1
|
Swaney EM, Chattopadhyay A, Abecassis I, Rush EA, Redner RL. The leukemic oncoprotein NPM1-RARA inhibits TP53 activity. Leuk Lymphoma 2016; 57:1933-7. [PMID: 26754533 DOI: 10.3109/10428194.2015.1124992] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The variant acute promyelocytic leukemia (APL) translocation t(5;17)(q35;q21) fuses the N-terminus of nucleophosmin (NPM1) to the retinoic acid receptor alpha (RARA). We found that ectopic NPM1-RARA expression decreased TP53 protein levels in target cells. NPM1-RARA impaired TP53-dependent transcription. Cells expressing NPM1-RARA were more resistant to apoptotic stimuli. This work identifies the TP53 tumor suppressor as a novel target through which NPM1-RARA impacts leukemogenesis, and confirms the importance of impairment of TP53 in establishment of the APL phenotype.
Collapse
Affiliation(s)
- Erin M Swaney
- a Department of Medicine , University of Pittsburgh, and University of Pittsburgh Cancer Institute, University of Pittsburgh , Pittsburgh , PA , USA
| | - Anuja Chattopadhyay
- a Department of Medicine , University of Pittsburgh, and University of Pittsburgh Cancer Institute, University of Pittsburgh , Pittsburgh , PA , USA
| | - Irina Abecassis
- a Department of Medicine , University of Pittsburgh, and University of Pittsburgh Cancer Institute, University of Pittsburgh , Pittsburgh , PA , USA
| | - Elizabeth A Rush
- a Department of Medicine , University of Pittsburgh, and University of Pittsburgh Cancer Institute, University of Pittsburgh , Pittsburgh , PA , USA
| | - Robert L Redner
- a Department of Medicine , University of Pittsburgh, and University of Pittsburgh Cancer Institute, University of Pittsburgh , Pittsburgh , PA , USA
| |
Collapse
|
2
|
Ablain J, de Thé H. Retinoic acid signaling in cancer: The parable of acute promyelocytic leukemia. Int J Cancer 2014; 135:2262-72. [PMID: 25130873 DOI: 10.1002/ijc.29081] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 04/04/2014] [Accepted: 05/09/2014] [Indexed: 12/22/2022]
Abstract
Inevitably fatal some 40 years, acute promyelocytic leukemia (APL) can now be cured in more than 95% of cases. This clinical success story is tightly linked to tremendous progress in our understanding of retinoic acid (RA) signaling. The discovery of retinoic acid receptor alpha (RARA) was followed by the cloning of the chromosomal translocations driving APL, all of which involve RARA. Since then, new findings on the biology of nuclear receptors have progressively enlightened the basis for the clinical efficacy of RA in APL. Reciprocally, the disease offered a range of angles to approach the cellular and molecular mechanisms of RA action. This virtuous circle contributed to make APL one of the best-understood cancers from both clinical and biological standpoints. Yet, some important questions remain unanswered including how lessons learnt from RA-triggered APL cure can help design new therapies for other malignancies.
Collapse
Affiliation(s)
- Julien Ablain
- Université Paris Diderot, Sorbonne Paris Cité, Hôpital St. Louis, Paris Cedex 10, France; INSERM U 944, Equipe labellisée par la Ligue Nationale contre le Cancer, Institut Universitaire d'Hématologie, Hôpital St. Louis, Paris Cedex 10, France; CNRS UMR 7212, Hôpital St. Louis, Paris Cedex 10, France
| | | |
Collapse
|
3
|
TBLR1 fuses to retinoid acid receptor α in a variant t(3;17)(q26;q21) translocation of acute promyelocytic leukemia. Blood 2014; 124:936-45. [PMID: 24782508 DOI: 10.1182/blood-2013-10-528596] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The majority of acute promyelocytic leukemia (APL) cases are characterized by the PML-RARα fusion gene. Although the PML-RARα fusion gene can be detected in >98% of APL cases, RARα is also found to be fused with other partner genes, which are also related to all-trans retinoic acid (ATRA)-dependent transcriptional activity and cell differentiation. In this study, we identified a novel RARα fusion gene, TBLR1-RARα (GenBank KF589333), in a rare case of APL with a t(3;17)(q26;q21),t(7;17)(q11.2;q21) complex chromosomal rearrangement. To our knowledge, TBLR1-RARα is the 10th RARα chimeric gene that has been reported up to now. TBLR1-RARα contained the B-F domains of RARα and exhibited a distinct subcellular localization. It could form homodimers and also heterodimers with retinoid X receptor α. As a result, TBLR1-RARα exhibited diminished transcriptional activity by recruitment of more transcriptional corepressors compared with RARα. In the presence of pharmacologic doses of ATRA, TBLR1-RARα could be degraded, and its homodimerization was abrogated. Moreover, when treated with ATRA, TBLR1-RARα could mediate the dissociation and degradation of transcriptional corepressors, consequent transactivation of RARα target genes, and cell differentiation induction in a dose- and time-dependent manner.
Collapse
|
4
|
De Bellis F, Carafa V, Conte M, Rotili D, Petraglia F, Matarese F, Françoijs KJ, Ablain J, Valente S, Castellano R, Goubard A, Collette Y, Mandoli A, Martens JHA, de Thé H, Nebbioso A, Mai A, Stunnenberg HG, Altucci L. Context-selective death of acute myeloid leukemia cells triggered by the novel hybrid retinoid-HDAC inhibitor MC2392. Cancer Res 2014; 74:2328-39. [PMID: 24566867 DOI: 10.1158/0008-5472.can-13-2568] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
HDAC inhibitors (HDACi) are widely used in the clinic to sensitize tumorigenic cells for treatment with other anticancer compounds. The major drawback of HDACi is the broad inhibition of the plethora of HDAC-containing complexes. In acute promyelocytic leukemia (APL), repression by the PML-RARα oncofusion protein is mediated by an HDAC-containing complex that can be dissociated by pharmacologic doses of all trans retinoic acid (ATRA) inducing differentiation and cell death at the expense of side effects and recurrence. We hypothesized that the context-specific close physical proximity of a retinoid and HDACi-binding protein in the repressive PML-RARα-HDAC complex may permit selective targeting by a hybrid molecule of ATRA with a 2-aminoanilide tail of the HDAC inhibitor MS-275, yielding MC2392. We show that MC2392 elicits weak ATRA and essentially no HDACi activity in vitro or in vivo. Genome-wide epigenetic analyses revealed that in NB4 cells expressing PML-RARα, MC2392 induces changes in H3 acetylation at a small subset of PML-RARα-binding sites. RNA-seq reveals that MC2392 alters expression of a number of stress-responsive and apoptotic genes. Concordantly, MC2392 induced rapid and massive, caspase-8-dependent cell death accompanied by RIP1 induction and ROS production. Solid and leukemic tumors are not affected by MC2392, but expression of PML-RARα conveys efficient MC2392-induced cell death. Our data suggest a model in which MC2392 binds to the RARα moiety and selectively inhibits the HDACs resident in the repressive complex responsible for the transcriptional impairment in APLs. Our findings provide proof-of-principle of the concept of a context-dependent targeted therapy.
Collapse
Affiliation(s)
- Floriana De Bellis
- Authors' Affiliations: Dipartimento di Biochimica, Biofisica e Patologia Generale, Seconda Università degli Studi di Napoli; Istituto di Genetica e Biofisica, IGB, Adriano Buzzati Traverso, Naples; Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza University of Rome, Rome, Italy; NCMLS, Radboud University, Nijmegen, the Netherlands; Inserm, CRCM, U1068, TrGET & ISCB, University of Marseille; and Laboratoire U944 and UMR 7212, University Paris-Diderot, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
GAO YANJUN, WANG SHIBO, LIU BEIZHONG, ZHONG LIANG. Roles of GINS2 in K562 human chronic myelogenous leukemia and NB4 acute promyelocytic leukemia cells. Int J Mol Med 2013; 31:1402-10. [DOI: 10.3892/ijmm.2013.1339] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 03/04/2013] [Indexed: 12/15/2022] Open
|
6
|
Thomas M, Sukhai MA, Kamel-Reid S. An emerging role for retinoid X receptor α in malignant hematopoiesis. Leuk Res 2012; 36:1075-81. [PMID: 22710246 DOI: 10.1016/j.leukres.2012.05.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2011] [Revised: 04/13/2012] [Accepted: 05/21/2012] [Indexed: 12/29/2022]
Abstract
The retinoid X receptor alpha is the obligatory heterodimerization partner for a range of nuclear hormone receptors, and is required for signaling through the pathways mediated by those receptors. While RXR alpha has critical roles in embryonic development, it appears to be dispensable in adult hematopoiesis. Strikingly, recent evidence has indicated that proper functioning of RXR alpha is necessary for the pathogenesis of acute promyelocytic leukemia (APL), suggesting a novel avenue that can be exploited in the management and treatment of this disease. In this review we highlight recent studies that clarify the role of RXR alpha in normal and malignant hematopoiesis.
Collapse
Affiliation(s)
- Mariam Thomas
- Princess Margaret Hospital/the Ontario Cancer Institute, University Health Network, Toronto, ON, Canada
| | | | | |
Collapse
|
7
|
Evidence of functional interaction between NuMA-RARα and RXRα in an in vivo model of acute promyelocytic leukemia. Oncogene 2008; 27:4666-77. [DOI: 10.1038/onc.2008.106] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
8
|
Zeisig BB, Kwok C, Zelent A, Shankaranarayanan P, Gronemeyer H, Dong S, So CWE. Recruitment of RXR by homotetrameric RARalpha fusion proteins is essential for transformation. Cancer Cell 2007; 12:36-51. [PMID: 17613435 DOI: 10.1016/j.ccr.2007.06.006] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2006] [Revised: 04/10/2007] [Accepted: 06/01/2007] [Indexed: 10/23/2022]
Abstract
While formation of higher-order oncogenic transcriptional complexes is critical for RARalpha fusion proteins in acute promyelocytic leukemia, the essential components and their roles in mediating transformation are still largely unknown. To this end, the present study demonstrates that homodimerization is not sufficient for RARalpha fusion-mediated transformation, which requires higher-order homotetramerization. Surprisingly, intrinsic homo-oligomeric DNA binding by the fusion proteins is also dispensable. Importantly, higher-order RXR/RARalpha fusion hetero-oligomeric complexes that aberrantly recruit transcriptional corepressors to downstream targets are essential for transformation. Intervention of RXR-dependent pathways by panRXR-agonists or RXRalpha shRNAs suppresses RARalpha fusion-mediated transformation. Taken together, these results define the oncogenic threshold for self-association and reveal the pathological significance of higher-order RARalpha fusion/RXR hetero-oligomeric complexes and their potential value as a therapeutic target.
Collapse
Affiliation(s)
- Bernd B Zeisig
- Haemato-Oncology Section, The Institute of Cancer Research, 15 Cotswold Road, Sutton, Greater London SM2 5NG, UK
| | | | | | | | | | | | | |
Collapse
|
9
|
Kwok C, Zeisig BB, Dong S, So CWE. Forced homo-oligomerization of RARalpha leads to transformation of primary hematopoietic cells. Cancer Cell 2006; 9:95-108. [PMID: 16473277 DOI: 10.1016/j.ccr.2006.01.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2005] [Revised: 12/19/2005] [Accepted: 01/10/2006] [Indexed: 11/18/2022]
Abstract
Almost 100% of APL patients carry chimeric transcripts encoding truncated RARalpha fused to homo-oligomerization domains from partner proteins. To gain further insights into the cellular transformation mechanisms mediated by RARalpha fusion proteins, thorough structure/function analyses have been performed and identified the POZ homo-oligomerization domain as the minimal transformation domain that is necessary and sufficient for PLZF-RARalpha-mediated in vitro transformation of primary hematopoietic cells. A transformation-incompetent PLZF-RARalpha mutant defective in homo-oligomerization but not corepressor interaction could be rescued by synthetic FKBP-oligomerization domains. Furthermore, an artificial FKBP-RARalpha construct not only mimicked various biochemical properties of bona fide RARalpha fusion proteins but also mediated an ATRA-dependent transformation. Taken together, these findings endorse an oligomerization-dependent mechanism for RARalpha-mediated transformation and suggest a potential avenue for molecular therapy.
Collapse
Affiliation(s)
- Colin Kwok
- Haemato-Oncology Section, The Institute of Cancer Research, 237 Fulham Road, South Kensington, London SW3 6JB, United Kingdom
| | | | | | | |
Collapse
|
10
|
Dong S, Stenoien DL, Qiu J, Mancini MA, Tweardy DJ. Reduced intranuclear mobility of APL fusion proteins accompanies their mislocalization and results in sequestration and decreased mobility of retinoid X receptor alpha. Mol Cell Biol 2004; 24:4465-75. [PMID: 15121864 PMCID: PMC400470 DOI: 10.1128/mcb.24.10.4465-4475.2004] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Acute promyelocytic leukemia (APL) cells contain one of five chimeric retinoic acid alpha-receptor (RAR alpha) genes (X-RAR alpha) created by chromosomal translocations or deletion; each generates a fusion protein thought to transcriptionally repress RAR alpha target genes and block myeloid differentiation by an incompletely understood mechanism. To gain spatiotemporal insight into these oncogenic processes, we employed fluorescence microscopy and fluorescence recovery after photobleaching (FRAP). Fluorescence microscopy demonstrated that the intracellular localization of each of the X-RAR alpha proteins was distinct from that of RAR alpha and established which portion(s) of each X-RAR alpha protein-X, RAR, or both-contributed to its altered localization. Using FRAP, we demonstrated that the intranuclear mobility of each X-RAR alpha was reduced compared to that of RAR alpha. In addition, the mobility of each X-RAR alpha was reduced further by ligand addition, in contrast to RAR alpha, which showed no change in mobility when ligand was added. Both the reduced baseline mobility of X-RAR alpha and the ligand-induced slowing of X-RAR alpha could be attributed to the protein interaction domain contained within X. RXR alpha aberrantly colocalized within each X-RAR alpha; colocalization of RXR alpha with promyelocytic leukemia (PML)-RAR alpha resulted in reduced mobility of RXR alpha. Thus, X-RAR alpha may interfere with RAR alpha through its aberrant nuclear dynamics, resulting in spatial and temporal sequestration of RXR alpha and perhaps other nuclear receptor coregulators critical for myeloid differentiation.
Collapse
MESH Headings
- Active Transport, Cell Nucleus
- Animals
- COS Cells
- Fluorescence Recovery After Photobleaching
- Green Fluorescent Proteins
- HeLa Cells
- Humans
- Leukemia, Promyelocytic, Acute/genetics
- Leukemia, Promyelocytic, Acute/metabolism
- Ligands
- Luminescent Proteins/genetics
- Luminescent Proteins/metabolism
- Microscopy, Fluorescence
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Promyelocytic Leukemia Protein
- Receptors, Retinoic Acid/genetics
- Receptors, Retinoic Acid/metabolism
- Retinoic Acid Receptor alpha
- Retinoid X Receptors
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Tumor Suppressor Proteins
Collapse
Affiliation(s)
- Shuo Dong
- Section of Infectious Disease, Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
11
|
Abstract
Forced dimerization or oligomerization has emerged as a powerful mechanism for unleashing the oncogenic properties of chimeric transcription factors in acute leukemias. Fusion of transcriptional regulators with a variety of heterologous partner proteins as a consequence of chromosomal rearrangements induces inappropriate self-association, leading to aberrant transcriptional properties and leukemogenesis. Forced dimerization/oligomerization may alter the association of a DNA-binding protein for its transcriptional cofactors, or the dimerization motifs themselves may constitutively recruit transcriptional effector molecules. Oligomerized chimeras may also sequester essential partners or cofactors to exert dominant-negative effects on target gene expression. A key mechanistic feature, and one with major clinical implications, is the nature of the transcriptional cofactors that are recruited by the dimerized oncoprotein. Chimeric RARalpha and acute myeloid leukemia 1 (AML1) proteins induce constitutive repression after the recruitment of corepressors, whereas inappropriate maintenance of target gene expression by mixed-lineage leukemia (MLL) chimeras may result from the recruitment of coactivators or the basal transcriptional machinery. Molecular therapies directed at enzymatic activities of the aberrantly recruited cofactors, or antagonism of dimerization itself, represent promising avenues of current and future investigation.
Collapse
Affiliation(s)
- Chi Wai So
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Dr, Stanford, CA 94305, USA.
| | | |
Collapse
|
12
|
Abstract
Nuclear receptors (also known as nuclear hormone receptors) are hormone-regulated transcription factors that control many important physiological and developmental processes in animals and humans. Defects in receptor function result in disease. The diverse biological roles of these receptors reflect their surprisingly versatile transcriptional properties, with many receptors possessing the ability to both repress and activate target gene expression. These bipolar transcriptional properties are mediated through the interactions of the receptors with two distinct classes of auxiliary proteins: corepressors and coactivators. This review focuses on how corepressors work together with nuclear receptors to repress gene transcription in the normal organism and on the aberrations in this process that lead to neoplasia and endocrine disorders. The actions of coactivators and the contributions of the same corepressors to the functions of nonreceptor transcription factors are also touched on.
Collapse
Affiliation(s)
- Martin L Privalsky
- Section of Microbiology, Division of Biological Sciences, University of California, Davis, California 95616, USA.
| |
Collapse
|
13
|
Abstract
Targeted therapies for hematological malignancies have come of age since the advent of all trans retinoic acid (ATRA) for treating APL and STI571/Imatinib Mesylate/Gleevec for CML. There are good molecular targets for other malignancies and several new drugs are in clinical trials. In this review, we will concentrate on individual abnormalities that exist in the myelodysplastic syndromes (MDS) and myeloid leukemias that are targets for small molecule therapies (summarised in Fig. 1). We will cover fusion proteins that are produced as a result of translocations, including BCR-ABL, the FLT3 tyrosine kinase receptor and RAS. Progression of diseases such as MDS to secondary AML occur as a result of changes in the balance between cell proliferation and apoptosis and we will review targets in both these areas, including reversal of epigenetic silencing of genes such as p15(INK4B).
Collapse
Affiliation(s)
- Alison M John
- Leukaemia Sciences Laboratories, Department of Haematological Medicine, Guy's, King's and St Thomas' School of Medicine, King's College London, The Rayne Institute, 123 Coldharbour Lane, London SE5 9NU, UK
| | | | | | | |
Collapse
|
14
|
Sirulnik A, Melnick A, Zelent A, Licht JD. Molecular pathogenesis of acute promyelocytic leukaemia and APL variants. Best Pract Res Clin Haematol 2003; 16:387-408. [PMID: 12935958 DOI: 10.1016/s1521-6926(03)00062-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
It has been 12 years since the simultaneous discovery of the unique sensitivity of acute promyelocytic leukaemia (APL) to differentiation therapy with all-trans retinoic acid (ATRA) and the discovery that the retinoic acid receptor alpha (RARalpha) gene was rearranged in APL. Nearly 98% of cases of APL are associated with t(15;17) chromosomal translocation and fusion of the PML gene to that encoding RARalpha to yield an abnormal receptor with the capability of de-regulating gene expression in the haematopoietic cell, causing differentiation block and eventually the development of leukaemia. Since this original discovery, four other translocations were described in APL. In each of these the RARalpha gene is fused to different partner genes, all yielding aberrant nuclear receptors. These fusion proteins share in common the ability to repress rather than activate retinoic acid targets, one so strongly that the result is an ATRA-resistant form of the disease. In addition each of the partner proteins is important for normal cell growth and development. In this chapter we explore the biology of the RARalpha, the fusion proteins created in APL and the normal forms of the partner proteins. Through continued study of this disease it is hoped that novel treatments, potentially more applicable to other forms of leukaemia, may arise.
Collapse
Affiliation(s)
- Andres Sirulnik
- Division of Hematology/Oncology, Department of Medicine, Mount Sinai School of Medicine, Box 1130, One Gustave L. Levy Place, New York, NY 10029, USA
| | | | | | | |
Collapse
|
15
|
So CW, Lin M, Ayton PM, Chen EH, Cleary ML. Dimerization contributes to oncogenic activation of MLL chimeras in acute leukemias. Cancer Cell 2003; 4:99-110. [PMID: 12957285 DOI: 10.1016/s1535-6108(03)00188-0] [Citation(s) in RCA: 163] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
MLL is a histone methyltransferase that can be converted into an oncoprotein by acquisition of transcriptional effector domains following heterologous protein fusions with a variety of nuclear transcription factors, cofactors, or chromatin remodeling proteins in acute leukemias. Here we demonstrate an alternative mechanism for activation of MLL following fusions with proteins (AF1p/Eps15 and GAS7) that normally reside in the cytoplasm. The coiled-coil oligomerization domains of these proteins are necessary and sufficient for leukemogenic transformation induced by the respective MLL fusion proteins. Furthermore, homodimerization of MLL by synthetic dimerization modules mimics bona fide MLL fusion proteins resulting in Hox gene activation and enhanced self-renewal of hematopoietic progenitors. Our studies support an oligomerization-dependent mechanism for oncogenic conversion of MLL, presumably in part by recruitment of accessory factors through the dimerized MLL moiety of the chimeric protein.
Collapse
Affiliation(s)
- Chi Wai So
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | |
Collapse
|
16
|
Redner RL. Variations on a theme: the alternate translocations in APL. Leukemia 2002; 16:1927-32. [PMID: 12357344 DOI: 10.1038/sj.leu.2402720] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2002] [Accepted: 06/21/2002] [Indexed: 11/08/2022]
Abstract
The t(15;17)(q22;q21) translocation is tightly linked to the APL phenotype, and the resultant PML-RAR fusion can be demonstrated in 98% of APL cases. Rare variant translocations have been reported, the majority of which on detailed analysis represent cryptic PML-RAR fusions. However, a handful of APL cases have been described with different genotypes. These include the t(11;17)(q23;q21) that produces the PLZF-RAR fusion, t(5;17)(q35;q21) that forms NPM-RAR, t(11;17)(q13;q21) that generates NUMA-RAR, and der(17) that creates STAT5b-RAR. In this review we will discuss these variant translocations, and discuss the insights that we have gained from their study.
Collapse
Affiliation(s)
- R L Redner
- Department of Medicine, University of Pittsburgh, PA 15213, USA
| |
Collapse
|
17
|
So CW, Cleary ML. MLL-AFX requires the transcriptional effector domains of AFX to transform myeloid progenitors and transdominantly interfere with forkhead protein function. Mol Cell Biol 2002; 22:6542-52. [PMID: 12192052 PMCID: PMC135648 DOI: 10.1128/mcb.22.18.6542-6552.2002] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2001] [Revised: 02/12/2002] [Accepted: 06/06/2002] [Indexed: 11/20/2022] Open
Abstract
MLL-AFX is a fusion gene created by t(X;11) chromosomal translocations in a subset of acute leukemias of either myeloid or lymphoid derivation. It codes for a chimeric protein consisting of MLL fused to AFX, a forkhead transcription factor that normally regulates genes involved in apoptosis and cell cycle progression. We demonstrate here that forced expression of MLL-AFX enhances the self-renewal of hematopoietic progenitors in vitro and induces acute myeloid leukemias after long latencies in syngeneic recipient mice. MLL-AFX interacts with the transcriptional coactivator CBP, which is also a fusion partner for MLL in human leukemias. A potent minimal transactivation domain (CR3) at the C terminus of AFX mediates interactions with the KIX domain of CBP and is necessary for transformation of myeloid progenitors by MLL-AFX. However, CR3 alone is not sufficient, suggesting that simple acquisition of a transactivation domain per se does not activate the oncogenic potential of MLL. Rather, two conserved transcriptional effector domains (CR2 and CR3) of AFX are required for full oncogenicity of MLL-AFX and also endow it with the potential to competitively interfere with transcription and apoptosis mediated by wild-type forkhead proteins. Furthermore, a dominant-negative mutant of AFX containing CR2 and CR3 enhances the growth of myeloid progenitors in vitro, although considerably less effectively than does MLL-AFX. Taken together, these data suggest that recruitment of transcriptional cofactors utilized by forkhead proteins is a critical requirement for oncogenic action of MLL-AFX, which may impact both MLL- and forkhead-dependent transcriptional pathways.
Collapse
Affiliation(s)
- Chi Wai So
- Department of Pathology, Stanford University School of Medicine, California 94305, USA
| | | |
Collapse
|
18
|
Dong S, Tweardy DJ. Interactions of STAT5b-RARalpha, a novel acute promyelocytic leukemia fusion protein, with retinoic acid receptor and STAT3 signaling pathways. Blood 2002; 99:2637-46. [PMID: 11929748 DOI: 10.1182/blood.v99.8.2637] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Signal transducer and activator of transcription (STAT) 5b-retinoic acid receptor (RAR) alpha is the fifth fusion protein identified in acute promyelocytic leukemia (APL). Initially described in a patient with all-trans retinoic acid (ATRA)-unresponsive disease, STAT5b-RARalpha resulted from an interstitial deletion on chromosome 17. To determine the molecular mechanisms of myeloid leukemogenesis and maturation arrest in STAT5b-RARalpha(+) APL and its unresponsiveness to ATRA, we examined the effect of STAT5b-RARalpha on the activity of myeloid transcription factors including RARalpha/retinoid X receptor (RXR) alpha, STAT3, and STAT5 as well as its molecular interactions with the nuclear receptor corepressor, SMRT, and nuclear receptor coactivator, TRAM-1. STAT5b-RARalpha bound to retinoic acid response elements (RAREs) both as a homodimer and as a heterodimer with RXRalpha and inhibited wild-type RARalpha/RXRalpha transactivation. Although STAT5b-RARalpha had no effect on ligand-induced STAT5b activation, it enhanced interleukin 6-induced STAT3-dependent reporter activity, an effect shared by other APL fusion proteins including promyelocytic leukemia-RARalpha and promyelocytic leukemia zinc finger (PLZF)-RARalpha. SMRT was released from STAT5b-RARalpha/SMRT complexes by ATRA at 10(-6) M, whereas TRAM-1 became associated with STAT5b-RARalpha at 10(-7) M. The coiled-coil domain of STAT5b was required for formation of STAT5b-RARalpha homodimers, for the inhibition of RARalpha/RXRalpha transcriptional activity, and for stability of the STAT5b-RARalpha/SMRT complex. Thus, STAT5b-RARalpha contributes to myeloid maturation arrest by binding to RARE as either a homodimer or as a heterodimer with RXRalpha resulting in the recruitment of SMRT and inhibition of RARalpha/RXRalpha transcriptional activity. In addition, STAT5b-RARalpha and other APL fusion proteins may contribute to leukemogenesis by interaction with the STAT3 oncogene pathway.
Collapse
MESH Headings
- DNA-Binding Proteins/chemistry
- DNA-Binding Proteins/drug effects
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- DNA-Binding Proteins/physiology
- Dimerization
- Drug Interactions
- Drug Resistance
- Humans
- Leukemia, Promyelocytic, Acute/etiology
- Leukemia, Promyelocytic, Acute/genetics
- Milk Proteins
- Nuclear Receptor Co-Repressor 2
- Nuclear Receptor Coactivator 3
- Oncogene Proteins, Fusion/chemistry
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Oncogene Proteins, Fusion/pharmacology
- Protein Structure, Tertiary
- Receptors, Retinoic Acid/genetics
- Receptors, Retinoic Acid/metabolism
- Receptors, Retinoic Acid/physiology
- Repressor Proteins/drug effects
- Repressor Proteins/metabolism
- Response Elements
- Retinoic Acid Receptor alpha
- Retinoid X Receptors
- STAT3 Transcription Factor
- STAT5 Transcription Factor
- Signal Transduction
- Trans-Activators/chemistry
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Trans-Activators/physiology
- Transcription Factors/drug effects
- Transcription Factors/metabolism
- Transcription, Genetic/drug effects
- Transfection
- Tretinoin/pharmacology
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Shuo Dong
- Section of Infectious Disease, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | | |
Collapse
|
19
|
Zelent A, Guidez F, Melnick A, Waxman S, Licht JD. Translocations of the RARalpha gene in acute promyelocytic leukemia. Oncogene 2001; 20:7186-203. [PMID: 11704847 DOI: 10.1038/sj.onc.1204766] [Citation(s) in RCA: 179] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Acute promyelocytic leukemia (APL) has been recognized as a distinct clinical entity for over 40 years. Although relatively rare among hematopoietic malignancies (approximately 10% of AML cases), this disease has attracted a particularly good share of attention by becoming the first human cancer in which all-trans-retinoic acid (ATRA), a physiologically active derivative of vitamin A, was able to induce complete remission (CR). ATRA induced remission is not associated with rapid cell death, as in the case of conventional chemotherapy, but with a restoration of the 'normal' granulocytic differentiation pathway. With this remarkable medical success story APL has overnight become a paradigm for the differentiation therapy of cancer. A few years later, excitement with APL was further enhanced by the discovery that a cytogenetic marker for this disease, the t(15:17) reciprocal chromosomal translocation, involves a fusion between the retinoic acid receptor alpha (RARalpha) gene and a previously unknown locus named promyelocytic leukemia (PML). Consequence of this gene rearrangement is expression of the PML-RARalpha chimeric oncoprotein, which is responsible for the cellular transformation as well as ATRA response that is observed in APL. Since this initial discovery, a number of different translocation partner genes of RARalpha have been reported in rarer cases of APL, strongly suggesting that disruption of RARalpha underlies its pathogenesis. This article reviews various rearrangements of the RARalpha gene that have so far been described in literature, functions of the proteins encoded by the different RARalpha partner loci, and implications that these may have for the molecular pathogenesis of APL.
Collapse
Affiliation(s)
- A Zelent
- Leukemia Research Fund Centre at the Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK.
| | | | | | | | | |
Collapse
|
20
|
Benoit G, Roussel M, Pendino F, Ségal-Bendirdjian E, Lanotte M. Orchestration of multiple arrays of signal cross-talk and combinatorial interactions for maturation and cell death: another vision of t(15;17) preleukemic blast and APL-cell maturation. Oncogene 2001; 20:7161-77. [PMID: 11704845 DOI: 10.1038/sj.onc.1204760] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Despite intensive molecular biology investigations over the past 10 years, and an important breakthrough on how PML-RARalpha, the fusion protein resulting from t(15;17), can alter RARalpha and PML functions, no definitive views on how leukemia is generated and by what mechanism(s) the normal phenotype is restored, are yet available. 'Resistances' to pharmacological levels of all-trans-retinoic acid (ATRA) have been observed in experimental in vivo and in vitro models. In this review, we emphasize the key role played by signal cross-talk for both normal and neoplastic hemopoiesis. After an overview of reported experimental data on APL-cell maturation and apoptosis, we apply our current knowledge on signaling pathways to underline those which might generate signal cross-talks. The design of biological models suitable to decipher the integration of signal cross-talks at the transcriptional level should be our first priority today, to generate some realistic therapeutic approaches After 'Ten Years of Molecular APL', we still know very little about how the disease develops and how effective medicines work.
Collapse
MESH Headings
- Apoptosis
- Bone Marrow Cells/metabolism
- Bone Marrow Cells/pathology
- Cell Differentiation
- Cell Transformation, Neoplastic/pathology
- Disease Progression
- Hematopoiesis
- Humans
- Leukemia, Promyelocytic, Acute/etiology
- Leukemia, Promyelocytic, Acute/pathology
- Leukemia, Promyelocytic, Acute/physiopathology
- Neoplasm Proteins/metabolism
- Oncogene Proteins, Fusion/metabolism
- Receptor Cross-Talk
- Receptors, Retinoic Acid/metabolism
- Retinoid X Receptors
- Signal Transduction
- Stem Cells/metabolism
- Stem Cells/pathology
- Transcription Factors/metabolism
- Translocation, Genetic
Collapse
Affiliation(s)
- G Benoit
- INSERM U-496, Hôpital Saint-Louis, 1, avenue Claude-Vellefaux, 75010 Paris, France
| | | | | | | | | |
Collapse
|
21
|
Abstract
Chromosomal translocations involving transcription factors and aberrant expression of transcription factors are frequently associated with leukemogenesis. Transcription factors are essential in maintaining the regulation of cell growth, development, and differentiation in the hematopoietic system. Alterations in the mechanisms that normally control these functions can lead to hematological malignancies. Further characterization of the molecular biology of leukemia will enhance our ability to develop disease-specific treatment strategies, and to develop effective methods of diagnosis and prognosis.
Collapse
Affiliation(s)
- H N Crans
- Department of Pediatrics, UCLA School of Medicine and Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA
| | | |
Collapse
|
22
|
Parrado A, Chomienne C, Padua RA. Retinoic acid receptor alpha (RAralpha) Mutations in Human Leukemia. Leuk Lymphoma 2000; 39:271-82. [PMID: 11342307 DOI: 10.3109/10428190009065826] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The retinoic acid receptor alpha (RARalpha) plays a central role in the biology of the myeloid cellular compartment. Chromosomal translocations involving the RARalpha locus probably represent the malignant initiating events in acute promyelocytic leukemia (APL). Recent studies that identify novel interactions between RARalpha and the nuclear receptor co-activators and co-repressors, new functions of the oncogenic RARalpha fusion proteins and their catabolism in retinoic acid-induced differentiation, and the availability of new transgenic mice models have provided important insights into our understanding of the mechanisms by which mutant forms of RARalpha can be implicated in the development of leukemia. Novel alterations of the RARalpha gene identified in hematopoietic malignant disorders other than APL, such as myelodysplastic syndromes, non-APL acute myeloid leukemias and B-chronic lymphocytic leukemias, suggest that disruption of the RARalpha gene might predispose to myeloid and lymphoid disorders.
Collapse
Affiliation(s)
- A Parrado
- Laboratoire de Biologie Cellulaire Hématopoïétique, Institut d'Hématologie, Hôpital Saint-Louis, Paris, France
| | | | | |
Collapse
|
23
|
Zhang JW, Wang JY, Chen SJ, Chen Z. Mechanisms of all-trans retinoic acid-induced differentiation of acute promyelocytic leukemia cells. J Biosci 2000; 25:275-84. [PMID: 11022230 DOI: 10.1007/bf02703936] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Retinoic acids (RA) play a key role in myeloid differentiation through their agonistic nuclear receptors (RAR alpha/RXR) to modulate the expression of target genes. In acute promyelocytic leukemia (APL) cells with rearrangement of retinoic acid receptor a (RAR alpha) (including: PML-RAR alpha, PLZF-RAR alpha, NPM-RAR alpha, NuMA- RAR alpha or STAT5b-RAR alpha) as a result of chromosomal translocations, the RA signal pathway is disrupted and myeloid differentiation is arrested at the promyelocytic stage. Pharmacologic dosage of all-trans retinoic acid (ATRA) directly modulates PML-RAR alpha and its interaction with the nuclear receptor co-repressor complex, which restores the wild-type RAR alpha/RXR regulatory pathway and induces the transcriptional expression of downstream genes. Analysing gene expression profiles in APL cells before and after ATRA treatment represents a useful approach to identify genes whose functions are involved in this new cancer treatment. A chronologically well coordinated modulation of ATRA-regulated genes has thus been revealed which seems to constitute a balanced functional network underlying decreased cellular proliferation, initiation and progression of maturation, and maintenance of cell survival before terminal differentiation.
Collapse
MESH Headings
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Cell Differentiation/drug effects
- Gene Expression Regulation, Leukemic/drug effects
- HL-60 Cells/cytology
- HL-60 Cells/drug effects
- Humans
- Leukemia, Promyelocytic, Acute/drug therapy
- Leukemia, Promyelocytic, Acute/genetics
- Leukemia, Promyelocytic, Acute/pathology
- Neoplasm Proteins/drug effects
- Neoplasm Proteins/genetics
- Neoplasm Proteins/physiology
- Nuclear Proteins/physiology
- Nuclear Receptor Co-Repressor 1
- Oncogene Proteins, Fusion/drug effects
- Oncogene Proteins, Fusion/genetics
- Receptors, Retinoic Acid/agonists
- Receptors, Retinoic Acid/genetics
- Receptors, Retinoic Acid/physiology
- Repressor Proteins/physiology
- Retinoic Acid Receptor alpha
- Retinoid X Receptors
- Signal Transduction/drug effects
- Transcription Factors/physiology
- Transcription, Genetic/drug effects
- Translocation, Genetic
- Tretinoin/pharmacology
- Tretinoin/therapeutic use
- Tumor Cells, Cultured/cytology
- Tumor Cells, Cultured/drug effects
Collapse
Affiliation(s)
- J W Zhang
- Shanghai Institute of Hematology, Ruijin Hospital Affiliated to Shanghai Second Medical University, 197 Ruijin Road II, Shanghai 200 025, People's Republic of China
| | | | | | | |
Collapse
|
24
|
Drexler HG, Gignac SM, von Wasielewski R, Werner M, Dirks WG. Pathobiology of NPM-ALK and variant fusion genes in anaplastic large cell lymphoma and other lymphomas. Leukemia 2000; 14:1533-59. [PMID: 10994999 DOI: 10.1038/sj.leu.2401878] [Citation(s) in RCA: 154] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Despite its clinical and histological heterogeneity, anaplastic large cell lymphoma (ALCL) is now a well-recognized clinicopathological entity accounting for 2% of all adult non-Hodgkin's lymphomas (NHL) and about 13% of pediatric NHL. Immunophenotypically, ALCL are of T cell (predominantly) or Null cell type; by definition, cases expressing B cell antigens are officially not included in this entity. The translocation (2;5)(p23;q35) is a recurring abnormality in ALCL; 46% of the ALCL patients bear this signature translocation. This translocation creates a fusion gene composed of nucleophosmin (NPM) and a novel receptor tyrosine kinase gene, named anaplastic lymphoma kinase (ALK). The NPM-ALK chimeric gene encodes a constitutively activated tyrosine kinase that has been shown to be a potent oncogene. The exact pathogenetic mechanisms leading to lymphomagenesis remain elusive; however, the synopsis of evidence obtained to date provides an outline of likely scenarios. Several t(2;5) variants have been described; in some instances, the breakpoints have been cloned and the genes forming a new fusion gene with ALK have been identified: ATIC-ALK, TFG-ALK and TPM3-ALK. Cloning the translocation breakpoint and identifying the ALK and NPM genes provided tools for screening material from patients with ALCL using various approaches at the chromosome, DNA, RNA, or protein level: positive signals in the reverse transcriptase-polymerase chain reaction (RT-PCR) and the immunostaining with anti-ALK monoclonal antibodies (McAb) serve as the most convenient tests for detection of the t(2;5) NPM-ALK since the fusion gene and ALK protein expression do not occur in normal or reactive lymphoid tissue. The wide range of NPM-ALK positivity reported in different series appears to be dependent on the inclusion and selection criteria of the ALCL cases studied. Overall, however, 43% of ALCL cases were NPM-ALK+ (83% of pediatric ALCL vs 31% of adult ALCL). Occasional non-ALCL B cell lymphomas (4%) with diffuse large cell and immunoblastic histology and Hodgkin's disease cases (3%) were NPM-ALK-, but these data are questionable. The aggregate results indicate that, in contrast to primary nodal (systemic) ALCL, the t(2;5) may be present in only 10-20% of primary cutaneous ALCL and rarely, if at all, in lymphomatoid papulosis, a potential precursor lesion; however, these 10-20% positive cases were not confirmed by anti-ALK McAb immunostaining and may represent an overestimate. Positivity for NPM-ALK is associated to various degrees with the following parameters: 44% and 45% of ALCL cases with T cell and Null cell immunophenotype, respectively, are positive, whereas only 8% of cases with a B cell immunoprofile are positive; the mean age of positive patients is significantly younger than that of negative patients; positive cases carry a better overall prognosis (but not in all studies). Recently, the homogenous category of ALK lymphoma ('ALKoma') has emerged as a distinct pathological entity within the heterogenous group of ALCL. The fact that patients with ALK lymphomas experience significantly better overall survival than ALK- ALCL demonstrates further that analysis of ALK expression has important prognostic implications. The term ALK lymphoma signifies a switch in the use of the diagnostic criteria: cases are selected on the basis of a genetic abnormality (the ALK rearrangement), instead of the review of morphological or immunophenotypical features which are clearly more prone to disagreement and controversy. Since its initial description in 1985 ALCL has become one of the best characterized lymphoma entities.
Collapse
MESH Headings
- Age Factors
- Anaplastic Lymphoma Kinase
- Hodgkin Disease/genetics
- Humans
- Immunophenotyping
- Lymphoma, Large B-Cell, Diffuse/diagnosis
- Lymphoma, Large B-Cell, Diffuse/epidemiology
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/pathology
- Nuclear Proteins/genetics
- Nuclear Proteins/physiology
- Nucleophosmin
- Prognosis
- Protein-Tyrosine Kinases/genetics
- Protein-Tyrosine Kinases/physiology
- Receptor Protein-Tyrosine Kinases
- Recombinant Fusion Proteins/genetics
- Translocation, Genetic
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- H G Drexler
- DSMZ-German Collection of Microorganisms and Cell Cultures, Department of Human and Animal Cell Cultures, Braunschweig
| | | | | | | | | |
Collapse
|