1
|
Wang L, Li KP, Chen SY, Wan S, Li XR, Yang L. Proteome-wide mendelian randomization identifies therapeutic targets for nephrolithiasis. Urolithiasis 2024; 52:126. [PMID: 39237840 DOI: 10.1007/s00240-024-01627-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 09/01/2024] [Indexed: 09/07/2024]
Abstract
Kidney Stone Disease (KSD) constitutes a multifaceted disorder, emerging from a confluence of environmental and genetic determinants, and is characterized by a high frequency of occurrence and recurrence. Our objective is to elucidate potential causative proteins and identify prospective pharmacological targets within the context of KSD. This investigation harnessed the unparalleled breadth of plasma protein and KSD pooled genome-wide association study (GWAS) data, sourced from the United Kingdom Biobank Pharma Proteomics Project (UKBPPP) and the FinnGen database version R10. Through Mendelian randomization analysis, proteins exhibiting a causal influence on KSD were pinpointed. Subsequent co-localization analyses affirmed the stability of these findings, while enrichment analyses evaluated their potential for pharmacological intervention. Culminating the study, a phenome-wide association study (PheWAS) was executed, encompassing all phenotypes (2408 phenotypes) catalogued in the FinnGen database version R10. Our MR analysis identified a significant association between elevated plasma levels of proteins FKBPL, ITIH3, and SERPINC1 and increased risk of KSD based on genetic predictors. Conversely, proteins CACYBP, DAG1, ITIH1, and SEMA6C showed a protective effect against KSD, documented with statistical significance (PFDR<0.05). Co-localization analysis confirmed these seven proteins share genetic variants with KSD, signaling a shared genetic basis (PPH3 + PPH4 > 0.8). Enrichment analysis revealed key pathways including hyaluronan metabolism, collagen-rich extracellular matrix, and serine-type endopeptidase inhibition. Additionally, our PheWAS connected the associated proteins with 356 distinct diseases (PFDR<0.05), highlighting intricate disease interrelations. In conclusion, our research elucidated a causal nexus between seven plasma proteins and KSD, enriching our grasp of prospective therapeutic targets.
Collapse
Affiliation(s)
- Li Wang
- Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, 730030, People's Republic of China
- Gansu Province Clinical Research Center for Urology, Lanzhou, China
| | - Kun-Peng Li
- Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, 730030, People's Republic of China
- Gansu Province Clinical Research Center for Urology, Lanzhou, China
| | - Si-Yu Chen
- Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, 730030, People's Republic of China
- Gansu Province Clinical Research Center for Urology, Lanzhou, China
| | - Shun Wan
- Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, 730030, People's Republic of China
- Gansu Province Clinical Research Center for Urology, Lanzhou, China
| | - Xiao-Ran Li
- Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, 730030, People's Republic of China.
- Gansu Province Clinical Research Center for Urology, Lanzhou, China.
| | - Li Yang
- Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, 730030, People's Republic of China.
- Gansu Province Clinical Research Center for Urology, Lanzhou, China.
| |
Collapse
|
2
|
Kwenda EP, Hernandez AD, Di Valerio E, Canales BK. Renal papillary tip biopsy in stone formers: a review of clinical safety and insights. Urolithiasis 2024; 52:93. [PMID: 38888601 DOI: 10.1007/s00240-024-01596-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024]
Abstract
Alexander Randall first published renal papillary tip findings from stone formers in 1937, paving the way for endoscopic assessment to study stone pathogenesis. We performed a literature search to evaluate the safety of papillary tip biopsy and clinical insights gained from modern renal papillary investigations. A search on the topic of renal papillary biopsy provided an overview of Randall's plaques (RP), classification systems for renal papillary grading, and a summary of procedure type, complications, and outcomes. Within 26 identified manuscripts, 660 individuals underwent papillary tip biopsy percutaneously (n = 562), endoscopically (n = 37), or unspecified (n = 23). Post-operative hemoglobin changes were similar to controls. One individual (0.2%) reported fever > 38°, and long-term mean serum creatinine post-biopsy (n = 32) was unchanged. Biopsies during ureteroscopy or PCNL added ~20-30 min of procedure time. Compared to controls, papillary plaque-containing tissue had upregulation in pro-inflammatory genes, immune cells, and cellular apoptosis. Urinary calcium and papillary plaque coverage were found to differ between RP and non-RP stone formers, suggesting differing underlying pathophysiology for these groups. Two renal papillary scoring systems have been externally validated and are used to classify stone formers. Overall, this review shows that renal papillary biopsies have a low complication profile with high potential for further research. Systematic adaption of a papillary grading scale, newer tissue analysis techniques, and the development of animal models of Randall's plaque may allow further exploration of plaque pathogenesis and identify targets for prevention therapies in patients with nephrolithiasis.
Collapse
Affiliation(s)
- Elizabeth P Kwenda
- Department of Urology, University of Florida, 1600 SW Archer Road, P.O. Box 100247, Gainesville, FL, 32610-0247, USA.
| | | | | | - Benjamin K Canales
- Department of Urology, University of Florida, 1600 SW Archer Road, P.O. Box 100247, Gainesville, FL, 32610-0247, USA
| |
Collapse
|
3
|
Khan SR, Canales BK. Proposal for pathogenesis-based treatment options to reduce calcium oxalate stone recurrence. Asian J Urol 2023; 10:246-257. [PMID: 37538166 PMCID: PMC10394280 DOI: 10.1016/j.ajur.2023.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/02/2022] [Accepted: 01/18/2023] [Indexed: 08/05/2023] Open
Abstract
Objective Prevalence of kidney stone disease continues to increase globally with recurrence rates between 30% and 50% despite technological and scientific advances. Reduction in recurrence would improve patient outcomes and reduce cost and stone morbidities. Our objective was to review results of experimental studies performed to determine the efficacy of readily available compounds that can be used to prevent recurrence. Methods All relevant literature up to October 2020, listed in PubMed is reviewed. Results Clinical guidelines endorse the use of evidence-based medications, such as alkaline agents and thiazides, to reduce urinary mineral supersaturation and recurrence. However, there may be additional steps during stone pathogenesis where medications could moderate stone risk. Idiopathic calcium oxalate stones grow attached to Randall's plaques or plugs. Results of clinical and experimental studies suggest involvement of reactive oxygen species and oxidative stress in the formation of both the plaques and plugs. The renin-angiotensin-aldosterone system (RAAS), nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, mitochondria, and NOD-like receptor pyrin domain containing-3 (NLRP3) inflammasome have all been implicated at specific steps during stone pathogenesis in animal models. Conclusion In addition to supersaturation-reducing therapies, the use of anti-oxidants, free radical scavengers, and inhibitors of NADPH oxidase, NLRP3 inflammasome, and RAAS may prove beneficial for stone prevention. Compounds such as statins and angiotensin converting enzyme inhibitors are already in use as therapeutics for hypertension and cardio-vascular disease and have previously shown to reduce calcium oxalate nephrolithiasis in rats. Although clinical evidence for their use in stone prevention in humans is limited, experimental data support they be considered along with standard evidence-based medications and clinical expertise when patients are being counselled for stone prevention.
Collapse
Affiliation(s)
- Saeed R. Khan
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | | |
Collapse
|
4
|
Van de Perre E, Bazin D, Estrade V, Bouderlique E, Wissing KM, Daudon M, Letavernier E. Randall’s plaque as the origin of idiopathic calcium oxalate stone formation: an update. CR CHIM 2022. [DOI: 10.5802/crchim.102] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
5
|
Khan SR. Inflammation and injury: what role do they play in the development of Randall’s plaques and formation of calcium oxalate kidney stones? CR CHIM 2022. [DOI: 10.5802/crchim.93] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
6
|
Randall's plaque and calcium oxalate stone formation: role for immunity and inflammation. Nat Rev Nephrol 2021; 17:417-433. [PMID: 33514941 DOI: 10.1038/s41581-020-00392-1] [Citation(s) in RCA: 146] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2020] [Indexed: 01/30/2023]
Abstract
Idiopathic calcium oxalate (CaOx) stones often develop attached to Randall's plaque present on kidney papillary surfaces. Similar to the plaques formed during vascular calcification, Randall's plaques consist of calcium phosphate crystals mixed with an organic matrix that is rich in proteins, such as inter-α-trypsin inhibitor, as well as lipids, and includes membrane-bound vesicles or exosomes, collagen fibres and other components of the extracellular matrix. Kidney tissue surrounding Randall's plaques is associated with the presence of classically activated, pro-inflammatory macrophages (also termed M1) and downregulation of alternatively activated, anti-inflammatory macrophages (also termed M2). In animal models, crystal deposition in the kidneys has been associated with the production of reactive oxygen species, inflammasome activation and increased expression of molecules implicated in the inflammatory cascade, including osteopontin, matrix Gla protein and fetuin A (also known as α2-HS-glycoprotein). Many of these molecules, including osteopontin and matrix Gla protein, are well known inhibitors of vascular calcification. We propose that conditions of urine supersaturation promote kidney damage by inducing the production of reactive oxygen species and oxidative stress, and that the ensuing inflammatory immune response promotes Randall's plaque initiation and calcium stone formation.
Collapse
|
7
|
Lord MS, Melrose J, Day AJ, Whitelock JM. The Inter-α-Trypsin Inhibitor Family: Versatile Molecules in Biology and Pathology. J Histochem Cytochem 2020; 68:907-927. [PMID: 32639183 DOI: 10.1369/0022155420940067] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Inter-α-trypsin inhibitor (IαI) family members are ancient and unique molecules that have evolved over several hundred million years of vertebrate evolution. IαI is a complex containing the proteoglycan bikunin to which heavy chain proteins are covalently attached to the chondroitin sulfate chain. Besides its matrix protective activity through protease inhibitory action, IαI family members interact with extracellular matrix molecules and most notably hyaluronan, inhibit complement, and provide cell regulatory functions. Recent evidence for the diverse roles of the IαI family in both biology and pathology is reviewed and gives insight into their pivotal roles in tissue homeostasis. In addition, the clinical uses of these molecules are explored, such as in the treatment of inflammatory conditions including sepsis and Kawasaki disease, which has recently been associated with severe acute respiratory syndrome coronavirus 2 infection in children.
Collapse
Affiliation(s)
- Megan S Lord
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW, Australia
| | - James Melrose
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW, Australia.,Raymond Purves Bone and Joint Research Laboratories, Kolling Institute of Medical Research, Royal North Shore Hospital and University of Sydney, St. Leonards, NSW, Australia.,Sydney Medical School, Northern, Sydney University, Royal North Shore Hospital, St. Leonards, NSW, Australia
| | - Anthony J Day
- Wellcome Trust Centre for Cell-Matrix Research and Lydia Becker Institute of Immunology and Inflammation, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - John M Whitelock
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW, Australia.,Stem Cell Extracellular Matrix & Glycobiology, Wolfson Centre for Stem Cells, Tissue Engineering and Modelling, Faculty of Medicine, University of Nottingham, Nottingham, UK
| |
Collapse
|
8
|
Smith SM, Melrose J. A Retrospective Analysis of the Cartilage Kunitz Protease Inhibitory Proteins Identifies These as Members of the Inter-α-Trypsin Inhibitor Superfamily with Potential Roles in the Protection of the Articulatory Surface. Int J Mol Sci 2019; 20:ijms20030497. [PMID: 30678366 PMCID: PMC6387120 DOI: 10.3390/ijms20030497] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 01/17/2019] [Accepted: 01/21/2019] [Indexed: 02/06/2023] Open
Abstract
Aim: The aim of this study was to assess if the ovine articular cartilage serine proteinase inhibitors (SPIs) were related to the Kunitz inter-α-trypsin inhibitor (ITI) family. Methods: Ovine articular cartilage was finely diced and extracted in 6 M urea and SPIs isolated by sequential anion exchange, HA affinity and Sephadex G100 gel permeation chromatography. Selected samples were also subjected to chymotrypsin and concanavalin-A affinity chromatography. Eluant fractions from these isolation steps were monitored for protein and trypsin inhibitory activity. Inhibitory fractions were assessed by affinity blotting using biotinylated trypsin to detect SPIs and by Western blotting using antibodies to α1-microglobulin, bikunin, TSG-6 and 2-B-6 (+) CS epitope generated by chondroitinase-ABC digestion. Results: 2-B-6 (+) positive 250, 220,120, 58 and 36 kDa SPIs were detected. The 58 kDa SPI contained α1-microglobulin, bikunin and chondroitin-4-sulfate stub epitope consistent with an identity of α1-microglobulin-bikunin (AMBP) precursor and was also isolated by concanavalin-A lectin affinity chromatography indicating it had N-glycosylation. Kunitz protease inhibitor (KPI) species of 36, 26, 12 and 6 kDa were autolytically generated by prolonged storage of the 120 and 58 kDa SPIs; chymotrypsin affinity chromatography generated the 6 kDa SPI. KPI domain 1 and 2 SPIs were separated by concanavalin lectin affinity chromatography, domain 1 displayed affinity for this lectin indicating it had N-glycosylation. KPI 1 and 2 displayed potent inhibitory activity against trypsin, chymotrypsin, kallikrein, leucocyte elastase and cathepsin G. Localisation of versican, lubricin and hyaluronan (HA) in the surface regions of articular cartilage represented probable binding sites for the ITI serine proteinase inhibitors (SPIs) which may preserve articulatory properties and joint function. Discussion/Conclusions: The Kunitz SPI proteins synthesised by articular chondrocytes are members of the ITI superfamily. By analogy with other tissues in which these proteins occur we deduce that the cartilage Kunitz SPIs may be multifunctional proteins. Binding of the cartilage Kunitz SPIs to HA may protect this polymer from depolymerisation by free radical damage and may also protect other components in the cartilage surface from proteolytic degradation preserving joint function.
Collapse
Affiliation(s)
- Susan M Smith
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, Northern Sydney Local Health District, St. Leonards, NSW 2065, Australia.
| | - James Melrose
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, Northern Sydney Local Health District, St. Leonards, NSW 2065, Australia.
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
- Sydney Medical School, Northern, The University of Sydney, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia.
- Faculty of Medicine and Health, University of Sydney, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia.
| |
Collapse
|
9
|
Tang K, Liu H, Jiang K, Ye T, Yan L, Liu P, Xia D, Chen Z, Xu H, Ye Z. Predictive value of preoperative inflammatory response biomarkers for metabolic syndrome and post-PCNL systemic inflammatory response syndrome in patients with nephrolithiasis. Oncotarget 2017; 8:85612-85627. [PMID: 29156745 PMCID: PMC5689635 DOI: 10.18632/oncotarget.20344] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 07/12/2017] [Indexed: 11/25/2022] Open
Abstract
Neutrophil to lymphocyte ratio (NLR), derived neutrophil to lymphocyte ratio (dNLR), platelet to lymphocyte ratio (PLR) and lymphocyte to monocyte ratio (LMR) were promising biomarkers used to predict diagnosis and prognosis in various inflammatory responses diseases and cancers. However, there have been no reports regarding these biomarkers in kidney stone patients. This study aimed to evaluate the predictive value of inflammatory biomarkers for metabolic syndrome (MetS) and post-PCNL SIRS in nephrolithiasis patients. We retrospectively enrolled 513 patients with nephrolithiasis and 204 healthy controls. NLR, dNLR, LMR and PLR in nephrolithiasis patients were significantly higher than control group. Patients with renal stone have higher NLR, dNLR, LMR and PLR than those without. ROC curve analysis indicated NLR, dNLR, LMR and PLR for predicting patients with nephrolithiasis and MetS, displayed AUC of 0.730, 0.717, 0.627 and 0.606. Additionally, ROC curves, using post-PCNL SIRS as the end-point for NLR, dNLR, LMR and PLR with AUC of 0.831, 0.813, 0.723 and 0.685. Multivariate analysis revealed that NLR, dNLR represented independent factors for predicting post-PCNL SIRS. While LMR independently associated with MetS. These resluts demonstrate preoperative NLR, dNLR and LMR appears to be effective predictors of post-PCNL SIRS and LMR of MetS in nephrolithiasis patients.
Collapse
Affiliation(s)
- Kun Tang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Institute of Urology of Hubei Province, Wuhan 430030, China
| | - Haoran Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Institute of Urology of Hubei Province, Wuhan 430030, China
| | - Kehua Jiang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Institute of Urology of Hubei Province, Wuhan 430030, China
| | - Tao Ye
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Institute of Urology of Hubei Province, Wuhan 430030, China
| | - Libin Yan
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Institute of Urology of Hubei Province, Wuhan 430030, China
| | - Peijun Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Institute of Urology of Hubei Province, Wuhan 430030, China
| | - Ding Xia
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Institute of Urology of Hubei Province, Wuhan 430030, China
| | - Zhiqiang Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Institute of Urology of Hubei Province, Wuhan 430030, China
| | - Hua Xu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Institute of Urology of Hubei Province, Wuhan 430030, China
| | - Zhangqun Ye
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Institute of Urology of Hubei Province, Wuhan 430030, China
| |
Collapse
|
10
|
Robertson WG. Do "inhibitors of crystallisation" play any role in the prevention of kidney stones? A critique. Urolithiasis 2016; 45:43-56. [PMID: 27900407 DOI: 10.1007/s00240-016-0953-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 11/24/2016] [Indexed: 01/09/2023]
Abstract
A critical examination of data in the literature and in as yet unpublished laboratory records on the possible role of so-called inhibitors of crystallisation in preventing the formation of calcium-containing kidney stones leads to the following conclusions. So-called inhibitors of spontaneous "self-nucleation" are unlikely to play any role in the initiation of the crystallisation of CaOx or CaP in urine because excessive urinary supersaturation of urine with respect to these salts dominates the onset of "self-nucleation" within the normal time frame of the transit of tubular fluid through the nephron (3-4 min). Inhibitors of the crystal growth of CaOx crystals may or may not play a significant role in the prevention of CaOx stone-formation since once again excessive supersaturation of urine can overwhelm any potential effect of the inhibitors on the growth process. However, they may play a role as inhibitors of crystal growth at lower levels of metastable supersaturation when the balance between supersaturation and inhibitors is more equal. Inhibitors of CaOx crystal aggregation may play a significant role in the prevention of stones, since they do not appear to be strongly affected by excessive supersaturation, either in vitro or in vivo. Inhibitors of CaOx crystal binding to renal tubular epithelium may exist but further studies are necessary to elucidate their importance in reducing the risk of initiating stones in the renal tubules. Inhibitors of CaOx crystal binding to Randall's Plaques and Randall's Plugs may exist but further studies are necessary to elucidate their importance in reducing the risk of initiating stones on renal papillae. There may be an alternative explanation other than a deficiency in the excretion of inhibitors for the observations that there is a difference between CaOx crystal size and degree of aggregation in the fresh, warm urines of normal subjects compared those in urine from patients with recurrent CaOx stones. This difference may depend more on the site of "self-nucleation" of CaOx crystals in the renal tubule rather than on a deficiency in the excretion of so-called inhibitors of crystallisation by patients with CaOx stones. The claim that administration of potassium citrate, potassium magnesium citrate or magnesium hydroxide reduces the rate of stone recurrence may be due to the effect of these forms of medication on the supersaturation of urine with respect to CaOx and CaP rather than to any increase in "inhibitory activity" attributed to these forms of treatment. In summary, there is a competition between supersaturation and so-called inhibitors of crystallisation which ultimately determines the pattern of crystalluria in stone-formers and normals. If the supersaturation of urine with respect to CaOx reaches or exceeds the 3-4 min formation product of that salt, then it dominates the crystallisation process both in terms of "self-nucleation" and crystal growth but appears to have little or no effect on the degree of aggregation of the crystals produced. At supersaturation levels of urine with respect to CaOx well below the 3-4 min formation product of that salt, the influence of inhibitors increases and some may affect not only the degree of aggregation but also the crystal growth of any pre-formed crystals of CaOx at these lower levels of metastability.
Collapse
Affiliation(s)
- William G Robertson
- Visiting Professor at the University of Oxford, Nuffield Department of Surgical Sciences, John Radcliffe Hospital, Headley Way, Headington, Oxford, OX3 9DU, UK.
| |
Collapse
|
11
|
Abstract
The most common presentation of nephrolithiasis is idiopathic calcium stones in patients without systemic disease. Most stones are primarily composed of calcium oxalate and form on a base of interstitial apatite deposits, known as Randall's plaque. By contrast some stones are composed largely of calcium phosphate, as either hydroxyapatite or brushite (calcium monohydrogen phosphate), and are usually accompanied by deposits of calcium phosphate in the Bellini ducts. These deposits result in local tissue damage and might serve as a site of mineral overgrowth. Stone formation is driven by supersaturation of urine with calcium oxalate and brushite. The level of supersaturation is related to fluid intake as well as to the levels of urinary citrate and calcium. Risk of stone formation is increased when urine citrate excretion is <400 mg per day, and treatment with potassium citrate has been used to prevent stones. Urine calcium levels >200 mg per day also increase stone risk and often result in negative calcium balance. Reduced renal calcium reabsorption has a role in idiopathic hypercalciuria. Low sodium diets and thiazide-type diuretics lower urine calcium levels and potentially reduce the risk of stone recurrence and bone disease.
Collapse
Affiliation(s)
- Fredric L Coe
- Nephrology Section MC 5100, University of Chicago Medicine, 5841 S. Maryland Avenue, Chicago, Illinois, 60637 USA
| | - Elaine M Worcester
- Nephrology Section MC 5100, University of Chicago Medicine, 5841 S. Maryland Avenue, Chicago, Illinois, 60637 USA
| | - Andrew P Evan
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, 635 Barnhill Drive, MS 5055, Indianapolis, IN 46220, Indiana, USA
| |
Collapse
|
12
|
Abstract
Kidney stones are mineral deposits in the renal calyces and pelvis that are found free or attached to the renal papillae. They contain crystalline and organic components and are formed when the urine becomes supersaturated with respect to a mineral. Calcium oxalate is the main constituent of most stones, many of which form on a foundation of calcium phosphate called Randall's plaques, which are present on the renal papillary surface. Stone formation is highly prevalent, with rates of up to 14.8% and increasing, and a recurrence rate of up to 50% within the first 5 years of the initial stone episode. Obesity, diabetes, hypertension and metabolic syndrome are considered risk factors for stone formation, which, in turn, can lead to hypertension, chronic kidney disease and end-stage renal disease. Management of symptomatic kidney stones has evolved from open surgical lithotomy to minimally invasive endourological treatments leading to a reduction in patient morbidity, improved stone-free rates and better quality of life. Prevention of recurrence requires behavioural and nutritional interventions, as well as pharmacological treatments that are specific for the type of stone. There is a great need for recurrence prevention that requires a better understanding of the mechanisms involved in stone formation to facilitate the development of more-effective drugs.
Collapse
|
13
|
Abstract
Problem This review focuses on the association between the metabolic syndrome (MS) and nephrolithiasis. Findings Associations between nephrolithiasis and systemic diseases are recognized, including atherosclerosis, cardiovascular (CV) disease, hypertension (HNT), diabetes mellitus (DM)—composite risk factors grouped as the MS. Kidney stones incidence is increasing in this particularly high risk group. Those with stones are prone to the disease and those with the systemic disease are at risk for stone formation, with the highest incidence in persons with multiple traits of the MS. Pathophysiologic explanations for the increased stone risk related to MS are likely complex and dynamic. Conclusions Kidney stones disproportionately affect persons with some or all traits of MS. One unifying theory may be of a common systemic malfunction of inflammation and tissue damage as an underlying mechanism, but it is unlikely to be the only mechanistic explanation. Further research is needed to investigate this and other hypotheses that go beyond population based and urine physiochemical studies in order to elucidate the mechanisms behind the individual disease states themselves.
Collapse
Affiliation(s)
| | - Ojas Shah
- New York University, New York, NY 10016, USA
| |
Collapse
|
14
|
Abstract
Randall’s plaque is microscopically a plaque of calcium deposited in the interstitial tissue of the renal papilla. These plaques are thought to serve as a nidus for urinary stone formation. Large amounts of Randall’s plaque are unique to idiopathic calcium oxalate stone formers. Although Randall’s plaques can be found in other stone formers, only in idiopathic calcium oxalate stone formers, the detailed mechanism of stone overgrow on plaque was thoroughly studied. Calcification is invariably located in the basement membrane of the loops of Henle and from there plaques spread through the interstitium toward urothelium. Within the basement membrane, mineral deposits are individual laminated particles in which zones of crystal and organic matrix overlay each other. In the interstitium, the particles appear to fuse on the collagen bundles to form a syncytium of crystal islands in an organic sea. By loss of integrity of urothelium, regions of plaque are exposed to urine. The exposed surface will touch and be covered by molecules of urine origin, including osteopontin, Tamm Horsfall protein, and crystals formed under urine supersaturations, resulting in a ribbon of alternating matrix and crystal. Eventually crystallization escapes from matrix modulation and crystals extend outward into the space of urine and begin to form a calcium oxalate stone proper. Randall’s plaque plays an important role and is prerequisite of kidney stone formation in idiopathic calcium oxalate stone formers.
Collapse
Affiliation(s)
- Hsiao-Jen Chung
- 1 Department of Urology, Taipei Veterans General Hospital, 2 Department of Urology, School of Medicine and Shu-Tien Urological Institute, National Yang-Ming University, Taipei City 11217, Taiwan
| |
Collapse
|
15
|
Khan SR, Canales BK. Unified theory on the pathogenesis of Randall's plaques and plugs. Urolithiasis 2014; 43 Suppl 1:109-23. [PMID: 25119506 DOI: 10.1007/s00240-014-0705-9] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 07/23/2014] [Indexed: 01/19/2023]
Abstract
Kidney stones develop attached to sub-epithelial plaques of calcium phosphate (CaP) crystals (termed Randall's plaque) and/or form as a result of occlusion of the openings of the Ducts of Bellini by stone-forming crystals (Randall's plugs). These plaques and plugs eventually extrude into the urinary space, acting as a nidus for crystal overgrowth and stone formation. To better understand these regulatory mechanisms and the pathophysiology of idiopathic calcium stone disease, this review provides in-depth descriptions of the morphology and potential origins of these plaques and plugs, summarizes existing animal models of renal papillary interstitial deposits, and describes factors that are believed to regulate plaque formation and calcium overgrowth. Based on evidence provided within this review and from the vascular calcification literature, we propose a "unified" theory of plaque formation-one similar to pathological biomineralization observed elsewhere in the body. Abnormal urinary conditions (hypercalciuria, hyperoxaluria, and hypocitraturia), renal stress or trauma, and perhaps even the normal aging process lead to transformation of renal epithelial cells into an osteoblastic phenotype. With this de-differentiation comes an increased production of bone-specific proteins (i.e., osteopontin), a reduction in crystallization inhibitors (such as fetuin and matrix Gla protein), and creation of matrix vesicles, which support nucleation of CaP crystals. These small deposits promote aggregation and calcification of surrounding collagen. Mineralization continues by calcification of membranous cellular degradation products and other fibers until the plaque reaches the papillary epithelium. Through the activity of matrix metalloproteinases or perhaps by brute physical force produced by the large sub-epithelial crystalline mass, the surface is breached and further stone growth occurs by organic matrix-associated nucleation of CaOx or by the transformation of the outer layer of CaP crystals into CaOx crystals. Should this theory hold true, developing an understanding of the cellular mechanisms involved in progression of a small, basic interstitial plaque to that of an expanding, penetrating plaque could assist in the development of new therapies for stone prevention.
Collapse
Affiliation(s)
- Saeed R Khan
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, 32610, USA,
| | | |
Collapse
|
16
|
Evan AP, Worcester EM, Coe FL, Williams J, Lingeman JE. Mechanisms of human kidney stone formation. Urolithiasis 2014; 43 Suppl 1:19-32. [PMID: 25108546 DOI: 10.1007/s00240-014-0701-0] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 07/23/2014] [Indexed: 01/08/2023]
Abstract
The precise mechanisms of kidney stone formation and growth are not completely known, even though human stone disease appears to be one of the oldest diseases known to medicine. With the advent of the new digital endoscope and detailed renal physiological studies performed on well phenotyped stone formers, substantial advances have been made in our knowledge of the pathogenesis of the most common type of stone former, the idiopathic calcium oxalate stone former as well as nine other stone forming groups. The observations from our group on human stone formers and those of others on model systems have suggested four entirely different pathways for kidney stone formation. Calcium oxalate stone growth over sites of Randall's plaque appear to be the primary mode of stone formation for those patients with hypercalciuria. Overgrowths off the ends of Bellini duct plugs have been noted in most stone phenotypes, do they result in a clinical stone? Micro-lith formation does occur within the lumens of dilated inner medullary collecting ducts of cystinuric stone formers and appear to be confined to this space. Lastly, cystinuric stone formers also have numerous small, oval, smooth yellow appearing calyceal stones suggestive of formation in free solution. The scientific basis for each of these four modes of stone formation are reviewed and used to explore novel research opportunities.
Collapse
Affiliation(s)
- Andrew P Evan
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, 635 Barnhill Drive, MS 5055, Indianapolis, IN, 46220, USA,
| | | | | | | | | |
Collapse
|
17
|
Abstract
The pathophysiology of the various forms of urinary stone disease remains a complex topic. Epidemiologic research and the study of urine and serum chemistries have created an abundance of data to help drive the formulation of pathophysiologic theories. This article addresses the associations of urinary stone disease with hypertension, cardiovascular disease, atherosclerosis, obesity, dyslipidemia, diabetes, and other disease states. Findings regarding the impact of dietary calcium and the formation of Randall's plaques are also explored and their implications discussed. Finally, further avenues of research are explored, including genetic analyses and the use of animal models of urinary stone disease.
Collapse
Affiliation(s)
- Herman Singh Bagga
- Department of Urology, University of California San Francisco, San Francisco, CA 94143-0738, USA.
| | | | | | | |
Collapse
|
18
|
Is oxidative stress, a link between nephrolithiasis and obesity, hypertension, diabetes, chronic kidney disease, metabolic syndrome? ACTA ACUST UNITED AC 2012; 40:95-112. [PMID: 22213019 DOI: 10.1007/s00240-011-0448-9] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 12/10/2011] [Indexed: 12/13/2022]
Abstract
Epidemiological studies have provided the evidence for association between nephrolithiasis and a number of cardiovascular diseases including hypertension, diabetes, chronic kidney disease, metabolic syndrome. Many of the co-morbidities may not only lead to stone disease but also be triggered by it. Nephrolithiasis is a risk factor for development of hypertension and have higher prevalence of diabetes mellitus and some hypertensive and diabetic patients are at greater risk for stone formation. An analysis of the association between stone disease and other simultaneously appearing disorders, as well as factors involved in their pathogenesis, may provide an insight into stone formation and improved therapies for stone recurrence and prevention. It is our hypothesis that association between stone formation and development of co-morbidities is a result of certain common pathological features. Review of the recent literature indicates that production of reactive oxygen species (ROS) and development of oxidative stress (OS) may be such a common pathway. OS is a common feature of all cardiovascular diseases (CVD) including hypertension, diabetes mellitus, atherosclerosis and myocardial infarct. There is increasing evidence that ROS are also produced during idiopathic calcium oxalate (CaOx) nephrolithiasis. Both tissue culture and animal model studies demonstrate that ROS are produced during interaction between CaOx/calcium phosphate (CaP) crystals and renal epithelial cells. Clinical studies have also provided evidence for the development of oxidative stress in the kidneys of stone forming patients. Renal disorders which lead to OS appear to be a continuum. Stress produced by one disorder may trigger the other under the right circumstances.
Collapse
|
19
|
Evan AP, Unwin RJ, Williams JC. Renal stone disease: a commentary on the nature and significance of Randall's plaque. Nephron Clin Pract 2011; 119:p49-53. [PMID: 21952643 DOI: 10.1159/000330255] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 06/16/2011] [Indexed: 11/19/2022] Open
Affiliation(s)
- A P Evan
- Indiana University School of Medicine, Indianapolis, IN 46202-5120, USA
| | | | | |
Collapse
|
20
|
Evan AP, Weinman EJ, Wu XR, Lingeman JE, Worcester EM, Coe FL. Comparison of the pathology of interstitial plaque in human ICSF stone patients to NHERF-1 and THP-null mice. ACTA ACUST UNITED AC 2010; 38:439-52. [PMID: 21063698 DOI: 10.1007/s00240-010-0330-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Accepted: 10/08/2010] [Indexed: 11/28/2022]
Abstract
Extensive evidence now supports the role of papillary interstitial deposits-Randall's plaques-in the formation of stones in the idiopathic, calcium oxalate stone former. These plaques begin as deposits of apatite in the basement membranes of the thin limbs of Henle's loop, but can grow to become extensive deposits beneath the epithelium covering the papillary surface. Erosion of this covering epithelium allows deposition of calcium oxalate onto this plaque material, and the transition of mineral type and organic material from plaque to stone has been investigated. The fraction of the papilla surface that is covered with Randall's plaque correlates with stone number in these patients, as well as with urine calcium excretion, and plaque coverage also correlates inversely with urine volume and pH. Two animal models--the NHERF-1 and THP-null mice--have been shown to develop sites of interstitial apatite plaque in the renal papilla. In these animal models, the sites of interstitial plaque in the inner medulla are similar to that found in human idiopathic calcium oxalate stone formers, except that the deposits in the mouse models are not localized solely to the basement membrane of the thin limbs of Henle's loop, as in humans. This may be due to the different morphology of the human versus mouse papillary region. Both mouse models appear to be important to characterize further in order to determine how well they mimic human kidney stone disease.
Collapse
Affiliation(s)
- Andrew P Evan
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, 635 Barnhill Drive, MS 5055S, Indianapolis, IN 46223, USA.
| | | | | | | | | | | |
Collapse
|
21
|
Evan AP. Physiopathology and etiology of stone formation in the kidney and the urinary tract. Pediatr Nephrol 2010; 25:831-41. [PMID: 19198886 PMCID: PMC2839518 DOI: 10.1007/s00467-009-1116-y] [Citation(s) in RCA: 174] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Revised: 12/22/2008] [Accepted: 12/29/2008] [Indexed: 12/18/2022]
Abstract
All stones share similar presenting symptoms, and urine supersaturation with respect to the mineral phase of the stone is essential for stone formation. However, recent studies using papillary biopsies of stone formers have provided a view of the histology of renal crystal deposition which suggests that the early sequence of events leading to stone formation differs greatly, depending on the type of stone and on the urine chemistry leading to supersaturation. Three general pathways for kidney stone formation are seen: (1) stones fixed to the surface of a renal papilla at sites of interstitial apatite plaque (termed Randall's plaque), as seen in idiopathic calcium oxalate stone formers; (2) stones attached to plugs protruding from the openings of ducts of Bellini, as seen in hyperoxaluria and distal tubular acidosis; and (3) stones forming in free solution in the renal collection system, as in cystinuria. The presence of hydroxyapatite crystals in either the interstitial or tubule compartment (and sometimes both) of the renal medulla in stone formers is the rule and has implications for the initial steps of stone formation and the potential for renal injury.
Collapse
Affiliation(s)
- Andrew P Evan
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, MS 5055, Indianapolis, IN 46220, USA.
| |
Collapse
|
22
|
Coe FL, Evan AP, Worcester EM, Lingeman JE. Three pathways for human kidney stone formation. ACTA ACUST UNITED AC 2010; 38:147-60. [PMID: 20411383 DOI: 10.1007/s00240-010-0271-8] [Citation(s) in RCA: 145] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Accepted: 03/16/2010] [Indexed: 01/09/2023]
Abstract
No single theory of pathogenesis can properly account for human kidney stones, they are too various and their formation is too complex for simple understanding. Using human tissue biopsies, intraoperative imaging and such physiology data from ten different stone forming groups, we have identified at least three pathways that lead to stones. The first pathway is overgrowth on interstitial apatite plaque as seen in idiopathic calcium oxalate stone formers, as well as stone formers with primary hyperparathyroidism, ileostomy, and small bowel resection, and in brushite stone formers. In the second pathway, there are crystal deposits in renal tubules that were seen in all stone forming groups except the idiopathic calcium oxalate stone formers. The third pathway is free solution crystallization. Clear examples of this pathway are those patient groups with cystinuria or hyperoxaluria associated with bypass surgery for obesity. Although the final products may be very similar, the ways of creation are so different that in attempting to create animal and cell models of the processes one needs to be careful that the details of the human condition are included.
Collapse
Affiliation(s)
- Fredric L Coe
- Department of Medicine, University of Chicago, Nephrology Section/MC 5100, 5841 South Maryland Avenue, Chicago, IL, 60637, USA.
| | | | | | | |
Collapse
|
23
|
Wendt-Nordahl G, Evan AP, Spahn M, Knoll T. [Calcium oxalate stone formation. New pathogenetic aspects of an old disease]. Urologe A 2008; 47:538, 540-44. [PMID: 18392604 DOI: 10.1007/s00120-008-1707-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Calcium oxalate (CaOx) urolithiasis is a very common disorder. Surprisingly, the pathogenetic mechanisms leading to CaOx stone formation have been largely unknown so far. The long-accepted simple explanation by an exceeding of the solubility product of lithogenic substances in the urine cannot sufficiently describe the complex processes. Deviating from the hypothesis that proclaims that the initial crystal deposition takes place in the lumens of renal tubules, new insights suggest a primary plaque formation in the interstitial space of the renal papilla. Initially, calcium phosphate (CaPh) crystals and organic matrix are deposited along the basement membranes of the thin loops of Henle and extend further in the interstitial space to the urothelium, constituting the so-called Randall's plaques that can be regularly found during endoscopy of CaOx-stone-forming patients. These CaPh crystals seem to be the origin for the development of future CaOx stones, which form by the attachment of further matrix molecules and CaOx from the urine to the plaque. The driving forces, the exact pathogenetic mechanisms, and the involved matrix molecules remain largely unknown. Possibly, completely different pathomechanisms lead to the common clinical diagnosis of"CaOx stone former."
Collapse
Affiliation(s)
- G Wendt-Nordahl
- Urologische Klinik, Universitätsklinikum, Theodor-Kutzer-Ufer 1-3, 68135, Mannheim, Deutschland
| | | | | | | |
Collapse
|
24
|
Merchant ML, Cummins TD, Wilkey DW, Salyer SA, Powell DW, Klein JB, Lederer ED. Proteomic analysis of renal calculi indicates an important role for inflammatory processes in calcium stone formation. Am J Physiol Renal Physiol 2008; 295:F1254-8. [PMID: 18701630 DOI: 10.1152/ajprenal.00134.2008] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Even though renal stones/calculi occur in approximately 10% of individuals, they are an enormous economic burden to the entire US health system. While the relative metabolic composition of renal calculi is generally known, there is no clear understanding of the genetics of renal stone formation, nor are there clear prognostic indicators of renal stone formation. The application of proteomics to the analysis of renal calculi axiomatically holds that insight into renal stone pathobiology can be gained by a more comprehensive understanding of renal calculus protein composition. We analyzed isolated renal stone matrix proteins with mass spectrometric and immunohistochemical methods identifying 158 proteins with high confidence, including 28 common proteins. The abundant proteins included those identified previously in stones and proteins identified here for the first time, such as myeloid lineage-specific, integral membrane and lipid regulatory proteins. Pathway analyses of all proteins identified suggested that a significant fraction of the most abundant matrix proteins participate in inflammatory processes. These proteomic results support the hypothesis that stone formation induces a cellular inflammatory response and the protein components of this response contribute to the abundant stone matrix proteome.
Collapse
Affiliation(s)
- Michael L Merchant
- Department of Medicine, James Graham Brown Cancer Center, University of Louiville, Rm. 102S, Donald Baxter Research Bldg., 570 S. Preston St., Louisville, KY 40202, USA.
| | | | | | | | | | | | | |
Collapse
|
25
|
Evan AP, Lingeman JE, Coe FL, Worcester EM. Role of interstitial apatite plaque in the pathogenesis of the common calcium oxalate stone. Semin Nephrol 2008; 28:111-9. [PMID: 18359392 PMCID: PMC2329574 DOI: 10.1016/j.semnephrol.2008.01.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
By using intraoperative papillary biopsy material from kidneys of idiopathic calcium oxalate, intestinal bypass for obesity, brushite, cystine, and distal renal tubular acidosis stone formers during percutaneous nephrolithotomy, we have determined that idiopathic calcium oxalate stone formers appear to be the special case, although the most commonly encountered one, in which stones form external to the kidney and by processes that do not involve the epithelial compartments. It is in this one group of patients that we find not only abundant interstitial plaque, but also strong evidence that the plaque is essential to stone formation. The initial site of plaque formation is always in the papillary tip, and must be in the basement membrane of the thin loop of Henle. With time, plaque spreads throughout the papilla tip to the urothelium, which under conditions we do not understand is denuded and thereby exposes the apatite deposits to the urine. It is on this exposed apatite that a stone forms as an overgrowth, first of amorphous apatite and then layers of calcium oxalate. This process generates an attached stone fixed to the side of a papilla, allowing the ever-changing urine to dictate stone growth and composition.
Collapse
Affiliation(s)
- Andrew P Evan
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202-5120, USA.
| | | | | | | |
Collapse
|