1
|
Xu H, Gao H, Wang C, Cheng X, Li Z, Lei C, Huang X, Li W, Yue Z, Tian S, Zhao X, Xue T, Xing T, Li J, Wang Y, Duan Y, Wang T, Zhang R. Optical Genome Mapping Reveals Novel Structural Variants in Lymphoblastic Lymphoma. J Pediatr Hematol Oncol 2024; 46:e71-e82. [PMID: 38018972 DOI: 10.1097/mph.0000000000002787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 10/15/2023] [Indexed: 11/30/2023]
Abstract
BACKGROUND Accurate histologic and molecular genetic diagnosis is critical for the pathogenesis study of pediatric patients with lymphoblastic lymphoma (LBL). Optical genome mapping (OGM) as all-in-one process allows the detection of most major genomic risk markers, which addresses some of the limitations associated with conventional cytogenomic testing, such as low resolution and throughput, difficulty in ascertaining genomic localization, and orientation of segments in duplication, inversions, and insertions. Here, for the first time, we examined the cytogenetics of 5 children with LBL using OGM. METHODS OGM was used to analyze 5 samples of pediatric LBL patients treated according to the modified NHL-BFM95 backbone regimen. Whole-exon Sequencing (WES) was used to confirm the existence of structural variants (SVs) identified by OGM with potentially clinical significance on MGI Tech (DNBSEQ-T7) platform. According to the fusion exon sequences revealed by WES, the HBS1L :: AHI1 fusion mRNA in case 4 was amplified by cDNA-based PCR. RESULTS In total, OGM identified 251 rare variants (67 insertions, 129 deletions, 3 inversion, 25 duplications, 15 intrachromosomal translocations, and 12 interchromosomal translocations) and 229 copy number variants calls (203 gains and 26 losses). Besides all of the reproducible and pathologically significant genomic SVs detected by conventional cytogenetic techniques, OGM identified more SVs with definite or potential pathologic significance that were not detected by traditional methods, including 2 new fusion genes, HBS1L :: AHI1 and GRIK1::NSDHL , which were confirmed by WES and/or Reverse Transcription-Polymerase Chain Reaction. CONCLUSIONS Our results demonstrate the feasibility of OGM to detect genomic aberrations, which may play an important role in the occurrence and development of lymphomagenesis as an important driving factor.
Collapse
Affiliation(s)
- Hanli Xu
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University
| | - Huixia Gao
- Hematology Center, Beijing Children's Hospital, Capital Medical University; National Center for Children's Health
- Beijing Key Laboratory of Pediatric Hematology Oncology
- Key Laboratory of Major Diseases in Children, Ministry of Education
- National Key Discipline of Pediatrics, Capital Medical University
| | - Chanjuan Wang
- Hematology Center, Beijing Children's Hospital, Capital Medical University; National Center for Children's Health
- Beijing Key Laboratory of Pediatric Hematology Oncology
- Key Laboratory of Major Diseases in Children, Ministry of Education
- National Key Discipline of Pediatrics, Capital Medical University
| | - Xiyu Cheng
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University
| | - Zhigang Li
- Hematologic Diseases Laboratory, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University
- National Center for Children's Health
- Beijing Key Laboratory of Pediatric Hematology Oncology
- Key Laboratory of Major Diseases in Children, Ministry of Education
- National Key Discipline of Pediatrics, Capital Medical University, Beijing
| | - Cui Lei
- Hematology Center, Beijing Children's Hospital, Capital Medical University; National Center for Children's Health
- Beijing Key Laboratory of Pediatric Hematology Oncology
- Key Laboratory of Major Diseases in Children, Ministry of Education
- National Key Discipline of Pediatrics, Capital Medical University
| | - XiaoTong Huang
- Hematology Center, Beijing Children's Hospital, Capital Medical University; National Center for Children's Health
- Beijing Key Laboratory of Pediatric Hematology Oncology
- Key Laboratory of Major Diseases in Children, Ministry of Education
- National Key Discipline of Pediatrics, Capital Medical University
| | - Weijing Li
- Hematology Center, Beijing Children's Hospital, Capital Medical University; National Center for Children's Health
- Beijing Key Laboratory of Pediatric Hematology Oncology
- Key Laboratory of Major Diseases in Children, Ministry of Education
- National Key Discipline of Pediatrics, Capital Medical University
| | - Zhixia Yue
- Hematology Center, Beijing Children's Hospital, Capital Medical University; National Center for Children's Health
- Beijing Key Laboratory of Pediatric Hematology Oncology
- Key Laboratory of Major Diseases in Children, Ministry of Education
- National Key Discipline of Pediatrics, Capital Medical University
| | - Shuo Tian
- Hematology Center, Beijing Children's Hospital, Capital Medical University; National Center for Children's Health
- Beijing Key Laboratory of Pediatric Hematology Oncology
- Key Laboratory of Major Diseases in Children, Ministry of Education
- National Key Discipline of Pediatrics, Capital Medical University
| | - Xiaoxi Zhao
- Hematology Center, Beijing Children's Hospital, Capital Medical University; National Center for Children's Health
- Beijing Key Laboratory of Pediatric Hematology Oncology
- Key Laboratory of Major Diseases in Children, Ministry of Education
- National Key Discipline of Pediatrics, Capital Medical University
| | - Tianlin Xue
- Hematology Center, Beijing Children's Hospital, Capital Medical University; National Center for Children's Health
- Beijing Key Laboratory of Pediatric Hematology Oncology
- Key Laboratory of Major Diseases in Children, Ministry of Education
- National Key Discipline of Pediatrics, Capital Medical University
| | - Tianyu Xing
- Hematology Center, Beijing Children's Hospital, Capital Medical University; National Center for Children's Health
- Beijing Key Laboratory of Pediatric Hematology Oncology
- Key Laboratory of Major Diseases in Children, Ministry of Education
- National Key Discipline of Pediatrics, Capital Medical University
| | - Jun Li
- Hematology Center, Beijing Children's Hospital, Capital Medical University; National Center for Children's Health
- Beijing Key Laboratory of Pediatric Hematology Oncology
- Key Laboratory of Major Diseases in Children, Ministry of Education
- National Key Discipline of Pediatrics, Capital Medical University
| | - Ying Wang
- Hematology Center, Beijing Children's Hospital, Capital Medical University; National Center for Children's Health
- Beijing Key Laboratory of Pediatric Hematology Oncology
- Key Laboratory of Major Diseases in Children, Ministry of Education
- National Key Discipline of Pediatrics, Capital Medical University
| | - Yanlong Duan
- Beijing Key Laboratory of Pediatric Hematology Oncology
- Key Laboratory of Major Diseases in Children, Ministry of Education
- National Key Discipline of Pediatrics, Capital Medical University
- National Center for Children's Health
- Medical Oncology Department, Pediatric Oncology Center, Beijing Children's Hospital, Capital Medical University, China
| | - Tianyou Wang
- Hematology Center, Beijing Children's Hospital, Capital Medical University; National Center for Children's Health
- Beijing Key Laboratory of Pediatric Hematology Oncology
- Key Laboratory of Major Diseases in Children, Ministry of Education
- National Key Discipline of Pediatrics, Capital Medical University
| | - Ruidong Zhang
- Hematology Center, Beijing Children's Hospital, Capital Medical University; National Center for Children's Health
- Beijing Key Laboratory of Pediatric Hematology Oncology
- Key Laboratory of Major Diseases in Children, Ministry of Education
- National Key Discipline of Pediatrics, Capital Medical University
| |
Collapse
|
2
|
Zou Q, Ma S, Tian X, Cai Q. Comprehensive view on genetic features, therapeutic modalities and prognostic models in adult T-cell lymphoblastic lymphoma. BLOOD SCIENCE 2022; 4:155-160. [DOI: 10.1097/bs9.0000000000000114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 04/01/2022] [Indexed: 11/25/2022] Open
|
3
|
T-cell lymphoblastic lymphoma and leukemia: different diseases from a common premalignant progenitor? Blood Adv 2021; 4:3466-3473. [PMID: 32722786 DOI: 10.1182/bloodadvances.2020001822] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/18/2020] [Indexed: 01/03/2023] Open
Abstract
T-cell lymphoblastic lymphoma (T-LBL) and lymphoblastic leukemia (T-ALL) represent malignancies that arise from the transformation of immature precursor T cells. Similarities in T-LBL and T-ALL have raised the question whether these entities represent 1 disease or reflect 2 different diseases. The genetic profiles of T-ALL have been thoroughly investigated over the last 2 decades, whereas fairly little is known about genetic driver mutations in T-LBL. Nevertheless, the comparison of clinical, immunophenotypic, and molecular observations from independent T-LBL and T-ALL studies lent strength to the theory that T-LBL and T-ALL reflect different presentations of the same disease. Alternatively, T-LBL and T-ALL may simultaneously evolve from a common malignant precursor cell, each having their own specific pathogenic requirements or cellular dependencies that differ among stroma-embedded blasts in lymphoid tissues compared with solitary leukemia cells. This review aims to cluster recent findings with regard to clinical presentation, genetic predisposition, and the acquisition of additional mutations that may give rise to differences in gene expression signatures among T-LBL and T-ALL patients. Improved insight in T-LBL in relation to T-ALL may further help to apply confirmed T-ALL therapies to T-LBL patients.
Collapse
|
4
|
Perwez A, Wahabi K, Rizvi MA. Parkin: A targetable linchpin in human malignancies. Biochim Biophys Acta Rev Cancer 2021; 1876:188533. [PMID: 33785381 DOI: 10.1016/j.bbcan.2021.188533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/21/2021] [Accepted: 03/21/2021] [Indexed: 12/16/2022]
Abstract
Parkin, an E3 ubiquitin ligase has been found to be deregulated in a variety of human cancers. Our current understanding is endowed with strong evidences that Parkin plays crucial role in the pathogenesis of cancer by controlling/interfering with major hallmarks of cancer delineated till today. Consistent with the idea of mitophagy, the existing studies imitates the tumor suppressive potential of Parkin, resolved by its capacity to regulate cell proliferation, cell migration, angiogenesis, apoptosis and overall cellular survival. Dysfunction of Parkin has resulted in the loss of ubiquitination of cell cycle components followed by their accumulation leading to genomic instability, perturbed cell cycle and eventually tumor progression. In this review, we provide an overview of current knowledge about the critical role of Parkin in cancer development and progression and have focussed on its therapeutic implications highlighting the diagnostic and prognostic value of Parkin as a biomarker. We earnestly hope that an in-depth knowledge of Parkin will provide a linchpin to target in various cancers that will open a new door of clinical applications and therapeutics.
Collapse
Affiliation(s)
- Ahmad Perwez
- Genome Biology Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Khushnuma Wahabi
- Genome Biology Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Moshahid A Rizvi
- Genome Biology Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|
5
|
Reddy P, Shankar R, Koshy T, Radhakrishnan V, Ganesan P, Jayachandran PK, Dhanushkodi M, Mehra N, Krupashankar S, Manasa P, Nagare RP, Swaminathan R, Kannan K, Sagar TG, Ganesan TS. Evaluation of Cytogenetic Abnormalities in Patients with Acute Lymphoblastic Leukemia. Indian J Hematol Blood Transfus 2019; 35:640-648. [PMID: 31741615 DOI: 10.1007/s12288-019-01123-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 04/06/2019] [Indexed: 11/25/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL) accounts for 20% of all adult leukemias and is the most common leukemia during childhood (80%). We present data on cytogenetics of ALL from a tertiary centre in India correlating it with clinical factors. Karyotyping of bone marrow samples of 204 patients with newly diagnosed ALL was performed with standard G-banding technique. Clinical data of patients was obtained from case records. Survival was estimated using Kaplan-Meir curves and compared by the log-rank test. Univariate and multivariate analysis was done for survival with age, sex, immunophenotype, hyperleukocytosis, risk type, remission status and cytogenetics. The most common karyotypes observed were normal in 39.7% (N = 81), hyperdiploidy in 12.7% (N = 26), t(9;22) in 4.4% (N = 9), t(1;19) in 3.9% (N = 8). Adults with ALL had worse survival compared with pediatric patients (HR 3.62; 2.03-6.45 95% CI, p < 0.001). Patients not in morphologic remission after induction chemotherapy fared poorly (HR 4.86; 2.67-8.84 95% CI, p < 0.001). Patients with favourable cytogenetics had better overall survival (HR 0.36; 0.12-1.05 95% CI, p < 0.05). On multivariate analysis, achievement of morphologic remission emerged as single most significant predictor of survival (p < 0.001). MLL gene rearrangement and t(12;21) were seen less commonly as compared to Western data. However, incidence rates of various cytogenetic abnormalities were similar to that reported from other centres from India. Age, morphologic remission at end of induction chemotherapy and favourable cytogenetics correlated significantly with survival.
Collapse
Affiliation(s)
- Pavan Reddy
- 1Department of Medical Oncology, Cancer Institute (WIA), Adyar, Chennai, 600020 India
| | - Ramesh Shankar
- 2Laboratory for Cancer Biology, Departments of Medical Oncology and Clinical Research, Cancer Institute (WIA), Adyar, Chennai, India
| | - Teena Koshy
- 3Department of Human Genetics, Sri Ramachandra University, Porur, Chennai, 600 116 India
| | | | - Prasanth Ganesan
- 1Department of Medical Oncology, Cancer Institute (WIA), Adyar, Chennai, 600020 India
| | - P K Jayachandran
- 1Department of Medical Oncology, Cancer Institute (WIA), Adyar, Chennai, 600020 India
| | | | - Nikita Mehra
- 1Department of Medical Oncology, Cancer Institute (WIA), Adyar, Chennai, 600020 India
| | - S Krupashankar
- 1Department of Medical Oncology, Cancer Institute (WIA), Adyar, Chennai, 600020 India
| | - P Manasa
- 2Laboratory for Cancer Biology, Departments of Medical Oncology and Clinical Research, Cancer Institute (WIA), Adyar, Chennai, India
| | - R P Nagare
- 2Laboratory for Cancer Biology, Departments of Medical Oncology and Clinical Research, Cancer Institute (WIA), Adyar, Chennai, India
| | - R Swaminathan
- 4Division of Epidemiology and Cancer Registry, Cancer Institute (WIA), Adyar, Chennai, India
| | | | - T G Sagar
- 1Department of Medical Oncology, Cancer Institute (WIA), Adyar, Chennai, 600020 India
| | - T S Ganesan
- 1Department of Medical Oncology, Cancer Institute (WIA), Adyar, Chennai, 600020 India
| |
Collapse
|
6
|
Burkhardt B, Mueller S, Khanam T, Perkins SL. Current status and future directions of T-lymphoblastic lymphoma in children and adolescents. Br J Haematol 2016; 173:545-59. [DOI: 10.1111/bjh.14017] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 01/28/2016] [Accepted: 01/29/2016] [Indexed: 12/25/2022]
Affiliation(s)
- Birgit Burkhardt
- Paediatric Haematology and Oncology; University Hospital Muenster; Germany
| | - Stephanie Mueller
- Paediatric Haematology and Oncology; University Hospital Muenster; Germany
| | - Tasneem Khanam
- Paediatric Haematology and Oncology; University Hospital Muenster; Germany
| | - Sherrie L. Perkins
- Department of Pathology; University of Utah Health Sciences Center, ARUP Institute for Clinical and Experimental Pathology; Salt Lake City Utah
| |
Collapse
|
7
|
Juárez-Velázquez R, Reyes-León A, Salas-Labadía C, Rivera-Luna R, Velasco-Hidalgo L, López-Hernández G, López-Santiago N, Paredes-Aguilera R, Domínguez-López A, Bernáldez R, Pérez-Vera P. Significance of CASP8AP2 and H2AFZ expression in survival and risk of relapse in children with acute lymphoblastic leukemia. Leuk Lymphoma 2014; 55:2305-11. [PMID: 24397596 DOI: 10.3109/10428194.2013.878458] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Novel biomarkers for risk refinement and stratification in childhood acute lymphoblastic leukemia (ALL) are needed to optimize treatment results. We studied the expression of CASP8AP2 and H2AFZ associated with relapse and survival in bone marrow samples from newly diagnosed children with ALL. We found: (a) an increased risk for early relapse in those patients with low expression of CASP8AP2 (odds ratio [OR] 3.93, 95% confidence interval [CI] 1.40-11.02, p < 0.05) confirming its usefulness as a predictive risk marker, although H2AFZ did not present the same effect; (b) patients with low expressions of CASP8AP2 and H2AFZ had inferior survival rates (p < 0.001); (c) the predictive values regarding low expressions of H2AFZ and CASP8AP2 and high white blood cell count suggest that these features could help to identify more accurately patients at greater risk of relapse.
Collapse
Affiliation(s)
- Rocío Juárez-Velázquez
- Laboratorio de Cultivo de Tejidos, Instituto Nacional de Pediatría , México D.F. , México
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Podolski-Renić A, Jadranin M, Stanković T, Banković J, Stojković S, Chiourea M, Aljančić I, Vajs V, Tešević V, Ruždijić S, Gagos S, Tanić N, Pešić M. Molecular and cytogenetic changes in multi-drug resistant cancer cells and their influence on new compounds testing. Cancer Chemother Pharmacol 2013; 72:683-97. [DOI: 10.1007/s00280-013-2247-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Accepted: 07/26/2013] [Indexed: 12/20/2022]
|
9
|
Abstract
There is ongoing discussion on whether paediatric acute T-cell lymphoblastic leukaemia (T-ALL) and paediatric lymphoblastic T-cell lymphoma (T-LBL) are two distinct entities or whether they represent two variant manifestations of one and the same disease and the distinction is arbitrary. Both show overlapping clinical, morphological and immunophenotypic features. Many clinical trials use the amount of blast infiltration of the bone marrow as the sole criterion to distinguish between T-ALL and T-LBL. The current World Health Organization classification designates both malignancies as T lymphoblastic leukaemia/lymphoma. However, subtle immunophenotypic, molecular and cytogenetic differences suggest that T-ALL and T-LBL might be biologically different in certain aspects. The current review summarizes and discusses the recent advances and understanding of the molecular profile of paediatric T-ALL and T-LBL.
Collapse
Affiliation(s)
- Birgit Burkhardt
- Department of Paediatrics, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany.
| |
Collapse
|
10
|
Ongaro A, De Mattei M, Della Porta MG, Rigolin G, Ambrosio C, Di Raimondo F, Pellati A, Masieri FF, Caruso A, Catozzi L, Gemmati D. Gene polymorphisms in folate metabolizing enzymes in adult acute lymphoblastic leukemia: effects on methotrexate-related toxicity and survival. Haematologica 2009; 94:1391-8. [PMID: 19648163 DOI: 10.3324/haematol.2009.008326] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND The antifolate agent methotrexate is an important component of maintenance therapy in acute lymphoblastic leukemia, although methotrexate-related toxicity is often a reason for interruption of chemotherapy. Prediction of toxicity is difficult because of inter-individual variability susceptibility to antileukemic agents. Methotrexate interferes with folate metabolism leading to depletion of reduced folates. DESIGN AND METHODS The aim of this study was to investigate the influence of polymorphisms for folate metabolizing enzymes with respect to toxicity and survival in adult patients with acute lymphoblastic leukemia treated with methotrexate maintenance therapy. To this purpose, we evaluated possible associations between genotype and hematologic and non-hematologic toxicity and effects on survival at 2 years of follow-up in patients with acute lymphoblastic leukemia. RESULTS Polymorphisms in the genes encoding for methylenetetrahydrofolate reductase (MTHFR 677C>T) and in dihydrofolate reductase (DHFR 19 bp deletion) significantly increased the risk of hepatotoxicity in single (odds ratio 5.23, 95% confidence interval 1.13-21.95 and odds ratio 4.57, 95% confidence interval 1.01-20.77, respectively) and in combined analysis (odds ratio 6.82, 95% confidence interval 1.38-33.59). MTHFR 677C>T also increased the risk of leukopenia and gastrointestinal toxicity, whilst thymidylate synthase 28 bp repeat polymorphism increased the risk of anemia (odds ratio 8.48, 95% confidence interval 2.00-36.09). Finally, patients with MTHFR 677TT had a decreased overall survival rate (hazard ratio 2.37, 95% confidence interval 1.46-8.45). CONCLUSIONS Genotyping of folate polymorphisms might be useful in adult acute lymphoblastic leukemia to optimize methotrexate therapy, reducing the associated toxicity with possible effects on survival.
Collapse
Affiliation(s)
- Alessia Ongaro
- Department of Morphology and Embryology, Section of Histology, University of Ferrara, Via Fossato di Mortara 64/B, 44100 Ferrara, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Burkhardt B, Moericke A, Klapper W, Greene F, Salzburg J, Damm-Welk C, Zimmermann M, Strauch K, Ludwig WD, Schrappe M, Reiter A. Pediatric precursor T lymphoblastic leukemia and lymphoblastic lymphoma: Differences in the common regions with loss of heterozygosity at chromosome 6q and their prognostic impact. Leuk Lymphoma 2009; 49:451-61. [DOI: 10.1080/10428190701824551] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
12
|
Marisavljevic D, Markovic O, Zivkovic R. An unusual case of smoldering AML with prolonged indolent clinical course and spontaneous remission in the terminal phase. Med Oncol 2009; 26:476-9. [DOI: 10.1007/s12032-008-9153-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Accepted: 12/11/2008] [Indexed: 11/24/2022]
|
13
|
Regional deletion and amplification on chromosome 6 in a uveal melanoma case without abnormalities on chromosomes 1p, 3 and 8. Melanoma Res 2008; 18:10-5. [PMID: 18227702 DOI: 10.1097/cmr.0b013e3282f1d4d9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Uveal melanoma (UM) is the most common primary intraocular malignancy in adults. Loss of the long arm and gain of the short arm of chromosome 6 are frequently observed chromosomal aberrations in UM, together with loss of chromosome 1p36, loss of chromosome 3 and gain of chromosome 8. This suggests the presence of one or more oncogenes on 6p and tumor suppressor genes at 6q that are involved in UM development. Both regions, however, have not been well defined yet. Furthermore in other neoplasms gain of 6p and loss of 6q are frequently occurring events. In this case report, we describe the delineation of a partial gain on chromosome 6p and a partial deletion on 6q in a UM with the objective to pinpoint smaller candidate regions on chromosome 6 involved in UM development. Conventional cytogenetics, comparative genomic hybridization (CGH) and fluorescence in-situ hybridization (FISH) were used to delineate regions of loss and gain on chromosome 6 in this UM patient. With conventional cytogenetics a deleted region was found on chromosome 6q that was further delineated to a region ranging from 6q16.1 to 6q22 using CGH and FISH. A region of gain from 6pter to 6p21.2 was also demarcated with CGH and FISH. No other deletions or amplifications on recurrently involved chromosomes were found in this patient. This study indicates the presence of one or more tumor suppressor genes on chromosomal region 6q16.1-6q22 and the presence of one or more oncogenes on chromosomal region 6pter-6p21.2, which are likely to be important in UM and other tumors.
Collapse
|
14
|
Betts DR, Stanchescu R, Niggli FK, Cohen N, Rechavi G, Amariglio N, Trakhtenbrot L. SKY reveals a high frequency of unbalanced translocations involving chromosome 6 in t(12;21)-positive acute lymphoblastic leukemia. Leuk Res 2008; 32:39-43. [PMID: 17418891 DOI: 10.1016/j.leukres.2007.03.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2007] [Revised: 01/17/2007] [Accepted: 03/02/2007] [Indexed: 11/21/2022]
Abstract
The G-band cryptic t(12;21)(p13;q22) is the most common chromosomal rearrangement in childhood acute lymphoblastic leukemia (ALL). To investigate the nature of additional chromosomal events in this group of patients spectral karyotyping (SKY) following G-banding analysis was performed in 14 cases. From these cases six showed structural aberrations of chromosome 6, including both simple deletions and unbalanced translocations, and involved both q (n=4) and p (n=3) arms. The results show that rearrangements of 6p are also non-random events t(12;21)-positive ALL. This study illustrates the value of a combined SKY and G-banding approach in identifying novel karyotypic events in childhood ALL.
Collapse
Affiliation(s)
- David R Betts
- Department of Oncology, University Children's Hospital, Steinwiesstrasse 75, CH-8032 Zurich, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
15
|
Moorman AV, Harrison CJ, Buck GAN, Richards SM, Secker-Walker LM, Martineau M, Vance GH, Cherry AM, Higgins RR, Fielding AK, Foroni L, Paietta E, Tallman MS, Litzow MR, Wiernik PH, Rowe JM, Goldstone AH, Dewald GW. Karyotype is an independent prognostic factor in adult acute lymphoblastic leukemia (ALL): analysis of cytogenetic data from patients treated on the Medical Research Council (MRC) UKALLXII/Eastern Cooperative Oncology Group (ECOG) 2993 trial. Blood 2006; 109:3189-97. [PMID: 17170120 DOI: 10.1182/blood-2006-10-051912] [Citation(s) in RCA: 526] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Pretreatment cytogenetics is a known predictor of outcome in hematologic malignancies. However, its usefulness in adult acute lymphoblastic leukemia (ALL) is generally limited to the presence of the Philadelphia (Ph) chromosome because of the low incidence of other recurrent abnormalities. We present centrally reviewed cytogenetic data from 1522 adult patients enrolled on the Medical Research Council (MRC) UKALLXII/Eastern Cooperative Oncology Group (ECOG) 2993 trial. The incidence and clinical associations for more than 20 specific chromosomal abnormalities are presented. Patients with a Ph chromosome, t(4;11)(q21;q23), t(8;14)(q24.1;q32), complex karyotype (5 or more chromosomal abnormalities), or low hypodiploidy/near triploidy (Ho-Tr) all had inferior rates of event-free and overall survival when compared with other patients. In contrast, patients with high hyperdiploidy or a del(9p) had a significantly improved outcome. Multivariate analysis demonstrated that the prognostic relevance of t(8;14), complex karyotype, and Ho-Tr was independent of sex, age, white cell count, and T-cell status among Ph-negative patients. The observation that Ho-Tr and, for the first time, karyotype complexity confer an increased risk of treatment failure demonstrates that cytogenetic subgroups other than the Ph chromosome can and should be used to risk stratify adults with ALL in future trials.
Collapse
Affiliation(s)
- Anthony V Moorman
- Leukaemia Research Cytogenetics Group, Cancer Sciences Division, University of Southampton, Southampton General Hospital, Southampton, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Burkhardt B, Bruch J, Zimmermann M, Strauch K, Parwaresch R, Ludwig WD, Harder L, Schlegelberger B, Mueller F, Harbott J, Reiter A. Loss of heterozygosity on chromosome 6q14-q24 is associated with poor outcome in children and adolescents with T-cell lymphoblastic lymphoma. Leukemia 2006; 20:1422-9. [PMID: 16738692 DOI: 10.1038/sj.leu.2404275] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Deletions of chromosome 6q have been reported in several hematological malignancies, but data are not conclusive regarding their biological and prognostic impact. Therefore, we focused on pediatric patients diagnosed with T-cell lymphoblastic lymphoma (T-LBL) treated uniformly according to the NHL-BFM95 protocol. We used loss-of-heterozygosity (LOH) analysis of 25 microsatellite markers located on chromosome 6q14-q24. Fragment-length analysis was performed on ABI-PRISM3100 Genetic-Analyzer. Eligibility criterion was > or =3 informative markers. Between April 1995 and March 2003, 185 T-LBL patients were treated according to the NHL-BFM95 protocol. Five-year event-free (EFS) and disease-free survival (DFS) were 79+/-3 and 87+/-3% (median follow-up 4.7 [1.2-10.1] years). Sixty-one patients were evaluable for LOH analysis, including 18 out of 23 patients with relapse. EFS and DFS were 67+/-6 and 69+/-6% for these 61 patients. Testing of 853 markers in the 61 patients identified the presence of LOH in 19 patients (31%): 13 of the 18 relapse patients and five of the 41 in complete remission (odds ratio 18.7, 95% confidence interval 4.7-75.3). One LOH-positive patient died from treatment-related toxicity. We conclude that LOH on chromosome 6q14-q24 may have conferred a high risk of relapse on our group of children with T-LBL treated according to the NHL-BFM95 protocol.
Collapse
Affiliation(s)
- B Burkhardt
- Department of Pediatric Hematology and Oncology, Justus-Liebig University, Giessen, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Agirre X, Román-Gómez J, Vázquez I, Jiménez-Velasco A, Garate L, Montiel-Duarte C, Artieda P, Cordeu L, Lahortiga I, Calasanz MJ, Heiniger A, Torres A, Minna JD, Prósper F. Abnormal methylation of the common PARK2 and PACRG promoter is associated with downregulation of gene expression in acute lymphoblastic leukemia and chronic myeloid leukemia. Int J Cancer 2006; 118:1945-53. [PMID: 16287063 DOI: 10.1002/ijc.21584] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The PARK2 gene, previously identified as a mutated target in patients with autosomal recessive juvenile parkinsonism (ARJP), has recently been found to be a candidate tumor suppressor gene in ovarian, breast, lung and hepatocellular carcinoma that maps to the third common fragile site (CFS) FRA6E. PARK2 is linked to a novel described PACRG gene by a bidirectional promoter containing a defined CpG island in its common promoter region. We have studied the role of promoter hypermethylation in the regulation of PARK2 and PACRG expression in different tumor cell lines and primary patient samples. Abnormal methylation of the common promoter of PARK2 and PACRG was observed in 26% of patients with acute lymphoblastic leukemia and 20% of patients with chronic myelogenous leukemia (CML) in lymphoid blast crisis, but not in ovarian, breast, lung, neuroblastoma, astrocytoma or colon cancer cells. Abnormal methylation resulted in downregulation of PARK2 and PACRG gene expression, while demethylation of ALL cells resulted in demethylation of the promoter and upregulation of PARK2 and PACRG expression. By FISH, we demonstrated that a lack of PARK2 and PACRG expression was due to biallelic hypermethylation and not to deletion of either PARK2 or PACRG in ALL. In conclusion, our results demonstrate for the first time that the candidate tumor suppressor genes PARK2 and PACRG are epigenetically regulated in human leukemia, suggesting that abnormal methylation and regulation of PARK2 and PACRG may play a role in the pathogenesis and development of this hematological neoplasm.
Collapse
Affiliation(s)
- Xabier Agirre
- Foundation for Applied Medical Research, Division of Cancer, Area of Cell Therapy and Hematology Service, Clínica Universitaria, Universidad de Navarra, Pamplona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Chiaretti S, Li X, Gentleman R, Vitale A, Wang KS, Mandelli F, Foà R, Ritz J. Gene Expression Profiles of B-lineage Adult Acute Lymphocytic Leukemia Reveal Genetic Patterns that Identify Lineage Derivation and Distinct Mechanisms of Transformation. Clin Cancer Res 2005; 11:7209-19. [PMID: 16243790 DOI: 10.1158/1078-0432.ccr-04-2165] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE To characterize gene expression signatures in acute lymphocytic leukemia (ALL) cells associated with known genotypic abnormalities in adult patients. EXPERIMENTAL DESIGN Gene expression profiles from 128 adult patients with newly diagnosed ALL were characterized using high-density oligonucleotide microarrays. All patients were enrolled in the Italian GIMEMA multicenter clinical trial 0496 and samples had >90% leukemic cells. Uniform phenotypic, cytogenetic, and molecular data were also available for all cases. RESULTS T-lineage ALL was characterized by a homogeneous gene expression pattern, whereas several subgroups of B-lineage ALL were evident. Within B-lineage ALL, distinct signatures were associated with ALL1/AF4 and E2A/PBX1 gene rearrangements. Expression profiles associated with ALL1/AF4 and E2A/PBX1 are similar in adults and children. BCR/ABL+ gene expression pattern was more heterogeneous and was most similar to ALL without known molecular rearrangements. We also identified a set of 83 genes that were highly expressed in leukemia blasts from patients without known molecular abnormalities who subsequently relapsed following therapy. Supervised analysis of kinase genes revealed a high-level FLT3 expression in a subset of cases without molecular rearrangements. Two other kinases (PRKCB1 and DDR1) were highly expressed in cases without molecular rearrangements, as well as in BCR/ABL-positive ALL. CONCLUSIONS Genomic signatures are associated with phenotypically and molecularly well defined subgroups of adult ALL. Genomic profiling also identifies genes associated with poor outcome in cases without molecular aberrations and specific genes that may be new therapeutic targets in adult ALL.
Collapse
Affiliation(s)
- Sabina Chiaretti
- Department of Medical Oncology and Biostatistical Science, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Dave BJ, Wiggins M, Higgins CM, Pickering DL, Perry D, Aoun P, Abromowich M, DeVetten M, Sanger WG. 9q34 rearrangements in BCR/ABL fusion-negative acute lymphoblastic leukemia. ACTA ACUST UNITED AC 2005; 162:30-7. [PMID: 16157197 DOI: 10.1016/j.cancergencyto.2005.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2004] [Revised: 03/07/2005] [Accepted: 03/09/2005] [Indexed: 11/19/2022]
Abstract
The t(9;22)(q11.2;q34) translocation is found in a subset of acute lymphoblastic leukemia (ALL). The presence of this translocation involving the fusion of BCR/ABL genes represents a poor prognostic group. Because of the importance in detecting t(9;22) in ALL patients and because occasionally a cytogenetically cryptic BCR/ABL fusion is detected with fluorescence in situ hybridization (FISH), our laboratory routinely performs BCR/ABL FISH tests on all newly diagnosed ALL patients. In the past year, 25 consecutive, newly diagnosed, untreated ALL cases were analyzed. We report the cytogenetics and FISH findings of three cases containing a rearranged 9q34 region with an intact BCR (22q11.2) region and an absence of the BCR/ABL fusion. A split ABL signal representing a translocation of the 9q34 region with chromosome segments other than 22q11.2 (BCR) was observed in 3 cases. Two of these patients were 3 years old; one was 21 at the time of diagnosis. A split ABL FISH signal without the involvement of BCR does not represent a t(9;22) translocation, and prognostic implications of this apparent subgroup of ALL cases have not been determined. Cytogenetic, pathologic, and clinical aspects of these three cases are presented.
Collapse
Affiliation(s)
- Bhavana J Dave
- Human Genetics Laboratory, Munroe Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, 985440 Nebraska Medical Center, Omaha, NE 68198-5440, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Bassan R, Gatta G, Tondini C, Willemze R. Adult acute lymphoblastic leukaemia. Crit Rev Oncol Hematol 2005; 50:223-61. [PMID: 15182827 DOI: 10.1016/j.critrevonc.2003.11.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2003] [Indexed: 11/22/2022] Open
Abstract
Acute lymphoblastic leukaemia (ALL) in adults is a relatively rare neoplasm with a curability rate around 30% at 5 years. This consideration makes it imperative to dissect further the biological mechanisms of disease, in order to selectively implement an hitherto unsatisfactory success rate. The recognition of discrete ALL subtypes (some of which deserve specific therapeutic approaches, like T-lineage ALL (T-ALL) and mature B-lineage ALL (B-ALL)) is possible through an accurate combination of cytomorphology, immunophenotytpe and cytogenetic assays and has been a major result of clinical research studies conducted over the past 20 years. Two-three major prognostic groups are now easily identifiable, with a survival probability ranging from <10 to 20% (Philadelphia-positive ALL) to about 50-60% (low-risk T-ALL and selected patients with B-lineage ALL). These issues are extensively reviewed and form the basis of current knowledge. The second major point relates to the emerging importance of studies that reveal a dysregulated gene activity and its clinical counterpart. It is now clear that prognostication is a complex matter ranging from patient-related issues to cytogenetics to molecular biology, including the evaluation of minimal residual disease (MRD) and possibly gene array tests. On these bases, the role of a correct, highly personalised therapeutic choice will soon become fundamental. Therapeutic progress may be obtainable through a careful integration of chemotherapy, stem cell transplantation, and the new targeted treatments with highly specific metabolic inhibitors and humanised monoclonal antibodies.
Collapse
|
21
|
Abstract
Cytogenetic analyses in acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) have revealed a great number of non-random chromosome abnormalities. In many instances, molecular studies of these abnormalities identified specific genes implicated in the process of leukemogenesis. The more common chromosome aberrations have been associated with specific laboratory and clinical characteristics, and are now being used as diagnostic and prognostic markers guiding the clinician in selecting the most effective therapies. Specific chromosome aberrations and their molecular counterparts have been included in the World Health Organization classification of hematologic malignancies, and together with morphology, immunophenotype and clinical features are used to define distinct disease entities. However, the prognostic importance of less frequent recurrent aberrations in AML and ALL, both primary and secondary, is still to be determined. This review summarizes current views on clinical relevance of major cytogenetic findings in adult AML and ALL.
Collapse
Affiliation(s)
- Krzysztof Mrózek
- Division of Hematology and Oncology, The Comprehensive Cancer Center, The Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Room 1248B, The Ohio State University, Columbus, OH 43210-1228, USA.
| | | | | |
Collapse
|
22
|
Wan M, Chow J, Lei K, Chan W. Allelotyping of gastrointestinal nasal-type NK/T-cell lymphoma. Leuk Res 2004; 28:339-43. [PMID: 15109531 DOI: 10.1016/j.leukres.2003.08.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2003] [Accepted: 08/02/2003] [Indexed: 12/21/2022]
Abstract
Nasal-type natural killer/T-cell lymphoma (NKL) is a rare but distinct malignancy that often involves the mid-facial region and the gastrointestinal tract. This study is the first genome-wide allelotyping analysis on this rare lymphoma. We applied 382 microsatellite markers covering loci which spanned 22 autosomes to screen for allelic imbalances (AI) in six intestinal NKL. The most common chromosomal regions of allelic imbalances were found in 11p, 9q and 13q. Novel spots of allelic losses spots found at 2p21, 2q37.22, 18p11.21 and 18q12.1. In spite of presence of a few recurrent loci of imbalances, the allelotyping results show that NKL is heterogeneous.
Collapse
Affiliation(s)
- Maxim Wan
- Department of Anatomical & Cellular Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, N.T. Hong Kong SAR, China
| | | | | | | |
Collapse
|
23
|
Sinclair PB, Sorour A, Martineau M, Harrison CJ, Mitchell WA, O'Neill E, Foroni L. A fluorescence in situ hybridization map of 6q deletions in acute lymphocytic leukemia: identification and analysis of a candidate tumor suppressor gene. Cancer Res 2004; 64:4089-98. [PMID: 15205317 DOI: 10.1158/0008-5472.can-03-1871] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
With the objective of identifying candidate tumor suppressor genes, we used fluorescence in situ hybridization to map leukemia-related deletions of the long arm of chromosome 6 (6q). Twenty of 24 deletions overlapped to define a 4.8-Mb region of minimal deletion between markers D6S1510 and D6S1692 within chromosome 6 band q16. Using reverse transcription-PCR, we found evidence of expression in hematopoietic cells for 3 of 15 genes in the region (GRIK2, C6orf111, and CCNC). Comparison between our own and published deletion data singled out GRIK2 as the gene most frequently affected by deletions of 6q in acute lymphocytic leukemia (ALL). Sequence analysis of GRIK2 in 14 ALL cases carrying heterozygous 6q deletions revealed a constitutional and paternally inherited C to G substitution in exon 6 encoding for an amino acid change in one patient. The substitution was absent among 232 normal alleles tested, leaving open the possibility that heterozygous carriers of such mutations may be susceptible to ALL. Although low in all normal hematopoietic tissues, quantitative reverse transcription-PCR showed higher baseline GRIK2 expression in thymus and T cells than other lineages. Among T-cell ALL patients, 6q deletion was associated with a statistically significant reduction in GRIK2 expression (P = 0.0001). By contrast, elevated GRIK2 expression was measured in the myelomonocytic line THP-1 and in one patient with common ALL. Finally, we detected significant levels of GRIK2 expression in prostate, kidney, trachea, and lung, raising the possibility that this gene may be protective against multiple tumor types.
Collapse
Affiliation(s)
- Paul B Sinclair
- Haematology Department, Royal Free and University College School of Medicine, London, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Robertsonian translocations are the most common constitutional structural abnormalities but are rarely reported as acquired aberrations in hematologic malignancies. The nonhomologous acrocentric rearrangements are designated as Robertsonian translocations, whereas the homologous acrocentric rearrangements are referred to as isochromosomes. Robertsonian rearrangements have the highest mutation rates of structural chromosome rearrangements based on surveys of newborns and spontaneous abortions. It would be expected that Robertsonian recombinations would be more common than suggested by the literature. A survey of the cytogenetics database from a single institution found 17 patients with acquired Robertsonian rearrangement and hematologic malignancies. This is combined with data from the literature for a total of 237 patients. All of the possible types of Robertsonian rearrangements have been reported in hematologic malignancies, with the i(13q), i(14q), and i(21q) accounting for nearly 60%. Complex karyotypic changes are seen in the majority of cases, corresponding with disease evolution. These karyotypes consistently show loss of chromosomes 5 and/or 7 in the myelocytic disorders, nonacrocentric isochromosomes, and centromeric breakage and reunion. However, nearly 25% of the acquired rearrangements were found as the sole abnormality or in addition to an established cytogenetic aberration. Most of these were the i(14q) with the myelodysplasia subtypes refractory anemia and chronic myelomonocytic leukemia.
Collapse
Affiliation(s)
- Jeanna Welborn
- Department of Internal Medicine and Pathology, University of California at Davis Medical Center Cancer Center, Room 3017, 4501 X Street, Sacramento, CA 95817 USA.
| |
Collapse
|
25
|
Sun HS, Su IJ, Lin YC, Chen JS, Fang SY. A 2.6 Mb interval on chromosome 6q25.2-q25.3 is commonly deleted in human nasal natural killer/T-cell lymphoma. Br J Haematol 2003; 122:590-9. [PMID: 12899714 DOI: 10.1046/j.1365-2141.2003.04419.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Natural killer (NK)/T-cell lymphoma is a special subtype of rare malignant lymphoma that is more prevalent in Asia than in America and Europe. This newly characterized haemato-lymphoid malignancy is highly aggressive and frequently present in nasal and upper aerodigestive sites. Several studies have reported the commonly deleted region of chromosome 6q21-25 in this particular type of lymphoma. To refine the smallest region of overlapping (SRO) deletion for localization of potential tumour suppressor (TS) genes, we performed loss of heterozygosity (LOH) and homozygosity mapping of deletion (HOMOD) analyses on 37 nasal and nasal-type NK/T-cell lymphoma patients using a panel of 25 microsatellite markers, covering the 6q21-q25 region. In all patients studied, LOH was detected in eight (89%) paired-sample patients, while hemizygous deletion was detected in three (11%) single-sample patients. Combination of the LOH and HOMOD results defined a distinct 3 Mb SRO on chromosome 6q25. Quantitative multiplex polymerase chain reaction analysis of 10 sequence-tagged sites further refined the putative TS-gene-containing region to a 2.6 Mb interval between TIAM2 and SNX9. Eighteen known genes/Unigene clusters and 25 hypothetical genes are located within this 2.6 Mb region, but none are previously identified TS genes. These results provide a framework for future positional cloning of novel TS gene(s) at 6q25.2-q25.3.
Collapse
Affiliation(s)
- H Sunny Sun
- Institute of Molecular Medicine, National Cheng Kung University Medical College, 1 University Road, Tainan 70101, Taiwan, ROC.
| | | | | | | | | |
Collapse
|
26
|
Lafage-Pochitaloff M, Charrin C. [Cytogenetic abnormalities in acute lymphoblastic leukemia]. PATHOLOGIE-BIOLOGIE 2003; 51:329-36. [PMID: 12927890 DOI: 10.1016/s0369-8114(03)00112-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Acute lymphoblastic leukemias (ALL) represent malignant clonal proliferations of stem cells committed in lymphoid differentiation, B or T-cell ALL. Clonal chromosomal abnormalities are found in 80% children and 70% adult cases. They are associated with an independent prognostic value which modifies the therapeutic approach and therefore karyotyping at diagnosis is mandatory. Molecular techniques such as FISH and RT-PCR are very helpful too as cryptic chromosomal abnormalities have been described. In this review, numerical and structural abnormalities are described: frequency, diagnosis and prognosis value as well as genes involved in structural abnormalities.
Collapse
Affiliation(s)
- M Lafage-Pochitaloff
- Département de biopathologie, Institut Paoli-Calmettes, 232, boulevard Sainte-Marguerite, 13009 Marseille, Inserm U119 et Université de la Méditerranée, France.
| | | |
Collapse
|
27
|
Abstract
Treatment of acute lymphoblastic leukemia in adults focuses on the initial assessment of prognostic relevant genetic features as well as response-guided therapy based on molecular data. In at least half of adult acute lymphoblastic leukemia patients, clonal chromosomal abnormalities can be identified that deregulate candidate oncogenes or transcription factors by introducing a heterologous promoter or enhancer. Altered cell cycle progression or upregulated tyrosine kinase activity are other important mechanisms. Most of the translocations can lead to the generation of fusion genes that are translated into chimeric oncogeneic proteins, such as BCR-ABL, providing targets for novel therapeutic agents.
Collapse
Affiliation(s)
- Beate Gleissner
- Department of Medicine, University Hospital Benjamin Franklin, Free University of Berlin, Hindenburgdamm 30, 12200 Berlin, Germany.
| | | |
Collapse
|