1
|
Li Q, Zhang Z, Jiang H, Hou J, Chai Y, Nan H, Li F, Wang L. DLEU1 promotes cell survival by preventing DYNLL1 degradation in esophageal squamous cell carcinoma. J Transl Med 2022; 20:245. [PMID: 35619131 PMCID: PMC9134706 DOI: 10.1186/s12967-022-03449-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/18/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Emerging evidence has highlighted the critical roles of long noncoding RNAs (lncRNAs) in tumor development and progression. However, the biological functions and underlying mechanisms of DLEU1 in esophageal squamous cell carcinoma (ESCC) remain unclear. METHODS LncRNA expression in ESCC tissues was explored using lncRNA microarray datasets. The functional roles of DLEU1 in ESCC were demonstrated by a series of in vitro and in vivo experiments. RNA pull-down and immunoprecipitation assays were performed to demonstrate the potential mechanisms of DLEU1. RESULTS In a screen for differentially expressed lncRNAs in ESCC, we determined that DLEU1 was one of the most overexpressed lncRNAs in ESCC tissues and that upregulated DLEU1 expression was associated with a worse prognosis. Functional assays showed that DLEU1 promoted tumor growth by inhibiting cell apoptosis. Mechanistically, DLEU1 could bind and stabilize DYNLL1 by interfering with RNF114-mediated ubiquitination and proteasomal degradation. The DLEU1/DYNLL1 axis subsequently upregulated antiapoptotic BCL2 and promoted cell survival. Furthermore, DLEU1 upregulation was at least partly facilitated by promoter hypomethylation. Notably, targeting DLEU1 sensitized ESCC cells to cisplatin-induced death. CONCLUSIONS Our findings suggest that DLEU1-mediated stabilization of DYNLL1 is critical for cell survival and that the DLEU1/DYNLL1 axis may be a promising therapeutic target for ESCC.
Collapse
Affiliation(s)
- Qihang Li
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Zhiyu Zhang
- Department of Pathology and Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - HongChao Jiang
- Department of Pathology and Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Jun Hou
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Yuhang Chai
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Hongxing Nan
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Feng Li
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China. .,Department of Pathology and Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.
| | - Lianghai Wang
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China. .,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, China.
| |
Collapse
|
2
|
Rahool R, Haider G, Shahid A, Shaikh MR, Memon P, Pawan B, Beg S, Abbas K, Khalid M. Medical and Psychosocial Challenges Associated with Breast Cancer Survivorship. Cureus 2021; 13:e13211. [PMID: 33717749 PMCID: PMC7943930 DOI: 10.7759/cureus.13211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Objective To assess the association between common survivorship issues and characteristics of breast cancer survivors presenting at a tertiary care hospital in Karachi, Pakistan. Methodology This study was conducted in the medical oncology department of Jinnah Medical Postgraduate Center from March 27, 2019, to September 27, 2019. A number of 257 females of age group 18-90 years who had either completed their treatment or were undergoing treatment at the time were included using non-probability consecutive sampling techniques. Face-to-face interviews were personally conducted by the researcher, and data regarding the socio-demographics and common survivorship issues faced by breast cancer patients were obtained. The data acquired were entered and analyzed using SPSS version 23 (IBM Corp, Armonk, NY). Results The mean age of the breast cancer survivors were 42.58 ± 10.07 years. Of the main challenges, lack of energy received the highest mean score of 3.44 ± 1.26, followed by fatigue and financial issues. Overall the most common survivorship issue were financial issues (81.3%), followed by fatigue (80.9%), cessation of the menstrual cycle (66.1%), weak social support (59.1%), and cosmetic disfigurement (51.8%). Conclusion Breast cancer survivors have various psychological, medical, and social issues and may require unique attention during follow-up visits.
Collapse
Affiliation(s)
- Raja Rahool
- Oncology, Jinnah Postgraduate Medical Centre, Karachi, PAK
| | - Ghulam Haider
- Oncology, Jinnah Postgraduate Medical Centre, Karachi, PAK
| | - Aisha Shahid
- Oncology, Jinnah Postgraduate Medical Centre, Karachi, PAK
| | | | - Paras Memon
- Oncology, Jinnah Postgraduate Medical Centre, Karachi, PAK
| | - Bhunisha Pawan
- Oncology, Jinnah Postgraduate Medical Centre, Karachi, PAK
| | - Shumyla Beg
- Oncology, Jinnah Postgraduate Medical Centre, Karachi, PAK
| | - Kiran Abbas
- Internal Medicine, Jinnah Postgraduate Medical Centre, Karachi, PAK
| | - Manahil Khalid
- Internal Medicine, Bahria University Medical and Dental College, Karachi, PAK
| |
Collapse
|
3
|
Javandoost E, Firoozi-Majd E, Rostamian H, Khakpoor-Koosheh M, Mirzaei HR. Role of microRNAs in Chronic Lymphocytic Leukemia Pathogenesis. Curr Med Chem 2020; 27:282-297. [PMID: 31544709 DOI: 10.2174/0929867326666190911114842] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/20/2019] [Accepted: 08/27/2019] [Indexed: 12/13/2022]
Abstract
MicroRNAs (miRNAs) are a group of small endogenous non-coding RNAs involved in many cancers and various cellular processes such as cellular growth, DNA methylation, apoptosis, and differentiation. 13q14.3 chromosomal region contains miR-15 and miR-16 and deletion of this region is a commonly reported aberration in Chronic Lymphoblastic Leukemia (CLL), suggesting miRNAs involvement in CLL pathogenesis. MicroRNAs are known as oncogenes and tumor suppressors in CLL which may also serve as markers of onset and progression of the disease. The most prevalent form of leukemia diagnosed in adults in the western world, chronic lymphocytic leukemia, accounts for one-third of all leukemias. CLL is characterized by the presence of B Cell Malignant Clones in secondary lymphoid tissues, peripheral blood and bone marrow. The precise etiology of CLL is remained to be known, however, a number of Chromosomal Abnormalities such as deletions of 13q14.3, 11q and 17p and trisomy 12 have been detected. In this review, we offer our prospect on how miRNAs are involved in the CLL pathogenesis and disease progression. Further understanding of the underlying mechanisms and regulation of CLL pathogenesis has underscored the need for further research regarding their role in this disease.
Collapse
Affiliation(s)
- Ehsan Javandoost
- Department of Hematology, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ehsan Firoozi-Majd
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hosein Rostamian
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Khakpoor-Koosheh
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Mirzaei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Granot-Hershkovitz E, Karasik D, Friedlander Y, Rodriguez-Murillo L, Dorajoo R, Liu J, Sewda A, Peter I, Carmi S, Hochner H. A study of Kibbutzim in Israel reveals risk factors for cardiometabolic traits and subtle population structure. Eur J Hum Genet 2018; 26:1848-1858. [PMID: 30108283 PMCID: PMC6244281 DOI: 10.1038/s41431-018-0230-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 06/24/2018] [Accepted: 07/17/2018] [Indexed: 11/09/2022] Open
Abstract
Genetic studies in isolated populations often increase power for identifying loci associated with complex diseases and traits. We present here the Kibbutzim Family Study (KFS), aimed at investigating the genetic basis of cardiometabolic traits in extended Israeli families characterized by long-term social stability and a homogeneous environment. Extensive information on cardiometabolic traits, as well as genome-wide genotypes, were collected on 901 individuals. We observed that most KFS participants were of Ashkenazi Jewish (AJ) genetic origin, confirmed a recent severe bottleneck in the AJ recent history, and detected a subtle within-AJ population structure. Focusing on genetic variants relatively common in the KFS but very rare in Europeans, we observed that AJ-enriched variants appear in cancer-related pathways more than expected by chance. We conducted an association study of the AJ-enriched variants against 16 cardiometabolic traits, and found seven loci (24 variants) to be significantly associated. The strongest association, which we also replicated in an independent study, was between a variant upstream of MSRA (frequency ≈1% in the KFS and nearly absent in Europeans) and weight (P = 3.6∙10-8). In conclusion, the KFS is a valuable resource for the study of the population genetics of Israel as well as the genetics of cardiometabolic traits.
Collapse
Affiliation(s)
| | - David Karasik
- Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, Israel
| | - Yechiel Friedlander
- Braun School of Public Health, Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| | - Laura Rodriguez-Murillo
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rajkumar Dorajoo
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Jianjun Liu
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Anshuman Sewda
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Inga Peter
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Shai Carmi
- Braun School of Public Health, Hebrew University-Hadassah Medical Center, Jerusalem, Israel.
| | - Hagit Hochner
- Braun School of Public Health, Hebrew University-Hadassah Medical Center, Jerusalem, Israel.
| |
Collapse
|
5
|
Screening for long noncoding RNAs associated with oral squamous cell carcinoma reveals the potentially oncogenic actions of DLEU1. Cell Death Dis 2018; 9:826. [PMID: 30069008 PMCID: PMC6070574 DOI: 10.1038/s41419-018-0893-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 07/18/2018] [Accepted: 07/18/2018] [Indexed: 01/27/2023]
Abstract
Recent studies have shown that long noncoding RNAs (lncRNAs) have pivotal roles in human malignancies, although their significance in oral squamous cell carcinoma (OSCC) is not fully understood. In the present study, we identified lncRNAs functionally associated with OSCC. By analyzing RNA-seq datasets obtained from primary head and neck squamous cell carcinoma (HNSCC), we identified 15 lncRNAs aberrantly expressed in cancer tissues. We then validated their expression in 18 OSCC cell lines using qRT-PCR and identified 6 lncRNAs frequently overexpressed in OSCC. Among those, we found that knocking down DLEU1 (deleted in lymphocytic leukemia 1) strongly suppressed OSCC cell proliferation. DLEU1 knockdown also suppressed migration, invasion, and xenograft formation by OSCC cells, which is suggestive of its oncogenic functionality. Microarray analysis revealed that DLEU1 knockdown significantly affects expression of a number of cancer-related genes in OSCC cells, including HAS3, CD44, and TP63, suggesting that DLEU1 regulates HA-CD44 signaling. Expression of DLEU1 was elevated in 71% of primary OSCC tissues, and high DLEU1 expression was associated with shorter overall survival of HNSCC patients. These data suggest that elevated DLEU1 expression contributes to OSCC development, and that DLEU1 may be a useful therapeutic target in OSCC.
Collapse
|
6
|
Abstract
More than six decades ago Watson and Crick published the chemical structure of DNA. This discovery revolutionized our approach to medical science and opened new perspectives for the diagnosis and treatment of many diseases including cancer. Since then, progress in molecular biology, together with the rapid advance of technologies, allowed to clone hundreds of protein-coding genes that were found mutated in all types of cancer. Normal and aberrant gene functions, interactions, and mechanisms of mutations were studied to identify the intricate network of pathways leading to cancer. With the acknowledgment of the genetic nature of cancer, new diagnostic, prognostic, and therapeutic strategies have been attempted and developed, but very few have found their way in the clinical field. In an effort to identify new translational targets, another great discovery has changed our way to look at genes and their functions. MicroRNAs have been the first noncoding genes involved in cancer. This review is a brief chronological history of microRNAs and cancer. Through the work of few of the greatest scientists of our times, this chapter describes the discovery of microRNAs from C. elegans to their debut in cancer and in the medical field, the concurrent development of technologies, and their future translational applications. The purpose was to share the exciting path that lead to one of the most important discoveries in cancer genetics in the past 20 years.
Collapse
Affiliation(s)
- Alessandra Drusco
- Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Carlo M Croce
- Wexner Medical Center, The Ohio State University, Columbus, OH, United States.
| |
Collapse
|
7
|
Grade M, Difilippantonio MJ, Camps J. Patterns of Chromosomal Aberrations in Solid Tumors. Recent Results Cancer Res 2016; 200:115-42. [PMID: 26376875 DOI: 10.1007/978-3-319-20291-4_6] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Chromosomal abnormalities are a defining feature of solid tumors. Such cytogenetic alterations are mainly classified into structural chromosomal aberrations and copy number alterations, giving rise to aneuploid karyotypes. The increasing detection of these genetic changes allowed the description of specific tumor entities and the associated patterns of gene expression. In fact, tumor-specific landscapes of gross genomic copy number changes, including aneuploidies of entire chromosome arms and chromosomes result in a global deregulation of the transcriptome of cancer cells. Furthermore, the molecular characterization of cytogenetic abnormalities has provided insights into the mechanisms of tumorigenesis and has, in a few instances, led to the clinical implementation of effective diagnostic and prognostic tools, as well as treatment strategies that target a specific genetic abnormality.
Collapse
Affiliation(s)
- Marian Grade
- University Medical Center Göttingen, Göttingen, Germany
| | | | - Jordi Camps
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Hospital Clinic de Barcelona, Barcelona, Spain.
| |
Collapse
|
8
|
Degheidy HA, Gadalla SM, Farooqui MZH, Abbasi F, Arthur DC, Bauer SR, Wilson WH, Wiestner A, Stetler-Stevenson MA, Marti GE. Bcl-2 level as a biomarker for 13q14 deletion in CLL. CYTOMETRY PART B-CLINICAL CYTOMETRY 2013; 84:237-47. [PMID: 23674504 DOI: 10.1002/cyto.b.21090] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 03/04/2013] [Accepted: 03/06/2013] [Indexed: 11/07/2022]
Abstract
BACKGROUND Deletion 13q14.3 is the most common cytogenetic abnormality in chronic lymphocytic leukemia (CLL). Previously it was reported that miR-15/16 is the target of 13q14 deletions and plays a tumor suppressor role by suppressing Bcl-2. Therefore, Bcl-2 expression was examined more closely to determine whether it would predict 13q14 deletion status. METHODS A multi-color flow panel consisting of anti-Bcl-2/anti-lambda/anti-kappa/CD19/CD5/CD3/CD20 was performed. The ability of Bcl-2 to predict 13q14 deletion was tested using the conventional Bcl-2 index (c-index): mean fluorescence intensity (MFI) of CLL clone/MFI of residual T cells. Fifty-four untreated CLL/MBL patients were studied. Bimodal Bcl-2 expression was evaluated to test the ability of Bcl-2 to detect intraclonal heterogeneity. Other CLL prognostic markers including CD38, CD49d, CD26, and CD69 were evaluated. FISH was performed on selected sorted populations. RESULTS The Bcl-2 c-index strongly predicts del13q14 P < 0.0001. A statistically significant association was observed between the percentage of cells carrying the deletion and the level of Bcl-2 expression P < 0.05. Cells sorted based on Bcl-2 expression showed enrichment of both hemizygous and homozygous del 13q14 cells. Also, we observed that an alteration in Bcl-2 level over time predicts changes in 13q14 deletion status. And a statistically significant correlation between the bimodal pattern of CD69 expression and the presence of 13q14 deletion was found P < 0.0001. CONCLUSION Bcl-2 expression using the c-index strongly predicts 13q14 deletion and can be used to distinguish homozygous, heterozygous, and diploid CLL clonal cells. Further systematic studies of this biomarker are needed for confirmation and expansion of these findings.
Collapse
Affiliation(s)
- Heba A Degheidy
- Center for Biologics Evaluation and Research, FDA, Bethesda, MD, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Ouillette P, Collins R, Shakhan S, Li J, Li C, Shedden K, Malek SN. The prognostic significance of various 13q14 deletions in chronic lymphocytic leukemia. Clin Cancer Res 2011; 17:6778-90. [PMID: 21890456 DOI: 10.1158/1078-0432.ccr-11-0785] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE To further our understanding of the biology and prognostic significance of various chromosomal 13q14 deletions in chronic lymphocytic leukemia (CLL). EXPERIMENTAL DESIGN We analyzed data from SNP 6.0 arrays to define the anatomy of various 13q14 deletions in a cohort of 255 CLL patients and have correlated two subsets of 13q14 deletions (type I exclusive of RB1 and type II inclusive of RB1) with patient survival. Furthermore, we measured the expression of the 13q14-resident microRNAs by quantitative PCR (Q-PCR) in 242 CLL patients and subsequently assessed their prognostic significance. We sequenced all coding exons of RB1 in patients with monoallelic RB1 deletion and have sequenced the 13q14-resident miR locus in all patients. RESULTS Large 13q14 (type II) deletions were detected in approximately 20% of all CLL patients and were associated with shortened survival. A strong association between 13q14 type II deletions and elevated genomic complexity, as measured through CLL-FISH or SNP 6.0 array profiling, was identified, suggesting that these lesions may contribute to CLL disease evolution through genomic destabilization. Sequence and copy number analysis of the RB1 gene identified a small CLL subset that is RB1 null. Finally, neither the expression levels of the 13q14-resident microRNAs nor the degree of 13q14 deletion, as measured through SNP 6.0 array-based copy number analysis, had significant prognostic importance. CONCLUSIONS Our data suggest that the clinical course of CLL is accelerated in patients with large (type II) 13q14 deletions that span the RB1 gene, therefore justifying routine identification of 13q14 subtypes in CLL management.
Collapse
Affiliation(s)
- Peter Ouillette
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Corthals SL, Jongen-Lavrencic M, de Knegt Y, Peeters JK, Beverloo HB, Lokhorst HM, Sonneveld P. Micro-RNA-15a and micro-RNA-16 expression and chromosome 13 deletions in multiple myeloma. Leuk Res 2009; 34:677-81. [PMID: 20031211 DOI: 10.1016/j.leukres.2009.10.026] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Revised: 10/28/2009] [Accepted: 10/28/2009] [Indexed: 11/19/2022]
Abstract
We have used copy number variation (CNV) analysis with SNP mapping arrays for miRNA-15a and miRNA-16-1 expression analysis in patients with multiple myeloma (MM) with or without deletion of chromosome 13q14. MiRNA-15a and miRNA-16 display a range of expression patterns in MM patients, independent of the chromosome 13 status. These findings suggest that genes other than miR-15a and miR-16 may explain the prognostic significance of 13q14 deletions.
Collapse
Affiliation(s)
- Sophie L Corthals
- Department of Hematology, Erasmus Medical Centre Rotterdam, Rotterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
11
|
Birerdinc A, Nohelty E, Marakhonov A, Manyam G, Panov I, Coon S, Nikitin E, Skoblov M, Chandhoke V, Baranova A. Pro-apoptotic and antiproliferative activity of human KCNRG, a putative tumor suppressor in 13q14 region. Tumour Biol 2009; 31:33-45. [PMID: 20237900 PMCID: PMC2803748 DOI: 10.1007/s13277-009-0005-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Accepted: 11/04/2009] [Indexed: 12/04/2022] Open
Abstract
Deletion of 13q14.3 and a candidate gene KCNRG (potassium channel regulating gene) is the most frequent chromosomal abnormality in B-cell chronic lymphocytic leukemia and is a common finding in multiple myeloma (MM). KCNRG protein may interfere with the normal assembly of the K+ channel proteins causing the suppression of Kv currents. We aimed to examine possible role of KCNRG haploinsufficiency in chronic lymphocytic leukemia (CLL) and MM cells. We performed detailed genomic analysis of the KCNRG locus; studied effects of the stable overexpression of KCNRG isoforms in RPMI-8226, HL-60, and LnCaP cells; and evaluated relative expression of its transcripts in various human lymphomas. Three MM cell lines and 35 CLL PBL samples were screened for KCNRG mutations. KCNRG exerts growth suppressive and pro-apoptotic effects in HL-60, LnCaP, and RPMI-8226 cells. Direct sequencing of KCNRG exons revealed point mutation delT in RPMI-8226 cell line. Levels of major isoform of KCNRG mRNA are lower in DLBL lymphomas compared to normal PBL samples, while levels of its minor mRNA are decreased across the broad range of the lymphoma types. The haploinsufficiency of KCNRG might be relevant to the progression of CLL and MM at least in a subset of patients.
Collapse
Affiliation(s)
- Aybike Birerdinc
- Molecular Biology and Microbiology Department, College of Science, George Mason University, David King Hall, MSN 3E1, Fairfax, VA 22030 USA
| | - Elizabeth Nohelty
- Molecular Biology and Microbiology Department, College of Science, George Mason University, David King Hall, MSN 3E1, Fairfax, VA 22030 USA
| | - Andrey Marakhonov
- Research Center for Medical Genetics, RAMS, Moskvorechie Str., 1, Moscow, Russian Federation
| | - Ganiraju Manyam
- Molecular Biology and Microbiology Department, College of Science, George Mason University, David King Hall, MSN 3E1, Fairfax, VA 22030 USA
| | - Ivan Panov
- Molecular Biology and Microbiology Department, College of Science, George Mason University, David King Hall, MSN 3E1, Fairfax, VA 22030 USA
| | - Stephanie Coon
- Molecular Biology and Microbiology Department, College of Science, George Mason University, David King Hall, MSN 3E1, Fairfax, VA 22030 USA
| | - Eugene Nikitin
- Hematology Research Center of Russia, Moscow, Russian Federation
| | - Mikhail Skoblov
- Research Center for Medical Genetics, RAMS, Moskvorechie Str., 1, Moscow, Russian Federation
| | - Vikas Chandhoke
- Molecular Biology and Microbiology Department, College of Science, George Mason University, David King Hall, MSN 3E1, Fairfax, VA 22030 USA
| | - Ancha Baranova
- Molecular Biology and Microbiology Department, College of Science, George Mason University, David King Hall, MSN 3E1, Fairfax, VA 22030 USA
- Research Center for Medical Genetics, RAMS, Moskvorechie Str., 1, Moscow, Russian Federation
| |
Collapse
|
12
|
Abstract
B-cell chronic lymphocytic leukemia (B-CLL) is a heterogeneous malignant disease, both in terms of molecular abnormalities and clinical course. The most frequent chromosomal aberrations in B-CLL are deletions on 13q, 11q, and 17p, and trisomy 12, all of which are of prognostic significance. These aberrations can be detected by conventional cytogenetic analysis and fluorescence in situ hybridization (FISH), but cytogenetics are hampered by the low mitotic index of B-CLL cells, and FISH depends on genetic information of candidate regions. Microsatellites are unique highly polymorphic and informative genetic markers dispersed in the human genome. They have become the most commonly used markers to trace loss of heterozygosity in tumors. Their detection by PCR is rapid and can be semi-automated with maximal robustness and reproducibility. In this review, we discuss the implications of a recent genome-wide analysis in B-CLL with 400 microsatellite markers. This analysis led to the detection of new aberrant loci in B-CLL which are not visible in the leukemic conventional karyotype. We conclude that microsatellite allelotyping provides a complementary comprehensive view of genetic alterations in B-CLL, and it may identify new loci with candidate genes relevant in the molecular biology of B-CLL.
Collapse
Affiliation(s)
- Urban Novak
- Department of Medical Oncology and Haematology, University and Inselspital Berne, Switzerland
| | | | | |
Collapse
|
13
|
Ouillette P, Erba H, Kujawski L, Kaminski M, Shedden K, Malek SN. Integrated genomic profiling of chronic lymphocytic leukemia identifies subtypes of deletion 13q14. Cancer Res 2008; 68:1012-21. [PMID: 18281475 DOI: 10.1158/0008-5472.can-07-3105] [Citation(s) in RCA: 166] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Chronic lymphocytic leukemia (CLL) is a biologically heterogeneous illness with a variable clinical course. Loss of chromosomal material on chromosome 13 at cytoband 13q14 is the most frequent genetic abnormality in CLL, but the molecular aberrations underlying del13q14 in CLL remain incompletely characterized. We analyzed 171 CLL cases for loss of heterozygosity and subchromosomal copy loss on chromosome 13 in DNA from fluorescence-activated cell sorting-sorted CD19(+) cells and paired buccal cells using the Affymetrix XbaI 50k SNP array platform. The resulting high-resolution genomic maps, together with array-based measurements of expression levels of RNA in CLL cases with and without del13q14 and quantitative PCR-based expression analysis of selected genes, support the following conclusions: (a) del13q14 is heterogeneous and composed of multiple subtypes, with deletion of Rb or the miR15a/miR16 loci serving as anatomic landmarks, respectively; (b) del13q14 type Ia deletions are relatively uniform in length and extend from breakpoints close to the miR15a/miR16 cluster to a newly identified telomeric breakpoint cluster at the approximately 50.2 to 50.5 Mb physical position; (c) LATS2 RNA levels are approximately 2.6-fold to 2.8-fold lower in cases with del13q14 type I that do not delete Rb, as opposed to del13q14 type II or all other CLL cases; (d) PHLPP RNA is absent in approximately 50% of CLL cases with del13q14; and (e) approximately 15% of CLL cases display marked reductions in miR15a/miR16 expression that are often but not invariably associated with bi-allelic miR15a/miR16 loss. These data should aid future investigations into biological differences imparted on CLL by different del13q14 subtypes.
Collapse
Affiliation(s)
- Peter Ouillette
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, Michigan 48109-0936, USA
| | | | | | | | | | | |
Collapse
|
14
|
Dunham A, Matthews LH, Burton J, Ashurst JL, Howe KL, Ashcroft KJ, Beare DM, Burford DC, Hunt SE, Griffiths-Jones S, Jones MC, Keenan SJ, Oliver K, Scott CE, Ainscough R, Almeida JP, Ambrose KD, Andrews DT, Ashwell RIS, Babbage AK, Bagguley CL, Bailey J, Bannerjee R, Barlow KF, Bates K, Beasley H, Bird CP, Bray-Allen S, Brown AJ, Brown JY, Burrill W, Carder C, Carter NP, Chapman JC, Clamp ME, Clark SY, Clarke G, Clee CM, Clegg SCM, Cobley V, Collins JE, Corby N, Coville GJ, Deloukas P, Dhami P, Dunham I, Dunn M, Earthrowl ME, Ellington AG, Faulkner L, Frankish AG, Frankland J, French L, Garner P, Garnett J, Gilbert JGR, Gilson CJ, Ghori J, Grafham DV, Gribble SM, Griffiths C, Hall RE, Hammond S, Harley JL, Hart EA, Heath PD, Howden PJ, Huckle EJ, Hunt PJ, Hunt AR, Johnson C, Johnson D, Kay M, Kimberley AM, King A, Laird GK, Langford CJ, Lawlor S, Leongamornlert DA, Lloyd DM, Lloyd C, Loveland JE, Lovell J, Martin S, Mashreghi-Mohammadi M, McLaren SJ, McMurray A, Milne S, Moore MJF, Nickerson T, Palmer SA, Pearce AV, Peck AI, Pelan S, Phillimore B, Porter KM, Rice CM, Searle S, Sehra HK, Shownkeen R, Skuce CD, Smith M, Steward CA, Sycamore N, Tester J, Thomas DW, Tracey A, Tromans A, Tubby B, Wall M, Wallis JM, West AP, Whitehead SL, Willey DL, Wilming L, Wray PW, Wright MW, Young L, Coulson A, Durbin R, Hubbard T, Sulston JE, Beck S, Bentley DR, Rogers J, Ross MT. The DNA sequence and analysis of human chromosome 13. Nature 2004; 428:522-8. [PMID: 15057823 PMCID: PMC2665288 DOI: 10.1038/nature02379] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2003] [Accepted: 01/27/2004] [Indexed: 12/14/2022]
Abstract
Chromosome 13 is the largest acrocentric human chromosome. It carries genes involved in cancer including the breast cancer type 2 (BRCA2) and retinoblastoma (RB1) genes, is frequently rearranged in B-cell chronic lymphocytic leukaemia, and contains the DAOA locus associated with bipolar disorder and schizophrenia. We describe completion and analysis of 95.5 megabases (Mb) of sequence from chromosome 13, which contains 633 genes and 296 pseudogenes. We estimate that more than 95.4% of the protein-coding genes of this chromosome have been identified, on the basis of comparison with other vertebrate genome sequences. Additionally, 105 putative non-coding RNA genes were found. Chromosome 13 has one of the lowest gene densities (6.5 genes per Mb) among human chromosomes, and contains a central region of 38 Mb where the gene density drops to only 3.1 genes per Mb.
Collapse
Affiliation(s)
- A Dunham
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Hii SI, Hardy L, Crough T, Payne EJ, Grimmett K, Gill D, McMillan NAJ. Loss of PKR activity in chronic lymphocytic leukemia. Int J Cancer 2004; 109:329-35. [PMID: 14961569 DOI: 10.1002/ijc.11714] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
There are a number of observations that suggest the dsRNA-activated protein kinase, PKR, may play an active role in formation and maintenance of leukemia, including nonrandom chromosomal deletions in acute leukemia as well as truncations and deletions of the PKR gene in some leukemia cell lines. However, there is little direct evidence from patient material that this is so. Here we show that full-length PKR is present but not active in 21 of 28 patient samples from B-cell chronic lymphocytic leukemia (B-CLL). PKR from these patients was unable to auto-activate or phosphorylate substrates but was able to bind dsRNA. Furthermore, the lack of PKR activation was not due to differing levels of the PKR activator, PACT nor of the PKR inhibitor, p58(IPK). We compared PKR status with clinical parameters and disease staging. No differences were found between the 2 groups in terms of staging (modified Rai or Binet), age, CD38 status, p53 status, 11q23 deletion status or CEP12 deletion status. However, there was a significant correlation between deletion in 13q14.3 and lack of PKR activity. We show that B-CLL cells appear to contain a soluble inhibitor of PKR, as lysates from cells lacking PKR activity were able to inhibit exogenous PKR in mixing experiments. Finally, we show suppression of PKR activity was still present following ultrafilitration through a 10,000 Da cutoff filter but was lost upon extraction with phenol/chloroform or by high salt washing. This data suggests loss of PKR activity may contribute to the formation and/or maintenance of CLL.
Collapse
MESH Headings
- ADP-ribosyl Cyclase/metabolism
- ADP-ribosyl Cyclase 1
- Aged
- Antigens, CD/metabolism
- Chromosomes, Human, Pair 11/genetics
- Chromosomes, Human, Pair 13/genetics
- Down-Regulation
- Enzyme Activation/drug effects
- Female
- Gene Deletion
- HSP40 Heat-Shock Proteins
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/enzymology
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Male
- Membrane Glycoproteins
- Phosphorylation/drug effects
- Poly I-C
- RNA, Double-Stranded/metabolism
- RNA-Binding Proteins/pharmacology
- Repressor Proteins/pharmacology
- Tumor Cells, Cultured
- Tumor Suppressor Protein p53/metabolism
- eIF-2 Kinase/antagonists & inhibitors
- eIF-2 Kinase/genetics
- eIF-2 Kinase/metabolism
Collapse
Affiliation(s)
- Su Ing Hii
- Cancer Biology Programme, Centre for Immunology and Cancer Research, University of Queensland, Brisbane, Australia
| | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
The general basis of cancer is the loss of cell identity and inappropriate proliferation of cells. Classically, a universal paradigm in oncogenesis is the accumulation of mutations in the open reading frames of protein-encoding oncogenes and tumor suppressors. The identification of new classes of noncoding RNAs (ncRNA) important for development and cell homeostasis will likely change this current paradigm. Recent data suggests that a special class of ncRNAs called microRNAs might be involved in human disease. This review proposes a role for microRNAs in oncogenesis.
Collapse
Affiliation(s)
- Michael T McManus
- Center for Cancer Research, Massachusetts Institute of Technology, 40 Ames Street, Cambridge, MA 02139, USA.
| |
Collapse
|
17
|
Dahlén A, Debiec-Rychter M, Pedeutour F, Domanski HA, Höglund M, Bauer HCF, Rydholm A, Sciot R, Mandahl N, Mertens F. Clustering of deletions on chromosome 13 in benign and low-malignant lipomatous tumors. Int J Cancer 2003; 103:616-23. [PMID: 12494468 DOI: 10.1002/ijc.10864] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Deletions and structural rearrangements of the long arm of chromosome 13 are frequently observed in benign and low-malignant lipomatous tumors, but nothing is known about their molecular genetic consequences. We assessed the karyotypes of 40 new and 22 previously published cases (35 ordinary lipomas, 15 spindle cell/pleomorphic lipomas, 2 myxolipomas, 1 angiomyxolipoma and 9 atypical lipomatous tumors) with chromosome 13-abnormalities, and found bands 13q12-22 to be frequently affected. Twenty-seven cases with structural abnormalities within this region were selected for breakpoint and deletion mapping by metaphase fluorescence in situ hybridization (FISH), using a set of 20 probes. Deletions were found in 23 of 27 cases. The remaining 4 cases had seemingly balanced rearrangements. The breakpoints were scattered but clustered to band 13q14, and in all cases with unbalanced abnormalities, a limited region within band 13q14 was partially or completely deleted. A deletion within band 13q14 was found together with a breakpoint on the other homologue in 5 cases, 4 of which could be tested further with regard to the status of the retinoblastoma (RB1)-gene. In all 4 cases, only 1 copy of the gene was deleted. In addition to the breaks and deletions in the vicinity of the RB1-locus, several other regions of 13q were recurrently affected, e.g., in the vicinity of the hereditary breast cancer (BRCA2; 13q12)- and lipoma HMGIC fusion partner (LHFP; 13q13)- genes. Our findings strongly indicate that deletion of a limited region (approximately 2.5 Mbp) within 13q14, distal to the RB1-locus, is of importance in the development of a subset of lipomatous tumors.
Collapse
Affiliation(s)
- Anna Dahlén
- Department of Clinical Genetics, University Hospital, Lund, Sweden.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, Aldler H, Rattan S, Keating M, Rai K, Rassenti L, Kipps T, Negrini M, Bullrich F, Croce CM. Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A 2002; 99:15524-9. [PMID: 12434020 PMCID: PMC137750 DOI: 10.1073/pnas.242606799] [Citation(s) in RCA: 3685] [Impact Index Per Article: 167.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Micro-RNAs (miR genes) are a large family of highly conserved noncoding genes thought to be involved in temporal and tissue-specific gene regulation. MiRs are transcribed as short hairpin precursors ( approximately 70 nt) and are processed into active 21- to 22-nt RNAs by Dicer, a ribonuclease that recognizes target mRNAs via base-pairing interactions. Here we show that miR15 and miR16 are located at chromosome 13q14, a region deleted in more than half of B cell chronic lymphocytic leukemias (B-CLL). Detailed deletion and expression analysis shows that miR15 and miR16 are located within a 30-kb region of loss in CLL, and that both genes are deleted or down-regulated in the majority ( approximately 68%) of CLL cases.
Collapse
MESH Headings
- Adult
- B-Lymphocytes/chemistry
- B-Lymphocytes/cytology
- Blotting, Northern
- Blotting, Western
- CD5 Antigens/analysis
- Child
- Child, Preschool
- Chromosomes, Human, Pair 13/genetics
- Gene Deletion
- Gene Expression Regulation, Leukemic
- Humans
- Hybrid Cells/chemistry
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- MicroRNAs/biosynthesis
- MicroRNAs/genetics
- Middle Aged
- Neoplasms/genetics
- Neoplasms/pathology
- Neoplastic Stem Cells/chemistry
- Palatine Tonsil/cytology
- RNA, Neoplasm/biosynthesis
- RNA, Neoplasm/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Transcription, Genetic
- Tumor Cells, Cultured/chemistry
Collapse
Affiliation(s)
- George Adrian Calin
- Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|