1
|
Bertoli RM, Chung YJ, Difilippantonio MJ, Wokasch A, Marasco MR, Klimaszewski H, Gammell S, Zhu YJ, Walker RL, Cao D, Khanna A, Walter MJ, Doroshow JH, Meltzer PS, Aplan PD. The DNA Methyltransferase Inhibitor 5-Aza-4'-thio-2'-Deoxycytidine Induces C>G Transversions and Acute Lymphoid Leukemia Development. Cancer Res 2024; 84:2518-2532. [PMID: 38832931 PMCID: PMC11293964 DOI: 10.1158/0008-5472.can-23-2785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 03/04/2024] [Accepted: 05/31/2024] [Indexed: 06/06/2024]
Abstract
DNA methyltransferase inhibitors (DNMTi), most commonly cytidine analogs, are compounds that decrease 5'-cytosine methylation. DNMTi are used clinically based on the hypothesis that cytosine demethylation will lead to re-expression of tumor suppressor genes. 5-Aza-4'-thio-2'-deoxycytidine (Aza-TdCyd or ATC) is a recently described thiol-substituted DNMTi that has been shown to have anti-tumor activity in solid tumor models. In this study, we investigated the therapeutic potential of ATC in a murine transplantation model of myelodysplastic syndrome. ATC treatment led to the transformation of transplanted wild-type bone marrow nucleated cells into lymphoid leukemia, and healthy mice treated with ATC also developed lymphoid leukemia. Whole-exome sequencing revealed 1,000 acquired mutations, almost all of which were C>G transversions in a specific 5'-NCG-3' context. These mutations involved dozens of genes involved in human lymphoid leukemia, such as Notch1, Pten, Pax5, Trp53, and Nf1. Human cells treated in vitro with ATC showed 1,000 acquired C>G transversions in a similar context. Deletion of Dck, the rate-limiting enzyme for the cytidine salvage pathway, eliminated C>G transversions. Taken together, these findings demonstrate a highly penetrant mutagenic and leukemogenic phenotype associated with ATC. Significance: Treatment with a DNA methyltransferase inhibitor generates a distinct mutation signature and triggers leukemic transformation, which has important implications for the research and clinical applications of these inhibitors.
Collapse
Affiliation(s)
- Ryan M. Bertoli
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Yang Jo Chung
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Michael J. Difilippantonio
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Anthony Wokasch
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Madison R.B. Marasco
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Haley Klimaszewski
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Susannah Gammell
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Yuelin J. Zhu
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Robert L. Walker
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Dengchao Cao
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Ajay Khanna
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, MO, USA
| | - Matthew J. Walter
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, MO, USA
| | - James H. Doroshow
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Paul S. Meltzer
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Peter D. Aplan
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
- Myeloid Malignancies Program, National Institutes of Health, Bethesda, MD
| |
Collapse
|
2
|
Aplan P, Bertoli R, Chung YJ, Difilippantonio M, Wokasch A, Marasco M, Klimaszewski H, Garber S, Zhu Y, Walker R, Cao D, Doroshow J, Meltzer P. 5-Aza-4'-thio-2'-deoxycytidine induces C>G transversions in a specific trinucleotide context and leads to acute lymphoid leukemia. RESEARCH SQUARE 2023:rs.3.rs-3186246. [PMID: 38168433 PMCID: PMC10760231 DOI: 10.21203/rs.3.rs-3186246/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
DNA methyltransferase inhibitors (DNMTi), most commonly cytidine analogs, are compounds that are used clinically to decrease 5'-cytosine methylation, with the aim of re-expression of tumor suppressor genes. We used a murine pre-clinical model of myelodysplastic syndrome based on transplantation of cells expressing a NUP98::HOXD13 transgene to investigate 5-Aza-4'-thio-2'-deoxycytidine (Aza TdCyd or ATC), a thiol substituted DNMTi, as a potential therapy. We found that ATC treatment led to lymphoid leukemia in wild-type recipient cells; further study revealed that healthy mice treated with ATC also developed lymphoid leukemia. Whole exome sequencing revealed thousands of acquired mutations, almost all of which were C > G transversions in a previously unrecognized, specific 5'-NCG-3' context. These mutations involved dozens of genes well-known to be involved in human lymphoid leukemia, such as Notch1, Pten, Pax5, Trp53 , and Nf1 . Treatment of human cells in vitro showed thousands of acquired C > G transversions in a similar context. Deletion of Dck , the rate-limiting enzyme for the cytidine salvage pathway, eliminated C > G transversions. Taken together, these findings demonstrate that DNMTi can be potent mutagens in human and mouse cells, both in vitro and in vivo .
Collapse
|
3
|
Matsukawa T, Yin M, Baslan T, Chung YJ, Cao D, Bertoli R, Zhu YJ, Walker RL, Freeland A, Knudsen E, Lowe SW, Meltzer PS, Aplan PD. Mcm2 hypomorph leads to acute leukemia or hematopoietic stem cell failure, dependent on genetic context. FASEB J 2022; 36:e22430. [PMID: 35920299 PMCID: PMC9377154 DOI: 10.1096/fj.202200061rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 06/07/2022] [Accepted: 06/13/2022] [Indexed: 11/11/2022]
Abstract
Minichromosome maintenance proteins (Mcm2-7) form a hexameric complex that unwinds DNA ahead of a replicative fork. The deficiency of Mcm proteins leads to replicative stress and consequent genomic instability. Mice with a germline insertion of a Cre cassette into the 3'UTR of the Mcm2 gene (designated Mcm2Cre ) have decreased Mcm2 expression and invariably develop precursor T-cell lymphoblastic leukemia/lymphoma (pre-T LBL), due to 100-1000 kb deletions involving important tumor suppressor genes. To determine whether mice that were protected from pre-T LBL would develop non-T-cell malignancies, we used two approaches. Mice engrafted with Mcm2Cre/Cre Lin- Sca-1+ Kit+ hematopoietic stem/progenitor cells did not develop hematologic malignancy; however, these mice died of hematopoietic stem cell failure by 6 months of age. Placing the Mcm2Cre allele onto an athymic nu/nu background completely prevented pre-T LBL and extended survival of these mice three-fold (median 296.5 vs. 80.5 days). Ultimately, most Mcm2Cre/Cre ;nu/nu mice developed B-cell precursor acute lymphoblastic leukemia (BCP-ALL). We identified recurrent deletions of 100-1000 kb that involved genes known or suspected to be involved in BCP-ALL, including Pax5, Nf1, Ikzf3, and Bcor. Moreover, whole-exome sequencing identified recurrent mutations of genes known to be involved in BCP-ALL progression, such as Jak1/Jak3, Ptpn11, and Kras. These findings demonstrate that an Mcm2Cre/Cre hypomorph can induce hematopoietic dysfunction via hematopoietic stem cell failure as well as a "deletor" phenotype affecting known or suspected tumor suppressor genes.
Collapse
Affiliation(s)
- Toshihiro Matsukawa
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- These authors contributed equally to this work
| | - Mianmian Yin
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- These authors contributed equally to this work
| | - Timour Baslan
- Cancer Biology and Genetics Program, Sloan-Kettering Institute, NY, USA
| | - Yang Jo Chung
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Dengchao Cao
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ryan Bertoli
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yuelin J. Zhu
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Robert L. Walker
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Amy Freeland
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Erik Knudsen
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Scott W. Lowe
- Cancer Biology and Genetics Program, Sloan-Kettering Institute, NY, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Paul S. Meltzer
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Peter D. Aplan
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
4
|
Liu S, Lyu J, Li Q, Wu X, Yang Y, Huo G, Zhu Q, Guo M, Shen Y, Wang S, Fan C. Generation of a uniform thymic malignant lymphoma model with C57BL/6J p53 gene deficient mice. J Toxicol Pathol 2022; 35:25-36. [PMID: 35221493 PMCID: PMC8828615 DOI: 10.1293/tox.2021-0022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 08/17/2021] [Indexed: 12/12/2022] Open
Abstract
Lymphoma is the third most common cancer diagnosed in children, and T-cell lymphoma has
the worst prognosis based on clinical observations. To date, a lymphoma model with uniform
penetrance has not yet been developed. In this study, we generated a p53
deficient mouse model by targeting embryonic stem cells derived from a C57BL/6J mouse
strain. Homozygous p53 deficient mice exhibited a higher rate of
spontaneous tumorigenesis, with a high spontaneous occurrence rate (93.3%) of malignant
lymphoma. Because tumor models with high phenotypic consistency are currently needed, we
generated a lymphoma model by a single intraperitoneal injection of 37.5 or 75 mg/kg
N-methyl-N-nitrosourea to p53 deficient mice. Lymphoma and retinal
degeneration occurred in 100% of p53+/− mice administered with
higher concentrations of N-methyl-N-nitrosourea, a much greater response than those of
previously reported models. The main anatomic sites of lymphoma were the thymus, spleen,
bone marrow, and lymph nodes. Both induced and spontaneous lymphomas in the thymus and
spleen stained positive for CD3 antigen, and flow cytometry detected positive CD4 and/or
CD8 cells. Based on our observations and previous data, we hypothesize that mice with a B6
background are prone to lymphomagenesis.
Collapse
Affiliation(s)
- Susu Liu
- Division of Animal Model Research, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control, No. 31 Huatuo Road, Beijing Daxing district, Beijing 102629, China
| | - Jianjun Lyu
- Department of Pathology, InnoStar Bio-tech Nantong Co., Ltd., Nantong 226133, China
| | - Qianqian Li
- National Centre for Safety Evaluation of Drugs, Institute for Food and Drug Safety Evaluation, National Institutes for Food and Drug Control, A8 Hongda Middle Street, Beijing Economic-Technological Development Area, Beijing 100176, China
| | - Xi Wu
- Division of Animal Model Research, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control, No. 31 Huatuo Road, Beijing Daxing district, Beijing 102629, China
| | - Yanwei Yang
- National Centre for Safety Evaluation of Drugs, Institute for Food and Drug Safety Evaluation, National Institutes for Food and Drug Control, A8 Hongda Middle Street, Beijing Economic-Technological Development Area, Beijing 100176, China
| | - Guitao Huo
- National Centre for Safety Evaluation of Drugs, Institute for Food and Drug Safety Evaluation, National Institutes for Food and Drug Control, A8 Hongda Middle Street, Beijing Economic-Technological Development Area, Beijing 100176, China
| | - Qingfen Zhu
- Shandong Institute for Food and Drug Control, No. 2749, Xinluo Road, High-tech Zone, Jinan 250101, China
| | - Ming Guo
- Shandong Institute for Food and Drug Control, No. 2749, Xinluo Road, High-tech Zone, Jinan 250101, China
| | - Yuelei Shen
- Beijing Biocytogen Co. LTD, No. 88 Kechuang 6th Avenue Ludong Area Economic-Technological Development Area, Beijing 101111, China
| | - Sanlong Wang
- National Centre for Safety Evaluation of Drugs, Institute for Food and Drug Safety Evaluation, National Institutes for Food and Drug Control, A8 Hongda Middle Street, Beijing Economic-Technological Development Area, Beijing 100176, China
| | - Changfa Fan
- Division of Animal Model Research, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control, No. 31 Huatuo Road, Beijing Daxing district, Beijing 102629, China
| |
Collapse
|
5
|
Zhang Y, Guo Y, Gough SM, Zhang J, Vann KR, Li K, Cai L, Shi X, Aplan PD, Wang GG, Kutateladze TG. Mechanistic insights into chromatin targeting by leukemic NUP98-PHF23 fusion. Nat Commun 2020; 11:3339. [PMID: 32620764 PMCID: PMC7335091 DOI: 10.1038/s41467-020-17098-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/12/2020] [Indexed: 12/18/2022] Open
Abstract
Chromosomal NUP98-PHF23 translocation is associated with an aggressive form of acute myeloid leukemia (AML) and poor survival rate. Here, we report the molecular mechanisms by which NUP98-PHF23 recognizes the histone mark H3K4me3 and is inhibited by small molecule compounds, including disulfiram that directly targets the PHD finger of PHF23 (PHF23PHD). Our data support a critical role for the PHD fingers of NUP98-PHF23, and related NUP98-KDM5A and NUP98-BPTF fusions in driving leukemogenesis, and demonstrate that blocking this interaction in NUP98-PHF23 expressing AML cells leads to cell death through necrotic and late apoptosis pathways. An overlap of NUP98-KDM5A oncoprotein binding sites and H3K4me3-positive loci at the Hoxa/b gene clusters and Meis1 in ChIP-seq, together with NMR analysis of the H3K4me3-binding sites of the PHD fingers from PHF23, KDM5A and BPTF, suggests a common PHD finger-dependent mechanism that promotes leukemogenesis by this type of NUP98 fusions. Our findings highlight the direct correlation between the abilities of NUP98-PHD finger fusion chimeras to associate with H3K4me3-enriched chromatin and leukemic transformation.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Yiran Guo
- Department of Biochemistry and Biophysics, Curriculum in Genetics and Molecular Biology, Lineberger Comprehensive Cancer Center, The University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| | - Sheryl M Gough
- Genetics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Jinyong Zhang
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Kendra R Vann
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Kuai Li
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | - Ling Cai
- Department of Biochemistry and Biophysics, Curriculum in Genetics and Molecular Biology, Lineberger Comprehensive Cancer Center, The University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| | - Xiaobing Shi
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | - Peter D Aplan
- Genetics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Gang Greg Wang
- Department of Biochemistry and Biophysics, Curriculum in Genetics and Molecular Biology, Lineberger Comprehensive Cancer Center, The University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| | - Tatiana G Kutateladze
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, 80045, USA.
| |
Collapse
|
6
|
Goldberg L, Gough SM, Lee F, Dang C, Walker RL, Zhu YJ, Bilke S, Pineda M, Onozawa M, Jo Chung Y, Meltzer PS, Aplan PD. Somatic mutations in murine models of leukemia and lymphoma: Disease specificity and clinical relevance. Genes Chromosomes Cancer 2017; 56:472-483. [PMID: 28196408 DOI: 10.1002/gcc.22451] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 02/06/2017] [Accepted: 02/06/2017] [Indexed: 12/17/2022] Open
Abstract
Malignant transformation is a multistep process that is dictated by the acquisition of multiple genomic aberrations that provide growth and survival advantage. During the post genomic era, high throughput genomic sequencing has advanced exponentially, leading to identification of countless cancer associated mutations with potential for targeted therapy. Mouse models of cancer serve as excellent tools to examine the functionality of gene mutations and their contribution to the malignant process. However, it remains unclear whether the genetic events that occur during transformation are similar in mice and humans. To address that, we chose several transgenic mouse models of hematopoietic malignancies and identified acquired mutations in these mice by means of targeted re-sequencing of known cancer-associated genes as well as whole exome sequencing. We found that mutations that are typically found in acute myeloid leukemia or T cell acute lymphoblastic leukemia patients are also common in mouse models of the respective disease. Moreover, we found that the most frequent mutations found in a mouse model of lymphoma occur in a set of epigenetic modifier genes, implicating this pathway in the generation of lymphoma. These results demonstrate that genetically engineered mouse models (GEMM) mimic the genetic evolution of human cancer and serve as excellent platforms for target discovery and validation.
Collapse
Affiliation(s)
- Liat Goldberg
- Genetics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Sheryl M Gough
- Genetics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Fan Lee
- Genetics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Christine Dang
- Genetics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Robert L Walker
- Genetics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Yuelin J Zhu
- Genetics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Sven Bilke
- Genetics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Marbin Pineda
- Genetics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Masahiro Onozawa
- Center for Medical Education/Department of hematology, Hokkaido University Graduate School of Medicine Hokkaido, Japan
| | - Yang Jo Chung
- Genetics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Paul S Meltzer
- Genetics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Peter D Aplan
- Genetics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| |
Collapse
|
7
|
Gough SM, Lee F, Yang F, Walker RL, Zhu YJ, Pineda M, Onozawa M, Chung YJ, Bilke S, Wagner EK, Denu JM, Ning Y, Xu B, Wang GG, Meltzer PS, Aplan PD. NUP98-PHF23 is a chromatin-modifying oncoprotein that causes a wide array of leukemias sensitive to inhibition of PHD histone reader function. Cancer Discov 2014; 4:564-77. [PMID: 24535671 DOI: 10.1158/2159-8290.cd-13-0419] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In this report, we show that expression of a NUP98-PHF23 (NP23) fusion, associated with acute myeloid leukemia (AML) in humans, leads to myeloid, erythroid, T-cell, and B-cell leukemia in mice. The leukemic and preleukemic tissues display a stem cell-like expression signature, including Hoxa, Hoxb, and Meis1 genes. The PHF23 plant homeodomain (PHD) motif is known to bind to H3K4me3 residues, and chromatin immunoprecipitation experiments demonstrated that the NP23 protein binds to chromatin at a specific subset of H3K4me3 sites, including at Hoxa, Hoxb, and Meis1. Treatment of NP23 cells with disulfiram, which inhibits the binding of PHD motifs to H3K4me3, rapidly and selectively killed NP23-expressing myeloblasts; cell death was preceded by decreased expression of Hoxa, Hoxb, and Meis1. Furthermore, AML driven by a related fusion gene, NUP98-JARID1A (NJL), was also sensitive to disulfiram. Thus, the NP23 mouse provides a platform to evaluate compounds that disrupt binding of oncogenic PHD proteins to H3K4me3.
Collapse
Affiliation(s)
- Sheryl M Gough
- 1Genetics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda; 2Department of Pathology, Johns Hopkins University, Baltimore, Maryland; 3Department of Biomolecular Chemistry, University of Wisconsin, Madison, Wisconsin; and 4Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Jinadasa R, Balmus G, Gerwitz L, Roden J, Weiss R, Duhamel G. Derivation of thymic lymphoma T-cell lines from Atm(-/-) and p53(-/-) mice. J Vis Exp 2011:2598. [PMID: 21490582 DOI: 10.3791/2598] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Established cell lines are a critical research tool that can reduce the use of laboratory animals in research. Certain strains of genetically modified mice, such as Atm(-/-) and p53(-/-) consistently develop thymic lymphoma early in life (1,2), and thus, can serve as a reliable source for derivation of murine T-cell lines. Here we present a detailed protocol for the development of established murine thymic lymphoma T-cell lines without the need to add interleukins as described in previous protocols (1,3). Tumors were harvested from mice aged three to six months, at the earliest indication of visible tumors based on the observation of hunched posture, labored breathing, poor grooming and wasting in a susceptible strain (1,4). We have successfully established several T-cell lines using this protocol and inbred strains ofAtm(-/-) [FVB/N-Atm(tm1Led)/J] (2) and p53(-/-) [129/S6-Trp53(tm1Tyj)/J] (5) mice. We further demonstrate that more than 90% of the established T-cell population expresses CD3, CD4 and CD8. Consistent with stably established cell lines, the T-cells generated by using the present protocol have been passaged for over a year.
Collapse
|
9
|
Abstract
T-cell acute lymphoblastic leukaemia (T-ALL) is induced by the transformation of T-cell progenitors and mainly occurs in children and adolescents. Although treatment outcome in patients with T-ALL has improved in recent years, patients with relapsed disease continue to have a poor prognosis. It is therefore important to understand the molecular pathways that control both the induction of transformation and the treatment of relapsed disease. In this Review, we focus on the molecular mechanisms responsible for disease induction and maintenance. We also compare the physiological progression of T-cell differentiation with T-cell transformation, highlighting the close relationship between these two processes. Finally, we discuss potential new therapies that target oncogenic pathways in T-ALL.
Collapse
|
10
|
Fischer S, Mann G, Konrad M, Metzler M, Ebetsberger G, Jones N, Nadel B, Bodamer O, Haas OA, Schmitt K, Panzer-Grümayer ER. Screening for leukemia- and clone-specific markers at birth in children with T-cell precursor ALL suggests a predominantly postnatal origin. Blood 2007; 110:3036-8. [PMID: 17557895 DOI: 10.1182/blood-2007-03-077339] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Childhood T-cell precursor acute lymphoblastic leukemia (TCP ALL) is an aggressive disease with a presumably short latency that differs in many biologic respects from B-cell precursor (BCP) ALL. We therefore addressed the issue of in utero origin of this particular type of leukemia by tracing oncogenic mutations and clone-specific molecular markers back to birth. These markers included various first- and second-hit genetic alterations (TCRD-LMO2 breakpoint regions, n = 2; TAL1 deletions, n = 3; Notch1 mutations, n = 1) and nononcogenic T-cell receptor rearrangements (n = 13) that were derived from leukemias of 16 children who were 1.5 to 11.2 years old at diagnosis of leukemia. Despite highly sensitive polymerase chain reaction (PCR) approaches (1 cell with a specific marker among 100,000 normal cells), we identified the leukemic clone in the neonatal blood spots in only 1 young child. These data suggest that in contrast to BCP ALL most TCP ALL cases are initiated after birth.
Collapse
Affiliation(s)
- Susanna Fischer
- Children's Cancer Research Institute, St Anna Kinderkrebsforschung, Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Fasseu M, Aplan PD, Chopin M, Boissel N, Bories JC, Soulier J, von Boehmer H, Sigaux F, Regnault A. p16INK4A tumor suppressor gene expression and CD3epsilon deficiency but not pre-TCR deficiency inhibit TAL1-linked T-lineage leukemogenesis. Blood 2007; 110:2610-9. [PMID: 17507663 PMCID: PMC1988920 DOI: 10.1182/blood-2007-01-066209] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Inactivation of the CDKN2 genes that encode the p16(INK4A) and p14(ARF) proteins occurs in the majority of human T-cell acute lymphoblastic leukemias (T-ALLs). Ectopic expression of TAL1 and LMO1 genes is linked to the development of T-ALL in humans. In TAL1xLMO1 mice, leukemia develops in 100% of mice at 5 months. To identify the molecular events crucial to leukemic transformation, we produced several mouse models. We report here that expression of P16(INK4A) in developing TAL1xLMO1 thymocytes blocks leukemogenesis in the majority of the mice, and the leukemias that eventually develop show P16(INK4A) loss of expression. Events related to the T-cell receptor beta selection process are thought to be important for leukemic transformation. We show here that the absence of the pTalpha chain only slightly delays the appearance of TAL1xLMO1-induced T-ALL, which indicates a minor role of the pTalpha chain. We also show that the CD3epsilon-mediated signal transduction pathway is essential for this transformation process, since the TAL1xLMO1xCD3epsilon-deficient mice do not develop T-ALL for up to 1 year.
Collapse
MESH Headings
- Animals
- Basic Helix-Loop-Helix Transcription Factors/genetics
- Basic Helix-Loop-Helix Transcription Factors/metabolism
- CD3 Complex/genetics
- CD3 Complex/metabolism
- Cell Differentiation
- Cell Lineage
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Cyclin D3
- Cyclin-Dependent Kinase Inhibitor p16/genetics
- Cyclin-Dependent Kinase Inhibitor p16/metabolism
- Cyclins/metabolism
- Gene Expression Regulation, Neoplastic
- Humans
- LIM Domain Proteins
- Leukemia/genetics
- Leukemia/metabolism
- Leukemia/pathology
- Mice
- Mice, Transgenic
- Mutation/genetics
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- RNA, Messenger/genetics
- Receptor, Notch1/genetics
- Receptor, Notch1/metabolism
- Receptors, Antigen, T-Cell/deficiency
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Survival Rate
- T-Cell Acute Lymphocytic Leukemia Protein 1
- Thymus Gland/cytology
- Thymus Gland/metabolism
- Transcription Factors/genetics
- Transcription Factors/metabolism
Collapse
Affiliation(s)
- Magali Fasseu
- Institut National de la Santé et de la Recherche Médicale (INSERM) U462, Institut Universitaire d'Hématologie, Hôpital Saint-Louis, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Lin YW, Aplan PD. Gene expression profiling of precursor T-cell lymphoblastic leukemia/lymphoma identifies oncogenic pathways that are potential therapeutic targets. Leukemia 2007; 21:1276-84. [PMID: 17429429 PMCID: PMC2063467 DOI: 10.1038/sj.leu.2404685] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We compared the gene expression pattern of thymic tumors from precursor T-cell lymphoblastic lymphoma/leukemia (pre-T LBL) that arose in transgenic mice that overexpressed SCL, LMO1 or NUP98-HOXD13 (NHD13) with that of thymocytes from normal littermates. Only two genes, Ccl8 and Mrpl38, were consistently more than fourfold overexpressed in pre-T LBL from all three genotypes analyzed, and a single gene, Prss16 was consistently underexpressed. However, we identified a number of genes, such as Cfl1, Tcra, Tcrb, Pbx3, Eif4a, Eif4b and Cox8b that were over or under-expressed in pre-T LBL that arose in specific transgenic lines. Similar to the situation seen with human pre-T LBL, the SCL/LMO1 leukemias displayed an expression profile consistent with mature, late cortical thymocytes, whereas the NHD13 leukemias displayed an expression profile more consistent with immature thymocytes. We evaluated two of the most differentially regulated genes as potential therapeutic targets. Cfl1 was specifically overexpressed in SCL-LMO1 tumors; inactivation of Cfl1 using okadaic acid resulted in suppression of leukemic cell growth. Overexpression of Ccl8 was a consistent finding in all three transgenic lines, and an antagonist for the Ccl8 receptor-induced death of leukemic cell lines, suggesting a novel therapeutic approach.
Collapse
Affiliation(s)
- Ying-Wei Lin
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Navy8/Rm5105, 8901 Wisconsin Avenue, Bethesda, Maryland 20889-5105, USA
| | - Peter D. Aplan
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Navy8/Rm5105, 8901 Wisconsin Avenue, Bethesda, Maryland 20889-5105, USA
| |
Collapse
|
13
|
Lin YW, Nichols RA, Letterio JJ, Aplan PD. Notch1 mutations are important for leukemic transformation in murine models of precursor-T leukemia/lymphoma. Blood 2005; 107:2540-3. [PMID: 16282337 PMCID: PMC1414627 DOI: 10.1182/blood-2005-07-3013] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
NOTCH1 is frequently mutated in human precursor T-cell lymphoblastic leukemia/lymphoma (pre-T LBL). In the current study, we found that 13 of 19 cell lines and 29 of 49 primary tumors from SCL/LMO1, OLIG2/LMO1, OLIG2, LMO1, NUP98/HOXD13, and p27(-/-)/SMAD3(+/-) mice had Notch1 mutations in either the heterodimerization (HD) or the glutamic acid/serine/threonine (PEST) domain but not both. Thymocytes from clinically healthy SCL/LMO1 mice aged 5 weeks did not have Notch1 mutations, whereas thymocytes from clinically healthy SCL/LMO1 mice aged 8 to 12 weeks did have Notch1 mutations and formed tumors upon transplantation into nude mice. Remarkably, all of the HD domain mutations that we identified were single-base substitutions, whereas all of the PEST domain mutations were insertions or deletions, half of which mapped to 1 of 2 mutational "hot spots." Taken together, these findings indicate that Notch1 mutations are very frequent events that are acquired relatively early in the process of leukemic transformation and are important for leukemic cell growth.
Collapse
MESH Headings
- Age Factors
- Animals
- Cell Proliferation
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/pathology
- Leukemia, T-Cell/etiology
- Leukemia, T-Cell/genetics
- Leukemia, T-Cell/pathology
- Lymphoma, T-Cell/etiology
- Lymphoma, T-Cell/genetics
- Lymphoma, T-Cell/pathology
- Mice
- Mice, Transgenic
- Mutation
- Receptor, Notch1/genetics
- Thymus Gland/cytology
Collapse
Affiliation(s)
- Ying-Wei Lin
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 8901 Wisconsin Ave, Bethesda, MD 20889-5105, USA
| | | | | | | |
Collapse
|