1
|
Wang C, Cai X, Lin S, Lin Y. Hydroxychloroquine ameliorates immune functionality and intestinal flora disorders of IgA nephropathy by inhibition of C1GALT1/Cosmc pathway. Immunopharmacol Immunotoxicol 2024; 46:218-228. [PMID: 38151955 DOI: 10.1080/08923973.2023.2300306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/24/2023] [Indexed: 12/29/2023]
Abstract
BACKGROUND Hydroxychloroquine (HCQ) has emerged as a potential and secure antiproteinuric agent in IgA nephropathy (IgAN). This study endeavored to explore the impact of HCQ on the immune functionality and intestinal flora disorders in IgAN rats, as well as to elucidate the underlying mechanisms through in vivo and in vitro experiments. METHODS IgAN model was established in Sprague-Dawley rats through the administration of BSA, LPS, and CCl4, and the IgAN rats received a continuous 8-week treatment with HCQ. Moreover, the human glomerular mesangial cells (HMCs) were incubated with IgA1 to establish an in vitro cellular model of IgAN. At the end of experimental period, samples were collected for further analysis. RESULTS HCQ ameliorated the elevated levels of 24hUTP, SCr, BUN, the number of urinary RBC, and the activation of inflammation-related proteins within the TLR4/NF-κB signaling pathway. In the IgAN rat group, there was a pronounced escalation in IgA deposition, mesangial matrix hyperplasia, and glomerular inflammatory cell infiltration, while the administration of HCQ effectively mitigated these pathological changes. In addition, the reduced production of CD4+CD25+Foxp3+ Treg in the IgAN group was effectively reversed by HCQ. Furthermore, HCQ has the capacity to restore the compromised state of the intestinal mucosal barrier induced by IgAN and mitigate the circumstances of intestinal permeability and disruption in the intestinal flora. CONCLUSION HCQ diminishes IgA aberrant glycosylation levels, ameliorates renal and intestinal histopathological damage, and attenuates intestinal flora disorders and immune dysfunction in IgAN rats by means of activating the C1GALT1/Cosmc pathway.
Collapse
Affiliation(s)
- Chaochao Wang
- Department of Nephrology, Zhejiang Chinese Medical University Affiliated Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, China
| | - Xiaoqiao Cai
- Department of Nephrology, Zhejiang Chinese Medical University Affiliated Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, China
| | - Shengfen Lin
- Department of Nephrology, Zhejiang Chinese Medical University Affiliated Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, China
| | - Yongqiang Lin
- Department of Nephrology, Zhejiang Chinese Medical University Affiliated Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, China
| |
Collapse
|
2
|
Zeng Q, Wang WR, Li YH, Liang Y, Wang XH, Yan L, Yu RH. Diagnostic and prognostic value of galactose-deficient IgA1 in patients with IgA nephropathy: an updated systematic review with meta-analysis. Front Immunol 2023; 14:1209394. [PMID: 37671165 PMCID: PMC10475574 DOI: 10.3389/fimmu.2023.1209394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/24/2023] [Indexed: 09/07/2023] Open
Abstract
Objectives Galactose-deficient IgA1 (Gd-IgA1) is a critical effector molecule in the pathogenesis of IgA nephropathy (IgAN), a leading renal disease without noninvasive assessment options. This updated systematic review aimed to determine the diagnostic and prognostic value of Gd-IgA1 assessment in biological fluids in patients with IgAN. Methods PRISMA guidelines were followed in this review. We searched PubMed, Embase, Cochrane Library, China National Knowledge Infrastructure, China Biology Medicine disc, VIP Information/China Science and Technology Journal Database, and WANFANG for studies published between database inception and January 31, 2023. Eligible studies that evaluated aberrant IgA1 glycosylation in IgAN patients relative to controls were identified, and random effects meta-analyses were used to compare Gd-IgA1 levels in different groups. The quality of the evidence was assessed using the Newcastle-Ottawa Scale. This study was registered on PROSPERO (CRD42022375246). Findings Of the 2727 records identified, 50 were eligible and had available data. The mean Newcastle-Ottawa Scale score was 7.1 (range, 6-8). Data synthesis suggested that IgAN patients had higher levels of blood and/or urine Gd-IgA1 compared with healthy controls (standard mean difference [SMD]=1.43, 95% confidence interval [CI]=1.19-1.68, P<0.00001), IgA vasculitis patients (SMD=0.58, 95% CI=0.22-0.94, P=0.002), and other kidney disease patients (SMD=1.06, 95% CI=0.79-1.33, P<0.00001). Moreover, patients with IgAN had similar levels of serum Gd-IgA1 compared to first-degree relatives (SMD=0.38, 95% CI= -0.04-0.81, P=0.08) and IgA vasculitis with nephritis patients (SMD=0.12, 95% CI= -0.04-0.29, P=0.14). In addition, ten studies demonstrated significant differences in serum Gd-IgA1 levels in patients with mild and severe IgAN (SMD= -0.37, 95% CI= -0.64--0.09, P=0.009). Conclusions High serum and urine Gd-IgA1 levels suggest a diagnosis of IgAN and a poor prognosis for patients with this immunological disorder. Future studies should use more reliable and reproducible methods to determine Gd-IgA1 levels. Systematic review registration https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42022375246, identifier CRD42022375246.
Collapse
Affiliation(s)
| | | | | | - Ying Liang
- Department of Nephrology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | | | | | - Ren-Huan Yu
- Department of Nephrology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
3
|
Ohyama Y, Yamaguchi H, Ogata S, Chiurlia S, Cox SN, Kouri NM, Stangou MJ, Nakajima K, Hayashi H, Inaguma D, Hasegawa M, Yuzawa Y, Tsuboi N, Renfrow MB, Novak J, Papagianni AA, Schena FP, Takahashi K. Racial heterogeneity of IgA1 hinge-region O-glycoforms in patients with IgA nephropathy. iScience 2022; 25:105223. [PMID: 36277451 PMCID: PMC9583103 DOI: 10.1016/j.isci.2022.105223] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/22/2022] [Accepted: 09/23/2022] [Indexed: 11/23/2022] Open
Abstract
Galactose (Gal)-deficient IgA1 (Gd-IgA1) is involved in IgA nephropathy (IgAN) pathogenesis. To reflect racial differences in clinical characteristics, we assessed disease- and race-specific heterogeneity in the O-glycosylation of the IgA1 hinge region (HR). We determined serum Gd-IgA1 levels in Caucasians (healthy controls [HCs], n = 31; IgAN patients, n = 63) and Asians (HCs, n = 20; IgAN patients, n = 60) and analyzed profiles of serum IgA1 HR O-glycoforms. Elevated serum Gd-IgA1 levels and reduced number of Gal residues per HR were observed in Caucasians. Reduced number of N-acetylgalactosamine (GalNAc) residues per HR and elevated relative abundance of IgA1 with three HR O-glycans were common features in IgAN patients; these features were associated with elevated blood pressure and reduced renal function. We speculate that the mechanisms underlying the reduced GalNAc content in IgA1 HR may be relevant to IgAN pathogenesis.
Collapse
Affiliation(s)
- Yukako Ohyama
- Department of Biomedical Molecular Sciences, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
- Department of Nephrology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Hisateru Yamaguchi
- Department of Nursing, Yokkaichi Nursing and Medical Care University, Yokkaichi, Mie 512-8045, Japan
| | - Soshiro Ogata
- Preventive Medicine and Epidemiology, National Cerebral and Cardiovascular Center, Suita, Osaka 564-8565, Japan
| | - Samantha Chiurlia
- University of Bari and Schena Foundation, Valenzano, Bari 70010, Italy
| | - Sharon N. Cox
- University of Bari and Schena Foundation, Valenzano, Bari 70010, Italy
| | - Nikoletta-Maria Kouri
- Department of Nephrology, Aristotle University of Thessaloniki, Thessaloniki, 54642, Greece
| | - Maria J. Stangou
- Department of Nephrology, Aristotle University of Thessaloniki, Thessaloniki, 54642, Greece
| | - Kazuki Nakajima
- Institute for Glyco-core Research, Gifu University, Gifu, Gifu 501-1193, Japan
| | - Hiroki Hayashi
- Department of Nephrology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Daijo Inaguma
- Department of Nephrology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Midori Hasegawa
- Department of Nephrology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Yukio Yuzawa
- Department of Nephrology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Naotake Tsuboi
- Department of Nephrology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Matthew B. Renfrow
- Departments of Biochemistry and Molecular Genetics and Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jan Novak
- Departments of Biochemistry and Molecular Genetics and Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | - Kazuo Takahashi
- Department of Biomedical Molecular Sciences, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
- Department of Nephrology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| |
Collapse
|
4
|
Matsumoto Y, Aryal RP, Heimburg-Molinaro J, Park SS, Wever WJ, Lehoux S, Stavenhagen K, van Wijk JAE, Van Die I, Chapman AB, Chaikof EL, Cummings RD. Identification and characterization of circulating immune complexes in IgA nephropathy. SCIENCE ADVANCES 2022; 8:eabm8783. [PMID: 36306365 PMCID: PMC9616497 DOI: 10.1126/sciadv.abm8783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 09/12/2022] [Indexed: 05/14/2023]
Abstract
The underlying pathology of immunoglobulin A (IgA) nephropathy (IgAN), the most common glomerulonephritis worldwide, is driven by the deposition of immune complexes containing galactose-deficient IgA1 [Tn(+)IgA1] in the glomerular mesangium. Here, we report that novel anti-Tn circulating immune complexes (anti-Tn CICs) contain predominantly IgM, representing large macromolecular complexes of ~1.2 megadaltons to several megadalton sizes together with Tn(+)IgA1 and some IgG. These complexes are significantly elevated in sera of patients with IgAN, which contains higher levels of complement C3, compared to healthy individuals. Anti-Tn CICs are bioactive and induce specific proliferation of human renal mesangial cells. We found that these anti-Tn CICs can be dissociated with small glycomimetic compounds, which mimic the Tn antigen of Tn(+)IgA1, releasing IgA1 from anti-Tn CICs. This glycomimetic compound can also significantly inhibit the proliferative activity of anti-Tn CICs of patients with IgAN. These findings could enhance both the diagnosis of IgAN and its treatment, as specific drug treatments are now unavailable.
Collapse
Affiliation(s)
- Yasuyuki Matsumoto
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Rajindra P. Aryal
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jamie Heimburg-Molinaro
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Simon S. Park
- Department of Surgery, Center for Drug Discovery and Translational Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Wyss Institute of Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Walter J. Wever
- Department of Surgery, Center for Drug Discovery and Translational Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Wyss Institute of Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Sylvain Lehoux
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Kathrin Stavenhagen
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Joanna A. E. van Wijk
- Department of Pediatric Nephrology, Amsterdam University Medical Centre, location VUmc, Amsterdam, Netherlands
| | - Irma Van Die
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Centre, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Arlene B. Chapman
- Department of Medicine, Section of Nephrology, University of Chicago School of Medicine, Chicago, IL, USA
| | - Elliot L. Chaikof
- Department of Surgery, Center for Drug Discovery and Translational Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Wyss Institute of Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Richard D. Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Person T, King RG, Rizk DV, Novak J, Green TJ, Reily C. Cytokines and Production of Aberrantly O-Glycosylated IgA1, the Main Autoantigen in IgA Nephropathy. J Interferon Cytokine Res 2022; 42:301-315. [PMID: 35793525 PMCID: PMC9536348 DOI: 10.1089/jir.2022.0039] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/16/2022] [Indexed: 01/09/2023] Open
Abstract
Immunoglobulin A (IgA) nephropathy is the most common primary glomerulonephritis worldwide, with no disease-specific treatment and up to 40% of patients progressing to kidney failure. IgA nephropathy (IgAN), characterized by IgA1-containing immunodeposits in the glomeruli, is considered to be an autoimmune disease in which the kidneys are injured as innocent bystanders. Glomerular immunodeposits are thought to originate from the circulating immune complexes that contain aberrantly O-glycosylated IgA1, the main autoantigen in IgAN, bound by IgG autoantibodies. A common clinical manifestation associated with IgAN includes synpharyngitic hematuria at disease onset or during disease activity. This observation suggests a connection of disease pathogenesis with an activated mucosal immune system of the upper-respiratory and/or gastrointestinal tract and IgA1 glycosylation. In fact, some cytokines can enhance production of aberrantly O-glycosylated IgA1. This process involves abnormal cytokine signaling in IgA1-producing cells from patients with IgAN. In this article, we present our view of pathogenesis of IgAN and review how some cytokines can contribute to the disease process by enhancing production of aberrantly glycosylated IgA1. We also review current clinical trials of IgAN based on cytokine-targeting therapeutic approaches.
Collapse
Affiliation(s)
- Taylor Person
- Department of Microbiology and Birmingham, Alabama, USA
| | - R. Glenn King
- Department of Microbiology and Birmingham, Alabama, USA
| | - Dana V. Rizk
- Department of Medicine University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jan Novak
- Department of Microbiology and Birmingham, Alabama, USA
| | - Todd J. Green
- Department of Microbiology and Birmingham, Alabama, USA
| | - Colin Reily
- Department of Microbiology and Birmingham, Alabama, USA
- Department of Medicine University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
6
|
Ohyama Y, Renfrow MB, Novak J, Takahashi K. Aberrantly Glycosylated IgA1 in IgA Nephropathy: What We Know and What We Don't Know. J Clin Med 2021; 10:jcm10163467. [PMID: 34441764 PMCID: PMC8396900 DOI: 10.3390/jcm10163467] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/26/2021] [Accepted: 08/02/2021] [Indexed: 12/17/2022] Open
Abstract
IgA nephropathy (IgAN), the most common primary glomerular disease worldwide, is characterized by glomerular deposition of IgA1-containing immune complexes. The IgA1 hinge region (HR) has up to six clustered O-glycans consisting of Ser/Thr-linked N-acetylgalactosamine usually with β1,3-linked galactose and variable sialylation. Circulating levels of IgA1 with abnormally O-glycosylated HR, termed galactose-deficient IgA1 (Gd-IgA1), are increased in patients with IgAN. Current evidence suggests that IgAN is induced by multiple sequential pathogenic steps, and production of aberrantly glycosylated IgA1 is considered the initial step. Thus, the mechanisms of biosynthesis of aberrantly glycosylated IgA1 and the involvement of aberrant glycoforms of IgA1 in disease development have been studied. Furthermore, Gd-IgA1 represents an attractive biomarker for IgAN, and its clinical significance is still being evaluated. To elucidate the pathogenesis of IgAN, it is important to deconvolute the biosynthetic origins of Gd-IgA1 and characterize the pathogenic IgA1 HR O-glycoform(s), including the glycan structures and their sites of attachment. These efforts will likely lead to development of new biomarkers. Here, we review the IgA1 HR O-glycosylation in general and the role of aberrantly glycosylated IgA1 in the pathogenesis of IgAN in particular.
Collapse
Affiliation(s)
- Yukako Ohyama
- Department of Biomedical Molecular Sciences, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan;
| | - Matthew B. Renfrow
- Departments of Biochemistry and Molecular Genetics and Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (M.B.R.); (J.N.)
| | - Jan Novak
- Departments of Biochemistry and Molecular Genetics and Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (M.B.R.); (J.N.)
| | - Kazuo Takahashi
- Department of Biomedical Molecular Sciences, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan;
- Correspondence: ; Tel.: +81-(562)-93-2430; Fax: +81-(562)-93-1830
| |
Collapse
|
7
|
Xing Y, Li L, Zhang Y, Wang F, He D, Liu Y, Jia J, Yan T, Lin S. C1GALT1 expression is associated with galactosylation of IgA1 in peripheral B lymphocyte in immunoglobulin a nephropathy. BMC Nephrol 2020; 21:18. [PMID: 31941451 PMCID: PMC6964072 DOI: 10.1186/s12882-019-1675-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 12/30/2019] [Indexed: 02/06/2023] Open
Abstract
Background More and more studies demonstrated that genetic variation at C1GALT1 influences Gd-IgA1 level in IgAN. However, whether the expression of β1, 3-galactosyltransferase (β1, 3Gal-T) was influenced may provide insights into how Gd-IgA1 levels are controlled in IgAN. Methods Thirty IgAN patients diagnosed in Tianjin Medical University General Hospital from April to September 2018 and 30 healthy volunteers whose age and gender matched with patients were enrolled in this study. Total Gd-IgA1 levels in plasma were determined by ELISA and C1GALT1 levels were determined by RT-PCR. Four databases (PubMed, EMBASE, CNKI, WanFang Medical Network) were searched to identify eligible studies that evaluated a difference in the expression of C1GALT1 in IgAN patients compared with total controls (non-IgAN and health controls). The C1GALT1C1 expression levels, which was indispensable to β1, 3Gal-T of IgA1, was also been compared. Results Gd-IgA1 levels were remarkable higher in IgAN patients compared with healthy control. The expression levels of C1GALT1 gene were remarkably down-regulated in IgAN patients compared with healthy control. And the mRNA level of C1GALT1 was inversely correlated to Gd-IgA1 levels. In meta-analysis, six articles including 316 participants that analyzed the expression of β1, 3Gal-T were met inclusion criteria. There was no significant difference in the expression of C1GALT1 between IgAN patients compared with controls. And we found patients with IgAN had lower levels of C1GALT1 gene expression in the B cells compared to controls. The C1GALT1C1 levels in the IgAN patients were not different from the levels in the control group, which were unchanged no matter according to different ethnic population, different control group and different cell source. Two studies including 46 persons compared enzymatic activity of β1, 3Gal-T in B cells, and the result showed the β1, 3Gal-T activity was decreased in B cells. Conclusions We found expression levels of C1GALT1 were remarkably downregulated in IgAN patients and negatively correlated with higher levels of Gd-IgA1. Subsequent meta-analysis validated the low expression and activity of β1, 3Gal-T in B cells in patients with IgAN. However, there was no apparent disparity in the aspect of C1GALT1C1 expression between IgAN and control groups.
Collapse
Affiliation(s)
- Yue Xing
- Department of Nephrology, General Hospital of Tianjin Medical University, Anshan road, Heping district, Tianjin, 154, NO, China
| | - Lina Li
- Department of Nephrology, General Hospital of Tianjin Medical University, Anshan road, Heping district, Tianjin, 154, NO, China
| | - Yaru Zhang
- Department of Nephrology, General Hospital of Tianjin Medical University, Anshan road, Heping district, Tianjin, 154, NO, China
| | - Fanghao Wang
- Department of Nephrology, General Hospital of Tianjin Medical University, Anshan road, Heping district, Tianjin, 154, NO, China
| | - Dandan He
- Department of Nephrology, General Hospital of Tianjin Medical University, Anshan road, Heping district, Tianjin, 154, NO, China
| | - Youxia Liu
- Department of Nephrology, General Hospital of Tianjin Medical University, Anshan road, Heping district, Tianjin, 154, NO, China.
| | - Junya Jia
- Department of Nephrology, General Hospital of Tianjin Medical University, Anshan road, Heping district, Tianjin, 154, NO, China
| | - Tiekun Yan
- Department of Nephrology, General Hospital of Tianjin Medical University, Anshan road, Heping district, Tianjin, 154, NO, China
| | - Shan Lin
- Department of Nephrology, General Hospital of Tianjin Medical University, Anshan road, Heping district, Tianjin, 154, NO, China
| |
Collapse
|
8
|
Wehbi B, Oblet C, Boyer F, Huard A, Druilhe A, Paraf F, Cogné E, Moreau J, El Makhour Y, Badran B, Van Egmond M, Cogné M, Aldigier JC. Mesangial Deposition Can Strongly Involve Innate-Like IgA Molecules Lacking Affinity Maturation. J Am Soc Nephrol 2019; 30:1238-1249. [PMID: 31227634 DOI: 10.1681/asn.2018111089] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 04/10/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND IgA nephropathy (IgAN) often follows infections and features IgA mesangial deposition. Polymeric IgA deposits in the mesangium seem to have varied pathogenic potential, but understanding their pathogenicity remains a challenge. Most mesangial IgA1 in human IgAN has a hypogalactosylated hinge region, but it is unclear whether this is required for IgA deposition. Another important question is the role of adaptive IgA responses and high-affinity mature IgA antibodies and whether low-affinity IgA produced by innate-like B cells might also yield mesangial deposits. METHODS To explore the effects of specific qualitative variations in IgA and whether altered affinity maturation can influence IgA mesangial deposition and activate complement, we used several transgenic human IgA1-producing models with IgA deposition, including one lacking the DNA-editing enzyme activation-induced cytidine deaminase (AID), which is required in affinity maturation. Also, to explore the potential role of the IgA receptor CD89 in glomerular inflammation, we used a model that expresses CD89 in a pattern observed in humans. RESULTS We found that human IgA induced glomerular damage independent of CD89. When comparing mice able to produce high-affinity IgA antibodies with mice lacking AID-enabled Ig affinity maturation, we found that IgA deposition and complement activation significantly increased and led to IgAN pathogenesis, although without significant proteinuria or hematuria. We also observed that hinge hypoglycosylation was not mandatory for IgA deposition. CONCLUSIONS In a mouse model of IgAN, compared with high-affinity IgA, low-affinity innate-like IgA, formed in the absence of normal antigen-driven maturation, was more readily involved in IgA glomerular deposition with pathogenic effects.
Collapse
Affiliation(s)
- Batoul Wehbi
- Immunology Department, Unité Mixte de Recherche Centre National de la Recherche Scientifique 7276 Institut National de la Santé et de la Recherche Médicale 1262, Limoges University, Limoges, France.,Biochemistry Department, Cancer Biology and Molecular Immunology Laboratory, Lebanese University Section I, Beirut, Lebanon
| | - Christelle Oblet
- Immunology Department, Unité Mixte de Recherche Centre National de la Recherche Scientifique 7276 Institut National de la Santé et de la Recherche Médicale 1262, Limoges University, Limoges, France
| | - François Boyer
- Immunology Department, Unité Mixte de Recherche Centre National de la Recherche Scientifique 7276 Institut National de la Santé et de la Recherche Médicale 1262, Limoges University, Limoges, France
| | - Arnaud Huard
- Immunology Department, Unité Mixte de Recherche Centre National de la Recherche Scientifique 7276 Institut National de la Santé et de la Recherche Médicale 1262, Limoges University, Limoges, France
| | - Anne Druilhe
- Immunology Department, Unité Mixte de Recherche Centre National de la Recherche Scientifique 7276 Institut National de la Santé et de la Recherche Médicale 1262, Limoges University, Limoges, France
| | - François Paraf
- Anatomy-Histopathology Department, Centre Hospitalier Universitaire Dupuytren, Limoges, France
| | - Etienne Cogné
- Nephrology Department, Centre Hospitalier Universitaire Dupuytren, Limoges, France
| | - Jeanne Moreau
- Immunology Department, Unité Mixte de Recherche Centre National de la Recherche Scientifique 7276 Institut National de la Santé et de la Recherche Médicale 1262, Limoges University, Limoges, France
| | - Yolla El Makhour
- Life and Earth Sciences Department, Environmental Health Research Laboratory, Lebanese University Section V, Nabatieh, Lebanon; and
| | - Bassam Badran
- Biochemistry Department, Cancer Biology and Molecular Immunology Laboratory, Lebanese University Section I, Beirut, Lebanon
| | - Marjolein Van Egmond
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Michel Cogné
- Immunology Department, Unité Mixte de Recherche Centre National de la Recherche Scientifique 7276 Institut National de la Santé et de la Recherche Médicale 1262, Limoges University, Limoges, France;
| | - Jean-Claude Aldigier
- Immunology Department, Unité Mixte de Recherche Centre National de la Recherche Scientifique 7276 Institut National de la Santé et de la Recherche Médicale 1262, Limoges University, Limoges, France;
| |
Collapse
|
9
|
Aberrant IgA1 Glycosylation in IgA Nephropathy: A Systematic Review. PLoS One 2016; 11:e0166700. [PMID: 27870872 PMCID: PMC5117702 DOI: 10.1371/journal.pone.0166700] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 11/02/2016] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Galactose-deficient IgA1 was evaluated in patients with IgA nephropathy(IgAN) and controls in order to determine the predictive value of galactose-deficient IgA1 in cases of IgA nephropathy. METHODS PubMed, EMBASE, Cochrane central register of controlled trials, CNKI, CBM disc, and VIP database were searched to identify eligible studies that evaluated a difference in aberrant IgA1 glycosylation in IgAN patients compared with controls. A meta-analysis was conducted to evaluate the impact of galactose-deficient IgA1(Gd-IgA1) levels in different groups. RESULTS A total of 22 studies (n = 1657) met inclusion criteria. The mean Newcastle-Ottawa Scale (NOS) score was 7.2 and ranged from 6 to 8. The standard mean difference(SMD) in the meta-analysis of 20 studies of the level of Gd-IgA1 in the serum and/or supernatant of cultured cells was higher in the IgAN group compared with healthy controls as well as in those with other renal diseases (SMD = 1.76, 95% CI = 1.18-2.34, P<0.00001; SMD = 1.05, 95% CI = 0.05-2.04, P = 0.04). The data synthesis suggested that IgAN patients had similar levels of serum Gd-IgA1, with no significant differences, compared with first-degree relatives and Henoch-Schonlein purpura nephritis (HSPN) patients (MD = 0.04, 95% CI = 0.00-0.08, P = 0.05; MD = -46.03, 95% CI = -217.70-125.64, P = 0.60). In addition, the combined MD of 5 studies indicated that there were no significant differences in Gd-IgA1 levels among patients with varying severities of IgAN (MD = 0.02, 95% CI = -0.02-0.05, P = 0.28). CONCLUSIONS The pooled evidence suggests that the level of Gd-IgA1 in the serum or supernatant of cultured cells from peripheral blood or tonsils may be a useful biomarker for predicting IgA nephropathy, though the level of Gd-IgA1 was not significantly associated with disease severity.
Collapse
|
10
|
Vibration Induces BAFF Overexpression and Aberrant O-Glycosylation of IgA1 in Cultured Human Tonsillar Mononuclear Cells in IgA Nephropathy. BIOMED RESEARCH INTERNATIONAL 2016; 2016:9125960. [PMID: 27672662 PMCID: PMC5031824 DOI: 10.1155/2016/9125960] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 07/09/2016] [Accepted: 07/19/2016] [Indexed: 11/23/2022]
Abstract
Objective. To investigate the influence of in vitro vibratory stimulation of human tonsillar mononuclear cells (TMCs). Methods. Fourteen IgA nephropathy (IgAN) patients with chronic tonsillitis (CT) and 12 CT patients with no renal pathology were enrolled. Group A TMCs were collected after 24 hours of culture and used to determine baseline levels. TMCs in groups B, C, D, E, and F were exposed to vibratory stimulation (60 Hz) for 0 (as the control group), 1, 3, 5, and 10 minutes, respectively. Results. Baseline concentrations of B-cell-activation factor (BAFF) and IgA1, BAFF mRNA expression, and aberrant O-glycosylation IgA1 level were higher in the IgAN group as compared to that in the CT group, and all increased after vibratory stimulation. Baseline mRNA expressions of core β1,3-galactosyltransferase (C1GALT1) and core β1,3GalT-specific molecular chaperone (Cosmc) were lower in the IgAN group; the levels decreased further after vibratory stimulation. Conclusion. In patients with IgAN, vibratory stimulation of TMCs appears to induce IgA1 secretion through activation of BAFF release and to aberrant O-glycosylation IgA1 by suppressing C1GALT1 and Cosmc expression. In vitro vibratory stimulation of human TMCs mimics the vibratory simulation of palatine tonsils produced by vocal cords during phonation.
Collapse
|
11
|
Immunoglobulin A nephropathy: a pathophysiology view. Inflamm Res 2016; 65:757-70. [PMID: 27351940 DOI: 10.1007/s00011-016-0962-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 03/07/2016] [Accepted: 06/13/2016] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND AND AIM IgA nephropathy is one of the leading causes of primary glomerulonephritis worldwide and an important etiology of renal disease in young adults. IgA nephropathy is considered an immune complex-mediated disease. METHODS This review article summarizes recent evidence on the pathophysiology of IgA nephropathy. RESULTS Current studies indicate an ordered sequence of multi-hits as fundamental to disease occurrence. Altered glycan structures in the hinge region of the heavy chains of IgA1 molecules act as auto-antigens, potentially triggering the production of glycan-specific autoantibodies. Recognition of novel epitopes by IgA and IgG antibodies leads to the formation of immune complexes galactose deficient-IgA1/anti-glycan IgG or IgA. Immune complexes of IgA combined with FcαRI/CD89 have also been implicated in disease exacerbation. These nephritogenic immune complexes are formed in the circulation and deposited in renal mesangium. Deposited immune complexes ultimately induce glomerular injury, through the release of pro-inflammatory cytokines, secretion of chemokines and the resultant migration of macrophages into the kidney. The TfR1/CD71 receptor has a pivotal role in mesangial cells. New signaling intracellular mechanisms have also been described. CONCLUSION The knowledge of the whole pathophysiology of this disease could provide the rational bases for developing novel approaches for diagnosis, for monitoring disease activity, and for disease-specific treatment.
Collapse
|
12
|
Zhang C, Zeng X, Li Z, Wang Z, Li S. Immunoglobulin A nephropathy: current progress and future directions. Transl Res 2015; 166:134-44. [PMID: 25797891 DOI: 10.1016/j.trsl.2015.02.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 02/25/2015] [Accepted: 02/26/2015] [Indexed: 01/10/2023]
Abstract
Immunoglobulin A (IgA) nephropathy is the most prevalent form of primary glomerulonephritis that often leads to end-stage kidney failure, thereby representing a major health challenge worldwide. Tremendous effort has been dedicated to the diagnosis, monitoring, and treatment of the disease, and the past several years have witnessed exciting advances that have enriched our understanding of the biology, etiology, and pathology of IgA nephropathy. The disease is characterized by predominant deposition of IgA immune complexes that progressively causes activation of mesangial cells, glomerular inflammation, and ultimately renal injury. Multiple recent independent high-throughput studies in cohorts have identified key susceptibility alleles, such as the major histocompatibility complex loci that are significantly associated with the risk of disease occurrence. Notably, a fraction of these risk loci encode proteins that participate in immune defense against mucosal pathogens, particularly intestinal nematodes, indicating a linkage between IgA-mediated antihelminth immunity and the pathogenesis of IgA nephropathy. The emerging "omics" technology also allows for systemic analysis of urinary and serum samples as a noninvasive procedure for diagnosis and prognosis, as demonstrated by several studies implicating the proteomic signature and microRNA profile as promising diagnostic and prognostic parameters. In the clinic, the current treatment protocol relies on suppression of the renin-angiotensin system to control blood pressure and proteinuria. This review scrutinizes and summarizes recent relevant findings that aim to translate researchers' benchside knowledge of disease initiation and development into patients' bedside diagnosis and therapy.
Collapse
Affiliation(s)
- Chunlei Zhang
- Laboratory of Science Department, Shenzhen Affiliated Hospital, Guangzhou University of Traditional Chinese Medicine, Shenzhen, China
| | - Xuehui Zeng
- Laboratory of Science Department, Shenzhen Affiliated Hospital, Guangzhou University of Traditional Chinese Medicine, Shenzhen, China
| | - Zhongxin Li
- Laboratory of Science Department, Shenzhen Affiliated Hospital, Guangzhou University of Traditional Chinese Medicine, Shenzhen, China
| | - Zhe Wang
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Tex
| | - Shunmin Li
- Department of Nephrology, Shenzhen Affiliated Hospital, Guangzhou University of Traditional Chinese Medicine, Shenzhen, China.
| |
Collapse
|
13
|
Serino G, Sallustio F, Curci C, Cox SN, Pesce F, De Palma G, Schena FP. Role of let-7b in the regulation of N-acetylgalactosaminyltransferase 2 in IgA nephropathy. Nephrol Dial Transplant 2015; 30:1132-9. [PMID: 25744272 DOI: 10.1093/ndt/gfv032] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 01/26/2015] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND IgA nephropathy (IgAN) is characterized by aberrant O-glycosylation in the hinge region of IgA1. The early step in O-glycan formation is the attachment of N-acetylgalactosamine (GalNAc) to the serine/threonine of the hinge region; the process is catalysed by UDP-N-acetyl-α-d-galactosamine:polypeptide N-acetylgalactosaminyltransferase 2 (GALNT2). In our previous work, the microarray analysis on peripheral blood mononuclear cells (PBMCs) identified an upregulated miRNA called let-7b. METHODS To study the molecular mechanisms in which let-7b was involved, we performed a bioinformatic analysis to predict their target genes. To validate biologically let-7b targets, we performed transient transfection experiments ex vivo using PBMCs from an independent group of IgAN patients and healthy blood donors (HBDs). RESULTS Bioinformatic analysis revealed that GALNT2 is the potential target of let-7b. We found this miRNA significantly upregulated in PBMCs of IgAN patients compared with HBDs. Then, we demonstrated in ex-vivo experiments that let-7b decreased GALNT2 levels in PBMCs of IgAN patients, whereas the loss of let-7b function in PBMCs of HBDs led to an increase of GALNT2 mRNA and its protein level. Finally, we found that upregulation of let-7b occurred also in B-lymphocytes from IgAN patients. CONCLUSIONS Our results give novel additional information on the abnormal O-glycosylation process of IgA1 in IgAN patients. This study provides evidence for another important miRNA-based regulatory mechanism of the O-glycosylation process in which the deregulated expression of let-7b is associated with altered expression of GALNT2. This finding could be taken into consideration for new therapeutic approaches in IgAN because other serum glycosylated proteins do not display abnormal glycosylation.
Collapse
Affiliation(s)
- Grazia Serino
- Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy C.A.R.S.O. Consortium, University of Bari, Valenzano (Ba), Italy
| | - Fabio Sallustio
- C.A.R.S.O. Consortium, University of Bari, Valenzano (Ba), Italy Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali (DiSTeBA), Università del Salento, Monteroni, Lecce, Italy
| | - Claudia Curci
- C.A.R.S.O. Consortium, University of Bari, Valenzano (Ba), Italy
| | - Sharon N Cox
- Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Francesco Pesce
- Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy Cardiovascular Genetics and Genomics, National Heart and Lung Institute, Imperial College London, London, UK
| | | | - Francesco P Schena
- C.A.R.S.O. Consortium, University of Bari, Valenzano (Ba), Italy Schena Foundation, Research Center for Kidney Diseases, Valenzano (Ba), Italy
| |
Collapse
|
14
|
Sun Q, Zhang J, Zhou N, Liu X, Shen Y. DNA methylation in Cosmc promoter region and aberrantly glycosylated IgA1 associated with pediatric IgA nephropathy. PLoS One 2015; 10:e0112305. [PMID: 25647400 PMCID: PMC4315396 DOI: 10.1371/journal.pone.0112305] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 09/16/2014] [Indexed: 12/31/2022] Open
Abstract
IgA nephropathy (IgAN) is one of the most common glomerular diseases leading to end-stage renal failure. Elevation of aberrantly glycosylated IgA1 is a key feature of it. The expression of the specific molecular chaperone of core1ß1, 3galactosyl transferase (Cosmc) is known to be reduced in IgAN. We aimed to investigate whether the methylation of CpG islands of Cosmc gene promoter region could act as a possible mechanism responsible for down-regulation of Cosmc and related higher secretion of aberrantly glycosylated IgA1in lymphocytes from children with IgA nephropathy. Three groups were included: IgAN children (n = 26), other renal diseases (n = 11) and healthy children (n = 13). B-lymphocytes were isolated and cultured, treated or not with IL-4 or 5-Aza-2’-deoxycytidine (AZA). The levels of DNA methylation of Cosmc promotor region were not significantly different between the lymphocytes of the three children populations (P = 0.113), but there were significant differences between IgAN lymphocytes and lymphocytes of the other two children populations after IL-4 (P<0.0001) or AZA (P<0.0001). Cosmc mRNA expression was low in IgAN lymphocytes compared to the other two groups (P<0.0001). The level of aberrantly glycosylated IgA1 was markedly higher in IgAN group compared to the other groups (P<0.0001). After treatment with IL-4, the levels of Cosmc DNA methylation and aberrantly glycosylated IgA1 in IgAN lymphocytes were remarkably higher than the other two groups (P<0.0001) with more markedly decreased Cosmc mRNA content (P<0.0001). After treatment with AZA, the levels in IgAN lymphocytes were decreased, but was still remarkably higher than the other two groups (P<0.0001), while Cosmc mRNA content in IgAN lymphocytes were more markedly increased than the other two groups (P<0.0001). The alteration of DNA methylation by IL-4 or AZA specifically correlates in IgAN lymphocytes with alterations in Cosmc mRNA expression and with the level of aberrantly glycosylated IgA1 (r = −0.948, r = 0. 707). Our results suggested that hypermethylation of Cosmc promoter region could be a key mechanism for the reduction of Cosmc mRNA expression in IgAN lymphocytes with associated increase in aberrantly glycosylated IgA1.
Collapse
Affiliation(s)
- Qiang Sun
- Department of nephrology, Beijing Children’s Hospital, Capital Medical University, Beijing, China
| | - Jianqian Zhang
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Nan Zhou
- Department of nephrology, Beijing Children’s Hospital, Capital Medical University, Beijing, China
| | - Xiaorong Liu
- Department of nephrology, Beijing Children’s Hospital, Capital Medical University, Beijing, China
| | - Ying Shen
- Department of nephrology, Beijing Children’s Hospital, Capital Medical University, Beijing, China
- * E-mail:
| |
Collapse
|
15
|
Novak J, Raska M, Mestecky J, Julian BA. IgA Nephropathy and Related Diseases. Mucosal Immunol 2015. [DOI: 10.1016/b978-0-12-415847-4.00105-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
16
|
Abstract
The term 'legacy effect'--a memory of a treatment which produces benefits long after the cessation of the intervention--was adopted for the first time to describe the benefits of early and strict control of diabetes on cardiovascular complications. The search for a similar effect for early treatment of immune-mediated renal diseases, interrupting some self-amplification loops of the pathogenetical immunological mechanisms and leaving a permanent memory, is fascinating. Some recent reports suggest a long-term beneficial or legacy effect of early treatment of IgA nephropathy after a randomized controlled trial (RCT) using mycophenolate mofetil, methylprednisolone pulses or steroid/immunosuppressive multiple therapy, or prolonged steroid doses associated with tonsillectomy. Long-lasting effects of treatments are more likely to be achieved in early stages of IgA nephropathy, when mesangial proliferative or endocapillary hypercellular lesions are pre-eminent over sclerosis, and when proteinuria is not massive, above all in young patients. The long-term results considered are relevant, but have the counterpart of the risk of drug toxicity or side effects, which are particularly undesired in patients with a mild disease. Hence, there is interest for drugs targeting the intestinal mucosal immunity with a little systemic effect, aimed at interrupting the initial pathogenetical mechanism. The possibility of modulating anti-inflammatory regulatory T cells by modifying inducible enzymes is another fascinating field of future research.
Collapse
Affiliation(s)
- Rosanna Coppo
- Nephrology, Dialysis and Transplantation Unit, Regina Margherita Children's University Hospital, Città della Salute e della Scienza di Torino, Turin 10126, Italy.
| |
Collapse
|
17
|
Novak J, Julian BA, Mestecky J, Renfrow MB. Glycosylation of IgA1 and pathogenesis of IgA nephropathy. Semin Immunopathol 2012; 34:365-82. [PMID: 22434325 DOI: 10.1007/s00281-012-0306-z] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Accepted: 03/02/2012] [Indexed: 12/18/2022]
Abstract
IgA nephropathy, described in 1968 as IgA-IgG immune-complex disease, is an autoimmune disease. Galactose-deficient IgA1 is recognized by unique autoantibodies, resulting in the formation of pathogenic immune complexes that ultimately induce glomerular injury. Thus, formation of the galactose-deficient IgA1-containing immune complexes is a critical factor in the pathogenesis of IgA nephropathy. Studies of molecular defects of IgA1 can define new biomarkers specific for IgA nephropathy that can be developed into clinical assays to aid in the diagnosis, assessment of prognosis, and monitoring of disease progression.
Collapse
Affiliation(s)
- Jan Novak
- University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | | | | | | |
Collapse
|
18
|
Abstract
Since its first description in 1968, IgA nephropathy has remained the most common form of idiopathic glomerulonephritis leading to chronic kidney disease in developed countries. The exact pathogenesis of IgA nephropathy is still not well defined. Current data implicate an important genetic factor, especially in promoting the overproduction of an aberrant form of IgA1. The immunochemical aberrancy of IgA nephropathy is characterized by the undergalactosylation of O-glycans in the hinge region of IgA1. However, such aberrant glycosylation alone does not cause renal injury. The next stage of disease development requires the formation of glycan-specific IgG and IgA antibodies that recognize the undergalactosylated IgA1 molecule. These antibodies often have reactivity against antigens from extrinsic microorganisms and might arise from recurrent mucosal infection. B cells that respond to mucosal infections, particularly tonsillitis, might produce the nephritogenic IgA1 molecule. With increased immune-complex formation and decreased clearance owing to reduced uptake by the liver, IgA1 binds to the glomerular mesangium via an as yet unidentified receptor. Glomerular IgA1 deposits trigger the local production of cytokines and growth factors, leading to the activation of mesangial cells and the complement system. Emerging data suggest that mesangial-derived mediators following glomerular deposition of IgA1 lead to podocyte and tubulointerstitial injury via mesangio-podocytic-tubular crosstalk. This Review summarizes the latest findings in the pathogenesis of IgA nephropathy.
Collapse
Affiliation(s)
- Kar Neng Lai
- Nephrology Center, 10th floor, Li Shu Pui Block, Hong Kong Sanatorium and Hospital, 2 Village Road, Happy Valley, Hong Kong.
| |
Collapse
|
19
|
Serino G, Sallustio F, Cox SN, Pesce F, Schena FP. Abnormal miR-148b expression promotes aberrant glycosylation of IgA1 in IgA nephropathy. J Am Soc Nephrol 2012; 23:814-24. [PMID: 22362909 DOI: 10.1681/asn.2011060567] [Citation(s) in RCA: 154] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Aberrant O-glycosylation in the hinge region of IgA1 characterizes IgA nephropathy. The mechanisms underlying this abnormal glycosylation are not well understood, but reduced expression of the enzyme core 1, β1,3-galactosyltransferase 1 (C1GALT1) may contribute. In this study, high-throughput microRNA (miRNA) profiling identified 37 miRNAs differentially expressed in PBMCs of patients with IgA nephropathy compared with healthy persons. Among them, we observed upregulation of miR-148b, which potentially targets C1GALT1. Patients with IgA nephropathy exhibited lower C1GALT1 expression, which negatively correlated with miR-148b expression. Transfection of PBMCs from healthy persons with a miR-148b mimic reduced endogenous C1GALT1 mRNA levels threefold. Conversely, loss of miR-148b function in PBMCs of patients with IgA nephropathy increased C1GALT1 mRNA and protein levels to those observed in healthy persons. Moreover, we found that upregulation of miR-148b directly correlated with levels of galactose-deficient IgA1. In vitro, we used an IgA1-producing cell line to confirm that miR-148b modulates IgA1 O-glycosylation and the levels of secreted galactose-deficient IgA1. Taken together, these data suggest a role for miRNAs in the pathogenesis of IgA nephropathy. Abnormal expression of miR-148b may explain the aberrant glycosylation of IgA1, providing a potential pharmacologic target for IgA nephropathy.
Collapse
Affiliation(s)
- Grazia Serino
- Nephrology Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, Policlinico, Italy
| | | | | | | | | |
Collapse
|
20
|
Floege J. The Pathogenesis of IgA Nephropathy: What Is New and How Does It Change Therapeutic Approaches? Am J Kidney Dis 2011; 58:992-1004. [DOI: 10.1053/j.ajkd.2011.05.033] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Accepted: 05/26/2011] [Indexed: 02/07/2023]
|
21
|
Kiryluk K, Julian BA, Wyatt RJ, Scolari F, Zhang H, Novak J, Gharavi AG. Genetic studies of IgA nephropathy: past, present, and future. Pediatr Nephrol 2010; 25:2257-68. [PMID: 20386929 PMCID: PMC2937145 DOI: 10.1007/s00467-010-1500-7] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 01/08/2010] [Accepted: 01/30/2010] [Indexed: 11/24/2022]
Abstract
Immunoglobulin A nephropathy (IgAN) is the most common form of primary glomerulonephritis worldwide and an important cause of kidney disease in young adults. Highly variable clinical presentation and outcome of IgAN suggest that this diagnosis may encompass multiple subsets of disease that are not distinguishable by currently available clinical tools. Marked differences in disease prevalence between individuals of European, Asian, and African ancestry suggest the existence of susceptibility genes that are present at variable frequencies in these populations. Familial forms of IgAN have also been reported throughout the world but are probably underrecognized because associated urinary abnormalities are often intermittent in affected family members. Of the many pathogenic mechanisms reported, defects in IgA1 glycosylation that lead to formation of immune complexes have been consistently demonstrated. Recent data indicates that these IgA1 glycosylation defects are inherited and constitute a heritable risk factor for IgAN. Because of the complex genetic architecture of IgAN, the efforts to map disease susceptibility genes have been difficult, and no causative mutations have yet been identified. Linkage-based approaches have been hindered by disease heterogeneity and lack of a reliable noninvasive diagnostic test for screening family members at risk of IgAN. Many candidate-gene association studies have been published, but most suffer from small sample size and methodological problems, and none of the results have been convincingly validated. New genomic approaches, including genome-wide association studies currently under way, offer promising tools for elucidating the genetic basis of IgAN.
Collapse
Affiliation(s)
- Krzysztof Kiryluk
- Department of Medicine, Division of Nephrology, College of Physicians and Surgeons, Columbia University, 1150 St. Nicholas Avenue, Russ Berrie Pavilion #413, New York, NY 10032 USA
| | - Bruce A. Julian
- Departments of Microbiology and Medicine, University of Alabama at Birmingham, Birmingham, AL USA
| | - Robert J. Wyatt
- Division of Pediatric Nephrology, Department of Pediatrics, Children’s Foundation Research Center at the Le Bonheur Children’s Medical Center, University of Tennessee Health Sciences Center, Memphis, TN USA
| | | | - Hong Zhang
- Renal Division of First Hospital, Institute of Nephrology, Peking University, Beijing, China
| | - Jan Novak
- Departments of Microbiology and Medicine, University of Alabama at Birmingham, Birmingham, AL USA
| | - Ali G. Gharavi
- Department of Medicine, Division of Nephrology, College of Physicians and Surgeons, Columbia University, 1150 St. Nicholas Avenue, Russ Berrie Pavilion #413, New York, NY 10032 USA
| |
Collapse
|
22
|
Yamada K, Kobayashi N, Ikeda T, Suzuki Y, Tsuge T, Horikoshi S, Emancipator SN, Tomino Y. Down-regulation of core 1 beta1,3-galactosyltransferase and Cosmc by Th2 cytokine alters O-glycosylation of IgA1. Nephrol Dial Transplant 2010; 25:3890-7. [PMID: 20551088 PMCID: PMC2989791 DOI: 10.1093/ndt/gfq325] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background. Patients with IgA nephropathy (IgAN) have an increased amount of abnormally O-glycosylated IgA1 in circulation, in glomerular deposits and produced by tissue cells in vitro. Although increased production of Th2 cytokines by peripheral blood lymphocytes and a functional abnormality of core 1 β1,3-galactosyltransferase (C1β3Gal-T) have been proposed as mechanisms underlying pathogenesis of IgAN, they are still obscure and are not connected. Methods. To clarify the effect of T-cell cytokines, we analysed the mRNA levels of C1β3Gal-T and its molecular chaperone Cosmc, C1β3Gal-T activity and subsequent O-glycosylation of IgA1 in a human B-cell line stimulated with these cytokines. The surface IgA1-positive human B-cell line was cultured with recombinant human IFN-γ, IL-2, IL-4 or IL-5. The production and glycosylation of IgA1 were determined by sandwich ELISA and enzyme-linked lectin binding assay, respectively. The mRNA levels of C1β3Gal-T and Cosmc were quantitatively measured by real-time PCR. C1β3Gal-T activity was analysed using high-performance liquid chromatography. Results. IgA1 production by IL-4-stimulated cells was significantly higher than controls or after IFN-γ or IL-5. The terminal glycosylation of secreted IgA1 was altered in response to IL-4. IL-4 stimulation significantly decreased the mRNA levels of both C1β3Gal-T and Cosmc and of C1β3Gal-T activity. IL-4 stimulation was clearly blocked by recombinant human IL-4 soluble receptor. Conclusions. It appears that Th2 cytokine IL-4 may play a key role in controlling glycosylation of the IgA1 hinge region.
Collapse
Affiliation(s)
- Koshi Yamada
- Division of Nephrology, Department of Internal Medicine, Juntendo University Faculty of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
23
|
|
24
|
Pathogenesis of Henoch-Schönlein purpura nephritis. Pediatr Nephrol 2010; 25:19-26. [PMID: 19526254 PMCID: PMC2778786 DOI: 10.1007/s00467-009-1230-x] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Revised: 05/03/2009] [Accepted: 05/05/2009] [Indexed: 11/05/2022]
Abstract
The severity of renal involvement is the major factor determining the long-term outcome of children with Henoch-Schönlein purpura (HSP) nephritis (HSPN). Approximately 40% children with HSP develop nephritis, usually within 4 to 6 weeks after the initial onset of the typical purpuric rashes. Although the pathogenetic mechanisms are still not fully delineated, several studies suggest that galactose-deficient IgA1 (Gd-IgA1) is recognized by anti-glycan antibodies, leading to the formation of the circulating immune complexes and their mesangial deposition that induce renal injury in HSPN.
Collapse
|
25
|
Suzuki H, Fan R, Zhang Z, Brown R, Hall S, Julian BA, Chatham WW, Suzuki Y, Wyatt RJ, Moldoveanu Z, Lee JY, Robinson J, Tomana M, Tomino Y, Mestecky J, Novak J. Aberrantly glycosylated IgA1 in IgA nephropathy patients is recognized by IgG antibodies with restricted heterogeneity. J Clin Invest 2009; 119:1668-77. [PMID: 19478457 DOI: 10.1172/jci38468] [Citation(s) in RCA: 225] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Accepted: 04/15/2009] [Indexed: 12/13/2022] Open
Abstract
IgA nephropathy (IgAN) is characterized by circulating immune complexes composed of galactose-deficient IgA1 and a glycan-specific IgG antibody. These immune complexes deposit in the glomerular mesangium and induce the mesangioproliferative glomerulonephritis characteristic of IgAN. To define the precise specificities and molecular properties of the IgG antibodies, we generated EBV-immortalized IgG-secreting lymphocytes from patients with IgAN and found that the secreted IgG formed complexes with galactose-deficient IgA1 in a glycan-dependent manner. We cloned and sequenced the heavy- and light-chain antigen-binding domains of IgG specific for galactose-deficient IgA1 and identified an A to S substitution in the complementarity-determining region 3 of the variable region of the gene encoding the IgG heavy chain in IgAN patients. Furthermore, site-directed mutagenesis that reverted the residue to alanine reduced the binding of recombinant IgG to galactose-deficient IgA1. Finally, we developed a dot-blot assay for the glycan-specific IgG antibody that differentiated patients with IgAN from healthy and disease controls with 88% specificity and 95% sensitivity and found that elevated levels of this antibody in the sera of patients with IgAN correlated with proteinuria. Collectively, these findings indicate that glycan-specific antibodies are associated with the development of IgAN and may represent a disease-specific marker and potential therapeutic target.
Collapse
Affiliation(s)
- Hitoshi Suzuki
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Proteasomal degradation of intracellular proteins facilitates the recognition of foreign proteins through interactions with major histocompatibility complex molecules presented to T cells. Interferon-gamma enhances the efficiency of this antigen presentation process by inducing a switch of proteasome to immunoproteasome catalytic subunits. The finding that immunoproteasomes are upregulated in IgA nephropathy may prompt further exploration of the role and mechanism of proteasome activation and intensify the quest for infectious agents that may induce IgA nephritis.
Collapse
|
27
|
Ding JX, Xu LX, Zhu L, Lv JC, Zhao MH, Zhang H, Wang HY. Activity of alpha2,6-sialyltransferase and its gene expression in peripheral B lymphocytes in patients with IgA nephropathy. Scand J Immunol 2009; 69:174-80. [PMID: 19170967 DOI: 10.1111/j.1365-3083.2008.02204.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
It is known that aberrant sialylation of IgA1 is involved in the pathogenesis of IgA nephropathy (IgAN). We hypothesize that aberrant sialylation of serum IgA1 may result from changes in the activity of alpha2,6-sialyltransferase (alpha2,6-ST) or expression of its coding gene ST6GALNAC2 in peripheral B lymphocytes. Sixty patients with IgAN and 20 healthy controls were enrolled. Peripheral B lymphocytes were isolated by CD-19-positive magnetic beads. The expression level of ST6GALNAC2 was quantitatively analysed by real-time reverse-transcriptase polymerase chain reaction (PCR). Serum IgA1 and sialylation levels were detected by enzyme-linked immunosorbent assay (ELISA) and specific lectin-binding ELISA. Activity of alpha2,6-ST was measured by specific lectin-binding ELISA. Expression of ST6GALNAC2 in B peripheral lymphocytes was significantly lower in patients with IgAN than that in normal controls (3.7 +/- 2.2 versus 6.3 +/- 2.3, P = 0.016); alpha2,6-ST activity in B lymphocytes was correlated positively with the level of alpha2,6-sialic acid in serum IgA1 in patients (n = 42) and controls (n = 12) (r = 0.37, P = 0.007). However, alpha2,6-ST activity did not differ between patients with IgAN and controls (1.19 +/- 1.43 versus 1.06 +/- 1.17, P > 0.05). These data suggested that reduced sialylation of serum IgA1 may result from decreased expression of ST6GALNAC2. The factors affecting activity of alpha2,6-ST in the sialylation of IgA1 need to be further investigated.
Collapse
Affiliation(s)
- J-X Ding
- Renal Division of Peking University First Hospital, Peking University Institute of Nephrology, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
28
|
Sunderkötter C. Vasculitis of small blood vessels - some riddles about IgA and about the complexity of transmigration. Exp Dermatol 2009; 18:91-6. [DOI: 10.1111/j.1600-0625.2008.00791.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
29
|
Malycha F, Eggermann T, Hristov M, Schena FP, Mertens PR, Zerres K, Floege J, Eitner F. No evidence for a role of cosmc-chaperone mutations in European IgA nephropathy patients. Nephrol Dial Transplant 2008; 24:321-4. [PMID: 18840896 DOI: 10.1093/ndt/gfn538] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Altered IgA1 galactosylation is involved in the pathogenesis of IgA nephropathy (IgAN). The galactosyltransferase core-1 beta3-galactosyltransferase-1 (C1GALT1) and its chaperone cosmc are specifically required for O-galactosylation of the IgA1 hinge region. Mutations in the cosmc gene result in a secondary loss of function of C1GALT1 with subsequent undergalactosylation of glycoproteins. Mosaic mutations of cosmc have been shown to result in autoimmune disease. We hypothesized that cosmc mutations might contribute to the altered IgA1 galactosylation in IgAN patients. METHODS We studied cosmc gene sequences in genomic DNA obtained from male patients with biopsy-proven sporadic (n = 33) and familial IgAN (n = 6 patients from different families). To account for a potential mosaicism we sequenced cosmc in 10 different peripheral blood mononuclear cell DNA clones of every patient. To specifically assess potential mosaic mutations in IgA-producing cells, cosmc mutations were also analysed in DNA isolated from CD20+ B-lymphocytes from three male IgAN patients. RESULTS Despite our extensive genomic analysis, the data revealed no functionally relevant cosmc gene variants in sporadic or familial IgAN cases. A cosmc gene polymorphism, rs17261572, was identified in these IgAN patients in a similar frequency as previously reported in healthy adults. A functional consequence of this polymorphism has not yet been determined. CONCLUSION Although decreased C1GALT1 activity has been implicated in the IgAN pathogenesis and cosmc chaperone mutations can cause autoimmune disease, our data provide no evidence for a relevant role of cosmc gene mutations in European patients with sporadic or familial IgAN.
Collapse
Affiliation(s)
- Friederike Malycha
- Department of Human Genetics, Division of Nephrology and Immunology, Aachen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Eijgenraam JW, van Kooten C. IgA1 glycosylation in IgA nephropathy: as sweet as it can be. Kidney Int 2008; 73:1106-8. [PMID: 18449177 DOI: 10.1038/ki.2008.16] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Abnormally O-glycosylated IgA1 is likely to be involved in the pathogenesis of IgA nephropathy (IgAN). Buck et al. show that the enzyme activity and gene expression of specific glycosyltransferases, in purified B cells isolated from peripheral blood and bone marrow, is not reduced in IgAN patients. As only a small fraction of IgA in IgAN patients is abnormally glycosylated, it is probable that a more detailed molecular analysis at the single cell level is required to unravel the cause of this abnormality.
Collapse
Affiliation(s)
- J W Eijgenraam
- Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands.
| | | |
Collapse
|
31
|
Recent insights into the biological roles of mucin-type O-glycosylation. Glycoconj J 2008; 26:325-34. [PMID: 18695988 DOI: 10.1007/s10719-008-9162-4] [Citation(s) in RCA: 135] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2008] [Accepted: 06/12/2008] [Indexed: 12/19/2022]
Abstract
In this special issue of the Glycoconjugate Journal focusing on glycosciences and development, we summarize recent advances in our understanding of the role of mucin-type O-glycans in development and disease. The presence of this widespread protein modification has been known for decades, yet identification of its biological functions has been hampered by the redundancy and complexity of the enzyme family controlling the initiation of O-glycosylation, as well as the diversity of extensions of the core sugar. Recent studies in organisms as diverse as mammals and Drosophila have yielded insights into the function of this highly abundant and evolutionarily-conserved protein modification. Gaining an understanding of mucin-type O-glycans in these diverse systems will elucidate crucial conserved processes underlying many aspects of development and homeostasis.
Collapse
|
32
|
Smith A, Molyneux K, Feehally J, Barratt J. Is sialylation of IgA the agent provocateur of IgA nephropathy? Nephrol Dial Transplant 2008; 23:2176-8. [DOI: 10.1093/ndt/gfn203] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|