1
|
Rostami SP, Dehkordi NM, Asgari Y, Bolouri MR, Shayanfar N, Falak R, Kardar GA. Competitive Effect of Overexpressed C-terminal of Snail-1 (CSnail) in Control of the Growth and Metastasis of Melanoma Cells. Recent Pat Anticancer Drug Discov 2024; 19:342-353. [PMID: 37005514 DOI: 10.2174/1574892818666230330105016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/09/2023] [Accepted: 02/21/2023] [Indexed: 04/04/2023]
Abstract
BACKGROUND Epithelial-to-mesenchymal transition (EMT) plays a role in the invasion and metastasis of cancer cells. During this phenomenon, Snail can promote tumor progression by upregulating mesenchymal factors and downregulating the expression of pro-apoptotic proteins. OBJECTIVE Therefore, interventions on the expression rate of Snails may show beneficial therapeutic applications. METHODS In this study, the C-terminal region of Snail1, capable of binding to E-box genomic sequences, was subcloned into the pAAV-IRES-EGFP backbone to make complete AAV-CSnail viral particles. B16F10 as a metastatic melanoma cell line, with a null expression of wild type TP53 was transduced by AAV-CSnail. Moreover, the transduced cells were analyzed for in vitro expression of apoptosis, migration, and EMT-related genes, and in vivo inhibition of metastasis. RESULTS In more than 80% of the AAV-CSnail transduced cells, the CSnail gene expression competitively reduced the wild-type Snail functionality and consequently lowered the mRNA expression level of EMT-related genes. Furthermore, the transcription level of cell cycle inhibitory factor p21 and pro-apoptotic factors were promoted. The scratch test showed a decrease in the migration ability of AAV-CSnail transduced group compared to control. Finally, metastasis of cancer cells to lung tissue in the AAV-CSnail-treated B16F10 melanoma mouse model was significantly reduced, pointing out to prevention of EMT by the competitive inhibitory effect of CSnail on Snail1 and increased apoptosis of B16F10 cells. CONCLUSION The capability of this successful competition in reducing the growth, invasion, and metastasis of melanoma cells indicates that gene therapy is a promising strategy for the control of the growth and metastasis of cancer cells.
Collapse
Affiliation(s)
- Sadegh Paydari Rostami
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Immunology Asthma & Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Negar Moghare Dehkordi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Immunology Asthma & Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Yazdan Asgari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Bolouri
- Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nasrin Shayanfar
- Department of Pathology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Falak
- Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Gholam Ali Kardar
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Immunology Asthma & Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Zheng L, Xia J, Ge P, Meng Y, Li W, Li M, Wang M, Song C, Fan Y, Zhou Y. The interrelation of galectins and autophagy. Int Immunopharmacol 2023; 120:110336. [PMID: 37262957 DOI: 10.1016/j.intimp.2023.110336] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/03/2023] [Accepted: 05/10/2023] [Indexed: 06/03/2023]
Abstract
Autophagy is a vital physiological process that maintains intracellular homeostasis by removing damaged organelles and senescent or misfolded molecules. However, excessive autophagy results in cell death and apoptosis, which will lead to a variety of diseases. Galectins are a type of animal lectin that binds to β-galactosides and can bind to the cell surface or extracellular matrix glycans, affecting a variety of immune processes in vivo and being linked to the development of many diseases. In many cases, galectins and autophagy both play important regulatory roles in the cellular life course, yet our understanding of the relationship between them is still incomplete. Galectins and autophagy may share common etiological cofactors for some diseases. Hence, we summarize the relationship between galectins and autophagy, aiming to draw attention to the existence of multiple associations between galectins and autophagy in a variety of physiological and pathological processes, which provide new ideas for etiological diagnosis, drug development, and therapeutic targets for related diseases.
Collapse
Affiliation(s)
- Lujuan Zheng
- Engineering Research Center of Glycoconjugates of Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| | - Jing Xia
- Engineering Research Center of Glycoconjugates of Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| | - Pengyu Ge
- Engineering Research Center of Glycoconjugates of Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| | - Yuhan Meng
- Engineering Research Center of Glycoconjugates of Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| | - Weili Li
- Engineering Research Center of Glycoconjugates of Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| | - Mingming Li
- Engineering Research Center of Glycoconjugates of Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| | - Min Wang
- Engineering Research Center of Glycoconjugates of Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| | - Chengcheng Song
- Engineering Research Center of Glycoconjugates of Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| | - Yuying Fan
- Engineering Research Center of Glycoconjugates of Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| | - Yifa Zhou
- Engineering Research Center of Glycoconjugates of Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| |
Collapse
|
3
|
Liu D, Zhu H, Li C. Galectins and galectin-mediated autophagy regulation: new insights into targeted cancer therapy. Biomark Res 2023; 11:22. [PMID: 36814341 PMCID: PMC9945697 DOI: 10.1186/s40364-023-00466-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
Galectins are animal lectins with specific affinity for galactosides via the conserved carbohydrate recognition domains. Increasing studies recently have identified critical roles of galectin family members in tumor progression. Abnormal expression of galectins contributes to the proliferation, metastasis, epithelial-mesenchymal transformation (EMT), immunosuppression, radio-resistance and chemoresistance in various cancers, which has attracted cumulative clinical interest in galectin-based cancer treatment. Galectin family members have been reported to participate in autophagy regulation under physiological conditions and in non-tumoral diseases, and implication of galectins in multiple processes of carcinogenesis also involves regulation of autophagy, however, the relationship between galectins, autophagy and cancer remains largely unclear. In this review, we introduce the structure and function of galectins at the molecular level, summarize their engagements in autophagy and cancer progression, and also highlight the regulation of autophagy by galectins in cancer as well as the therapeutic potentials of galectin and autophagy-based strategies. Elaborating on the mechanism of galectin-regulated autophagy in cancers will accelerate the exploitation of galectins-autophagy targeted therapies in treatment for cancer.
Collapse
Affiliation(s)
- Dan Liu
- grid.33199.310000 0004 0368 7223Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongtao Zhu
- grid.412793.a0000 0004 1799 5032Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chuanzhou Li
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
4
|
Laderach DJ, Compagno D. Inhibition of galectins in cancer: Biological challenges for their clinical application. Front Immunol 2023; 13:1104625. [PMID: 36703969 PMCID: PMC9872792 DOI: 10.3389/fimmu.2022.1104625] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 12/16/2022] [Indexed: 01/11/2023] Open
Abstract
Galectins play relevant roles in tumor development, progression and metastasis. Accordingly, galectins are certainly enticing targets for medical intervention in cancer. To date, however, clinical trials based on galectin inhibitors reported inconclusive results. This review summarizes the galectin inhibitors currently being evaluated and discusses some of the biological challenges that need to be addressed to improve these strategies for the benefit of cancer patients.
Collapse
Affiliation(s)
- Diego José Laderach
- Molecular and Functional Glyco-Oncology Laboratory, Instituto de Química Biológica de la Facutad de Ciencias Exactas y Naturales (IQUIBICEN-CONICET), Buenos Aires, Argentina,Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina,Departamento de Ciencias Básicas, Universidad Nacional de Luján, Luján, Argentina,*Correspondence: Diego José Laderach,
| | - Daniel Compagno
- Molecular and Functional Glyco-Oncology Laboratory, Instituto de Química Biológica de la Facutad de Ciencias Exactas y Naturales (IQUIBICEN-CONICET), Buenos Aires, Argentina,Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
5
|
Monge C, Stoppa I, Ferraris C, Bozza A, Battaglia L, Cangemi L, Miglio G, Pizzimenti S, Clemente N, Gigliotti CL, Boggio E, Dianzani U, Dianzani C. Parenteral Nanoemulsions Loaded with Combined Immuno- and Chemo-Therapy for Melanoma Treatment. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12234233. [PMID: 36500861 PMCID: PMC9740980 DOI: 10.3390/nano12234233] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/22/2022] [Accepted: 11/26/2022] [Indexed: 06/01/2023]
Abstract
High-grade melanoma remains a major life-threatening illness despite the improvement in therapeutic control that has been achieved by means of targeted therapies and immunotherapies in recent years. This work presents a preclinical-level test of a multi-pronged approach that includes the loading of immunotherapeutic (ICOS-Fc), targeted (sorafenib), and chemotherapeutic (temozolomide) agents within Intralipid®, which is a biocompatible nanoemulsion with a long history of safe clinical use for total parenteral nutrition. This drug combination has been shown to inhibit tumor growth and angiogenesis with the involvement of the immune system, and a key role is played by ICOS-Fc. The inhibition of tumor growth in subcutaneous melanoma mouse models has been achieved using sub-therapeutic drug doses, which is most likely the result of the nanoemulsion's targeting properties. If translated to the human setting, this approach should therefore allow therapeutic efficacy to be achieved without increasing the risk of toxic effects.
Collapse
Affiliation(s)
- Chiara Monge
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, via Pietro Giuria 9, 10125 Torino, Italy
| | - Ian Stoppa
- Dipartimento di Scienze della Salute, Università del Piemonte Orientale, via Solaroli 17, 28100 Novara, Italy
| | - Chiara Ferraris
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, via Pietro Giuria 9, 10125 Torino, Italy
- Dipartimento di Scienze Cliniche e Biologiche, Università degli Studi di Torino, Regione Gonzole 10, 10043 Orbassano, Italy
| | - Annalisa Bozza
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, via Pietro Giuria 9, 10125 Torino, Italy
| | - Luigi Battaglia
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, via Pietro Giuria 9, 10125 Torino, Italy
- Nanostructured Interfaces and Surfaces (NIS) Interdepartmental Centre, Università degli Studi di Torino, 10124 Torino, Italy
| | - Luigi Cangemi
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, via Pietro Giuria 9, 10125 Torino, Italy
| | - Gianluca Miglio
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, via Pietro Giuria 9, 10125 Torino, Italy
| | - Stefania Pizzimenti
- Dipartimento di Scienze Cliniche e Biologiche, Università degli Studi di Torino, Corso Raffaello 30, 10124 Torino, Italy
| | - Nausicaa Clemente
- Dipartimento di Scienze della Salute, Università del Piemonte Orientale, via Solaroli 17, 28100 Novara, Italy
| | - Casimiro Luca Gigliotti
- Dipartimento di Scienze della Salute, Università del Piemonte Orientale, via Solaroli 17, 28100 Novara, Italy
| | - Elena Boggio
- Dipartimento di Scienze della Salute, Università del Piemonte Orientale, via Solaroli 17, 28100 Novara, Italy
| | - Umberto Dianzani
- Dipartimento di Scienze della Salute, Università del Piemonte Orientale, via Solaroli 17, 28100 Novara, Italy
- Azienda Ospedaliero-Universitaria Maggiore della Carità, Corso Giuseppe Mazzini 18, 28100 Novara, Italy
| | - Chiara Dianzani
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, via Pietro Giuria 9, 10125 Torino, Italy
| |
Collapse
|
6
|
Immunosuppressive Roles of Galectin-1 in the Tumor Microenvironment. Biomolecules 2021; 11:biom11101398. [PMID: 34680031 PMCID: PMC8533562 DOI: 10.3390/biom11101398] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/18/2021] [Accepted: 09/19/2021] [Indexed: 12/21/2022] Open
Abstract
Evasion of immune surveillance is an accepted hallmark of tumor progression. The production of immune suppressive mediators by tumor cells is one of the major mechanisms of tumor immune escape. Galectin-1 (Gal-1), a pivotal immunosuppressive molecule, is expressed by many types of cancer. Tumor-secreted Gal-1 can bind to glycosylated receptors on immune cells and trigger the suppression of immune cell function in the tumor microenvironment, contributing to the immune evasion of tumors. The aim of this review is to summarize the current literature on the expression and function of Gal-1 in the human tumor microenvironment, as well as therapeutics targeting Gal-1.
Collapse
|
7
|
Kwan YP, Teo MHY, Lim JCW, Tan MS, Rosellinny G, Wahli W, Wang X. LRG1 Promotes Metastatic Dissemination of Melanoma through Regulating EGFR/STAT3 Signalling. Cancers (Basel) 2021; 13:3279. [PMID: 34208965 PMCID: PMC8269286 DOI: 10.3390/cancers13133279] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/19/2021] [Accepted: 06/23/2021] [Indexed: 12/17/2022] Open
Abstract
Although less common, melanoma is the deadliest form of skin cancer largely due to its highly metastatic nature. Currently, there are limited treatment options for metastatic melanoma and many of them could cause serious side effects. A better understanding of the molecular mechanisms underlying the complex disease pathophysiology of metastatic melanoma may lead to the identification of novel therapeutic targets and facilitate the development of targeted therapeutics. In this study, we investigated the role of leucine-rich α-2-glycoprotein 1 (LRG1) in melanoma development and progression. We first established the association between LRG1 and melanoma in both human patient biopsies and mouse melanoma cell lines and revealed a significant induction of LRG1 expression in metastatic melanoma cells. We then showed no change in tumour cell growth, proliferation, and angiogenesis in the absence of the host Lrg1. On the other hand, there was reduced melanoma cell metastasis to the lungs in Lrg1-deficient mice. This observation was supported by the promoting effect of LRG1 in melanoma cell migration, invasion, and adhesion. Mechanistically, LRG1 mediates melanoma cell invasiveness in an EGFR/STAT3-dependent manner. Taken together, our studies provided compelling evidence that LRG1 is required for melanoma metastasis but not growth. Targeting LRG1 may offer an alternative strategy to control malignant melanoma.
Collapse
Affiliation(s)
- Yuet Ping Kwan
- Centre for Vision Research, Duke NUS Medical School, 8 College Road, Singapore 169857, Singapore; (Y.P.K.); (M.H.Y.T.); (G.R.)
- Singapore Eye Research Institute (SERI) The Academia, 20 College Road, Level 6 Discovery Tower, Singapore 169856, Singapore
| | - Melissa Hui Yen Teo
- Centre for Vision Research, Duke NUS Medical School, 8 College Road, Singapore 169857, Singapore; (Y.P.K.); (M.H.Y.T.); (G.R.)
- Singapore Eye Research Institute (SERI) The Academia, 20 College Road, Level 6 Discovery Tower, Singapore 169856, Singapore
| | - Jonathan Chee Woei Lim
- Pharmacotherapeutics Unit, Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Michelle Siying Tan
- Department of Surgery, Yong Yoo Lin School of Medicine, National University of Singapore, MD6, 14 Medical Drive, Singapore 117599, Singapore;
| | - Graciella Rosellinny
- Centre for Vision Research, Duke NUS Medical School, 8 College Road, Singapore 169857, Singapore; (Y.P.K.); (M.H.Y.T.); (G.R.)
- Singapore Eye Research Institute (SERI) The Academia, 20 College Road, Level 6 Discovery Tower, Singapore 169856, Singapore
| | - Walter Wahli
- Center for Integrative Genomics, Université de Lausanne, Le Génopode, CH-1015 Lausanne, Switzerland;
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Clinical Sciences Building, 11 Mandalay Road, Singapore 308232, Singapore
- Toxalim (Research Center in Food Toxicology), INRAE, ENVT, INP-PURPAN, UMR 1331, UPS, Université de Toulouse, F-31027 Toulouse, France
| | - Xiaomeng Wang
- Centre for Vision Research, Duke NUS Medical School, 8 College Road, Singapore 169857, Singapore; (Y.P.K.); (M.H.Y.T.); (G.R.)
- Singapore Eye Research Institute (SERI) The Academia, 20 College Road, Level 6 Discovery Tower, Singapore 169856, Singapore
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Proteos, 61 Biopolis Dr, Singapore 138673, Singapore
| |
Collapse
|
8
|
In Vitro Effects of Selective COX and LOX Inhibitors and Their Combinations with Antineoplastic Drugs in the Mouse Melanoma Cell Line B16F10. Int J Mol Sci 2021; 22:ijms22126498. [PMID: 34204367 PMCID: PMC8234702 DOI: 10.3390/ijms22126498] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/28/2021] [Accepted: 05/31/2021] [Indexed: 01/31/2023] Open
Abstract
The constitutive expression or overactivation of cyclooxygenase (COX) and lipoxygenase (LOX) enzymes results in aberrant metabolism of arachidonic acid and poor prognosis in melanoma. Our aim is to compare the in vitro effects of selective COX-1 (acetylsalicylic acid), COX-2 (meloxicam), 5-LOX (MK-886 and AA-861), 12-LOX (baicalein) and 15-LOX (PD-146176) inhibition in terms of proliferation (SRB assay), mitochondrial viability (MTT assay), caspase 3-7 activity (chemiluminescent assay), 2D antimigratory (scratch assay) and synthesis of eicosanoids (EIA) in the B16F10 cell line (single treatments). We also explore their combinatorial pharmacological space with dacarbazine and temozolomide (median effect method). Overall, our results with single treatments show a superior cytotoxic efficacy of selective LOX inhibitors over selective COX inhibitors against B16F10 cells. PD-146176 caused the strongest antiproliferation effect which was accompanied by cell cycle arrest in G1 phase and an >50-fold increase in caspases 3/7 activity. When the selected inhibitors are combined with the antineoplastic drugs, only meloxicam provides clear synergy, with LOX inhibitors mostly antagonizing. These apparent contradictions between single and combination treatments, together with some paradoxical effects observed in the biosynthesis of eicosanoids after FLAP inhibition in short term incubations, warrant further mechanistical in vitro and in vivo scrutiny.
Collapse
|
9
|
Shanmugam T, Joshi N, Kaviratna A, Ahamad N, Bhatia E, Banerjee R. Aerosol Delivery of Paclitaxel-Containing Self-Assembled Nanocochleates for Treating Pulmonary Metastasis: An Approach Supporting Pulmonary Mechanics. ACS Biomater Sci Eng 2021; 7:144-156. [PMID: 33346632 DOI: 10.1021/acsbiomaterials.0c01126] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Paclitaxel (PTX) is a potent anticancer agent, which is clinically administered by infusion for treating pulmonary metastasis of different cancers. Systemic injection of PTX is promising in treating pulmonary metastasis of various cancers but simultaneously leads to many severe complications in the body. In this study, we have demonstrated a noninvasive approach for delivering PTX to deep pulmonary tissues via an inhalable phospholipid-based nanocochleate platform and showed its potential in treating pulmonary metastasis of melanoma cancer. Nanocochleates have been previously explored for oral delivery of anticancer drugs; their application for aerosol-based administration has not been accomplished in the literature thus far. Our results showed that the PTX-carrying aerosol nanocochleates (PTX-CPTs) possessed excellent pulmonary surfactant action characterized by high surface activity and encouraging in vitro terminal airway patency when compared to the marketed Taxol formulation, which is known to contain a high amount of Cremophore EL. We observed under in vitro twin-impinger analysis that the PTX-CPT had a high tendency to get deposited in stage II (alveolar region of lungs), indicating the capability of CPT to reach the deep alveolar region. Further, while exposed to the human lung adenocarcinoma cell line (A549), the PTX-CPT showed excellent cytotoxicity mediated by enhanced cellular uptake via energy-dependent endocytosis. Aerosol-based administration of PTX-CPT in a pulmonary metastatic murine melanoma model (B16F10) resulted in significant (p < 0.05) tumor growth inhibition when compared to an intravenous dose of Taxol. Inhibition of tumor growth in aerosol-based PTX-CPT-treated animals was evident by the significant (p < 0.05) reduction in numbers of tumor nodules and percent metastasis area covered by melanoma cells in the lung when compared to other treatment groups. Overall, our finding suggests that PTX can be safely administered in the form of an aerosol using a newly developed CPT system, which serves a dual purpose as both a drug delivery carrier and a pulmonary surfactant in treating pulmonary metastasis.
Collapse
Affiliation(s)
- Thanigaivel Shanmugam
- Nanomedicine Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai 400076, India
| | - Nitin Joshi
- Nanomedicine Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai 400076, India
| | - Anubhav Kaviratna
- Nanomedicine Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai 400076, India
| | - Nadim Ahamad
- Nanomedicine Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai 400076, India
| | - Eshant Bhatia
- Nanomedicine Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai 400076, India
| | - Rinti Banerjee
- Nanomedicine Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai 400076, India
| |
Collapse
|
10
|
Avila C, Angulo-Preckler C. Bioactive Compounds from Marine Heterobranchs. Mar Drugs 2020; 18:657. [PMID: 33371188 PMCID: PMC7767343 DOI: 10.3390/md18120657] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/05/2020] [Accepted: 12/07/2020] [Indexed: 12/22/2022] Open
Abstract
The natural products of heterobranch molluscs display a huge variability both in structure and in their bioactivity. Despite the considerable lack of information, it can be observed from the recent literature that this group of animals possesses an astonishing arsenal of molecules from different origins that provide the molluscs with potent chemicals that are ecologically and pharmacologically relevant. In this review, we analyze the bioactivity of more than 450 compounds from ca. 400 species of heterobranch molluscs that are useful for the snails to protect themselves in different ways and/or that may be useful to us because of their pharmacological activities. Their ecological activities include predator avoidance, toxicity, antimicrobials, antifouling, trail-following and alarm pheromones, sunscreens and UV protection, tissue regeneration, and others. The most studied ecological activity is predation avoidance, followed by toxicity. Their pharmacological activities consist of cytotoxicity and antitumoral activity; antibiotic, antiparasitic, antiviral, and anti-inflammatory activity; and activity against neurodegenerative diseases and others. The most studied pharmacological activities are cytotoxicity and anticancer activities, followed by antibiotic activity. Overall, it can be observed that heterobranch molluscs are extremely interesting in regard to the study of marine natural products in terms of both chemical ecology and biotechnology studies, providing many leads for further detailed research in these fields in the near future.
Collapse
Affiliation(s)
- Conxita Avila
- Department of Evolutionary Biology, Ecology, and Environmental Sciences, Biodiversity Research Institute (IrBIO), Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028 Barcelona, Catalonia, Spain;
| | - Carlos Angulo-Preckler
- Department of Evolutionary Biology, Ecology, and Environmental Sciences, Biodiversity Research Institute (IrBIO), Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028 Barcelona, Catalonia, Spain;
- Norwegian College of Fishery Science, UiT The Arctic University of Norway, Hansine Hansens veg 18, 9019 Tromsø, Norway
| |
Collapse
|
11
|
Girotti MR, Salatino M, Dalotto-Moreno T, Rabinovich GA. Sweetening the hallmarks of cancer: Galectins as multifunctional mediators of tumor progression. J Exp Med 2020; 217:133540. [PMID: 31873723 PMCID: PMC7041721 DOI: 10.1084/jem.20182041] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/14/2019] [Accepted: 11/18/2019] [Indexed: 12/25/2022] Open
Abstract
Hanahan and Weinberg have proposed 10 organizing principles that enable growth and metastatic dissemination of cancer cells. These distinctive and complementary capabilities, defined as the "hallmarks of cancer," include the ability of tumor cells and their microenvironment to sustain proliferative signaling, evade growth suppressors, resist cell death, promote replicative immortality, induce angiogenesis, support invasion and metastasis, reprogram energy metabolism, induce genomic instability and inflammation, and trigger evasion of immune responses. These common features are hierarchically regulated through different mechanisms, including those involving glycosylation-dependent programs that influence the biological and clinical impact of each hallmark. Galectins, an evolutionarily conserved family of glycan-binding proteins, have broad influence in tumor progression by rewiring intracellular and extracellular circuits either in cancer or stromal cells, including immune cells, endothelial cells, and fibroblasts. In this review, we dissect the role of galectins in shaping cellular circuitries governing each hallmark of tumors, illustrating relevant examples and highlighting novel opportunities for treating human cancer.
Collapse
Affiliation(s)
- María Romina Girotti
- Laboratorio de Inmuno-Oncología Traslacional, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Mariana Salatino
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Tomás Dalotto-Moreno
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Gabriel A Rabinovich
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.,Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
12
|
Navarro P, Martínez-Bosch N, Blidner AG, Rabinovich GA. Impact of Galectins in Resistance to Anticancer Therapies. Clin Cancer Res 2020; 26:6086-6101. [DOI: 10.1158/1078-0432.ccr-18-3870] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/27/2020] [Accepted: 07/22/2020] [Indexed: 11/16/2022]
|
13
|
Dianzani C, Monge C, Miglio G, Serpe L, Martina K, Cangemi L, Ferraris C, Mioletti S, Osella S, Gigliotti CL, Boggio E, Clemente N, Dianzani U, Battaglia L. Nanoemulsions as Delivery Systems for Poly-Chemotherapy Aiming at Melanoma Treatment. Cancers (Basel) 2020; 12:cancers12051198. [PMID: 32397484 PMCID: PMC7281359 DOI: 10.3390/cancers12051198] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/03/2020] [Accepted: 05/07/2020] [Indexed: 11/17/2022] Open
Abstract
Aims: Advanced melanoma is characterized by poor outcome. Despite the number of treatments having been increased over the last decade, current pharmacological strategies are only partially effective. Therefore, the improvement of the current systemic therapy is worthy of investigation. Methods: a nanotechnology-based poly-chemotherapy was tested at preclinical level. Temozolomide, rapamycin, and bevacizumab were co-loaded as injectable nanoemulsions for total parenteral nutrition (Intralipid®), due to suitable devices, and preliminarily tested in vitro on human and mouse cell models and in vivo on the B16-F10 melanoma mouse model. Results: Drug combination was efficiently loaded in the liquid lipid matrix of Intralipid®, including bevacizumab monoclonal antibody, leading to a fast internalization in tumour cells. An increased cytotoxicity towards melanoma cells, as well as an improved inhibition of tumour relapse, migration, and angiogenesis were demonstrated in cell models for the Intralipid®-loaded drug combinations. In preliminary in vivo studies, the proposed approach was able to reduce tumour growth significantly, compared to controls. A relevant efficacy towards tumour angiogenesis and mitotic index was determined and immune response was involved. Conclusions: In these preliminary studies, Intralipid® proved to be a safe and versatile poly-chemotherapy delivery system for advanced melanoma treatment, by acting on multiple mechanisms.
Collapse
Affiliation(s)
- Chiara Dianzani
- Department of Drug Science and Technology, University of Turin, via Pietro Giuria 9, 10125 Turin, Italy; (C.D.); (C.M.); (G.M.); (L.S.); (K.M.); (L.C.); (C.F.)
| | - Chiara Monge
- Department of Drug Science and Technology, University of Turin, via Pietro Giuria 9, 10125 Turin, Italy; (C.D.); (C.M.); (G.M.); (L.S.); (K.M.); (L.C.); (C.F.)
| | - Gianluca Miglio
- Department of Drug Science and Technology, University of Turin, via Pietro Giuria 9, 10125 Turin, Italy; (C.D.); (C.M.); (G.M.); (L.S.); (K.M.); (L.C.); (C.F.)
| | - Loredana Serpe
- Department of Drug Science and Technology, University of Turin, via Pietro Giuria 9, 10125 Turin, Italy; (C.D.); (C.M.); (G.M.); (L.S.); (K.M.); (L.C.); (C.F.)
| | - Katia Martina
- Department of Drug Science and Technology, University of Turin, via Pietro Giuria 9, 10125 Turin, Italy; (C.D.); (C.M.); (G.M.); (L.S.); (K.M.); (L.C.); (C.F.)
| | - Luigi Cangemi
- Department of Drug Science and Technology, University of Turin, via Pietro Giuria 9, 10125 Turin, Italy; (C.D.); (C.M.); (G.M.); (L.S.); (K.M.); (L.C.); (C.F.)
| | - Chiara Ferraris
- Department of Drug Science and Technology, University of Turin, via Pietro Giuria 9, 10125 Turin, Italy; (C.D.); (C.M.); (G.M.); (L.S.); (K.M.); (L.C.); (C.F.)
| | - Silvia Mioletti
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco, Italy;
| | - Sara Osella
- San Giovanni Bosco Hospital, Piazza del Donatore di Sangue 3, 10154 Turin, Italy;
| | - Casimiro Luca Gigliotti
- Department of Health Sciences and Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), University of Eastern Piedmont (UPO), via Solaroli 17, 28100 Novara, Italy; (C.L.G.); (E.B.); (N.C.); (U.D.)
| | - Elena Boggio
- Department of Health Sciences and Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), University of Eastern Piedmont (UPO), via Solaroli 17, 28100 Novara, Italy; (C.L.G.); (E.B.); (N.C.); (U.D.)
| | - Nausicaa Clemente
- Department of Health Sciences and Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), University of Eastern Piedmont (UPO), via Solaroli 17, 28100 Novara, Italy; (C.L.G.); (E.B.); (N.C.); (U.D.)
| | - Umberto Dianzani
- Department of Health Sciences and Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), University of Eastern Piedmont (UPO), via Solaroli 17, 28100 Novara, Italy; (C.L.G.); (E.B.); (N.C.); (U.D.)
| | - Luigi Battaglia
- Department of Drug Science and Technology, University of Turin, via Pietro Giuria 9, 10125 Turin, Italy; (C.D.); (C.M.); (G.M.); (L.S.); (K.M.); (L.C.); (C.F.)
- Correspondence:
| |
Collapse
|
14
|
de Oliveira G, Paccielli Freire P, Santiloni Cury S, de Moraes D, Santos Oliveira J, Dal-Pai-Silva M, do Reis PP, Francisco Carvalho R. An Integrated Meta-Analysis of Secretome and Proteome Identify Potential Biomarkers of Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2020; 12:E716. [PMID: 32197468 PMCID: PMC7140071 DOI: 10.3390/cancers12030716] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/10/2020] [Accepted: 03/12/2020] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is extremely aggressive, has an unfavorable prognosis, and there are no biomarkers for early detection of the disease or identification of individuals at high risk for morbidity or mortality. The cellular and molecular complexity of PDAC leads to inconsistences in clinical validations of many proteins that have been evaluated as prognostic biomarkers of the disease. The tumor secretome, a potential source of biomarkers in PDAC, plays a crucial role in cell proliferation and metastasis, as well as in resistance to treatments, which together contribute to a worse clinical outcome. The massive amount of proteomic data from pancreatic cancer that has been generated from previous studies can be integrated and explored to uncover secreted proteins relevant to the diagnosis and prognosis of the disease. The present study aimed to perform an integrated meta-analysis of PDAC proteome and secretome public data to identify potential biomarkers of the disease. Our meta-analysis combined mass spectrometry data obtained from two systematic reviews of the pancreatic cancer literature, which independently selected 20 studies of the secretome and 35 of the proteome. Next, we predicted the secreted proteins using seven in silico tools or databases, which identified 39 secreted proteins shared between the secretome and proteome data. Notably, the expression of 31 genes of these secretome-related proteins was upregulated in PDAC samples from The Cancer Genome Atlas (TCGA) when compared to control samples from TCGA and The Genotype-Tissue Expression (GTEx). The prognostic value of these 39 secreted proteins in predicting survival outcome was confirmed using gene expression data from four PDAC datasets (validation set). The gene expression of these secreted proteins was able to distinguish high- and low-survival patients in nine additional tumor types from TCGA, demonstrating that deregulation of these secreted proteins may also contribute to the prognosis in multiple cancers types. Finally, we compared the prognostic value of the identified secreted proteins in PDAC biomarkers studies from the literature. This analysis revealed that our gene signature performed equally well or better than the signatures from these previous studies. In conclusion, our integrated meta-analysis of PDAC proteome and secretome identified 39 secreted proteins as potential biomarkers, and the tumor gene expression profile of these proteins in patients with PDAC is associated with worse overall survival.
Collapse
Affiliation(s)
- Grasieli de Oliveira
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, São Paulo, Brazil; (G.d.O.); (P.P.F.); (S.S.C.); (D.d.M.); (J.S.O.); (M.D.-P.-S.)
| | - Paula Paccielli Freire
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, São Paulo, Brazil; (G.d.O.); (P.P.F.); (S.S.C.); (D.d.M.); (J.S.O.); (M.D.-P.-S.)
| | - Sarah Santiloni Cury
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, São Paulo, Brazil; (G.d.O.); (P.P.F.); (S.S.C.); (D.d.M.); (J.S.O.); (M.D.-P.-S.)
| | - Diogo de Moraes
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, São Paulo, Brazil; (G.d.O.); (P.P.F.); (S.S.C.); (D.d.M.); (J.S.O.); (M.D.-P.-S.)
| | - Jakeline Santos Oliveira
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, São Paulo, Brazil; (G.d.O.); (P.P.F.); (S.S.C.); (D.d.M.); (J.S.O.); (M.D.-P.-S.)
| | - Maeli Dal-Pai-Silva
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, São Paulo, Brazil; (G.d.O.); (P.P.F.); (S.S.C.); (D.d.M.); (J.S.O.); (M.D.-P.-S.)
| | - Patrícia Pintor do Reis
- Department of Surgery and Orthopedics, Faculty of Medicine, São Paulo State University (UNESP), Botucatu 18618-687, São Paulo, Brazil;
- Experimental Research Unity, Faculty of Medicine, São Paulo State University, UNESP, Botucatu 18618-970, São Paulo, Brazil
| | - Robson Francisco Carvalho
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, São Paulo, Brazil; (G.d.O.); (P.P.F.); (S.S.C.); (D.d.M.); (J.S.O.); (M.D.-P.-S.)
| |
Collapse
|
15
|
Wu KJ, Ho SH, Dong JY, Fu L, Wang SP, Liu H, Wu C, Leung CH, Wang HMD, Ma DL. Aliphatic Group-Tethered Iridium Complex as a Theranostic Agent against Malignant Melanoma Metastasis. ACS APPLIED BIO MATERIALS 2020; 3:2017-2027. [DOI: 10.1021/acsabm.9b01156] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ke-Jia Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa 999078, Macao SAR, China
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jia-Yi Dong
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Taipa 999078, Macao SAR, China
| | - Ling Fu
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung 402, Taiwan
| | - Shuang-Peng Wang
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Taipa 999078, Macao SAR, China
| | - Hao Liu
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong 999077, Hong Kong, China
| | - Chun Wu
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong 999077, Hong Kong, China
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa 999078, Macao SAR, China
| | - Hui-Min David Wang
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung 402, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung City 404, Taiwan
| | - Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong 999077, Hong Kong, China
| |
Collapse
|
16
|
Guo XR, Wu MY, Dai LJ, Huang Y, Shan MY, Ma SN, Wang J, Peng H, Ding Y, Zhang QF, Tang JM, Ruan XZ, Li DS. Nuclear FAM289-Galectin-1 interaction controls FAM289-mediated tumor promotion in malignant glioma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:394. [PMID: 31492191 PMCID: PMC6731628 DOI: 10.1186/s13046-019-1393-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 08/26/2019] [Indexed: 12/22/2022]
Abstract
Background FAM92A1–289(abbreviated FAM289) is recognized as one of the newly-discovered putative oncogenes. However, its role and molecular mechanisms in promoting cancer progression has not yet been elucidated. This study was performed to reveal its oncogenic functions and molecular mechanisms in human glioblastoma multiforme (GBM) cell models with knockdown or overexpression of FAM289 in vitro and in vivo. Methods To elucidate the molecular mechanisms underlying FAM289-mediated tumor progression, the protein-protein interaction between FAM289 and Galectin-1 was verified by co-immunoprecipitation, followed by an analysis of the expression and activity of Galectin-1-associated signaling molecules. Knockdown and overexpression of FAM289 in glioma cells were applied for investigating the effects of FAM289 on cell growth, migration and invasion. The determination of FAM289 expression was performed in specimens from various stages of human gliomas. Results FAM289-galectin-1 interaction and concomitant activation of the extracellular signal-regulated kinase (ERK) pathway participated in FAM289-mediated tumor-promoting function. Since the expression of DNA methyl transferase 1 (DNMT1) and DNA methyl transferase 3B (DNMT3B) was regulated by FAM289 in U251 and U87-MG glioma cells, Galectin-1 interaction with FAM289 may promote FAM289 protein into the cell nucleus and activate the ERK pathway, thereby upregulating DNMTs expression. Drug resistance tests indicated that FAM289-mediated TMZ resistance was through stem-like property acquisition by activating the ERK pathway. The correlation between FAM289, Galectin-1 expression and the clinical stage of gliomas was also verified in tissue samples from glioblastoma patients. Conclusions Our results suggest that high expression of FAM289 in GBM tissues correlated with poor prognosis. FAM289 contributes to tumor progression in malignant glioma by interacting with Galectin-1 thereby promoting FAM289 protein translocation into the cell nucleus. FAM289 in the nucleus activated the ERK pathway, up regulated DNMTs expression and induced stem-like property gene expression which affects drug resistance of glioma cells to TMZ. This study provided functional evidence for FAM289 to be developed as a therapeutic target for cancer treatment. Electronic supplementary material The online version of this article (10.1186/s13046-019-1393-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xing Rong Guo
- Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China. .,College of Basic Medicine, Hubei University of Medicine, Shiyan, 442000, Hubei, China.
| | - Mu Yu Wu
- Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China.,Department of Integrated Medicine, Affiliated Dong feng Hospital, Hubei University of Medicine, Shiyan, China
| | - Long Jun Dai
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China.,Department of Surgery, University of British Columbia, Vancouver, Canada
| | - Yu Huang
- Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China.,College of Basic Medicine, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Meng Ye Shan
- Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China.,College of Basic Medicine, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Shi Nan Ma
- Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Jue Wang
- College of Basic Medicine, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Hao Peng
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Yan Ding
- Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Qiu Fang Zhang
- Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Jun Ming Tang
- College of Basic Medicine, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Xu Zhi Ruan
- College of Basic Medicine, Hubei University of Medicine, Shiyan, 442000, Hubei, China.
| | - Dong Sheng Li
- Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China.
| |
Collapse
|
17
|
Wu NL, Liu FT. The expression and function of galectins in skin physiology and pathology. Exp Dermatol 2019; 27:217-226. [PMID: 29427464 DOI: 10.1111/exd.13512] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2018] [Indexed: 01/01/2023]
Abstract
The galectin family comprises β-galactoside-binding proteins widely expressed in many organisms. There are at least 16 family members, which can be classified into three groups based on their carbohydrate-recognition domains. Pleiotropic functions of different galectins in physiological and pathological processes through extracellular or intracellular actions have been revealed. In the skin, galectins are expressed in a variety of cells, including keratinocytes, melanocytes, fibroblasts, dendritic cells, lymphocytes, macrophages and endothelial cells. Expression of specific galectins is reported to affect cell status, such as activation or death, and regulate the interaction between different cell types or between cells and the extracellular matrix. In vitro cellular studies, in vivo animal studies and studies of human clinical material have revealed the pathophysiologic roles of galectins in the skin. The pathogenesis of diverse non-malignant skin disorders, such as atopic dermatitis, psoriasis, contact dermatitis and wound healing, as well as skin cancers, such as melanoma, squamous cell carcinoma, basal cell carcinoma and cutaneous haematologic malignancy can be regulated by different galectins. Revelation of biological roles of galectins in skin may pave the way to future development of galectin-based therapeutic strategies for skin diseases.
Collapse
Affiliation(s)
- Nan-Lin Wu
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan.,Department of Dermatology, MacKay Memorial Hospital, Taipei, Taiwan.,Mackay Junior College of Medicine, Nursing, and Management, New Taipei City, Taiwan
| | - Fu-Tong Liu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Department of Dermatology, University of California Davis, Sacramento, CA, USA
| |
Collapse
|
18
|
Fowlkes N, Clemons K, Rider PJ, Subramanian R, Wakamatsu N, Langohr I, Kousoulas KG. Factors Affecting Growth Kinetics and Spontaneous Metastasis in the B16F10 Syngeneic Murine Melanoma Model. Comp Med 2018; 69:48-54. [PMID: 30563585 DOI: 10.30802/aalas-cm-18-000036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Melanoma is an immunogenic tumor that can metastasize quickly to proximal and distal sites, thus complicating the application of therapeutic modalities. Numerous mouse model systems have been used to gain understanding of the immunobiology and metastatic potential of melanoma. Here, we report the optimization of a syngeneic mouse melanoma model protocol using the mouse B16-derived melanoma cell line B16F10 that ensures the production of tumors on mice pinnae that are similar in size between animals and that enlarge in a time-dependent manner. In this model, B16F10 cells are first allowed to develop tumors after injection in the interscapular area or flank of C57BL/6J mice. Subsequently, the tumors are harvested, cells dissociated and injected into mouse pinnae. Dose-dependent studies revealed that injection of 2 × 105 cells allowed for slow tumor enlargement, producing tumors averaging 100 mm³ within 2 to 3 wk with a metastatic frequency of 100%. This experimental protocol will be useful in dissecting the immunobiology of melanoma tumor development and metastasis and the evaluation of immunotherapeutic antimelanoma therapies.
Collapse
Affiliation(s)
- Natalie Fowlkes
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Drive, Baton Rouge, Louisiana
| | - Kelli Clemons
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Drive, Baton Rouge, Louisiana
| | - Paul Jf Rider
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Drive, Baton Rouge, Louisiana
| | - Ramesh Subramanian
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Drive, Baton Rouge, Louisiana
| | - Nobuko Wakamatsu
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Drive, Baton Rouge, Louisiana
| | - Ingeborg Langohr
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Drive, Baton Rouge, Louisiana
| | - Konstantin G Kousoulas
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Drive, Baton Rouge, Louisiana;,
| |
Collapse
|
19
|
Gao J, Wang W. Knockdown of galectin-1 facilitated cisplatin sensitivity by inhibiting autophagy in neuroblastoma cells. Chem Biol Interact 2018; 297:50-56. [PMID: 30365942 DOI: 10.1016/j.cbi.2018.10.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 10/02/2018] [Accepted: 10/22/2018] [Indexed: 12/13/2022]
Abstract
Neuroblastoma (NB) is a type of solid extracranial tumor that usually occurs in babies and children. Chemotherapy is a common method for NB treatment, however, the drug resistance exerts during the chemotherapy of NB. Galectin-1 is a member of galectin family and plays a potent role in the development of chemotherapy and radiotherapy resistance. However, the effect of galectin-1 on cisplatin resistance in NB remains unknown. The present study aimed to investigate the role of galectin-1 in cisplatin resisitance and the potential mechanism. Human neuroblastoma SH-SY5Y and SK-N-SH cells were treated with cisplatin and/or galectin-1/siRNA targeting galectin-1 (si-Gal-1). The cell viability was measured by MTT assay. The IC50 values for cisplatin of neuroblastoma cells were calculated. The expression levels of autophagy markers including microtubule-associated protein light chain 3 (LC3B), Beclin-1, and p62 were detected by western blot. We found that cisplatin inhibited cell viability of SH-SY5Y and SK-N-SH in a dose-dependent manner. Cisplatin induced the ratio of LC3B-II/LC3B-I and Beclin-1 expression, and inhibited the p62 expression. Knockdown of galectin-1 decreased the IC50 for cisplatin of SH-SY5Y and SK-N-SH cells and inhibited cisplatin-induced autophagy. Moreover, inhibition of autophagy suppressed galectin-1-induced increase in IC50 for cisplatin. In conclusion, galectin-1 knockdown enhanced cisplatin sensitivity of neuroblastoma cells by inhibiting autophagy. The findings might provid a novel therapeutic target to overcome cisplatin resistance in chemotherapy of NB.
Collapse
Affiliation(s)
- Jie Gao
- Department of Pediatrics, Huaihe Hospital of Henan University, Kaifeng 475000, Henan, PR China.
| | - Wenying Wang
- Department of Pediatrics, Huaihe Hospital of Henan University, Kaifeng 475000, Henan, PR China
| |
Collapse
|
20
|
Chen K, Cai Y, Zhang M, Wu Z, Wu Y. Both serum and tissue Galectin-1 levels are associated with adverse clinical features in neuroblastoma. Pediatr Blood Cancer 2018; 65:e27229. [PMID: 29797641 DOI: 10.1002/pbc.27229] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 03/15/2018] [Accepted: 04/09/2018] [Indexed: 01/11/2023]
Abstract
BACKGROUND Neuroblastoma is one of the most common pediatric solid tumors. Although the 5-year overall survival rate has increased over the past few decades, high-risk patients still have a poor prognosis due to a lack of biomonitoring therapy. This study was performed to investigate the role of Galectin-1 in neuroblastoma biomonitoring therapy. PROCEDURE A tissue microarray containing 37 neuroblastoma tissue samples was used to evaluate the correlation between Galectin-1 expression and clinical features. Blood samples were examined to better understand whether serum Galectin-1 (sGalectin-1) could be used for biomonitoring therapy. Kaplan-Meier analysis and ROC analysis was conducted to distinguish the outcome associated with high or low expression of Galectin-1 in patients with neuroblastoma. RESULTS Increased Galectin-1 expression was found in neuroblastoma and it was further demonstrated that elevated tissue Galectin-1 expression was related to INSS stage, histology, bone marrow metastasis, and poor survival. sGalectin-1 levels were higher in newly diagnosed patients with neuroblastoma than healthy subjects. Patients with elevated sGalectin-1 through treatment cycles correlated with the poor chemo-responses and tended to have worse outcomes, such as metastasis or stable tumor size, whereas gradually decreasing sGalectin-1 levels correlated with no observed progression in clinical symptoms. CONCLUSIONS Tissue and serum Galectin-1 levels were associated with adverse clinical features in patients with neuroblastoma, and sGalectin-1 could be a potential biomarker for monitoring therapy.
Collapse
Affiliation(s)
- Kai Chen
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.,Division of Pediatric Oncology, Shanghai Institute of Pediatric Research, Shanghai, China
| | - Yuanxia Cai
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.,Division of Pediatric Oncology, Shanghai Institute of Pediatric Research, Shanghai, China
| | - Min Zhang
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.,Division of Pediatric Oncology, Shanghai Institute of Pediatric Research, Shanghai, China
| | - Zhixiang Wu
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.,Division of Pediatric Oncology, Shanghai Institute of Pediatric Research, Shanghai, China.,Department of Pediatric Surgery, Children's Hospital of Soochow University, Suzhou, China
| | - Yeming Wu
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.,Division of Pediatric Oncology, Shanghai Institute of Pediatric Research, Shanghai, China.,Department of Pediatric Surgery, Children's Hospital of Soochow University, Suzhou, China
| |
Collapse
|
21
|
Cytochrome C oxidase Inhibition and Cold Plasma-derived Oxidants Synergize in Melanoma Cell Death Induction. Sci Rep 2018; 8:12734. [PMID: 30143716 PMCID: PMC6109085 DOI: 10.1038/s41598-018-31031-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 08/12/2018] [Indexed: 12/27/2022] Open
Abstract
Despite striking advances in the treatment of metastasized melanoma, the disease is often still fatal. Attention is therefore paid towards combinational regimens. Oxidants endogenously produced in mitochondria are currently targeted in pre-clinical and clinical studies. Cytotoxic synergism of mitochondrial cytochrome c oxidase (CcO) inhibition in conjunction with addition of exogenous oxidants in 2D and 3D melanoma cell culture models were examined. Murine (B16) and human SK-MEL-28 melanoma cells exposed to low-dose CcO inhibitors (potassium cyanide or sodium azide) or exogenous oxidants alone were non-toxic. However, we identified a potent cytotoxic synergism upon CcO inhibition and plasma-derived oxidants that led to rapid onset of caspase-independent melanoma cell death. This was mediated by mitochondrial dysfunction induced by superoxide elevation and ATP depletion. This observation was validated by siRNA-mediated knockdown of COX4I1 in SK-MEL-28 cells with cytotoxicity in the presence of exogenous oxidants. Similar effects were obtained with ADDA 5, a recently identified specific inhibitor of CcO activity showing low toxicity in vivo. Human keratinocytes were not affected by this combinational treatment, suggesting selective effects on melanoma cells. Hence, targeting mitochondrial CcO activity in conjunction with exogenous pro oxidant therapies may constitute a new and effective melanoma treatment modality.
Collapse
|
22
|
Steenbeek SC, Pham TV, de Ligt J, Zomer A, Knol JC, Piersma SR, Schelfhorst T, Huisjes R, Schiffelers RM, Cuppen E, Jimenez CR, van Rheenen J. Cancer cells copy migratory behavior and exchange signaling networks via extracellular vesicles. EMBO J 2018; 37:embj.201798357. [PMID: 29907695 PMCID: PMC6068466 DOI: 10.15252/embj.201798357] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 05/15/2018] [Accepted: 05/17/2018] [Indexed: 12/19/2022] Open
Abstract
Recent data showed that cancer cells from different tumor subtypes with distinct metastatic potential influence each other's metastatic behavior by exchanging biomolecules through extracellular vesicles (EVs). However, it is debated how small amounts of cargo can mediate this effect, especially in tumors where all cells are from one subtype, and only subtle molecular differences drive metastatic heterogeneity. To study this, we have characterized the content of EVs shed in vivo by two clones of melanoma (B16) tumors with distinct metastatic potential. Using the Cre‐LoxP system and intravital microscopy, we show that cells from these distinct clones phenocopy their migratory behavior through EV exchange. By tandem mass spectrometry and RNA sequencing, we show that EVs shed by these clones into the tumor microenvironment contain thousands of different proteins and RNAs, and many of these biomolecules are from interconnected signaling networks involved in cellular processes such as migration. Thus, EVs contain numerous proteins and RNAs and act on recipient cells by invoking a multi‐faceted biological response including cell migration.
Collapse
Affiliation(s)
- Sander C Steenbeek
- Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Oncode Institute, Hubrecht Institute-KNAW & University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Thang V Pham
- OncoProteomics Laboratory, Department of Medical Oncology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Joep de Ligt
- Division Biomedical Genetics, Center for Molecular Medicine, Oncode Institute, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Anoek Zomer
- Oncode Institute, Hubrecht Institute-KNAW & University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Jaco C Knol
- OncoProteomics Laboratory, Department of Medical Oncology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Sander R Piersma
- OncoProteomics Laboratory, Department of Medical Oncology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Tim Schelfhorst
- OncoProteomics Laboratory, Department of Medical Oncology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Rick Huisjes
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Raymond M Schiffelers
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Edwin Cuppen
- Division Biomedical Genetics, Center for Molecular Medicine, Oncode Institute, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Connie R Jimenez
- OncoProteomics Laboratory, Department of Medical Oncology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Jacco van Rheenen
- Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands .,Oncode Institute, Hubrecht Institute-KNAW & University Medical Centre Utrecht, Utrecht, The Netherlands
| |
Collapse
|
23
|
Cutaneous Melanoma-A Long Road from Experimental Models to Clinical Outcome: A Review. Int J Mol Sci 2018; 19:ijms19061566. [PMID: 29795011 PMCID: PMC6032347 DOI: 10.3390/ijms19061566] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 05/21/2018] [Accepted: 05/22/2018] [Indexed: 02/07/2023] Open
Abstract
Cutaneous melanoma is a complex disorder characterized by an elevated degree of heterogeneity, features that place it among the most aggressive types of cancer. Although significant progress was recorded in both the understanding of melanoma biology and genetics, and in therapeutic approaches, this malignancy still represents a major problem worldwide due to its high incidence and the lack of a curative treatment for advanced stages. This review offers a survey of the most recent information available regarding the melanoma epidemiology, etiology, and genetic profile. Also discussed was the topic of cutaneous melanoma murine models outlining the role of these models in understanding the molecular pathways involved in melanoma initiation, progression, and metastasis.
Collapse
|
24
|
Clemente N, Ferrara B, Gigliotti CL, Boggio E, Capucchio MT, Biasibetti E, Schiffer D, Mellai M, Annovazzi L, Cangemi L, Muntoni E, Miglio G, Dianzani U, Battaglia L, Dianzani C. Solid Lipid Nanoparticles Carrying Temozolomide for Melanoma Treatment. Preliminary In Vitro and In Vivo Studies. Int J Mol Sci 2018; 19:E255. [PMID: 29364157 PMCID: PMC5855544 DOI: 10.3390/ijms19020255] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/11/2018] [Accepted: 01/18/2018] [Indexed: 01/02/2023] Open
Abstract
AIM To develop an innovative delivery system for temozolomide (TMZ) in solid lipid nanoparticles (SLN), which has been preliminarily investigated for the treatment of melanoma. MATERIALS AND METHODS SLN-TMZ was obtained through fatty acid coacervation. Its pharmacological effects were assessed and compared with free TMZ in in vitro and in vivo models of melanoma and glioblastoma. RESULTS Compared to the standard free TMZ, SLN-TMZ exerted larger effects, when cell proliferation of melanoma cells, and neoangiogeneis were evaluated. SLN-TMZ also inhibited growth and vascularization of B16-F10 melanoma in C57/BL6 mice, without apparent toxic effects. CONCLUSION SLN could be a promising strategy for the delivery of TMZ, allowing an increased stability of the drug and thereby its employment in the treatment of aggressive malignacies.
Collapse
Affiliation(s)
- Nausicaa Clemente
- Dipartimento di Scienze della Salute, Università del Piemonte Orientale, Via Solaroli, 17, 28100 Novara, Italy.
| | - Benedetta Ferrara
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, Via Pietro Giuria 9, 10124 Torino, Italy.
| | - Casimiro Luca Gigliotti
- Dipartimento di Scienze della Salute, Università del Piemonte Orientale, Via Solaroli, 17, 28100 Novara, Italy.
| | - Elena Boggio
- Dipartimento di Scienze della Salute, Università del Piemonte Orientale, Via Solaroli, 17, 28100 Novara, Italy.
| | - Maria Teresa Capucchio
- Dipartimento di Scienze Veterinarie, Università degli Studi di Torino, Largo Paolo Braccini 2, 10095 Grugliasco (TO), Italy.
| | - Elena Biasibetti
- Dipartimento di Scienze Veterinarie, Università degli Studi di Torino, Largo Paolo Braccini 2, 10095 Grugliasco (TO), Italy.
| | - Davide Schiffer
- Centro di Neuro Bio Oncologia, Policlinico di Monza, Via Pietro Micca 5, 13100 Vercelli, Italy.
| | - Marta Mellai
- Centro di Neuro Bio Oncologia, Policlinico di Monza, Via Pietro Micca 5, 13100 Vercelli, Italy.
| | - Laura Annovazzi
- Centro di Neuro Bio Oncologia, Policlinico di Monza, Via Pietro Micca 5, 13100 Vercelli, Italy.
| | - Luigi Cangemi
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, Via Pietro Giuria 9, 10124 Torino, Italy.
| | - Elisabetta Muntoni
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, Via Pietro Giuria 9, 10124 Torino, Italy.
| | - Gianluca Miglio
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, Via Pietro Giuria 9, 10124 Torino, Italy.
| | - Umberto Dianzani
- Dipartimento di Scienze della Salute, Università del Piemonte Orientale, Via Solaroli, 17, 28100 Novara, Italy.
| | - Luigi Battaglia
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, Via Pietro Giuria 9, 10124 Torino, Italy.
| | - Chiara Dianzani
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, Via Pietro Giuria 9, 10124 Torino, Italy.
| |
Collapse
|
25
|
Galectin Targeted Therapy in Oncology: Current Knowledge and Perspectives. Int J Mol Sci 2018; 19:ijms19010210. [PMID: 29320431 PMCID: PMC5796159 DOI: 10.3390/ijms19010210] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/23/2017] [Accepted: 12/28/2017] [Indexed: 12/13/2022] Open
Abstract
The incidence and mortality of cancer have increased over the past decades. Significant progress has been made in understanding the underpinnings of this disease and developing therapies. Despite this, cancer still remains a major therapeutic challenge. Current therapeutic research has targeted several aspects of the disease such as cancer development, growth, angiogenesis and metastases. Many molecular and cellular mechanisms remain unknown and current therapies have so far failed to meet their intended potential. Recent studies show that glycans, especially oligosaccharide chains, may play a role in carcinogenesis as recognition patterns for galectins. Galectins are members of the lectin family, which show high affinity for β-galactosides. The galectin–glycan conjugate plays a fundamental role in metastasis, angiogenesis, tumor immunity, proliferation and apoptosis. Galectins’ action is mediated by a structure containing at least one carbohydrate recognition domain (CRD). The potential prognostic value of galectins has been described in several neoplasms and helps clinicians predict disease outcome and determine therapeutic interventions. Currently, new therapeutic strategies involve the use of inhibitors such as competitive carbohydrates, small non-carbohydrate binding molecules and antibodies. This review outlines our current knowledge regarding the mechanism of action and potential therapy implications of galectins in cancer.
Collapse
|
26
|
Ciavatta ML, Lefranc F, Carbone M, Mollo E, Gavagnin M, Betancourt T, Dasari R, Kornienko A, Kiss R. Marine Mollusk-Derived Agents with Antiproliferative Activity as Promising Anticancer Agents to Overcome Chemotherapy Resistance. Med Res Rev 2017; 37:702-801. [PMID: 27925266 PMCID: PMC5484305 DOI: 10.1002/med.21423] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 09/20/2016] [Accepted: 09/23/2016] [Indexed: 12/18/2022]
Abstract
The chemical investigation of marine mollusks has led to the isolation of a wide variety of bioactive metabolites, which evolved in marine organisms as favorable adaptations to survive in different environments. Most of them are derived from food sources, but they can be also biosynthesized de novo by the mollusks themselves, or produced by symbionts. Consequently, the isolated compounds cannot be strictly considered as "chemotaxonomic markers" for the different molluscan species. However, the chemical investigation of this phylum has provided many compounds of interest as potential anticancer drugs that assume particular importance in the light of the growing literature on cancer biology and chemotherapy. The current review highlights the diversity of chemical structures, mechanisms of action, and, most importantly, the potential of mollusk-derived metabolites as anticancer agents, including those biosynthesized by mollusks and those of dietary origin. After the discussion of dolastatins and kahalalides, compounds previously studied in clinical trials, the review covers potentially promising anticancer agents, which are grouped based on their structural type and include terpenes, steroids, peptides, polyketides and nitrogen-containing compounds. The "promise" of a mollusk-derived natural product as an anticancer agent is evaluated on the basis of its ability to target biological characteristics of cancer cells responsible for poor treatment outcomes. These characteristics include high antiproliferative potency against cancer cells in vitro, preferential inhibition of the proliferation of cancer cells over normal ones, mechanism of action via nonapoptotic signaling pathways, circumvention of multidrug resistance phenotype, and high activity in vivo, among others. The review also includes sections on the targeted delivery of mollusk-derived anticancer agents and solutions to their procurement in quantity.
Collapse
Affiliation(s)
- Maria Letizia Ciavatta
- Consiglio Nazionale delle Ricerche (CNR)Istituto di Chimica Biomolecolare (ICB)Via Campi Flegrei 3480078PozzuoliItaly
| | - Florence Lefranc
- Service de Neurochirurgie, Hôpital ErasmeUniversité Libre de Bruxelles (ULB)1070BrusselsBelgium
| | - Marianna Carbone
- Consiglio Nazionale delle Ricerche (CNR)Istituto di Chimica Biomolecolare (ICB)Via Campi Flegrei 3480078PozzuoliItaly
| | - Ernesto Mollo
- Consiglio Nazionale delle Ricerche (CNR)Istituto di Chimica Biomolecolare (ICB)Via Campi Flegrei 3480078PozzuoliItaly
| | - Margherita Gavagnin
- Consiglio Nazionale delle Ricerche (CNR)Istituto di Chimica Biomolecolare (ICB)Via Campi Flegrei 3480078PozzuoliItaly
| | - Tania Betancourt
- Department of Chemistry and BiochemistryTexas State UniversitySan MarcosTX78666
| | - Ramesh Dasari
- Department of Chemistry and BiochemistryTexas State UniversitySan MarcosTX78666
| | - Alexander Kornienko
- Department of Chemistry and BiochemistryTexas State UniversitySan MarcosTX78666
| | - Robert Kiss
- Laboratoire de Cancérologie et de Toxicologie ExpérimentaleFaculté de Pharmacie, Université Libre de Bruxelles (ULB)1050BrusselsBelgium
| |
Collapse
|
27
|
Carbone M, Ciavatta ML, Mathieu V, Ingels A, Kiss R, Pascale P, Mollo E, Ungur N, Guo YW, Gavagnin M. Marine Terpenoid Diacylguanidines: Structure, Synthesis, and Biological Evaluation of Naturally Occurring Actinofide and Synthetic Analogues. JOURNAL OF NATURAL PRODUCTS 2017; 80:1339-1346. [PMID: 28406636 DOI: 10.1021/acs.jnatprod.6b00941] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A new diacylguanidine, actinofide (1), has been isolated from the marine mollusk Actinocyclus papillatus. The structure, exhibiting a guanidine moiety acylated by two terpenoid acid units, has been established by spectroscopic methods and secured by synthesis. Following this, a series of structural analogues have been synthesized using the same procedure. All of the compounds have been evaluated in vitro for the growth inhibitory activity against a variety of cancer cell lines.
Collapse
Affiliation(s)
- Marianna Carbone
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Chimica Biomolecolare (ICB) , Via Campi Flegrei, 34, 80078 Pozzuoli (Na), Italy
| | - M Letizia Ciavatta
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Chimica Biomolecolare (ICB) , Via Campi Flegrei, 34, 80078 Pozzuoli (Na), Italy
| | - Véronique Mathieu
- Laboratoire de Cancérologie et de Toxicologie Expérimentale, Faculté de Pharmacie, Université Libre de Bruxelles (ULB) , Campus de la Plaine, Boulevard du Triomphe, 1050 Brussels, Belgium
| | - Aude Ingels
- Laboratoire de Cancérologie et de Toxicologie Expérimentale, Faculté de Pharmacie, Université Libre de Bruxelles (ULB) , Campus de la Plaine, Boulevard du Triomphe, 1050 Brussels, Belgium
| | - Robert Kiss
- Laboratoire de Cancérologie et de Toxicologie Expérimentale, Faculté de Pharmacie, Université Libre de Bruxelles (ULB) , Campus de la Plaine, Boulevard du Triomphe, 1050 Brussels, Belgium
| | - Paola Pascale
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Chimica Biomolecolare (ICB) , Via Campi Flegrei, 34, 80078 Pozzuoli (Na), Italy
| | - Ernesto Mollo
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Chimica Biomolecolare (ICB) , Via Campi Flegrei, 34, 80078 Pozzuoli (Na), Italy
| | - Nicon Ungur
- Institute of Chemistry, Moldova Academy of Sciences , Academiei str. 3, MD-2028 Chisinau, Republic of Moldova
| | - Yue-Wei Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203, P.R. China
| | - Margherita Gavagnin
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Chimica Biomolecolare (ICB) , Via Campi Flegrei, 34, 80078 Pozzuoli (Na), Italy
| |
Collapse
|
28
|
In Vitro Growth Inhibitory Activities of Natural Products from Irciniid Sponges against Cancer Cells: A Comparative Study. BIOMED RESEARCH INTERNATIONAL 2016; 2016:5318176. [PMID: 27597966 PMCID: PMC4997040 DOI: 10.1155/2016/5318176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Accepted: 07/18/2016] [Indexed: 11/18/2022]
Abstract
Marine sponges of the Irciniidae family contain both bioactive furanosesterterpene tetronic acids (FTAs) and prenylated hydroquinones (PHQs). Both classes of compounds are known for their anti-inflammatory, antioxidant, and antimicrobial properties and known to display growth inhibitory effects against various human tumor cell lines. However, the different experimental conditions of the reported in vitro bioassays, carried out on different cancer cell lines within separate studies, prevent realistic actual discrimination between the two classes of compounds from being carried out in terms of growth inhibitory effects. In the present work, a chemical investigation of irciniid sponges from Tunisian coasts led to the purification of three known FTAs and three known PHQs. The in vitro growth inhibitory properties of the six purified compounds have been evaluated in the same experiment in a panel of five human and one murine cancer cell lines displaying various levels of sensitivity to proapoptotic stimuli. Surprisingly, FTAs and PHQs elicited distinct profiles of growth inhibitory-responses, differing by one to two orders of magnitude in favor of the PHQs in all cell lines. The obtained comparative results are discussed in the light of a better selection of drug candidates from natural sources.
Collapse
|
29
|
van Beijnum JR, Thijssen VL, Läppchen T, Wong TJ, Verel I, Engbersen M, Schulkens IA, Rossin R, Grüll H, Griffioen AW, Nowak-Sliwinska P. A key role for galectin-1 in sprouting angiogenesis revealed by novel rationally designed antibodies. Int J Cancer 2016; 139:824-35. [PMID: 27062254 DOI: 10.1002/ijc.30131] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 03/03/2016] [Indexed: 11/10/2022]
Abstract
Galectins are carbohydrate binding proteins that function in many key cellular processes. We have previously demonstrated that galectins are essential for tumor angiogenesis and their expression is associated with disease progression. Targeting galectins is therefore a potential anti-angiogenic and anti-cancer strategy. Here, we used a rational approach to generate antibodies against a specific member of this conserved protein family, i.e. galectin-1. We characterized two novel mouse monoclonal antibodies that specifically react with galectin-1 in human, mouse and chicken. We demonstrate that these antibodies are excellent tools to study galectin-1 expression and function in a broad array of biological systems. In a potential diagnostic application, radiolabeled antibodies showed specific targeting of galectin-1 positive tumors. In a therapeutic setting, the antibodies inhibited sprouting angiogenesis in vitro and in vivo, underscoring the key function of galectin-1 in this process.
Collapse
Affiliation(s)
- Judy R van Beijnum
- Angiogenesis Laboratory, Department of Medical Oncology, VU University Medical Center, Amsterdam, the Netherlands
| | - Victor L Thijssen
- Angiogenesis Laboratory, Department of Medical Oncology, VU University Medical Center, Amsterdam, the Netherlands
| | - Tilman Läppchen
- Oncology Solutions, Philips Research, Eindhoven, the Netherlands.,Department of Nuclear Medicine, University Hospital Freiburg, Freiburg, Germany
| | - Tse J Wong
- Angiogenesis Laboratory, Department of Medical Oncology, VU University Medical Center, Amsterdam, the Netherlands
| | - Iris Verel
- Oncology Solutions, Philips Research, Eindhoven, the Netherlands
| | - Maurits Engbersen
- Angiogenesis Laboratory, Department of Medical Oncology, VU University Medical Center, Amsterdam, the Netherlands
| | - Iris A Schulkens
- Angiogenesis Laboratory, Department of Medical Oncology, VU University Medical Center, Amsterdam, the Netherlands
| | - Raffaella Rossin
- Oncology Solutions, Philips Research, Eindhoven, the Netherlands
| | - Holger Grüll
- Oncology Solutions, Philips Research, Eindhoven, the Netherlands
| | - Arjan W Griffioen
- Angiogenesis Laboratory, Department of Medical Oncology, VU University Medical Center, Amsterdam, the Netherlands
| | - Patrycja Nowak-Sliwinska
- Angiogenesis Laboratory, Department of Medical Oncology, VU University Medical Center, Amsterdam, the Netherlands
| |
Collapse
|
30
|
Cimmino A, Mathieu V, Masi M, Baroncelli R, Boari A, Pescitelli G, Ferderin M, Lisy R, Evidente M, Tuzi A, Zonno MC, Kornienko A, Kiss R, Evidente A. Higginsianins A and B, Two Diterpenoid α-Pyrones Produced by Colletotrichum higginsianum, with in Vitro Cytostatic Activity. JOURNAL OF NATURAL PRODUCTS 2016; 79:116-25. [PMID: 26697898 PMCID: PMC4944208 DOI: 10.1021/acs.jnatprod.5b00779] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Two new diterpenoid α-pyrones, named higginsianins A (1) and B (2), were isolated from the mycelium of the fungus Colletotrichum higginsianum grown in liquid culture. They were characterized as 3-[5a,9b-dimethyl-7-methylene-2-(2-methylpropenyl)dodecahydronaphtho[2,1-b]furan-6-ylmethyl]-4-hydroxy-5,6-dimethylpyran-2-one and 4-hydroxy-3-[6-hydroxy-5,8a-dimethyl-2-methylene-5-(4-methylpent-3-enyl)decahydronaphthalen-1-ylmethyl]-5,6-dimethylpyran-2-one, respectively, by using NMR, HRESIMS, and chemical methods. The structure and relative configuration of higginsianin A (1) were confirmed by X-ray diffractometric analysis, while its absolute configuration was assigned by electronic circular dichroism (ECD) experiments and calculations using a solid-state ECD/TDDFT method. The relative and absolute configuration of higginsianin B (2), which did not afford crystals suitable for X-ray analysis, were determined by NMR analysis and by ECD in comparison with higginsianin A. 1 and 2 were the C-8 epimers of subglutinol A and diterpenoid BR-050, respectively. The evaluation of 1 and 2 for antiproliferative activity against a panel of six cancer cell lines revealed that the IC50 values, obtained with cells reported to be sensitive to pro-apoptotic stimuli, are by more than 1 order of magnitude lower than their apoptosis-resistant counterparts (1 vs >80 μM). Finally, three hemisynthetic derivatives of 1 were prepared and evaluated for antiproliferative activity. Two of these possessed IC50 values and differential sensitivity profiles similar to those of 1.
Collapse
Affiliation(s)
- Alessio Cimmino
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario Monte Sant'Angelo, Via Cintia 4, 80126, Napoli, Italy
| | - Veronique Mathieu
- Laboratoire de Cancérologie et de Toxicologie Expérimentale, Faculté de Pharmacie, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Marco Masi
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario Monte Sant'Angelo, Via Cintia 4, 80126, Napoli, Italy
| | - Riccardo Baroncelli
- Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, University of Western Brittany, Avenue du Technopole, Plouzané, 29280 Brest, France
| | - Angela Boari
- Istituto di Scienze delle Produzioni Alimentari, Consiglio Nazionale delle Ricerche, Via Amendola 122/O, 70125 Bari, Italy
| | - Gennaro Pescitelli
- Dipartimento di Chimica e Chimica Industriale, Universita di Pisa, Via Moruzzi 3, 56124 Pisa, Italy
| | - Marlène Ferderin
- Laboratoire de Cancérologie et de Toxicologie Expérimentale, Faculté de Pharmacie, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Romana Lisy
- Laboratoire de Cancérologie et de Toxicologie Expérimentale, Faculté de Pharmacie, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Marco Evidente
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario Monte Sant'Angelo, Via Cintia 4, 80126, Napoli, Italy
| | - Angela Tuzi
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario Monte Sant'Angelo, Via Cintia 4, 80126, Napoli, Italy
| | - Maria Chiara Zonno
- Istituto di Scienze delle Produzioni Alimentari, Consiglio Nazionale delle Ricerche, Via Amendola 122/O, 70125 Bari, Italy
| | - Alexander Kornienko
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, Texas 78666, United States
| | - Robert Kiss
- Laboratoire de Cancérologie et de Toxicologie Expérimentale, Faculté de Pharmacie, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Antonio Evidente
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario Monte Sant'Angelo, Via Cintia 4, 80126, Napoli, Italy
| |
Collapse
|
31
|
Kanda A, Noda K, Saito W, Ishida S. Aflibercept Traps Galectin-1, an Angiogenic Factor Associated with Diabetic Retinopathy. Sci Rep 2015; 5:17946. [PMID: 26648523 PMCID: PMC4673700 DOI: 10.1038/srep17946] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 11/09/2015] [Indexed: 12/15/2022] Open
Abstract
Vascular endothelial growth factor (VEGF)-A-driven angiogenesis contributes to various disorders including cancer and proliferative diabetic retinopathy (PDR). Among several VEGF-A blockers clinically used is aflibercept, a chimeric VEGFR1/VEGFR2-based decoy receptor fused to the Fc fragment of IgG1 (i.e., VEGFR1/VEGFR2-Fc). Here, we revealed a novel anti-angiogenic function for aflibercept beyond its antagonism against VEGF family members. Immunoprecipitation and mass spectrometry analyses identified galectin-1 as an aflibercept-interacting protein. Biolayer interferometry revealed aflibercept binding to galectin-1 with higher affinity than VEGFR1-Fc and VEGFR2-Fc, which was abolished by deglycosylation of aflibercept with peptide:N-glycosidase F. Retinal LGALS1/Galectin-1 mRNA expression was enhanced in vitro by hypoxic stimulation and in vivo by induction of diseases including diabetes. Galectin-1 immunoreactivity co-localized with VEGFR2 in neovascular tissues surgically excised from human eyes with PDR. Compared with non-diabetic controls, intravitreal galectin-1 protein levels were elevated in PDR eyes, showing no correlation with increased VEGF-A levels. Preoperative injection of bevacizumab, a monoclonal antibody to VEGF-A, reduced the VEGF-A, but not galectin-1, levels. Galectin-1 application to human retinal microvascular endothelial cells up-regulated VEGFR2 phosphorylation, which was eliminated by aflibercept. Our present findings demonstrated the neutralizing efficacy of aflibercept against galectin-1, an angiogenic factor associated with PDR independently of VEGF-A.
Collapse
Affiliation(s)
- Atsuhiro Kanda
- Laboratory of Ocular Cell Biology and Visual Science, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido 060-8638, Japan.,Department of Ophthalmology, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido 060-8638, Japan
| | - Kousuke Noda
- Laboratory of Ocular Cell Biology and Visual Science, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido 060-8638, Japan.,Department of Ophthalmology, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido 060-8638, Japan
| | - Wataru Saito
- Department of Ophthalmology, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido 060-8638, Japan
| | - Susumu Ishida
- Laboratory of Ocular Cell Biology and Visual Science, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido 060-8638, Japan.,Department of Ophthalmology, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido 060-8638, Japan
| |
Collapse
|
32
|
Cieckiewicz E, Mathieu V, Angenot L, Gras T, Dejaegher B, de Tullio P, Pirotte B, Frédérich M. Semisynthesis and in Vitro Photodynamic Activity Evaluations of Halogenated and Glycosylated Derivatives of Pheophorbidea. European J Org Chem 2015. [DOI: 10.1002/ejoc.201500387] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
33
|
Rosière R, Gelbcke M, Mathieu V, Van Antwerpen P, Amighi K, Wauthoz N. New dry powders for inhalation containing temozolomide-based nanomicelles for improved lung cancer therapy. Int J Oncol 2015. [PMID: 26201404 DOI: 10.3892/ijo.2015.3092] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Besides the numerous advantages of a chemotherapy administered by the inhalation route for lung cancer therapy, dry powder for inhalation (DPI) offers many advantages compared to other techniques and seems to be a technique that is well-adapted to an anticancer treatment. DPI formulations were developed using the cytotoxic drug temozolomide and a new folate-grafted self-assembling copolymer, a conjugate of three components, folate-polyethylene glycol-hydrophobically-modified dextran (F-PEG-HMD). F-PEG-HMD was synthesized using carbodiimide-mediated coupling chemistry in three main steps. F-PEG-HMD was characterized by 1H-NMR, mass spectrometry and thermal analysis. F-PEG-HMD presented a critical micellar concentration in water of 4x10-7 M. F-PEG-HMD nanomicelles were characterized by a trimodal particle size distribution with Z-average diameter of 83±1 nm in water. Temozolomide-loaded nanomicelles were prepared by solubilization of F-PEG-HMD in the presence of temozolomide. Temozolomide solubility in water was increased in the presence of F-PEG-HMD (2-fold increase in molar solubility) which could potentially lead to increased local concentrations in the tumor site. The temozolomide-loaded F-PEG-HMD nanomicelles were characterized by a Z-average diameter of ~50 to ~60 nm, depending on the F-PEG-HMD concentration used. The nanomicelles were then spray-dried to produce dry powders. Temozolomide remained stable during all the formulation steps, confirmed by similar in vitro anticancer properties for the DPI formulations and a raw temozolomide solution. Two of the developed DPI formulations were characterized by good aerodynamic properties (with a fine particle fraction of up to 50%) and were able to release the F-PEG-HMD nanomicelles quickly in aqueous media. Moreover, in vitro, the two DPI formulations showed wide pulmonary deposition in the lower respiratory tract where adenocarcinomas are more often found. The present study, therefore, shows that F-PEG-HMD-based dry powders for inhalation could constitute an interesting drug delivery system able to release nanomicelles that are useful in adenocarcinomas that overexpress folate receptors.
Collapse
Affiliation(s)
- Rémi Rosière
- Laboratory of Pharmaceutics and Biopharmaceutics, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), B-1050 Brussels, Belgium
| | - Michel Gelbcke
- Laboratory of Therapeutic Chemistry, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), B-1050 Brussels, Belgium
| | - Véronique Mathieu
- Laboratory of Cancerology and Experimental Toxicology, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), B-1050 Brussels, Belgium
| | - Pierre Van Antwerpen
- Laboratory of Therapeutic Chemistry, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), B-1050 Brussels, Belgium
| | - Karim Amighi
- Laboratory of Pharmaceutics and Biopharmaceutics, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), B-1050 Brussels, Belgium
| | - Nathalie Wauthoz
- Laboratory of Pharmaceutics and Biopharmaceutics, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), B-1050 Brussels, Belgium
| |
Collapse
|
34
|
Mathieu V, Chantôme A, Lefranc F, Cimmino A, Miklos W, Paulitschke V, Mohr T, Maddau L, Kornienko A, Berger W, Vandier C, Evidente A, Delpire E, Kiss R. Sphaeropsidin A shows promising activity against drug-resistant cancer cells by targeting regulatory volume increase. Cell Mol Life Sci 2015; 72:3731-46. [PMID: 25868554 DOI: 10.1007/s00018-015-1902-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 03/10/2015] [Accepted: 04/02/2015] [Indexed: 12/19/2022]
Abstract
Despite the recent advances in the treatment of tumors with intrinsic chemotherapy resistance, such as melanoma and renal cancers, their prognosis remains poor and new chemical agents with promising activity against these cancers are urgently needed. Sphaeropsidin A, a fungal metabolite whose anticancer potential had previously received little attention, was isolated from Diplodia cupressi and found to display specific anticancer activity in vitro against melanoma and kidney cancer subpanels in the National Cancer Institute (NCI) 60-cell line screen. The NCI data revealed a mean LC50 of ca. 10 µM and a cellular sensitivity profile that did not match that of any other agent in the 765,000 compound database. Subsequent mechanistic studies in melanoma and other multidrug-resistant in vitro cancer models showed that sphaeropsidin A can overcome apoptosis as well as multidrug resistance by inducing a marked and rapid cellular shrinkage related to the loss of intracellular Cl(-) and the decreased HCO3 (-) concentration in the culture supernatant. These changes in ion homeostasis and the absence of effects on the plasma membrane potential were attributed to the sphaeropsidin A-induced impairment of regulatory volume increase (RVI). Preliminary results also indicate that depending on the type of cancer, the sphaeropsidin A effects on RVI could be related to Na-K-2Cl electroneutral cotransporter or Cl(-)/HCO3 (-) anion exchanger(s) targeting. This study underscores the modulation of ion-transporter activity as a promising therapeutic strategy to combat drug-resistant cancers and identifies the fungal metabolite, sphaeropsidin A, as a lead to develop anticancer agents targeting RVI in cancer cells.
Collapse
Affiliation(s)
- Véronique Mathieu
- Laboratoire de Cancérologie et de Toxicologie Expérimentale, Faculté de Pharmacie, Université Libre de Bruxelles (ULB), Campus de la Plaine, Boulevard du Triomphe, 1050, Brussels, Belgium.
| | - Aurélie Chantôme
- Inserm UMR 1069, Université François Rabelais and network "Ion channels and cancer - Canceropole Grand Ouest", Tours, France
| | - Florence Lefranc
- Service de Neurochirurgie, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Alessio Cimmino
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario Monte Sant'Angelo, Via Cintia 4, 80126, Naples, Italy
| | - Walter Miklos
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Verena Paulitschke
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Thomas Mohr
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Lucia Maddau
- Dipartimento di Agraria, Sezione di Patologia vegetale ed Entomologia, Università degli Studi di Sassari, Viale Italia 39, 07100, Sassari, Italy
| | - Alexander Kornienko
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX, 78666, USA
| | - Walter Berger
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Christophe Vandier
- Inserm UMR 1069, Université François Rabelais and network "Ion channels and cancer - Canceropole Grand Ouest", Tours, France
| | - Antonio Evidente
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario Monte Sant'Angelo, Via Cintia 4, 80126, Naples, Italy
| | - Eric Delpire
- Department of Anesthesiology, Vanderbilt University Medical School, Nashville, TN, USA
| | - Robert Kiss
- Laboratoire de Cancérologie et de Toxicologie Expérimentale, Faculté de Pharmacie, Université Libre de Bruxelles (ULB), Campus de la Plaine, Boulevard du Triomphe, 1050, Brussels, Belgium
| |
Collapse
|
35
|
Ferrocifen derivatives that induce senescence in cancer cells: selected examples. J Inorg Biochem 2014; 141:144-151. [DOI: 10.1016/j.jinorgbio.2014.08.015] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 08/28/2014] [Accepted: 08/29/2014] [Indexed: 01/01/2023]
|
36
|
Huang CS, Tang SJ, Chung LY, Yu CP, Ho JY, Cha TL, Hsieh CC, Wang HH, Sun GH, Sun KH. Galectin-1 upregulates CXCR4 to promote tumor progression and poor outcome in kidney cancer. J Am Soc Nephrol 2014; 25:1486-95. [PMID: 24511119 DOI: 10.1681/asn.2013070773] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Galectin-1, a β-galactoside-binding lectin, is involved in many physiologic and pathologic processes, including cell adhesion, differentiation, angiogenesis, and tumor progression. However, the role of galectin-1 in kidney cancer remains elusive. This study evaluated the role of galectin-1 in the progression and clinical prognosis of renal cell carcinoma. We found significant overexpression of galectin-1 in both kidney cancer cell lines and metastatic tissue specimens from patients with renal cell carcinoma. Knockdown of galectin-1 gene expression in renal cancer cell lines reduced cell invasion, clonogenic ability, and epithelial-mesenchymal transition in vitro; reduced tumor outgrowth in vivo; and inhibited the angiogenesis-inducing activity of these cells in vitro and in vivo. Galectin-1 knockdown decreased CXCR4 expression levels in kidney cancer cells, and restoration of CXCR4 expression in galectin-1-silenced cells rescued cell motility and clonogenic ability. Additional studies suggested that galectin-1 induced CXCR4 expression through activation of nuclear factor-κB (NF-κB). Analysis of patient specimens confirmed the clinical significance and positive correlation between galectin-1 and CXCR4 expression levels and revealed concomitant overexpression of galectin-1 and CXCR4 associated adversely with overall and disease-free survival. Our findings suggest that galectin-1 promotes tumor progression through upregulation of CXCR4 via NF-κB. The coordinated upregulation of galectin-1 and CXCR4 may be a novel prognostic factor for survival in patients with renal cell carcinoma and the galectin-1-CXCR4 axis may serve as a therapeutic target in this disease.
Collapse
Affiliation(s)
- Chang-Shuo Huang
- Department of Biotechnology and Laboratory Science in Medicine, Infection and Immunity Center, National Yang-Ming University, Department of Education and Research, Taipei City Hospital, Taipei, Taiwan
| | - Shye-Jye Tang
- Institute of Marine Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
| | - Ling-Yen Chung
- Department of Biotechnology and Laboratory Science in Medicine, Infection and Immunity Center, National Yang-Ming University, Department of Education and Research, Taipei City Hospital, Taipei, Taiwan
| | - Cheng-Ping Yu
- Biobank Management Center, Graduate Institute of Pathology and Parasitology, and
| | - Jar-Yi Ho
- Biobank Management Center, Graduate Institute of Pathology and Parasitology, and
| | - Tai-Lung Cha
- Division of Urology, Department of Surgery, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan; and
| | - Chii-Cheng Hsieh
- Division of Urology, Department of Surgery, Cheng-Hsin General Hospital, Taipei, Taiwan
| | - Hsiao-Hsien Wang
- Division of Urology, Department of Surgery, Cheng-Hsin General Hospital, Taipei, Taiwan
| | - Guang-Huan Sun
- Division of Urology, Department of Surgery, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan; and
| | - Kuang-Hui Sun
- Department of Biotechnology and Laboratory Science in Medicine, Infection and Immunity Center, National Yang-Ming University, Department of Education and Research, Taipei City Hospital, Taipei, Taiwan;
| |
Collapse
|
37
|
Verschuere T, Toelen J, Maes W, Poirier F, Boon L, Tousseyn T, Mathivet T, Gerhardt H, Mathieu V, Kiss R, Lefranc F, Van Gool SW, Vleeschouwer SD. Glioma-derived galectin-1 regulates innate and adaptive antitumor immunity. Int J Cancer 2013; 134:873-84. [DOI: 10.1002/ijc.28426] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 07/22/2013] [Indexed: 12/21/2022]
Affiliation(s)
- Tina Verschuere
- Department of Neurosciences; Laboratory of Experimental Neurosurgery and Neuroanatomy; KU Leuven; Leuven Belgium
| | - Jaan Toelen
- Department of Development and Regeneration; KU Leuven; Leuven Belgium
| | - Wim Maes
- Laboratory for Thrombosis Research; IRF Life Sciences (KULAK); Kortrijk Belgium
- PharmAbs, The KU Leuven Antibody Center; Leuven Belgium
| | - Françoise Poirier
- Institut Jacques Monod, CNRS, UMR 7592, University Paris Diderot, Sorbonne Paris Cité; Paris France
| | | | - Thomas Tousseyn
- Department of Imaging and Pathology, Translational Cell and Tissue Research, KU Leuven; Leuven Belgium
| | - Thomas Mathivet
- Department of Oncology, Vascular Patterning Laboratory, Vesalius Research Center, VIB; KU Leuven Belgium
| | - Holger Gerhardt
- Department of Oncology, Vascular Patterning Laboratory, Vesalius Research Center, VIB; KU Leuven Belgium
- Vascular Biology Laboratory; London Research Institute - Cancer Research UK, Lincoln's Inn Fields Laboratories; London United Kingdom
| | - Veronique Mathieu
- Laboratory of Toxicology; Faculty of Pharmacy, Free University of Brussels; Brussels Belgium
| | - Robert Kiss
- Laboratory of Toxicology; Faculty of Pharmacy, Free University of Brussels; Brussels Belgium
| | - Florence Lefranc
- Department of Neurosurgery; Erasmus University Hospital; Brussels Belgium
| | - Stefaan W. Van Gool
- Department of Microbiology and Immunology; Laboratory of Pediatric Immunology; KU Leuven; Leuven Belgium
| | - Steven De Vleeschouwer
- Department of Neurosciences; Laboratory of Experimental Neurosurgery and Neuroanatomy; KU Leuven; Leuven Belgium
- Department of Neurosciences; KU Leuven; Leuven Belgium
| |
Collapse
|
38
|
Bury M, Novo-Uzal E, Andolfi A, Cimini S, Wauthoz N, Heffeter P, Lallemand B, Avolio F, Delporte C, Cimmino A, Dubois J, Van Antwerpen P, Zonno MC, Vurro M, Poumay Y, Berger W, Evidente A, De Gara L, Kiss R, Locato V. Ophiobolin A, a sesterterpenoid fungal phytotoxin, displays higher in vitro growth-inhibitory effects in mammalian than in plant cells and displays in vivo antitumor activity. Int J Oncol 2013; 43:575-85. [PMID: 23754298 DOI: 10.3892/ijo.2013.1979] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Accepted: 03/21/2013] [Indexed: 11/06/2022] Open
Abstract
Ophiobolin A, a sesterterpenoid produced by plant pathogenic fungi, was purified from the culture extract of Drechslera gigantea and tested for its growth-inhibitory activity in both plant and mammalian cells. Ophiobolin A induced cell death in Nicotiana tabacum L. cv. Bright Yellow 2 (TBY-2) cells at concentrations ≥10 µM, with the TBY-2 cells showing typical features of apoptosis-like cell death. At a concentration of 5 µM, ophiobolin A did not affect plant cell viability but prevented cell proliferation. When tested on eight cancer cell lines, concentrations <1 µM of ophiobolin A inhibited growth by 50% after 3 days of culture irrespective of their multidrug resistance (MDR) phenotypes and their resistance levels to pro-apoptotic stimuli. It is, thus, unlikely that ophiobolin A exerts these in vitro growth-inhibitory effects in cancer cells by activating pro-apoptotic processes. Highly proliferative human keratinocytes appeared more sensitive to the growth-inhibitory effects of ophiobolin A than slowly proliferating ones. Ophiobolin A also displayed significant antitumor activity at the level of mouse survival when assayed at 10 mg/kg in the B16F10 mouse melanoma model with lung pseudometastases. Ophiobolin A could, thus, represent a novel scaffold to combat cancer types that display various levels of resistance to pro-apoptotic stimuli and/or various MDR phenotypes.
Collapse
Affiliation(s)
- Marina Bury
- Laboratoire de Toxicologie, Faculté de Pharmacie, Université Libre de Bruxelles, Brussels, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Ito K, Stannard K, Gabutero E, Clark AM, Neo SY, Onturk S, Blanchard H, Ralph SJ. Galectin-1 as a potent target for cancer therapy: role in the tumor microenvironment. Cancer Metastasis Rev 2013; 31:763-78. [PMID: 22706847 DOI: 10.1007/s10555-012-9388-2] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The microenvironment of a tumor is a highly complex milieu, primarily characterized by immunosuppression, abnormal angiogenesis, and hypoxic regions. These features promote tumor progression and metastasis, resulting in poor prognosis and greater resistance to existing cancer therapies. Galectin-1 is a β-galactoside binding protein that is abundantly secreted by almost all types of malignant tumor cells. The expression of galectin-1 is regulated by hypoxia-inducible factor-1 (HIF-1) and it plays vital pro-tumorigenic roles within the tumor microenvironment. In particular, galectin-1 suppresses T cell-mediated cytotoxic immune responses and promotes tumor angiogenesis. However, since galectin-1 displays many different activities by binding to a number of diverse N- or O-glycan modified target proteins, it has been difficult to fully understand how galectin-1 supports tumor growth and metastasis. This review explores the importance of galectin-1 and glycan expression patterns in the tumor microenvironment and the potential effects of inhibiting galectin-1 as a therapeutic target for cancer treatment.
Collapse
Affiliation(s)
- Koichi Ito
- School of Medical Science, Griffith Health Institute, Griffith University, Parklands Drive, Southport, Queensland 4222, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Zou S, Shen Q, Hua Y, Jiang W, Zhang W, Zhu X. Proteomic identification of neoadjuvant chemotherapy-related proteins in bulky stage IB-IIA squamous cervical cancer. Reprod Sci 2013; 20:1356-64. [PMID: 23599374 DOI: 10.1177/1933719113485291] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE The aim of this study was to investigate the effect of neoadjuvant chemotherapy (NAC) on the human squamous cervical cancer using proteomics profiling and to obtain related proteins to NAC exposure and response. METHODS Paired samples of early-stage bulky squamous cervical cancer before and after NAC treatment from patients who responded to NAC were obtained and submitted to 2-dimensional gel electrophoresis and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MS). The expression and localization of the interesting proteins in additional paired samples were confirmed by Western blot analysis and immunohistochemistry. RESULTS The comparison of the proteins present before and after NAC revealed that 116 protein spots were significantly changed. In all, 31 proteins were analyzed by MS, and 15 proteins were upregulated in the cancer tissue after NAC relative to the level before NAC, whereas 16 proteins were downregulated after NAC. The significantly higher expression of peroxiredoxin 1 and significantly lower expression of galectin 1 after NAC treatment were confirmed by Western blot. CONCLUSIONS Proteomics can be used to identify the NAC-related proteins in squamous cervical cancer. The change in proteins may be associated with NAC exposure and response, but insight into their relevance requires further study.
Collapse
MESH Headings
- Adult
- Biomarkers, Tumor/metabolism
- Blotting, Western
- Carcinoma, Squamous Cell/drug therapy
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/pathology
- Chemotherapy, Adjuvant
- Electrophoresis, Gel, Two-Dimensional
- Female
- Humans
- Immunohistochemistry
- Middle Aged
- Neoadjuvant Therapy
- Neoplasm Proteins/metabolism
- Neoplasm Staging
- Predictive Value of Tests
- Proteomics/methods
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- Treatment Outcome
- Tumor Burden
- Uterine Cervical Neoplasms/drug therapy
- Uterine Cervical Neoplasms/metabolism
- Uterine Cervical Neoplasms/pathology
Collapse
Affiliation(s)
- Shuangwei Zou
- 1Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical College, Wenzhou, China
| | | | | | | | | | | |
Collapse
|
41
|
Mathieu V, Wauthoz N, Lefranc F, Niemann H, Amighi K, Kiss R, Proksch P. Cyclic versus hemi-bastadins. pleiotropic anti-cancer effects: from apoptosis to anti-angiogenic and anti-migratory effects. Molecules 2013; 18:3543-61. [PMID: 23519198 PMCID: PMC6269779 DOI: 10.3390/molecules18033543] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 02/04/2013] [Accepted: 03/08/2013] [Indexed: 01/19/2023] Open
Abstract
Bastadins-6, -9 and -16 isolated from the marine sponge Ianthella basta displayed in vitro cytostatic and/or cytotoxic effects in six human and mouse cancer cell lines. The in vitro growth inhibitory effects of these bastadins were similar in cancer cell lines sensitive to pro-apoptotic stimuli versus cancer cell lines displaying various levels of resistance to pro-apoptotic stimuli. While about ten times less toxic than the natural cyclic bastadins, the synthetically derived 5,5'-dibromohemibastadin-1 (DBHB) displayed not only in vitro growth inhibitory activity in cancer cells but also anti-angiogenic properties. At a concentration of one tenth of its in vitro growth inhibitory concentration, DBHB displayed actual antimigratory effects in mouse B16F10 melanoma cells without any sign of cytotoxicity and/or growth inhibition. The serum concentration used in the cell culture media markedly influenced the DBHB-induced antimigratory effects in the B16F10 melanoma cell population. We are currently developing a specific inhalation formulation for DBHB enabling this compound to avoid plasmatic albumin binding through its direct delivery to the lungs to combat primary as well as secondary (metastases) tumors.
Collapse
Affiliation(s)
- Véronique Mathieu
- Laboratoire de Toxicologie, Faculté de Pharmacie, Université Libre de Bruxelles (ULB), Campus de la Plaine, Boulevard du Triomphe, 1050 Brussels, Belgium; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +32-478-317-388
| | - Nathalie Wauthoz
- Laboratoire de Pharmacie Galénique et de Biopharmacie, Faculté de Pharmacie, Université Libre de Bruxelles (ULB), Campus de la Plaine, Boulevard du Triomphe, 1050 Brussels, Belgium; E-Mails: (N.W.); (K.A.)
| | - Florence Lefranc
- Service de Neurochirurgie, Hôpital Erasme, ULB, Route de Lennik, 1070 Brussels, Belgium; E-Mail:
| | - Hendrik Niemann
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany; E-Mails: (H.N.); (P.P.)
| | - Karim Amighi
- Laboratoire de Pharmacie Galénique et de Biopharmacie, Faculté de Pharmacie, Université Libre de Bruxelles (ULB), Campus de la Plaine, Boulevard du Triomphe, 1050 Brussels, Belgium; E-Mails: (N.W.); (K.A.)
| | - Robert Kiss
- Laboratoire de Toxicologie, Faculté de Pharmacie, Université Libre de Bruxelles (ULB), Campus de la Plaine, Boulevard du Triomphe, 1050 Brussels, Belgium; E-Mail:
| | - Peter Proksch
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany; E-Mails: (H.N.); (P.P.)
| |
Collapse
|
42
|
Lamoral-Theys D, Wauthoz N, Heffeter P, Mathieu V, Jungwirth U, Lefranc F, Nève J, Dubois J, Dufrasne F, Amighi K, Berger W, Gailly P, Kiss R. Trivanillic polyphenols with anticancer cytostatic effects through the targeting of multiple kinases and intracellular Ca2+ release. J Cell Mol Med 2012; 16:1421-34. [PMID: 21810170 PMCID: PMC3823212 DOI: 10.1111/j.1582-4934.2011.01403.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Cancer cells exhibit de-regulation of multiple cellular signalling pathways and treatments of various types of cancers with polyphenols are promising. We recently reported the synthesis of a series of 33 novel divanillic and trivanillic polyphenols that displayed anticancer activity, at least in vitro, through inhibiting various kinases. This study revealed that minor chemical modifications of a trivanillate scaffold could convert cytotoxic compounds into cytostatic ones. Compound 13c, a tri-chloro derivative of trivanillic ester, displayed marked inhibitory activities against FGF-, VEGF-, EGF- and Src-related kinases, all of which are implicated not only in angiogenesis but also in the biological aggressiveness of various cancer types. The pan-anti-kinase activity of 13c occurs at less than one-tenth of its mean IC50in vitro growth inhibitory concentrations towards a panel of 12 cancer cell lines. Of the 26 kinases for which 13c inhibited their activity by >75%, eight (Yes, Fyn, FGF-R1, EGFR, Btk, Mink, Ret and Itk) are implicated in control of the actin cytoskeleton organization to varying degrees. Compound 13c accordingly impaired the typical organization of the actin cytoskeleton in human U373 glioblastoma cells. The pan-anti-kinase activity and actin cytoskeleton organization impairment provoked by 13c concomitantly occurs with calcium homeostasis impairment but without provoking MDR phenotype activation. All of these anticancer properties enabled 13c to confer therapeutic benefits in vivo in a mouse melanoma pseudometastatic lung model. These data argue in favour of further chemically modifying trivanillates to produce novel and potent anticancer drugs.
Collapse
Affiliation(s)
- Delphine Lamoral-Theys
- Laboratoire de Chimie BioAnalytique, Toxicologie et Chimie Physique Appliquée, Brussels, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Mathieu V, de Lassalle EM, Toelen J, Mohr T, Bellahcène A, Van Goietsenoven G, Verschuere T, Bouzin C, Debyser Z, De Vleeschouwer S, Van Gool S, Poirier F, Castronovo V, Kiss R, Feron O. Galectin-1 in Melanoma Biology and Related Neo-Angiogenesis Processes. J Invest Dermatol 2012; 132:2245-54. [DOI: 10.1038/jid.2012.142] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
44
|
Braeuer RR, Shoshan E, Kamiya T, Bar-Eli M. The sweet and bitter sides of galectins in melanoma progression. Pigment Cell Melanoma Res 2012; 25:592-601. [DOI: 10.1111/j.1755-148x.2012.01026.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
45
|
Toussaint LG, Nilson AE, Goble JM, Ballman KV, James CD, Lefranc F, Kiss R, Uhm JH. Galectin-1, a gene preferentially expressed at the tumor margin, promotes glioblastoma cell invasion. Mol Cancer 2012; 11:32. [PMID: 22583806 PMCID: PMC3407025 DOI: 10.1186/1476-4598-11-32] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 05/14/2012] [Indexed: 12/11/2022] Open
Abstract
Background High-grade gliomas, including glioblastomas (GBMs), are recalcitrant to local therapy in part because of their ability to invade the normal brain parenchyma surrounding these tumors. Animal models capable of recapitulating glioblastoma invasion may help identify mediators of this aggressive phenotype. Methods Patient-derived glioblastoma lines have been propagated in our laboratories and orthotopically xenografted into the brains of immunocompromized mice. Invasive cells at the tumor periphery were isolated using laser capture microdissection. The mRNA expression profile of these cells was compared to expression at the tumor core, using normal mouse brain to control for host contamination. Galectin-1, a target identified by screening the resulting data, was stably over-expressed in the U87MG cell line. Sub-clones were assayed for attachment, proliferation, migration, invasion, and in vivo tumor phenotype. Results Expression microarray data identified galectin-1 as the most potent marker (p-value 4.0 x 10-8) to identify GBM cells between tumor-brain interface as compared to the tumor core. Over-expression of galectin-1 enhanced migration and invasion in vitro. In vivo, tumors expressing high galectin-1 levels showed enhanced invasion and decreased host survival. Conclusions In conclusion, cells at the margin of glioblastoma, in comparison to tumor core cells, have enhanced expression of mediators of invasion. Galectin-1 is likely one such mediator. Previous studies, along with the current one, have proven galectin-1 to be important in the migration and invasion of glioblastoma cells, in GBM neoangiogenesis, and also, potentially, in GBM immune privilege. Targeting this molecule may offer clinical improvement to the current standard of glioblastoma therapy, i.e. radiation, temozolomide, anti-angiogenic therapy, and vaccinotherapy.
Collapse
|
46
|
Maxwell EG, Belshaw NJ, Waldron KW, Morris VJ. Pectin – An emerging new bioactive food polysaccharide. Trends Food Sci Technol 2012. [DOI: 10.1016/j.tifs.2011.11.002] [Citation(s) in RCA: 172] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
47
|
Zacarías Fluck MF, Hess L, Salatino M, Croci DO, Stupirski JC, Di Masso RJ, Roggero E, Rabinovich GA, Scharovsky OG. The aggressiveness of murine lymphomas selected in vivo by growth rate correlates with galectin-1 expression and response to cyclophosphamide. Cancer Immunol Immunother 2012; 61:469-80. [PMID: 21947259 PMCID: PMC11029055 DOI: 10.1007/s00262-011-1114-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 09/07/2011] [Indexed: 12/19/2022]
Abstract
Although lymphomas account for almost half of blood-derived cancers that are diagnosed each year, the causes of new cases are poorly understood, as reflected by the relatively few risk factors established. Galectin-1, an immunoregulatory ß-galactoside-binding protein, has been widely associated with tumor-immune escape. The aim of the present work was to study the relationship between tumor growth rate, aggressiveness, and response to cyclophosphamide (Cy) therapy with regard to Gal-1 expression in murine T-cell lymphoma models. By means of a disruptive selection process for tumor growth rate, we generated two lymphoma variants from a parental T-cell lymphoma, which have unique characteristics in terms of tumor growth rate, spontaneous regression, metastatic capacity, Gal-1 expression and sensitivity to Cy therapy. Here, we show that Gal-1 expression strongly correlates with tumor growth rate, metastatic capacity and response to single-dose Cy therapy in T-cell lymphoma models; this association might have important consequences for evaluating prognosis and treatments of this type of tumors.
Collapse
Affiliation(s)
- Mariano F. Zacarías Fluck
- Instituto de Genética Experimental, Facultad de Ciencias Médicas, Universidad Nacional de Rosario (UNR), Santa Fe 3100, S2002KTR Rosario, Argentina
- Present Address: Preclinical Research Program, Vall d’Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
| | - Leonardo Hess
- Instituto de Genética Experimental, Facultad de Ciencias Médicas, Universidad Nacional de Rosario (UNR), Santa Fe 3100, S2002KTR Rosario, Argentina
| | - Mariana Salatino
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Vuelta de Obligado 2490, C1428 Ciudad de Buenos Aires, Argentina
| | - Diego O. Croci
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Vuelta de Obligado 2490, C1428 Ciudad de Buenos Aires, Argentina
| | - Juan C. Stupirski
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Vuelta de Obligado 2490, C1428 Ciudad de Buenos Aires, Argentina
| | - Ricardo J. Di Masso
- Instituto de Genética Experimental, Facultad de Ciencias Médicas, Universidad Nacional de Rosario (UNR), Santa Fe 3100, S2002KTR Rosario, Argentina
| | - Eduardo Roggero
- Instituto de Genética Experimental, Facultad de Ciencias Médicas, Universidad Nacional de Rosario (UNR), Santa Fe 3100, S2002KTR Rosario, Argentina
| | - Gabriel A. Rabinovich
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Vuelta de Obligado 2490, C1428 Ciudad de Buenos Aires, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - O. Graciela Scharovsky
- Instituto de Genética Experimental, Facultad de Ciencias Médicas, Universidad Nacional de Rosario (UNR), Santa Fe 3100, S2002KTR Rosario, Argentina
| |
Collapse
|
48
|
Chen HD, Zhou X, Yu G, Zhao YL, Ren Y, Zhou YD, Li Q, Zhang XL. Knockdown of core 1 beta 1, 3-galactosyltransferase prolongs skin allograft survival with induction of galectin-1 secretion and suppression of CD8+ T cells: T synthase knockdown effects on galectin-1 and CD8+ T cells. J Clin Immunol 2012; 32:820-36. [PMID: 22392045 DOI: 10.1007/s10875-012-9653-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 01/10/2012] [Indexed: 10/28/2022]
Abstract
Core 1 beta 1,3-galactosyltransferase also known as T-antigen-synthase or T-synthase is a key enzyme for the synthesis of the common core 1 O-glycan structure (T-antigen). Although T-synthase is known to be important in human immune-related diseases, the effects of T-synthase and T-antigen on host immune responses remain poorly defined. In this study, a T-synthase-specific short hairpin RNA (shRNA) was transfected into murine colon carcinoma CT26 cells or mouse muscle tissues via intramuscular electroporation to assess the effects of T-synthase on T cells and cytokines. T-synthase knockdown significantly induced galectin-1 secretion both in vivo and in vitro and strongly enhanced Th2 cytokine (IL-10 and IL-4) production in vivo. Further, the increased production of galectin-1 induced by T-synthase knockdown promoted CD8(+) T-cell apoptosis, which, when combined with the increased production of CD4(+) T cell-derived Th2 cytokines prolonged the survival of skin allografts in mice. Our data suggest core 1 beta 1,3-galactosyltransferase-shRNA could serve not only as a useful tool in organ transplantation but also as a powerful tool for investigating O-glycans and glycoprotein synthesis and function.
Collapse
Affiliation(s)
- Hai-Dan Chen
- Department of Immunology and State Key Laboratory of Virology, Wuhan University School of Medicine, Wuhan, 430071, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Verschuere T, De Vleeschouwer S, Lefranc F, Kiss R, Van Gool SW. Galectin-1 and immunotherapy for brain cancer. Expert Rev Neurother 2011; 11:533-43. [PMID: 21469926 DOI: 10.1586/ern.11.40] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The prognosis of patients diagnosed with high-grade glioma continues to be dismal in spite of multimodal treatment. Active specific immunotherapy by means of dendritic cell vaccination is considered to be a new promising concept that aims at generating an anti-tumoral immune response. However, it is now widely accepted that the success of immunotherapeutic strategies to promote tumor regression will rely not only on enhancing the effector arm of the immune response but also on downregulation of the counteracting tolerogenic signals. In this article, we summarize evidence that galectin-1, an evolutionarily conserved glycan-binding protein that is abundantly expressed in high-grade glioma, is an important player in glioma-mediated immune escape.
Collapse
Affiliation(s)
- Tina Verschuere
- Laboratory of Experimental Immunology, Catholic University Leuven, Leuven, Belgium
| | | | | | | | | |
Collapse
|
50
|
Evdokimov NM, Lamoral-Theys D, Mathieu V, Andolfi A, Frolova LV, Pelly SC, van Otterlo WAL, Magedov IV, Kiss R, Evidente A, Kornienko A. In search of a cytostatic agent derived from the alkaloid lycorine: synthesis and growth inhibitory properties of lycorine derivatives. Bioorg Med Chem 2011; 19:7252-61. [PMID: 22019045 PMCID: PMC3383042 DOI: 10.1016/j.bmc.2011.09.051] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2011] [Revised: 08/27/2011] [Accepted: 09/06/2011] [Indexed: 01/10/2023]
Abstract
As a continuation of our studies aimed at the development of a new cytostatic agent derived from an Amaryllidaceae alkaloid lycorine, we synthesized 32 analogues of this natural product. This set of synthetic analogues included compounds incorporating selective derivatization of the C1 versus C2 hydroxyl groups, aromatized ring C, lactamized N6 nitrogen, dihydroxylated C3-C3a olefin functionality, transposed olefin from C3-C3a to C2-C3 or C3a-C4, and C1 long-chain fatty esters. All synthesized compounds were evaluated for antiproliferative activities in vitro in a panel of tumor cell lines including those exhibiting resistance to proapoptotic stimuli and representing solid cancers associated with dismal prognoses, such as melanoma, glioblastoma, and non-small-cell lung cancer. Most active analogues were not discriminatory between cancer cells displaying resistance or sensitivity to apoptosis, indicating that these compounds are thus able to overcome the intrinsic resistance of cancer cells to pro-apoptotic stimuli. 1,2-Di-O-allyllycorine was identified as a lycorine analogue, which is 100 times more potent against a U373 human glioblastoma model than the parent natural product. Furthermore, a number of synthetic analogues were identified as promising for the forthcoming in vivo studies.
Collapse
Affiliation(s)
- Nikolai M. Evdokimov
- Department of Chemistry, New Mexico Institute of Mining and Technology, Socorro, New Mexico 87801, USA
| | - Delphine Lamoral-Theys
- Laboratoire de Chimie Analytique, Toxicologie et Chimie Physique Appliquée and Université Libre de Bruxelles, Brussels, Belgium
| | - Véronique Mathieu
- Laboratoire de Toxicologie, Faculté de Pharmacie, Université Libre de Bruxelles, Brussels, Belgium
| | - Anna Andolfi
- Dipartimento di Scienze, del Suolo, della Pianta, dell'Ambiente e delle Produzioni Animali, Università di Napoli Federico II, Via Università 100, 80055 Portici, Italy
| | - Liliya V. Frolova
- Department of Chemistry, New Mexico Institute of Mining and Technology, Socorro, New Mexico 87801, USA
| | - Stephen C. Pelly
- Department of Chemistry and Polymer Sciences, Stellenbosch University, Stellenbosch, Western Cape, South Africa
| | - Willem A. L. van Otterlo
- Department of Chemistry and Polymer Sciences, Stellenbosch University, Stellenbosch, Western Cape, South Africa
| | - Igor V. Magedov
- Department of Chemistry, New Mexico Institute of Mining and Technology, Socorro, New Mexico 87801, USA
| | - Robert Kiss
- Laboratoire de Toxicologie, Faculté de Pharmacie, Université Libre de Bruxelles, Brussels, Belgium
| | - Antonio Evidente
- Dipartimento di Scienze, del Suolo, della Pianta, dell'Ambiente e delle Produzioni Animali, Università di Napoli Federico II, Via Università 100, 80055 Portici, Italy
| | - Alexander Kornienko
- Department of Chemistry, New Mexico Institute of Mining and Technology, Socorro, New Mexico 87801, USA
| |
Collapse
|