1
|
Vosoughi T, Bagheri M, Hosseinzadeh M, Ehsanpour A, Davari N, Saki N. CD markers variations in chronic lymphocytic leukemia: New insights into prognosis. J Cell Physiol 2019; 234:19420-19439. [PMID: 31049958 DOI: 10.1002/jcp.28724] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/31/2019] [Accepted: 04/11/2019] [Indexed: 12/31/2022]
Abstract
Chronic lymphocytic leukemia (CLL) is one of the most commonly occurring adult leukemias that is associated with clonal accumulation of mature apoptosis-resistant B-cells in bone marrow, peripheral blood, and specific tissues. Different pathogenesis factors can contribute to the aggression of the clinical course in this disease. Cytogenetic abnormalities and surface biomarkers of neoplastic CLL cells can be effective in the outcome of CLL, and the examination of changing CD markers expressions in the progression of CLL can be related to the prognosis of this disease. Changing expression levels of CD markers on lymphocytes and other cells in CLL patients can play a role in the aggressive clinical outcomes such as organomegaly, immunodeficiency, and advanced disease stages through their interaction with CLL microenvironment. Given the involvement of CD markers in the pathogenesis of CLL, it can be stated that recognizing the expression changes of CD markers in the cells involved in CLL can be a proper approach to evaluate prognosis among these patients.
Collapse
Affiliation(s)
- Tina Vosoughi
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Marziye Bagheri
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mehran Hosseinzadeh
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Ehsanpour
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Nader Davari
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Najmaldin Saki
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
2
|
Burgueño-Bucio E, Mier-Aguilar CA, Soldevila G. The multiple faces of CD5. J Leukoc Biol 2019; 105:891-904. [PMID: 30676652 DOI: 10.1002/jlb.mr0618-226r] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 11/27/2018] [Accepted: 12/09/2018] [Indexed: 12/21/2022] Open
Abstract
Since its discovery, over 30 years ago, CD5 has been used as a marker to identify T cells, B1-a cells, and B cell chronic lymphocytic leukemia cells. Throughout the years, many studies have described the functional relevance of CD5 as a modulator of T and B cell receptor signaling. However, it has not been until recent years that CD5 has emerged as a functional receptor in other areas of the immune system. Here, we review some of the most important aspects of CD5 as a modulator of TCR and BCR signaling, cell survival receptor both in T and B cells during health and disease, as well as the newly discovered roles of this receptor in thymocyte selection, T cell effector differentiation, and immune tolerance. CD5 was found to promote T cell survival by protecting autoreactive T cell from activation-induced cell death, to promote de novo induction of regulatory T cells in the periphery, to modulate Th17 and Th2 differentiation, and to modulate immune responses by modulating dendritic cell functions. CD5 is overexpressed in Tregs and Bregs, which are fundamental to maintain immune homeostasis. The newly established roles of CD5 in modulating different aspects of immune responses identify this receptor as an immune checkpoint modulator, and therefore it could be used as a target for immune intervention in different pathologies such as cancer, autoimmune diseases or infections.
Collapse
Affiliation(s)
- Erica Burgueño-Bucio
- Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Carlos A Mier-Aguilar
- Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Gloria Soldevila
- Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
3
|
Bashford-Rogers RJM, Palser AL, Hodkinson C, Baxter J, Follows GA, Vassiliou GS, Kellam P. Dynamic variation of CD5 surface expression levels within individual chronic lymphocytic leukemia clones. Exp Hematol 2017; 46:31-37.e10. [PMID: 27693386 PMCID: PMC5261558 DOI: 10.1016/j.exphem.2016.09.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 08/23/2016] [Accepted: 09/17/2016] [Indexed: 01/09/2023]
Abstract
Chronic lymphocytic leukemia (CLL) is characterized by the accumulation of clonally derived mature CD5high B cells; however, the cellular origin of CLL is still unknown. Patients with CLL also harbor variable numbers of CD5low B cells, but the clonal relationship of these cells to the bulk disease is unknown and can have important implications for monitoring, treating, and understanding the biology of CLL. Here, we use B-cell receptors (BCRs) as molecular barcodes to first show by single-cell BCR sequencing that the great majority of CD5low B cells in the blood of CLL patients are clonally related to CD5high CLL B cells. We investigate whether CD5 state switching was likely to occur continuously as a common event or as a rare event in CLL by tracking somatic BCR mutations in bulk CLL B cells and using them to reconstruct the phylogenetic relationships and evolutionary history of the CLL in four patients. Using statistical methods, we show that there is no parsimonious route from a single or low number of CD5low switch events to the CD5high population, but rather, large-scale and/or dynamic switching between these CD5 states is the most likely explanation. The overlapping BCR repertoires between CD5high and CD5low cells from CLL patient peripheral blood reveal that CLL exists in a continuum of CD5 expression. The major proportion of CD5low B cells in patients are leukemic, thus identifying CD5low B cells as an important component of CLL, with implications for CLL pathogenesis, clinical monitoring, and the development of anti-CD5-directed therapies.
Collapse
MESH Headings
- Antigens, CD/genetics
- Antigens, CD/metabolism
- B-Lymphocytes/metabolism
- B-Lymphocytes/pathology
- Biomarkers
- CD5 Antigens/genetics
- CD5 Antigens/metabolism
- Cell Membrane/metabolism
- Gene Expression
- Humans
- Immunophenotyping
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Receptors, Antigen, B-Cell/metabolism
- Sequence Analysis, DNA
Collapse
Affiliation(s)
| | - Anne L Palser
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Clare Hodkinson
- Cambridge Blood and Stem Cell Biobank, University of Cambridge, Department of Haematology, National Health Service Blood and Transplant Cambridge Centre, Cambridge, UK
| | - Joanna Baxter
- Cambridge Blood and Stem Cell Biobank, University of Cambridge, Department of Haematology, National Health Service Blood and Transplant Cambridge Centre, Cambridge, UK
| | - George A Follows
- Department of Haematology, Addenbrooke's Hospital, Cambridge, UK
| | - George S Vassiliou
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Paul Kellam
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK; Research Department of Infection, Division of Infection and Immunity, University College London, London, UK.
| |
Collapse
|
4
|
Expression of activated molecules on CD5+B lymphocytes in autoimmune hemolytic anemia. Int J Hematol 2016; 103:545-53. [DOI: 10.1007/s12185-016-1964-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 02/07/2016] [Accepted: 02/12/2016] [Indexed: 10/22/2022]
|
5
|
García-Muñoz R, Roldan Galiacho V, Llorente L. Immunological aspects in chronic lymphocytic leukemia (CLL) development. Ann Hematol 2012; 91:981-96. [PMID: 22526361 PMCID: PMC3368117 DOI: 10.1007/s00277-012-1460-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Accepted: 03/26/2012] [Indexed: 01/23/2023]
Abstract
Chronic lymphocytic leukemia (CLL) is unique among B cell malignancies in that the malignant clones can be featured either somatically mutated or unmutated IGVH genes. CLL cells that express unmutated immunoglobulin variable domains likely underwent final development prior to their entry into the germinal center, whereas those that express mutated variable domains likely transited through the germinal center and then underwent final development. Regardless, the cellular origin of CLL remains unknown. The aim of this review is to summarize immunological aspects involved in this process and to provide insights about the complex biology and pathogenesis of this disease. We propose a mechanistic hypothesis to explain the origin of B-CLL clones into our current picture of normal B cell development. In particular, we suggest that unmutated CLL arises from normal B cells with self-reactivity for apoptotic bodies that have undergone receptor editing, CD5 expression, and anergic processes in the bone marrow. Similarly, mutated CLL would arise from cells that, while acquiring self-reactivity for autoantigens-including apoptotic bodies-in germinal centers, are also still subject to tolerization mechanisms, including receptor editing and anergy. We believe that CLL is a proliferation of B lymphocytes selected during clonal expansion through multiple encounters with (auto)antigens, despite the fact that they differ in their state of activation and maturation. Autoantigens and microbial pathogens activate BCR signaling and promote tolerogenic mechanisms such as receptor editing/revision, anergy, CD5+ expression, and somatic hypermutation in CLL B cells. The result of these tolerogenic mechanisms is the survival of CLL B cell clones with similar surface markers and homogeneous gene expression signatures. We suggest that both immunophenotypic surface markers and homogenous gene expression might represent the evidence of several attempts to re-educate self-reactive B cells.
Collapse
MESH Headings
- Animals
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- B-Lymphocytes/physiology
- Biomarkers, Tumor/analysis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/physiology
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/immunology
- Gene Expression Profiling
- Humans
- Immune Tolerance/genetics
- Immune Tolerance/physiology
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Leukemia, Lymphocytic, Chronic, B-Cell/etiology
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Models, Biological
- Neoplastic Stem Cells/immunology
- Neoplastic Stem Cells/physiology
- Somatic Hypermutation, Immunoglobulin/genetics
- Somatic Hypermutation, Immunoglobulin/physiology
Collapse
Affiliation(s)
- Ricardo García-Muñoz
- Hematology Department, Hospital San Pedro, c/Piqueras 98, Logroño, La Rioja, 26006, Spain.
| | | | | |
Collapse
|
6
|
Loisel S, André PA, Golay J, Buchegger F, Kadouche J, Cérutti M, Bologna L, Kosinski M, Viertl D, Delaloye AB, Berthou C, Mach JP, Boumsell L. Antitumour effects of single or combined monoclonal antibodies directed against membrane antigens expressed by human B cells leukaemia. Mol Cancer 2011; 10:42. [PMID: 21504579 PMCID: PMC3103468 DOI: 10.1186/1476-4598-10-42] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Accepted: 04/19/2011] [Indexed: 12/20/2022] Open
Abstract
Background The increasing availability of different monoclonal antibodies (mAbs) opens the way to more specific biologic therapy of cancer patients. However, despite the significant success of therapy in breast and ovarian carcinomas with anti-HER2 mAbs as well as in non-Hodkin B cell lymphomas with anti-CD20 mAbs, certain B cell malignancies such as B chronic lymphocytic leukaemia (B-CLL) respond poorly to anti-CD20 mAb, due to the low surface expression of this molecule. Thus, new mAbs adapted to each types of tumour will help to develop personalised mAb treatment. To this aim, we analyse the biological and therapeutic properties of three mAbs directed against the CD5, CD71 or HLA-DR molecules highly expressed on B-CLL cells. Results The three mAbs, after purification and radiolabelling demonstrated high and specific binding capacity to various human leukaemia target cells. Further in vitro analysis showed that mAb anti-CD5 induced neither growth inhibition nor apoptosis, mAb anti-CD71 induced proliferation inhibition with no early sign of cell death and mAb anti-HLA-DR induced specific cell aggregation, but without evidence of apoptosis. All three mAbs induced various degrees of ADCC by NK cells, as well as phagocytosis by macrophages. Only the anti-HLA-DR mAb induced complement mediated lysis. Coincubation of different pairs of mAbs did not significantly modify the in vitro results. In contrast with these discrete and heterogeneous in vitro effects, in vivo the three mAbs demonstrated marked anti-tumour efficacy and prolongation of mice survival in two models of SCID mice, grafted either intraperitoneally or intravenously with the CD5 transfected JOK1-5.3 cells. This cell line was derived from a human hairy cell leukaemia, a type of malignancy known to have very similar biological properties as the B-CLL, whose cells constitutively express CD5. Interestingly, the combined injection of anti-CD5 with anti-HLA-DR or with anti-CD71 led to longer mouse survival, as compared to single mAb injection, up to complete inhibition of tumour growth in 100% mice treated with both anti-HLA-DR and anti-CD5. Conclusions Altogether these data suggest that the combined use of two mAbs, such as anti-HLA-DR and anti-CD5, may significantly enhance their therapeutic potential.
Collapse
Affiliation(s)
- Séverine Loisel
- EA2216 and IFR148, University Medical School, Université Européenne de Bretagne, F-9238 Brest, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Wu G, Peng YM, Liu H, Hou QD, Liu FY, Chen NL, Bi HX. Expression of CD19+CD5+B Cells and IgA1-positive cells in Tonsillar Tissues of IgA Nephropathy Patients. Ren Fail 2011; 33:159-63. [DOI: 10.3109/0886022x.2011.552150] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
8
|
Hammadi A, Billard C, Faussat AM, Kolb JP. Stimulation of iNOS expression and apoptosis resistance in B-cell chronic lymphocytic leukemia (B-CLL) cells through engagement of Toll-like receptor 7 (TLR-7) and NF-kappaB activation. Nitric Oxide 2008; 19:138-45. [PMID: 18474259 DOI: 10.1016/j.niox.2008.04.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Revised: 04/17/2008] [Accepted: 04/17/2008] [Indexed: 01/02/2023]
Abstract
B-CLL cells are characterized by in vivo resistance to apoptosis due, in part, to the presence of an inducible nitric oxide synthase, iNOS, as the NO released plays anti-apoptotic role, notably by inhibiting caspases. The mechanisms leading to spontaneous expression of iNOS in these cells are presently unknown. The restricted use of some V(H) sub-groups and the sequences of the monoclonal immunoglobulins of the B-cell receptor expressed by the leukemia cells suggested that the latter have encountered specific auto-antigens and/or microbial derived antigens. Their binding to the BCR provides an activation signal resulting in enhanced survival, hence could be involved in the aetiology of the disease. At the interface of innate and cognate immunity, Toll-like receptors, TLR, recognize PAMPs (pathogen-associated molecular patterns) expressed by various bacteria and virus as well as some self-antigens. We thus hypothesized that TLR were involved in the early steps of B-CLL oncogenesis, notably apoptosis resistance through the induction of iNOS expression and the production of NO. Our results show that B-CLL cells express TLR-7 and TLR-9. Incubation of B-CLL cells with TLR-7 agonists effectively resulted in an increased resistance to apoptosis that was reverted with the NOS inhibitor L-NMMA. This resistance was associated with enhanced iNOS expression (protein and mRNA) and NO release, stimulation of NF-kappaB activation, phosphorylation of I kappaB alpha, all these events being suppressed with wedelolactone or Bay 11-7085, two inhibitors of I kappaB alpha phosphorylation. Our present data thus suggest that TLR-7 signaling stimulates apoptosis resistance, notably through an NF-kappaB-dependent activation of the NO pathway.
Collapse
Affiliation(s)
- Amar Hammadi
- UMRS 872 INSERM/Université Pierre et Marie Curie/Université Paris Descartes, Equipe 18, Centre de Recherche des Cordeliers, 15 rue de l'Ecole de Médecine, 75270 Paris cedex 06, Paris, France
| | | | | | | |
Collapse
|
9
|
Perez-Chacon G, Vargas JA, Jorda J, Morado M, Rosado S, Martin-Donaire T, Losada-Fernandez I, Rebolleda N, Perez-Aciego P. CD5 provides viability signals to B cells from a subset of B-CLL patients by a mechanism that involves PKC. Leuk Res 2007; 31:183-93. [PMID: 16725198 DOI: 10.1016/j.leukres.2006.03.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2006] [Revised: 03/22/2006] [Accepted: 03/27/2006] [Indexed: 11/17/2022]
Abstract
B-chronic lymphocytic leukaemia (B-CLL) is a heterogeneous disease characterized by an accumulation of B lymphocytes expressing CD5. To date, the biological significance of this molecule in B-CLL B cells remains to be elucidated. In this study, we have analysed the functional consequences of the binding of an anti-CD5 antibody on B-CLL B cells. To this purpose, we have measured the percentage of viability of B-CLL B cells in the presence or in the absence of anti-CD5 antibodies and also examined some of the biochemical events downstream the CD5-signalling. We demonstrate that anti-CD5 induces phosphorylation of protein tyrosine kinases and protein kinase C (PKC), while no activation of Akt/PKB and MAPKs is detected. This signalling cascade results in viability in a group of patients in which we observe an increase of Mcl-1 levels, whereas the levels of bcl-2, bcl-x(L) and XIAP do not change. We also report that this pathway leads to IL-10 production, an immunoregulatory cytokine that might act as an autocrine growth factor for leukaemic B cells. Inhibition of PKC prevents the induction of Mcl-1 and IL-10, suggesting that the activation of PKC plays an important role in the CD5-mediated survival signals in B cells from a subset of B-CLL patients.
Collapse
|
10
|
Cioca DP, Deak E, Cioca F, Paunescu V. Monoclonal Antibodies Targeted Against Melanoma and Ovarian Tumors Enhance Dendritic Cell-Mediated Cross-Presentation of Tumor-Associated Antigens and Efficiently Cross-Prime CD8+ T Cells. J Immunother 2006; 29:41-52. [PMID: 16365599 DOI: 10.1097/01.cji.0000175496.51594.8b] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Dendritic cells (DCs) constitute very attractive vectors for cancer immunotherapy due to their ability to efficiently capture and present tumor antigens, which initiates tumor-directed T-cell responses. Because the initiation of cytotoxic anti-tumor immune responses requires the cross-presentation mechanism, antigen targeting to DCs represents a very important step in the chain of events that constitutes the cross-priming immune process. In the current study, we explored the ability of DCs loaded with antibody-coated melanoma and ovarian carcinoma tumor cells to cross-present tumor antigens to CD8+ T cells and elicit in vitro anti-tumor immune responses. Coating melanoma and ovarian cancer cells with monoclonal antibodies against different surface antigens (CD44, ME491, LFA-3, and CD24) expressed by the tumor cells promoted the cross-presentation of the tumor-associated antigens as MART-1, gp100, tyrosinase, and NY-ESO-1 by DCs to CD8+ T. These tumor antigen-specific CD8+ T-cell populations resulting from the DC-mediated cross-priming process were identified using specific immune tetramers and were a few fold larger than the ones generated using peptide-pulsed or apoptotic tumor cell-loaded DCs. The CD8+ T cells generated by DCs loaded with monoclonal antibody-coated tumor cells were cytotoxic against the primary melanoma and ovarian carcinoma cells. Thus, targeting monoclonal antibody-coated tumor cells to DCs is a novel method that opens new perspectives for immunotherapy strategies.
Collapse
Affiliation(s)
- Daniel Petru Cioca
- Immunology Department, Timisoara Medical University, Timisoara, Romania.
| | | | | | | |
Collapse
|
11
|
Nédellec S, Renaudineau Y, Bordron A, Berthou C, Porakishvili N, Lydyard PM, Pers JO, Youinou P. B cell response to surface IgM cross-linking identifies different prognostic groups of B-chronic lymphocytic leukemia patients. THE JOURNAL OF IMMUNOLOGY 2005; 174:3749-56. [PMID: 15749915 DOI: 10.4049/jimmunol.174.6.3749] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
On the basis of responses to surface IgM (sIgM) cross-linking, B cells from 41 patients with B-chronic lymphocytic leukemia were categorized as 15 nonresponders (group I) and 26 responders (group II). The latter cases were subclassified as those seven where proliferation was induced (subgroup IIa) and the remaining 19 in whom apoptosis occurred (subgroup IIa). Signal disruption in group I was confirmed by the absence of Ca2+ mobilization. Activation of PI3K was constitutive in subgroup IIa, but not in subgroup IIb, and that of Akt induced by anti-mu in subgroup IIa, but not in subgroup IIb. Among the MAPK, ERK was more highly activated relative to p38 in subgroup IIa, whereas activation of p38 predominated over that of ERK in subgroup IIb. For subgroup IIb cells, based on tyrosine phosphorylation and translocation into lipid rafts, sIgM signaling was shown to be enhanced by Zap70. The different consequences of signaling through sIgM were associated with biological prognosis indicators. These included high levels of CD38, lack of mutations in the IgVH chain genes, preferential usage of full-length CD79b, and severe clinical stage. Thus, modification of sIgM-induced signaling could be a therapeutic approach.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Apoptosis
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- B-Lymphocytes/pathology
- Calcium Signaling
- Case-Control Studies
- Cell Proliferation
- Cross-Linking Reagents
- Female
- Humans
- Immunoglobulin M/metabolism
- In Vitro Techniques
- Leukemia, Lymphocytic, Chronic, B-Cell/classification
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Male
- Middle Aged
- Mitogen-Activated Protein Kinase Kinases/metabolism
- Phosphorylation
- Prognosis
- Protein-Tyrosine Kinases/metabolism
- Receptors, Antigen, B-Cell/metabolism
- Signal Transduction
- ZAP-70 Protein-Tyrosine Kinase
Collapse
Affiliation(s)
- Steven Nédellec
- Institut de Synergie des Sciences et de la Santé, Brest University Medical School, Brest, France
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Lin TS, Byrd JC. Monoclonal antibody therapy in lymphoid leukemias. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2004; 51:127-67. [PMID: 15464908 DOI: 10.1016/s1054-3589(04)51006-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Affiliation(s)
- Thomas S Lin
- Division of Hematology and Oncology, The Ohio State University, The Arthur James Comprehensive Cancer Center, Columbus, Ohio 43210, USA
| | | |
Collapse
|