1
|
Brindle A, Bainbridge C, Kumar MR, Todryk S, Padget K. The Bisdioxopiperazine ICRF-193 Attenuates LPS-induced IL-1β Secretion by Macrophages. Inflammation 2024; 47:84-98. [PMID: 37656316 PMCID: PMC10798930 DOI: 10.1007/s10753-023-01895-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/25/2023] [Accepted: 08/18/2023] [Indexed: 09/02/2023]
Abstract
Inhibiting pathological secretion of Interleukin-1β has shown beneficial effects in disease models and in the clinic and thus there is interest in finding inhibitors that can reduce its release from macrophages in response to their activation by foreign pathogens. We used an in vitro human macrophage model to investigate whether ICRF-193, a Topoisomerase II inhibitor could modulate IL1B mRNA expression and IL-1β secretion. These macrophage-like cells readily secrete IL-1β in response to Lipopolysaccharide (LPS). Upon exposure to a non-toxic dose of ICRF-193, IL-1β secretion was diminished by ~ 40%; however, level of transcription of IL1B was unaffected. We show that there was no Topoisomerase 2B (TOP2B) binding to several IL1B gene sites, which may explain why ICRF-193 does not alter IL1B mRNA levels. Hence, we show for the first time that ICRF-193 can reduce IL-1β secretion. Its low cost and the development of water-soluble prodrugs of ICRF-193 warrants its further investigation in the modulation of pathological secretion of this cytokine for the treatment of inflammatory disorders. (165 words).
Collapse
Affiliation(s)
- Ashleigh Brindle
- Faculty of Health and Life Sciences, Northumbria University at Newcastle, Newcastle Upon Tyne, NE1 8ST, UK
| | - Callum Bainbridge
- Faculty of Health and Life Sciences, Northumbria University at Newcastle, Newcastle Upon Tyne, NE1 8ST, UK
| | - Muganti R Kumar
- Faculty of Health and Life Sciences, Northumbria University at Newcastle, Newcastle Upon Tyne, NE1 8ST, UK
| | - Stephen Todryk
- Faculty of Health and Life Sciences, Northumbria University at Newcastle, Newcastle Upon Tyne, NE1 8ST, UK.
| | - Kay Padget
- Faculty of Health and Life Sciences, Northumbria University at Newcastle, Newcastle Upon Tyne, NE1 8ST, UK
| |
Collapse
|
2
|
Bartas M, Slychko K, Červeň J, Pečinka P, Arndt-Jovin DJ, Jovin TM. Extensive Bioinformatics Analyses Reveal a Phylogenetically Conserved Winged Helix (WH) Domain (Zτ) of Topoisomerase IIα, Elucidating Its Very High Affinity for Left-Handed Z-DNA and Suggesting Novel Putative Functions. Int J Mol Sci 2023; 24:10740. [PMID: 37445918 DOI: 10.3390/ijms241310740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/13/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
The dynamic processes operating on genomic DNA, such as gene expression and cellular division, lead inexorably to topological challenges in the form of entanglements, catenanes, knots, "bubbles", R-loops, and other outcomes of supercoiling and helical disruption. The resolution of toxic topological stress is the function attributed to DNA topoisomerases. A prominent example is the negative supercoiling (nsc) trailing processive enzymes such as DNA and RNA polymerases. The multiple equilibrium states that nscDNA can adopt by redistribution of helical twist and writhe include the left-handed double-helical conformation known as Z-DNA. Thirty years ago, one of our labs isolated a protein from Drosophila cells and embryos with a 100-fold greater affinity for Z-DNA than for B-DNA, and identified it as topoisomerase II (gene Top2, orthologous to the human UniProt proteins TOP2A and TOP2B). GTP increased the affinity and selectivity for Z-DNA even further and also led to inhibition of the isomerase enzymatic activity. An allosteric mechanism was proposed, in which topoII acts as a Z-DNA-binding protein (ZBP) to stabilize given states of topological (sub)domains and associated multiprotein complexes. We have now explored this possibility by comprehensive bioinformatic analyses of the available protein sequences of topoII representing organisms covering the whole tree of life. Multiple alignment of these sequences revealed an extremely high level of evolutionary conservation, including a winged-helix protein segment, here denoted as Zτ, constituting the putative structural homolog of Zα, the canonical Z-DNA/Z-RNA binding domain previously identified in the interferon-inducible RNA Adenosine-to-Inosine-editing deaminase, ADAR1p150. In contrast to Zα, which is separate from the protein segment responsible for catalysis, Zτ encompasses the active site tyrosine of topoII; a GTP-binding site and a GxxG sequence motif are in close proximity. Quantitative Zτ-Zα similarity comparisons and molecular docking with interaction scoring further supported the "B-Z-topoII hypothesis" and has led to an expanded mechanism for topoII function incorporating the recognition of Z-DNA segments ("Z-flipons") as an inherent and essential element. We further propose that the two Zτ domains of the topoII homodimer exhibit a single-turnover "conformase" activity on given G(ate) B-DNA segments ("Z-flipins"), inducing their transition to the left-handed Z-conformation. Inasmuch as the topoII-Z-DNA complexes are isomerase inactive, we infer that they fulfill important structural roles in key processes such as mitosis. Topoisomerases are preeminent targets of anti-cancer drug discovery, and we anticipate that detailed elucidation of their structural-functional interactions with Z-DNA and GTP will facilitate the design of novel, more potent and selective anti-cancer chemotherapeutic agents.
Collapse
Affiliation(s)
- Martin Bartas
- Department of Biology and Ecology, University of Ostrava, 710 00 Ostrava, Czech Republic
| | - Kristyna Slychko
- Department of Biology and Ecology, University of Ostrava, 710 00 Ostrava, Czech Republic
| | - Jiří Červeň
- Department of Biology and Ecology, University of Ostrava, 710 00 Ostrava, Czech Republic
| | - Petr Pečinka
- Department of Biology and Ecology, University of Ostrava, 710 00 Ostrava, Czech Republic
| | - Donna J Arndt-Jovin
- Emeritus Laboratory of Cellular Dynamics, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Thomas M Jovin
- Emeritus Laboratory of Cellular Dynamics, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| |
Collapse
|
3
|
Le TT, Wu M, Lee JH, Bhatt N, Inman JT, Berger JM, Wang MD. Etoposide promotes DNA loop trapping and barrier formation by topoisomerase II. Nat Chem Biol 2023; 19:641-650. [PMID: 36717711 PMCID: PMC10154222 DOI: 10.1038/s41589-022-01235-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 11/22/2022] [Indexed: 01/31/2023]
Abstract
Etoposide is a broadly employed chemotherapeutic and eukaryotic topoisomerase II poison that stabilizes cleaved DNA intermediates to promote DNA breakage and cytotoxicity. How etoposide perturbs topoisomerase dynamics is not known. Here we investigated the action of etoposide on yeast topoisomerase II, human topoisomerase IIα and human topoisomerase IIβ using several sensitive single-molecule detection methods. Unexpectedly, we found that etoposide induces topoisomerase to trap DNA loops, compacting DNA and restructuring DNA topology. Loop trapping occurs after ATP hydrolysis but before strand ejection from the enzyme. Although etoposide decreases the innate stability of topoisomerase dimers, it increases the ability of the enzyme to act as a stable roadblock. Interestingly, the three topoisomerases show similar etoposide-mediated resistance to dimer separation and sliding along DNA but different abilities to compact DNA and chirally relax DNA supercoils. These data provide unique mechanistic insights into the functional consequences of etoposide on topoisomerase II dynamics.
Collapse
Affiliation(s)
- Tung T Le
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY, USA
- Department of Physics and LASSP, Cornell University, Ithaca, NY, USA
| | - Meiling Wu
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY, USA
- Department of Physics and LASSP, Cornell University, Ithaca, NY, USA
| | - Joyce H Lee
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Neti Bhatt
- Department of Physics and LASSP, Cornell University, Ithaca, NY, USA
| | - James T Inman
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY, USA
- Department of Physics and LASSP, Cornell University, Ithaca, NY, USA
| | - James M Berger
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michelle D Wang
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY, USA.
- Department of Physics and LASSP, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
4
|
Cowell IG, Austin CA. DNA fragility at the KMT2A/ MLL locus: insights from old and new technologies. Open Biol 2023; 13:220232. [PMID: 36629017 PMCID: PMC9832561 DOI: 10.1098/rsob.220232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The Mixed-Lineage Leukaemia (MLL/KMT2A) gene is frequently rearranged in childhood and adult acute leukaemia (AL) and in secondary leukaemias occurring after therapy with DNA topoisomerase targeting anti-cancer agents such as etoposide (t-AL). MLL/KMT2A chromosome translocation break sites in AL patients fall within an 8 kb breakpoint cluster region (BCR). Furthermore, MLL/KMT2A break sites in t-AL frequently occur in a much smaller region, or hotspot, towards the 3' end of the BCR, close to the intron 11/exon 12 boundary. These findings have prompted considerable effort to uncover mechanisms behind the apparent fragility of the BCR and particularly the t-AL hotspot. Recent genome-wide analyses have demonstrated etoposide-induced DNA cleavage within the BCR, and it is tempting to conclude that this cleavage explains the distribution of translocation break sites in t-AL. However, the t-AL hotspot and the centre of the observed preferential DNA cleavage are offset by over 250 nucleotides, suggesting additional factors contribute to the distribution of t-AL break sites. We review these recent genomic datasets along with older experimental results, analysis of TOP2 DNA cleavage site preferences and DNA secondary structure features that may lead to break site selection in t-AL MLL/KMT2A translocations.
Collapse
Affiliation(s)
- Ian G. Cowell
- Biosciences Institute, The Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Caroline A. Austin
- Biosciences Institute, The Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
5
|
Jeong J, Lee JH, Carcamo CC, Parker MW, Berger JM. DNA-Stimulated Liquid-Liquid phase separation by eukaryotic topoisomerase ii modulates catalytic function. eLife 2022; 11:e81786. [PMID: 36342377 PMCID: PMC9674351 DOI: 10.7554/elife.81786] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 11/06/2022] [Indexed: 11/09/2022] Open
Abstract
Type II topoisomerases modulate chromosome supercoiling, condensation, and catenation by moving one double-stranded DNA segment through a transient break in a second duplex. How DNA strands are chosen and selectively passed to yield appropriate topological outcomes - for example, decatenation vs. catenation - is poorly understood. Here, we show that at physiological enzyme concentrations, eukaryotic type IIA topoisomerases (topo IIs) readily coalesce into condensed bodies. DNA stimulates condensation and fluidizes these assemblies to impart liquid-like behavior. Condensation induces both budding yeast and human topo IIs to switch from DNA unlinking to active DNA catenation, and depends on an unstructured C-terminal region, the loss of which leads to high levels of knotting and reduced catenation. Our findings establish that local protein concentration and phase separation can regulate how topo II creates or dissolves DNA links, behaviors that can account for the varied roles of the enzyme in supporting transcription, replication, and chromosome compaction.
Collapse
Affiliation(s)
- Joshua Jeong
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Joyce H Lee
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Claudia C Carcamo
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Matthew W Parker
- Department of Biophysics, University of Texas Southwestern Medical CenterDallasUnited States
| | - James M Berger
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of MedicineBaltimoreUnited States
| |
Collapse
|
6
|
Khazeem MM, Casement JW, Schlossmacher G, Kenneth NS, Sumbung NK, Chan JYT, McGow JF, Cowell IG, Austin CA. TOP2B Is Required to Maintain the Adrenergic Neural Phenotype and for ATRA-Induced Differentiation of SH-SY5Y Neuroblastoma Cells. Mol Neurobiol 2022; 59:5987-6008. [PMID: 35831557 PMCID: PMC9463316 DOI: 10.1007/s12035-022-02949-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 06/23/2022] [Indexed: 12/13/2022]
Abstract
The neuroblastoma cell line SH-SY5Y is widely used to study retinoic acid (RA)-induced gene expression and differentiation and as a tool to study neurodegenerative disorders. SH-SY5Y cells predominantly exhibit adrenergic neuronal properties, but they can also exist in an epigenetically interconvertible alternative state with more mesenchymal characteristics; as a result, these cells can be used to study gene regulation circuitry controlling neuroblastoma phenotype. Using a combination of pharmacological inhibition and targeted gene inactivation, we have probed the requirement for DNA topoisomerase IIB (TOP2B) in RA-induced gene expression and differentiation and in the balance between adrenergic neuronal versus mesenchymal transcription programmes. We found that expression of many, but not all genes that are rapidly induced by ATRA in SH-SY5Y cells was significantly reduced in the TOP2B null cells; these genes include BCL2, CYP26A1, CRABP2, and NTRK2. Comparing gene expression profiles in wild-type versus TOP2B null cells, we found that long genes and genes expressed at a high level in WT SH-SY5Y cells were disproportionately dependent on TOP2B. Notably, TOP2B null SH-SY5Y cells upregulated mesenchymal markers vimentin (VIM) and fibronectin (FN1) and components of the NOTCH signalling pathway. Enrichment analysis and comparison with the transcription profiles of other neuroblastoma-derived cell lines supported the conclusion that TOP2B is required to fully maintain the adrenergic neural-like transcriptional signature of SH-SY5Y cells and to suppress the alternative mesenchymal epithelial-like epigenetic state.
Collapse
Affiliation(s)
- Mushtaq M Khazeem
- The Faculty of Medical Sciences, Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.,National Center of Hematology, Mustansiriyah University, Baghdad, Iraq
| | - John W Casement
- Bioinformatics Support Unit, The Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - George Schlossmacher
- The Faculty of Medical Sciences, Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Niall S Kenneth
- The Faculty of Medical Sciences, Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.,Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Nielda K Sumbung
- The Faculty of Medical Sciences, Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Janice Yuen Tung Chan
- The Faculty of Medical Sciences, Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Jade F McGow
- The Faculty of Medical Sciences, Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Ian G Cowell
- The Faculty of Medical Sciences, Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
| | - Caroline A Austin
- The Faculty of Medical Sciences, Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
| |
Collapse
|
7
|
Michieletto D, Fosado YAG, Melas E, Baiesi M, Tubiana L, Orlandini E. Dynamic and facilitated binding of topoisomerase accelerates topological relaxation. Nucleic Acids Res 2022; 50:4659-4668. [PMID: 35474478 PMCID: PMC9071436 DOI: 10.1093/nar/gkac260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 03/28/2022] [Accepted: 04/21/2022] [Indexed: 12/24/2022] Open
Abstract
How type 2 Topoisomerase (TopoII) proteins relax and simplify the topology of DNA molecules is one of the most intriguing open questions in genome and DNA biophysics. Most of the existing models neglect the dynamics of TopoII which is expected of proteins searching their targets via facilitated diffusion. Here, we show that dynamic binding of TopoII speeds up the topological relaxation of knotted substrates by enhancing the search of the knotted arc. Intriguingly, this in turn implies that the timescale of topological relaxation is virtually independent of the substrate length. We then discover that considering binding biases due to facilitated diffusion on looped substrates steers the sampling of the topological space closer to the boundaries between different topoisomers yielding an optimally fast topological relaxation. We discuss our findings in the context of topological simplification in vitro and in vivo.
Collapse
Affiliation(s)
| | | | - Elias Melas
- School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK
| | - Marco Baiesi
- Department of Physics and Astronomy, University of Padova, Via Marzolo 8, I-35131 Padova, Italy,INFN, Sezione di Padova, Via Marzolo 8, I-35131 Padova, Italy
| | - Luca Tubiana
- Physics Department, University of Trento, via Sommarive 14, I-38123 Trento, Italy,INFN-TIFPA, Trento Institute for Fundamental Physics and Applications, I-38123 Trento, Italy,Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria
| | - Enzo Orlandini
- Department of Physics and Astronomy, University of Padova, Via Marzolo 8, I-35131 Padova, Italy,INFN, Sezione di Padova, Via Marzolo 8, I-35131 Padova, Italy
| |
Collapse
|
8
|
Vann KR, Oviatt AA, Osheroff N. Topoisomerase II Poisons: Converting Essential Enzymes into Molecular Scissors. Biochemistry 2021; 60:1630-1641. [PMID: 34008964 PMCID: PMC8209676 DOI: 10.1021/acs.biochem.1c00240] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The extensive length, compaction, and interwound nature of DNA, together with its controlled and restricted movement in eukaryotic cells, create a number of topological issues that profoundly affect all of the functions of the genetic material. Topoisomerases are essential enzymes that modulate the topological structure of the double helix, including the regulation of DNA under- and overwinding and the removal of tangles and knots from the genome. Type II topoisomerases alter DNA topology by generating a transient double-stranded break in one DNA segment and allowing another segment to pass through the DNA gate. These enzymes are involved in a number of critical nuclear processes in eukaryotic cells, such as DNA replication, transcription, and recombination, and are required for proper chromosome structure and segregation. However, because type II topoisomerases generate double-stranded breaks in the genetic material, they also are intrinsically dangerous enzymes that have the capacity to fragment the genome. As a result of this dualistic nature, type II topoisomerases are the targets for a number of widely prescribed anticancer drugs. This article will describe the structure and catalytic mechanism of eukaryotic type II topoisomerases and will go on to discuss the actions of topoisomerase II poisons, which are compounds that stabilize DNA breaks generated by the type II enzyme and convert these essential enzymes into "molecular scissors." Topoisomerase II poisons represent a broad range of structural classes and include anticancer drugs, dietary components, and environmental chemicals.
Collapse
Affiliation(s)
- Kendra R Vann
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Alexandria A Oviatt
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Neil Osheroff
- Departments of Biochemistry and Medicine (Hematology/Oncology), Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- VA Tennessee Valley Healthcare System, Nashville, Tennessee 37212, United States
| |
Collapse
|
9
|
Radaeva M, Dong X, Cherkasov A. The Use of Methods of Computer-Aided Drug Discovery in the Development of Topoisomerase II Inhibitors: Applications and Future Directions. J Chem Inf Model 2020; 60:3703-3721. [DOI: 10.1021/acs.jcim.0c00325] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Mariia Radaeva
- Vancouver Prostate Centre, University of British Columbia, 2660 Oak Street, Vancouver, British Columbia V6H 3Z6, Canada
| | - Xuesen Dong
- Vancouver Prostate Centre, University of British Columbia, 2660 Oak Street, Vancouver, British Columbia V6H 3Z6, Canada
| | - Artem Cherkasov
- Vancouver Prostate Centre, University of British Columbia, 2660 Oak Street, Vancouver, British Columbia V6H 3Z6, Canada
| |
Collapse
|
10
|
Marinello J, Delcuratolo M, Capranico G. Anthracyclines as Topoisomerase II Poisons: From Early Studies to New Perspectives. Int J Mol Sci 2018; 19:ijms19113480. [PMID: 30404148 PMCID: PMC6275052 DOI: 10.3390/ijms19113480] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/01/2018] [Accepted: 11/05/2018] [Indexed: 12/22/2022] Open
Abstract
Mammalian DNA topoisomerases II are targets of anticancer anthracyclines that act by stabilizing enzyme-DNA complexes wherein DNA strands are cut and covalently linked to the protein. This molecular mechanism is the molecular basis of anthracycline anticancer activity as well as the toxic effects such as cardiomyopathy and induction of secondary cancers. Even though anthracyclines have been used in the clinic for more than 50 years for solid and blood cancers, the search of breakthrough analogs has substantially failed. The recent developments of personalized medicine, availability of individual genomic information, and immune therapy are expected to change significantly human cancer therapy. Here, we discuss the knowledge of anthracyclines as Topoisomerase II poisons, their molecular and cellular effects and toxicity along with current efforts to improve the therapeutic index. Then, we discuss the contribution of the immune system in the anticancer activity of anthracyclines, and the need to increase our knowledge of molecular mechanisms connecting the drug targets to the immune stimulatory pathways in cancer cells. We propose that the complete definition of the molecular interaction of anthracyclines with the immune system may open up more effective and safer ways to treat patients with these drugs.
Collapse
Affiliation(s)
- Jessica Marinello
- Department of Pharmacy and Biotechnology, University of Bologna, via Selmi 3, 40126 Bologna, Italy.
| | - Maria Delcuratolo
- Department of Pharmacy and Biotechnology, University of Bologna, via Selmi 3, 40126 Bologna, Italy.
| | - Giovanni Capranico
- Department of Pharmacy and Biotechnology, University of Bologna, via Selmi 3, 40126 Bologna, Italy.
| |
Collapse
|
11
|
Austin CA, Lee KC, Swan RL, Khazeem MM, Manville CM, Cridland P, Treumann A, Porter A, Morris NJ, Cowell IG. TOP2B: The First Thirty Years. Int J Mol Sci 2018; 19:ijms19092765. [PMID: 30223465 PMCID: PMC6163646 DOI: 10.3390/ijms19092765] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 09/07/2018] [Accepted: 09/11/2018] [Indexed: 12/19/2022] Open
Abstract
Type II DNA topoisomerases (EC 5.99.1.3) are enzymes that catalyse topological changes in DNA in an ATP dependent manner. Strand passage reactions involve passing one double stranded DNA duplex (transported helix) through a transient enzyme-bridged break in another (gated helix). This activity is required for a range of cellular processes including transcription. Vertebrates have two isoforms: topoisomerase IIα and β. Topoisomerase IIβ was first reported in 1987. Here we review the research on DNA topoisomerase IIβ over the 30 years since its discovery.
Collapse
Affiliation(s)
- Caroline A Austin
- Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| | - Ka C Lee
- Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| | - Rebecca L Swan
- Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| | - Mushtaq M Khazeem
- Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| | - Catriona M Manville
- Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| | - Peter Cridland
- Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| | - Achim Treumann
- NUPPA, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| | - Andrew Porter
- NUPPA, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| | - Nick J Morris
- School of Biomedical Sciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| | - Ian G Cowell
- Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| |
Collapse
|
12
|
Zhao W, Jiang G, Bi C, Li Y, Liu J, Ye C, He H, Li L, Song D, Shao R. The dual topoisomerase inhibitor A35 preferentially and specially targets topoisomerase 2α by enhancing pre-strand and post-strand cleavage and inhibiting DNA religation. Oncotarget 2016; 6:37871-94. [PMID: 26462155 PMCID: PMC4741971 DOI: 10.18632/oncotarget.5680] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Accepted: 09/25/2015] [Indexed: 01/14/2023] Open
Abstract
DNA topoisomerases play a key role in tumor proliferation. Chemotherapeutics targeting topoisomerases have been widely used in clinical oncology, but resistance and side effects, particularly cardiotoxicity, usually limit their application. Clinical data show that a decrease in topoisomerase (top) levels is the primary factor responsible for resistance, but in cells there is compensatory effect between the levels of top1 and top2α. Here, we validated cyclizing-berberine A35, which is a dual top inhibitor and preferentially targets top2α. The impact on the top2α catalytic cycle indicated that A35 could intercalate into DNA but did not interfere with DNA-top binding and top2α ATPase activity. A35 could facilitate DNA-top2α cleavage complex formation by enhancing pre-strand and post-strand cleavage and inhibiting religation, suggesting this compound can be a topoisomerase poison and had a district mechanism from other topoisomerase inhibitors. TARDIS and comet assays showed that A35 could induce cell DNA breakage and DNA-top complexes but had no effect on the cardiac toxicity inducer top2β. Silencing top1 augmented DNA break and silencing top2α decreased DNA break. Further validation in H9c2 cardiac cells showed A35 did not disturb cell proliferation and mitochondrial membrane potency. Additionally, an assay with nude mice further demonstrated A35 did not damage the heart. Our work identifies A35 as a novel skeleton compound dually inhibits topoisomerases, and predominantly and specially targets top2α by interfering with all cleavage steps and its no cardiac toxicity was verified by cardiac cells and mice heart. A35 could be a novel and effective targeting topoisomerase agent.
Collapse
Affiliation(s)
- Wuli Zhao
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Guohua Jiang
- Analysis and Testing Center, Beijing Normal University, Beijing, China
| | - Chongwen Bi
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yangbiao Li
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jingbo Liu
- China Meitan General Hospital, Beijing, China
| | - Cheng Ye
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Hongwei He
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Liang Li
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Danqing Song
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Rongguang Shao
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
13
|
Hasinoff BB, Wu X, Patel D, Kanagasabai R, Karmahapatra S, Yalowich JC. Mechanisms of Action and Reduced Cardiotoxicity of Pixantrone; a Topoisomerase II Targeting Agent with Cellular Selectivity for the Topoisomerase IIα Isoform. J Pharmacol Exp Ther 2015; 356:397-409. [PMID: 26660439 DOI: 10.1124/jpet.115.228650] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 12/09/2015] [Indexed: 01/09/2023] Open
Abstract
Pixantrone is a new noncardiotoxic aza-anthracenedione anticancer drug structurally related to anthracyclines and anthracenediones, such as doxorubicin and mitoxantrone. Pixantrone is approved in the European Union for the treatment of relapsed or refractory aggressive B cell non-Hodgkin lymphoma. This study was undertaken to investigate both the mechanism(s) of its anticancer activity and its relative lack of cardiotoxicity. Pixantrone targeted DNA topoisomerase IIα as evidenced by its ability to inhibit kinetoplast DNA decatenation; to produce linear double-strand DNA in a pBR322 DNA cleavage assay; to produce DNA double-strand breaks in a cellular phospho-histone γH2AX assay; to form covalent topoisomerase II-DNA complexes in a cellular immunodetection of complex of enzyme-to-DNA assay; and to display cross-resistance in etoposide-resistant K562 cells. Pixantrone produced semiquinone free radicals in an enzymatic reducing system, although not in a cellular system, most likely due to low cellular uptake. Pixantrone was 10- to 12-fold less damaging to neonatal rat myocytes than doxorubicin or mitoxantrone, as measured by lactate dehydrogenase release. Three factors potentially contribute to the reduced cardiotoxicity of pixantrone. First, its lack of binding to iron(III) makes it unable to induce iron-based oxidative stress. Second, its low cellular uptake may limit its ability to produce semiquinone free radicals and redox cycle. Finally, because the β isoform of topoisomerase II predominates in postmitotic cardiomyocytes, and pixantrone is demonstrated in this study to be selective for topoisomerase IIα in stabilizing enzyme-DNA covalent complexes, the attenuated cardiotoxicity of this agent may also be due to its selectivity for targeting topoisomerase IIα over topoisomerase IIβ.
Collapse
Affiliation(s)
- Brian B Hasinoff
- College of Pharmacy, Apotex Centre, University of Manitoba, Winnipeg, Manitoba, Canada (B.B.H., X.W., D.P.); and Division of Pharmacology, College of Pharmacy, Ohio State University, Columbus, Ohio (R.K., S.K., J.C.Y.)
| | - Xing Wu
- College of Pharmacy, Apotex Centre, University of Manitoba, Winnipeg, Manitoba, Canada (B.B.H., X.W., D.P.); and Division of Pharmacology, College of Pharmacy, Ohio State University, Columbus, Ohio (R.K., S.K., J.C.Y.)
| | - Daywin Patel
- College of Pharmacy, Apotex Centre, University of Manitoba, Winnipeg, Manitoba, Canada (B.B.H., X.W., D.P.); and Division of Pharmacology, College of Pharmacy, Ohio State University, Columbus, Ohio (R.K., S.K., J.C.Y.)
| | - Ragu Kanagasabai
- College of Pharmacy, Apotex Centre, University of Manitoba, Winnipeg, Manitoba, Canada (B.B.H., X.W., D.P.); and Division of Pharmacology, College of Pharmacy, Ohio State University, Columbus, Ohio (R.K., S.K., J.C.Y.)
| | - Soumendrakrishna Karmahapatra
- College of Pharmacy, Apotex Centre, University of Manitoba, Winnipeg, Manitoba, Canada (B.B.H., X.W., D.P.); and Division of Pharmacology, College of Pharmacy, Ohio State University, Columbus, Ohio (R.K., S.K., J.C.Y.)
| | - Jack C Yalowich
- College of Pharmacy, Apotex Centre, University of Manitoba, Winnipeg, Manitoba, Canada (B.B.H., X.W., D.P.); and Division of Pharmacology, College of Pharmacy, Ohio State University, Columbus, Ohio (R.K., S.K., J.C.Y.)
| |
Collapse
|
14
|
Mariani A, Bartoli A, Atwal M, Lee KC, Austin CA, Rodriguez R. Differential Targeting of Human Topoisomerase II Isoforms with Small Molecules. J Med Chem 2015; 58:4851-6. [PMID: 25945730 DOI: 10.1021/acs.jmedchem.5b00473] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The TOP2 poison etoposide has been implicated in the generation of secondary malignancies during cancer treatment. Structural similarities between TOP2 isoforms challenge the rational design of isoform-specific poisons to further delineate these processes. Herein, we describe the synthesis and biological evaluation of a focused library of etoposide analogues, with the identification of two novel small molecules exhibiting TOP2B-dependent toxicity. Our findings pave the way toward studying isoform-specific cellular processes by means of small molecule intervention.
Collapse
Affiliation(s)
- Angelica Mariani
- †Centre de Recherche de Gif, Institut de Chimie des Substances Naturelles du CNRS, Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Alexandra Bartoli
- †Centre de Recherche de Gif, Institut de Chimie des Substances Naturelles du CNRS, Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Mandeep Atwal
- ‡Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Ka C Lee
- ‡Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Caroline A Austin
- ‡Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Raphaël Rodriguez
- †Centre de Recherche de Gif, Institut de Chimie des Substances Naturelles du CNRS, Avenue de la Terrasse, 91198 Gif-sur-Yvette, France.,§Organic Synthesis and Cell Biology Group, Institut Curie Research Center, 26 rue d'Ulm, 75248 Paris Cedex 05, France
| |
Collapse
|
15
|
Shapiro AB, Austin CA. A high-throughput fluorescence anisotropy-based assay for human topoisomerase II β-catalyzed ATP-dependent supercoiled DNA relaxation. Anal Biochem 2013; 448:23-9. [PMID: 24309019 DOI: 10.1016/j.ab.2013.11.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 11/14/2013] [Accepted: 11/24/2013] [Indexed: 01/29/2023]
Abstract
Because of their essentiality for DNA replication, transcription, and repair, type II topoisomerases are targets for antibacterial and anticancer drugs. There are two type II topoisomerases in humans, topoisomerase IIα (TOP2A) and topoisomerase IIβ (TOP2B), and two in bacteria, gyrase and topoisomerase IV. Inhibition of one or both of the human type II topoisomerases by antibacterial compounds targeting their bacterial counterparts could result in toxicity. In addition, side effects of anticancer drugs targeting TOP2A could result from inhibition of TOP2B. A simple and rapid biochemical assay for the activity of TOP2A and TOP2B would be advantageous for screening for novel inhibitors, testing them for selectivity for one enzyme over the other, and testing for potential toxicity of antibacterial type II topoisomerases mediated by human topoisomerase II inhibition. In this paper, we show that a previously reported high-throughput, fluorescence anisotropy-based assay for ATP-dependent relaxation of supercoiled DNA by human TOP2A can also be used under identical conditions for human TOP2B. We used this assay to compare the potencies versus both enzymes of 19 compounds reported in the literature to inhibit human and/or bacterial type II topoisomerases. We also used the assay to investigate the effect of ATP concentration on inhibitor potencies.
Collapse
Affiliation(s)
- Adam B Shapiro
- Infection Innovative Medicines Unit, AstraZeneca R&D Boston, Waltham, MA 02451, USA.
| | - Caroline A Austin
- Institute for Cell and Molecular Biosciences, The Medical School, The University of Newcastle-upon-Tyne, Newcastle-upon-Tyne NE2 4HH, UK
| |
Collapse
|
16
|
Robles-Escajeda E, Lerma D, Nyakeriga AM, Ross JA, Kirken RA, Aguilera RJ, Varela-Ramirez A. Searching in mother nature for anti-cancer activity: anti-proliferative and pro-apoptotic effect elicited by green barley on leukemia/lymphoma cells. PLoS One 2013; 8:e73508. [PMID: 24039967 PMCID: PMC3767772 DOI: 10.1371/journal.pone.0073508] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 07/22/2013] [Indexed: 01/28/2023] Open
Abstract
Green barley extract (GB) was investigated for possible anti-cancer activity by examining its anti-proliferative and pro-apoptotic properties on human leukemia/lymphoma cell lines. Our results indicate that GB exhibits selective anti-proliferative activity on a panel of leukemia/lymphoma cells in comparison to non-cancerous cells. Specifically, GB disrupted the cell-cycle progression within BJAB cells, as manifested by G2/M phase arrest and DNA fragmentation, and induced apoptosis, as evidenced by phosphatidylserine (PS) translocation to the outer cytoplasmic membrane in two B-lineage leukemia/lymphoma cell lines. The pro-apoptotic effect of GB was found to be independent of mitochondrial depolarization, thus implicating extrinsic cell death pathways to exert its cytotoxicity. Indeed, GB elicited an increase of TNF-α production, caspase-8 and caspase-3 activation, and PARP-1 cleavage within pre-B acute lymphoblastic leukemia Nalm-6 cells. Moreover, caspase-8 and caspase-3 activation and PARP-1 cleavage were strongly inhibited/blocked by the addition of the specific caspase inhibitors Z-VAD-FMK and Ac-DEVD-CHO. Furthermore, intracellular signaling analyses determined that GB treatment enhanced constitutive activation of Lck and Src tyrosine kinases in Nalm-6 cells. Taken together, these findings indicate that GB induced preferential anti-proliferative and pro-apoptotic signals within B-lineage leukemia/lymphoma cells, as determined by the following biochemical hallmarks of apoptosis: PS externalization, enhanced release of TNF-α, caspase-8 and caspase-3 activation, PARP-1 cleavage and DNA fragmentation Our observations reveal that GB has potential as an anti-leukemia/lymphoma agent alone or in combination with standard cancer therapies and thus warrants further evaluation in vivo to support these findings.
Collapse
Affiliation(s)
- Elisa Robles-Escajeda
- Department of Biological Sciences and Border Biomedical Research Center, the University of Texas at El Paso, El Paso, Texas, United States of America
| | - Dennise Lerma
- St. Mary’s University School of Science, Engineering and Technology, San Antonio, Texas, United States of America
| | - Alice M. Nyakeriga
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, Texas, United States of America
| | - Jeremy A. Ross
- Department of Biological Sciences and Border Biomedical Research Center, the University of Texas at El Paso, El Paso, Texas, United States of America
| | - Robert A. Kirken
- Department of Biological Sciences and Border Biomedical Research Center, the University of Texas at El Paso, El Paso, Texas, United States of America
| | - Renato J. Aguilera
- Department of Biological Sciences and Border Biomedical Research Center, the University of Texas at El Paso, El Paso, Texas, United States of America
| | - Armando Varela-Ramirez
- Department of Biological Sciences and Border Biomedical Research Center, the University of Texas at El Paso, El Paso, Texas, United States of America
- * E-mail:
| |
Collapse
|
17
|
Purification of GidA protein, a novel topoisomerase II inhibitor produced by Streptomyces flavoviridis. World J Microbiol Biotechnol 2013; 30:555-65. [PMID: 23996636 DOI: 10.1007/s11274-013-1475-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 08/23/2013] [Indexed: 10/26/2022]
Abstract
The presence of topoisomerase II inhibition activities in the intracellular extract of Streptomyces flavoviridis was investigated. One active compound inhibiting relaxation activity of topoisomerase II was determined to be a protein. This active principle was purified to homogeneity by gel filtration followed by ion exchange chromatography. The apparent molecular mass was 42 kDa as determined by SDS-PAGE. MALDI TOF peptide mass fingerprinting analysis confirmed this topoisomerase II inhibitor, as glucose-inhibited division protein A (GidA) by MOWSE score of 72. The effects of purified GidA protein on DNA relaxation and decatenation by topoisomerase II were investigated. It inhibited topoisomerase II activity and acted as a topoisomerase poison that significantly stabilized the covalent DNA-topoisomerase II reaction intermediate "cleavable complex", as observed with etoposide. Collectively, these findings indicate that GidA is a potent inhibitor of topoisomerase II enzyme, which can be exploited for rational drug design in human carcinomas.
Collapse
|
18
|
The structure of DNA-bound human topoisomerase II alpha: conformational mechanisms for coordinating inter-subunit interactions with DNA cleavage. J Mol Biol 2012; 424:109-24. [PMID: 22841979 PMCID: PMC3584591 DOI: 10.1016/j.jmb.2012.07.014] [Citation(s) in RCA: 164] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 07/18/2012] [Indexed: 01/07/2023]
Abstract
Type II topoisomerases are required for the management of DNA superhelicity and chromosome segregation, and serve as frontline targets for a variety of small-molecule therapeutics. To better understand how these enzymes act in both contexts, we determined the 2.9-Å-resolution structure of the DNA cleavage core of human topoisomerase IIα (TOP2A) bound to a doubly nicked, 30-bp duplex oligonucleotide. In accord with prior biochemical and structural studies, TOP2A significantly bends its DNA substrate using a bipartite, nucleolytic center formed at an N-terminal dimerization interface of the cleavage core. However, the protein also adopts a global conformation in which the second of its two inter-protomer contact points, one at the C-terminus, has separated. This finding, together with comparative structural analyses, reveals that the principal site of DNA engagement undergoes highly quantized conformational transitions between distinct binding, cleavage, and drug-inhibited states that correlate with the control of subunit-subunit interactions. Additional consideration of our TOP2A model in light of an etoposide-inhibited complex of human topoisomerase IIβ (TOP2B) suggests possible modification points for developing paralog-specific inhibitors to overcome the tendency of topoisomerase II-targeting chemotherapeutics to generate secondary malignancies.
Collapse
|
19
|
Mechanism of generation of therapy related leukemia in response to anti-topoisomerase II agents. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2012; 9:2075-91. [PMID: 22829791 PMCID: PMC3397365 DOI: 10.3390/ijerph9062075] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 05/23/2012] [Accepted: 05/29/2012] [Indexed: 01/18/2023]
Abstract
Type II DNA topoisomerases have the ability to generate a transient DNA double-strand break through which a second duplex can be passed; an activity essential for DNA decatenation and unknotting. Topoisomerase poisons stabilize the normally transient topoisomerase-induced DSBs and are potent and widely used anticancer drugs. However, their use is associated with therapy-related secondary leukemia, often bearing 11q23 translocations involving the MLL gene. We will explain recent discoveries in the fields of topoisomerase biology and transcription that have consequences for our understanding of the etiology of leukemia, especially therapy-related secondary leukemia and describe how these findings may help minimize the occurrence of these neoplasias.
Collapse
|
20
|
Toyoda E, Kurosawa A, Kamekawa H, Adachi N. Topoisomerase IIα inhibition following DNA transfection greatly enhances random integration in a human pre-B lymphocyte cell line. Biochem Biophys Res Commun 2009; 382:492-6. [DOI: 10.1016/j.bbrc.2009.03.047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Accepted: 03/02/2009] [Indexed: 11/15/2022]
|
21
|
Leontiou C, Watters GP, Gilroy KL, Heslop P, Cowell IG, Craig K, Lightowlers RN, Lakey JH, Austin CA. Differential selection of acridine resistance mutations in human DNA topoisomerase IIbeta is dependent on the acridine structure. Mol Pharmacol 2007; 71:1006-14. [PMID: 17209120 DOI: 10.1124/mol.106.032953] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Type II DNA topoisomerases are targets of acridine drugs. Nine mutations conferring resistance to acridines were obtained by forced molecular evolution, using methyl N-(4'-(9-acridinylamino)-3-methoxy-phenyl) methane sulfonamide (mAMSA), methyl N-(4'-(9-acridinylamino)-2-methoxy-phenyl) carbamate hydrochloride (mAMCA), methyl N-(4'-(9-acridinylamino)-phenyl) carbamate hydrochloride (AMCA), and N-[2-(dimethylamino)ethyl]acridines-4-carboxamide (DACA) as selection agents. Mutations betaH514Y, betaE522K, betaG550R, betaA596T, betaY606C, betaR651C, and betaD661N were in the B' domain, and betaG465D and betaP732L were not. With AMCA, four mutations were selected (betaE522K, betaG550R, betaA596T, and betaD661N). Two mutations were selected with mAMCA (betaY606C and betaR651C) and two with mAMSA (betaG465D and betaP732L). It is interesting that there was no overlap between mutation selection with AMCA and mAMSA or mAMCA. AMCA lacks the methoxy substituent present in mAMCA and mAMSA, suggesting that this motif determines the mutations selected. With the fourth acridine DACA, five mutations were selected for resistance (betaG465D, betaH514Y, betaG550R, betaA596T, and betaD661N). betaG465D was selected with both DACA and mAMSA, and betaG550R, betaA596T, and betaD661N were selected with both DACA and AMCA. DACA lacks the anilino motif of the other three drugs but retains the acridine ring motif. The overlap in selection with DACA and mAMSA or AMCA suggests that altered recognition of the acridine moiety may be involved in these mutations. We used restriction fragment length polymorphisms and heteroduplex analysis to demonstrate that some mutations were selected multiple times (betaG465D, betaE522K, betaG550R, betaA596T, and betaD661N), whereas others were selected only once (betaH514Y, betaY606C, betaR651C, and betaP732L). Here, we compare the drug resistance profile of all nine mutations and report the biochemical characterization of three, betaG550R, betaY606C, and betaD661N.
Collapse
Affiliation(s)
- Chrysoula Leontiou
- The Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Kersting G, Tzvetkov MV, Huse K, Kulle B, Hafner V, Brockmöller J, Wojnowski L. Topoisomerase II beta expression level correlates with doxorubicin-induced apoptosis in peripheral blood cells. Naunyn Schmiedebergs Arch Pharmacol 2006; 374:21-30. [PMID: 16957942 DOI: 10.1007/s00210-006-0091-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2006] [Accepted: 07/05/2006] [Indexed: 11/24/2022]
Abstract
Anthracyclines are widely used in oncology. Both the response and side-effects of anthracyclines are individually variable, but determinants or predictive markers of this variability are not available. We investigated the variability in the expression of the anthracycline targets topoisomerases II (topo II) alpha and beta and its significance for the apoptotic response following exposure to the anthracycline doxorubicin. Only topo II beta protein expression was detected in peripheral blood cells. Usually considered a constitutively expressed protein, topo II beta varied 3-, 18-, and 16-fold on the mRNA, protein and activity levels, respectively, among the volunteers tested. In addition, the expression of topo II beta was modified by several mitogens, suggesting a role in the regulation of cell cycle. Strikingly, topo II beta activity correlated statistically significantly with the apoptotic response in peripheral blood leukocytes exposed to 1 microM doxorubicin. A longitudinal study in a subset of study subjects demonstrated that 30% of the topo II expression variability may be inherited. However, resequencing of the TOP2B gene in 48 unrelated individuals revealed only 8 gene variants, none of them with obvious effects on the expression or protein sequence of topo II beta. Taken together, the apoptotic response to doxorubicin in peripheral blood cells may be mediated by topo II beta. The expression level of topo II beta is intra- and inter-individually variable, and may in part determine the apoptotic response to doxorubicin and other anthracyclines.
Collapse
Affiliation(s)
- Gisela Kersting
- Department of Clinical Pharmacology, Georg-August-University Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | | | | | | | | | | | | |
Collapse
|
23
|
Gambari R. Biospecific interaction analysis: a tool for drug discovery and development. AMERICAN JOURNAL OF PHARMACOGENOMICS : GENOMICS-RELATED RESEARCH IN DRUG DEVELOPMENT AND CLINICAL PRACTICE 2002; 1:119-35. [PMID: 12174673 DOI: 10.2165/00129785-200101020-00005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The recent development of surface plasmon resonance (SPR)-based biosensor technologies for biospecific interaction analysis (BIA) enables the monitoring of a variety of molecular reactions in real-time. The biomolecular interactions occur at the surface of a flow cell of a sensor chip between a ligand immobilized on the surface and an injected analyte. SPR-based BIA offers many advantages over most of the other methodologies available for the study of biomolecular interactions, including full automation, no requirement for labeling, and the availability of a large variety of activated sensor chips that allow immobilization of DNA, RNA, proteins, peptides and cells. The assay is rapid and requires only small quantitities of both ligand and analyte in order to obtain informative results. In addition, the sensor chip can be re-used many times, leading to low running costs. Aside from the analysis of all possible combinations of peptide, protein, DNA and RNA interactions, this technology can also be used for screening of monoclonal antibodies and epitope mapping, analysis of interactions between low molecular weight compounds and proteins or nucleic acids, interactions between cells and ligands, and real-time monitoring of gene expression. Applications of SPR-based BIA in medicine include the molecular diagnosis of viral infections and genetic diseases caused by point mutations. Future perspectives include the combinations of SPR-based BIA with mass spectrometry, the use of biosensors in proteomics, and the application of this technology to design and develop efficient drug delivery systems.
Collapse
Affiliation(s)
- R Gambari
- Department of Biochemistry and Molecular Biology, and Biotechnology Center, Ferrara University, Ferrara, Italy.
| |
Collapse
|