Shiseido Research Center; Yokohama Japan
| |
Collapse
|
44
|
Park GH, Park KY, Cho HI, Lee SM, Han JS, Won CH, Chang SE, Lee MW, Choi JH, Moon KC, Shin H, Kang YJ, Lee DH. Red ginseng extract promotes the hair growth in cultured human hair follicles. J Med Food 2014; 18:354-62. [PMID: 25396716 DOI: 10.1089/jmf.2013.3031] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Ginseng has been shown to promote hair growth in several recent studies. However, its effects on human hair follicles and its mechanisms of action have not been sufficiently elucidated. This study aimed to investigate the hair growth-promoting effects of red ginseng extract (RGE) and its ginsenosides. The proliferative activities of cultured human hair follicles treated with RGE and ginsenoside-Rb1 were assessed using Ki-67 immunostaining. Their effects on isolated human dermal papilla cells (hDPCs) were evaluated using cytotoxicity assays, immunoblot analysis of signaling proteins, and the determination of associated growth factors. We examined the ability of RGE and ginsenosides to protect hair matrix keratinocyte proliferation against dihydrotestosterone (DHT)-induced suppression and their effects on the expression of androgen receptor. The in vivo hair growth-promoting effect of RGE was also investigated in C57BL/6 mice. Both RGE and ginsenoside-Rb1 enhanced the proliferation of hair matrix keratinocytes. hDPCs treated with RGE or ginsenoside-Rb1 exhibited substantial cell proliferation and the associated phosphorylation of ERK and AKT. Moreover, RGE, ginsenoside-Rb1, and ginsenoside-Rg3 abrogated the DHT-induced suppression of hair matrix keratinocyte proliferation and the DHT-induced upregulation of the mRNA expression of androgen receptor in hDPCs. Murine experiments revealed that the subcutaneous injection of 3% RGE resulted in more rapid hair growth than the negative control. In conclusion, RGE and its ginsenosides may enhance hDPC proliferation, activate ERK and AKT signaling pathways in hDPCs, upregulate hair matrix keratinocyte proliferation, and inhibit the DHT-induced androgen receptor transcription. These results suggest that red ginseng may promote hair growth in humans.
Collapse
Affiliation(s)
- Gyeong-Hun Park
- 1 Department of Dermatology, Dongtan Sacred Heart Hospital, Hallym University College of Medicine , Hwaseong, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Higgins CA, Christiano AM. Regenerative medicine and hair loss: how hair follicle culture has advanced our understanding of treatment options for androgenetic alopecia. Regen Med 2014; 9:101-11. [PMID: 24351010 DOI: 10.2217/rme.13.87] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Many of the current drug therapies for androgenetic alopecia were discovered serendipitously, with hair growth observed as an off-target effect when drugs were used to treat a different disorder. Subsequently, several studies using cultured cells have enabled identification of hair growth modulators with similar properties to the currently available drugs, which may also provide clinical benefit. In situations where the current therapeutics do not work, follicular unit transplantation is an alternative surgical option. More recently, the concept of follicular cell implantation, or hair follicle neogenesis, has been attempted, exploiting the inherent properties of cultured hair follicle cells to induce de novo hair growth in balding scalp. In this review, we discuss both the advances in cell culture techniques that have led to a wider range of potential therapeutics to promote hair growth, in addition to detailing current knowledge on follicular cell implantation, and the challenges in making this approach a reality.
Collapse
Affiliation(s)
- Claire A Higgins
- Department of Dermatology, Columbia University, New York, NY, USA
| | | |
Collapse
|
46
|
Jain R, De-Eknamkul W. Potential targets in the discovery of new hair growth promoters for androgenic alopecia. Expert Opin Ther Targets 2014; 18:787-806. [PMID: 24873677 DOI: 10.1517/14728222.2014.922956] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Androgenic alopecia (AGA) is the major type of scalp hair loss affecting 60 - 70% of the population worldwide. It is caused by two potent androgens, namely testosterone (T) and 5α-dihydrotestosterone (5α-DHT). Till date, only two FDA-approved synthetic drugs, minoxidil and finasteride, are used to cure AGA with only 35 and 48% success, respectively; therefore, a search for new drug based on the mechanism of androgens action is still needed. AREAS COVERED Relevant literature was reviewed to identify current therapeutic targets and treatments for AGA. The potential targets are classified into three categories: i) 5α-reductase; ii) androgen receptor and iii) growth-factor-producing genes related to hair growth. EXPERT OPINION Relevant assay systems using the right targets are required in order to obtain specific and effective drugs for AGA treatment. It is unlikely that single targeted agents will be sufficient for treating AGA, and therefore, it would be a challenge to obtain compounds with multiple activities.
Collapse
Affiliation(s)
- Ruchy Jain
- Chulalongkorn University, Faculty of Pharmaceutical Sciences, Pharmaceutical Technology , Bangkok, 10330 , Thailand
| | | |
Collapse
|
47
|
Schmid D, Zeis T, Schaeren-Wiemers N. Transcriptional regulation induced by cAMP elevation in mouse Schwann cells. ASN Neuro 2014; 6:137-57. [PMID: 24641305 PMCID: PMC4834722 DOI: 10.1042/an20130031] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 01/16/2014] [Accepted: 02/05/2014] [Indexed: 12/23/2022] Open
Abstract
In peripheral nerves, Schwann cell development is regulated by a variety of signals. Some of the aspects of Schwann cell differentiation can be reproduced in vitro in response to forskolin, an adenylyl cyclase activator elevating intracellular cAMP levels. Herein, the effect of forskolin treatment was investigated by a comprehensive genome-wide expression study on primary mouse Schwann cell cultures. Additional to myelin-related genes, many so far unconsidered genes were ascertained to be modulated by forskolin. One of the strongest differentially regulated gene transcripts was the transcription factor Olig1 (oligodendrocyte transcription factor 1), whose mRNA expression levels were reduced in treated Schwann cells. Olig1 protein was localized in myelinating and nonmyelinating Schwann cells within the sciatic nerve as well as in primary Schwann cells, proposing it as a novel transcription factor of the Schwann cell lineage. Data analysis further revealed that a number of differentially expressed genes in forskolin-treated Schwann cells were associated with the ECM (extracellular matrix), underlining its importance during Schwann cell differentiation in vitro. Comparison of samples derived from postnatal sciatic nerves and from both treated and untreated Schwann cell cultures showed considerable differences in gene expression between in vivo and in vitro, allowing us to separate Schwann cell autonomous from tissue-related changes. The whole data set of the cell culture microarray study is provided to offer an interactive search tool for genes of interest.
Collapse
Key Words
- camp
- forskolin
- in vitro
- microarray
- schwann cell differentiation
- bmp, bone morphogenetic protein
- camp, cyclic adenosine monophosphate
- cns, central nervous system
- creb, camp-response-element-binding protein
- david, database for annotation, visualization and integrated discovery
- dgc, dystrophin–glycoprotein complex
- ecm, extracellular matrix
- fdr, false discovery rate
- go, gene ontology
- ipa, ingenuity pathway analysis
- mag, myelin-associated glycoprotein
- mapk, mitogen-activated protein kinase
- mbp, myelin basic protein
- mpz/p0, myelin protein zero
- nf-κb, nuclear factor κb
- olig1, oligodendrocyte transcription factor 1
- pca, principal component analysis
- pfa, paraformaldehyde
- pka, protein kinase a
- pns, peripheral nervous system
- qrt–pcr, quantitative rt–pcr
- s.d., standard deviation
Collapse
Affiliation(s)
- Daniela Schmid
- *Neurobiology, Department of Biomedicine, University Hospital Basel,
University of Basel, Hebelstrasse 20, CH-4031 Basel, Switzerland
| | - Thomas Zeis
- *Neurobiology, Department of Biomedicine, University Hospital Basel,
University of Basel, Hebelstrasse 20, CH-4031 Basel, Switzerland
| | - Nicole Schaeren-Wiemers
- *Neurobiology, Department of Biomedicine, University Hospital Basel,
University of Basel, Hebelstrasse 20, CH-4031 Basel, Switzerland
| |
Collapse
|
48
|
Geng R, Yuan C, Chen Y. Exploring differentially expressed genes by RNA-Seq in cashmere goat (Capra hircus) skin during hair follicle development and cycling. PLoS One 2013; 8:e62704. [PMID: 23638136 PMCID: PMC3640091 DOI: 10.1371/journal.pone.0062704] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 03/25/2013] [Indexed: 11/19/2022] Open
Abstract
Cashmere goat (Capra hircus) hair follicle development and cycling can be divided into three stages: anagen, catagen and telogen. To elucidate the genes involved in hair follicle development and cycling in cashmere goats, transcriptome profiling of skin was carried out by analysing samples from three hair follicle developmental stages using RNA-Seq. The RNA-Seq analysis generated 8487344, 8142514 and 7345335 clean reads in anagen, catagen and telogen stages, respectively, which provided abundant data for further analysis. A total of 1332 differentially expressed genes (DEGs) were identified, providing evidence that the development of hair follicles among the three distinct stages changed considerably. A total of 683 genes with significant differential expression were detected between anagen and catagen, 530 DEGs were identified between anagen and telogen, and 119 DEGs were identified between catagen and telogen. A large number of DEGs were predominantly related to cellular process, cell & cell part, binding, biological regulation and metabolic process among the different stages of hair follicle development. In addition, the Wnt, Shh, TGF-β and Notch signaling pathways may be involved in hair follicle development and the identified DEGs may play important roles in these signaling pathways. These results will expand our understanding of the complex molecular mechanisms of hair follicle development and cycling in cashmere goats and provide a foundation for future studies.
Collapse
Affiliation(s)
- Rongqing Geng
- College of Animal Science and Technology, Northwest A&F University, Yangling, People’s Republic of China
- College of Life Science and Technology, Yancheng Teachers University, Yancheng, People’s Republic of China
| | - Chao Yuan
- College of Animal Science and Technology, Northwest A&F University, Yangling, People’s Republic of China
| | - Yulin Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, People’s Republic of China
- * E-mail:
| |
Collapse
|
49
|
Kumura H, Sawada T, Oda Y, Konno M, Kobayashi K. Potential of polar lipids from bovine milk to regulate the rodent dorsal hair cycle. J Dairy Sci 2012; 95:3629-33. [PMID: 22720920 DOI: 10.3168/jds.2011-5304] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Accepted: 03/18/2012] [Indexed: 11/19/2022]
Abstract
Among the lipids in bovine milk, minor components such as conjugated linoleic acids and phospholipids are more attractive than triacylglycerols from the standpoint of biological activity. To explore novel functions of bovine milk polar lipids (MPL), topical application to murine dorsal skin was introduced as an assay system. The acetone-insoluble lipid fraction derived from bovine milk was dispersed in ethanol and applied to 9-wk-old C57BL/6N female mice for 3 wk. In combination with visual assessment of the dorsal pigmentation, the progression of the hair cycle was estimated by calculating the ratio of subcutis to dermis thickness. The administration of MPL led to earlier progression of the hair cycle compared with administration of the vehicle. In some cases, the extent of MPL-induced hair cycle progression was comparable to that in animals treated with minoxidil, the most well-known reagent that initiates anagen. These results indicate that the MPL preparation contains a dermal penetrative component that can regulate the hair cycle and, thus, this preparation possesses potential for cosmetic use.
Collapse
Affiliation(s)
- H Kumura
- Laboratory of Dairy Food Science, Division of Bioresources and Product Science, Hokkaido University, 060-8589, Sapporo, Japan.
| | | | | | | | | |
Collapse
|
50
|
Production of adenosine by ectonucleotidases: a key factor in tumor immunoescape. J Biomed Biotechnol 2012; 2012:473712. [PMID: 23133312 PMCID: PMC3481458 DOI: 10.1155/2012/473712] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 07/03/2012] [Indexed: 02/07/2023] Open
Abstract
It is now well known that tumor immunosurveillance contributes to the control of cancer growth. Many mechanisms can be used by cancer cells to avoid the antitumor immune response. One such mechanism relies on the capacity of cancer cells or more generally of the tumor microenvironment to generate adenosine, a major molecule involved in antitumor T cell response suppression. Adenosine is generated by the dephosphorylation of extracellular ATP released by dying tumor cells. The conversion of ATP into adenosine is mediated by ectonucleotidase molecules, namely, CD73 and CD39. These molecules are frequently expressed in the tumor bed by a wide range of cells including tumor cells, regulatory T cells, Th17 cells, myeloid cells, and stromal cells. Recent evidence suggests that targeting adenosine by inhibiting ectonucleotidases may restore the resident antitumor immune response or enhance the efficacy of antitumor therapies. This paper will underline the impact of adenosine and ectonucleotidases on the antitumor response.
Collapse
|