1
|
Bhakta SB, Lundgren SM, Sesti BN, Flores BA, Akdogan E, Collins SR, Mercer F. Neutrophil-like cells derived from the HL-60 cell-line as a genetically-tractable model for neutrophil degranulation. PLoS One 2024; 19:e0297758. [PMID: 38324578 PMCID: PMC10849234 DOI: 10.1371/journal.pone.0297758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/12/2024] [Indexed: 02/09/2024] Open
Abstract
Research on neutrophil biology has been limited by the short life span and limited genetic manipulability of these cells, driving the need for representative and efficient model cell lines. The promyelocytic cell line HL-60 and its subline PLB-985 can be differentiated into neutrophil-like cells (NLCs) and have been used to study neutrophil functions including chemotaxis, phagocytosis, endocytosis, and degranulation. Compared to neutrophils derived from hematopoietic stem cells, NLCs serve as a cost-effective neutrophil model. NLCs derived from both HL-60 and PLB-985 cells have been shown to perform degranulation, an important neutrophil function. However, no study has directly compared the two lines as models for degranulation including their release of different types of mobilizable organelles. Furthermore, Nutridoma, a commercially available supplement, has recently been shown to improve the chemotaxis, phagocytosis, and oxidative burst abilities of NLCs derived from promyelocytic cells, however it is unknown whether this reagent also improves the degranulation ability of NLCs. Here, we show that NLCs derived from both HL-60 and PLB-985 cells are capable of degranulating, with each showing markers for the release of multiple types of secretory organelles, including primary granules. We also show that differentiating HL-60 cells using Nutridoma does not enhance their degranulation activity over NLCs differentiated using Dimethyl Sulfoxide (DMSO) plus Granulocyte-colony stimulating factor (G-CSF). Finally, we show that promyelocytic cells can be genetically engineered and differentiated using these methods, to yield NLCs with a defect in degranulation. Our results indicate that both cell lines serve as effective models for investigating the mechanisms of neutrophil degranulation, which can advance our understanding of the roles of neutrophils in inflammation and immunity.
Collapse
Affiliation(s)
- Suhani B. Bhakta
- Department of Biological Sciences, California State Polytechnic University Pomona, Pomona, CA, United States of America
| | - Stefan M. Lundgren
- Department of Microbiology and Molecular Genetics, University of California Davis, Davis, CA, United States of America
| | - Bethany N. Sesti
- Department of Biological Sciences, California State Polytechnic University Pomona, Pomona, CA, United States of America
| | - Barbara A. Flores
- Department of Biological Sciences, California State Polytechnic University Pomona, Pomona, CA, United States of America
| | - Emel Akdogan
- Department of Microbiology and Molecular Genetics, University of California Davis, Davis, CA, United States of America
| | - Sean R. Collins
- Department of Microbiology and Molecular Genetics, University of California Davis, Davis, CA, United States of America
| | - Frances Mercer
- Department of Biological Sciences, California State Polytechnic University Pomona, Pomona, CA, United States of America
| |
Collapse
|
2
|
Bu C, Zheng X, Mai J, Nie Z, Zeng J, Qian Q, Xu T, Sun Y, Bao Y, Xiao J. CCLHunter: An efficient toolkit for cancer cell line authentication. Comput Struct Biotechnol J 2023; 21:4675-4682. [PMID: 37841327 PMCID: PMC10568302 DOI: 10.1016/j.csbj.2023.09.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/28/2023] [Accepted: 09/28/2023] [Indexed: 10/17/2023] Open
Abstract
Cancer cell lines are essential in cancer research, yet accurate authentication of these cell lines can be challenging, particularly for consanguineous cell lines with close genetic similarities. We introduce a new Cancer Cell Line Hunter (CCLHunter) method to tackle this challenge. This approach utilizes the information of single nucleotide polymorphisms, expression profiles, and kindred topology to authenticate 1389 human cancer cell lines accurately. CCLHunter can precisely and efficiently authenticate cell lines from consanguineous lineages and those derived from other tissues of the same individual. Our evaluation results indicate that CCLHunter has a complete accuracy rate of 93.27%, with an accuracy of 89.28% even for consanguineous cell lines, outperforming existing methods. Additionally, we provide convenient access to CCLHunter through standalone software and a web server at https://ngdc.cncb.ac.cn/cclhunter.
Collapse
Affiliation(s)
- Congfan Bu
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Xinchang Zheng
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Jialin Mai
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi Nie
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingyao Zeng
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Qiheng Qian
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianyi Xu
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanling Sun
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiming Bao
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingfa Xiao
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Allen LAH. Closing the gap between murine neutrophils and neutrophil-like cell lines. J Leukoc Biol 2023; 114:199-201. [PMID: 37403206 PMCID: PMC10473255 DOI: 10.1093/jleuko/qiad078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/07/2023] [Accepted: 06/21/2023] [Indexed: 07/06/2023] Open
Abstract
Advantages of cloned Hoxb8 neutrophil-like cells are discussed and contrasted with weaknesses of human HL-60 and PLB-985 neutrophil-like cell lines, and shared and distinct features of primary murine and human neutrophils are summarized.
Collapse
Affiliation(s)
- Lee-Ann H Allen
- Department of Molecular Microbiology and Immunology, One Hospital Dr., Medical Sciences Building, Room M616, University of Missouri, Columbia, MO 65212, United States
- Harry S. Truman Memorial Veterans' Hospital, 800 Hospital Drive, Columbia, MO 65201, United States
| |
Collapse
|
4
|
Ćwiklińska-Jurkowska M, Wiese-Szadkowska M, Janciauskiene S, Paprocka R. Disparities in Cisplatin-Induced Cytotoxicity-A Meta-Analysis of Selected Cancer Cell Lines. Molecules 2023; 28:5761. [PMID: 37570731 PMCID: PMC10421281 DOI: 10.3390/molecules28155761] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/22/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Cisplatin is a classic anticancer drug widely used as a reference drug to test new metal complex drug candidates. We found an unexpected diversity in cisplatin-related cytotoxicity values, expressed as IC50 (the half-maximal inhibitory concentration) in tumour cell lines, such as MCF-7, HepG2 and HeLa. We reviewed the data published from 2018 to 2022. A total of 41 articles based on 56 in vitro experiments met our eligibility criteria. Using a meta-analysis based on a random effect model, we evaluated the cytotoxicity of cisplatin (IC50) after 48- or 72-h cell exposure. We found large differences between studies using a particular cell line. According to the random effect model, the 95% confidence intervals for IC50 were extremely wide. The heterogeneity of cisplatin IC50, as measured by the I2 index for all cancer cell lines, was over 99.7% at culture times of 48 or 72 h. Therefore, the variability between studies is due to experimental heterogeneity rather than chance. Despite the higher IC50 values after 48 h than after 72 h, the heterogeneity between the two culture periods did not differ significantly. This indicates that the duration of cultivation is not the main cause of heterogeneity. Therefore, the available data is diverse and not useful as a reference. We discuss possible reasons for the IC50 heterogeneity and advise researchers to conduct preliminary testing before starting experiments and not to solely rely on the published data. We hope that this systematic meta-analysis will provide valuable information for researchers searching for new cancer drugs using cisplatin as a reference drug.
Collapse
Affiliation(s)
- Małgorzata Ćwiklińska-Jurkowska
- Department of Biostatistics and Biomedical Systems Theory, Faculty of Pharmacy, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University in Toruń, Jagiellońska Str. 15, 87-067 Bydgoszcz, Poland;
| | - Małgorzata Wiese-Szadkowska
- Department of Immunology, Faculty of Pharmacy, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University in Toruń, M. Curie-Sklodowska Str. 9, 85-094 Bydgoszcz, Poland
| | - Sabina Janciauskiene
- Department of Respiratory Medicine, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover Medical School, 30625 Hannover, Germany;
| | - Renata Paprocka
- Department of Organic Chemistry, Faculty of Pharmacy, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University in Toruń, Jurasza Str. 2, 85-089 Bydgoszcz, Poland
| |
Collapse
|
5
|
Luo M, Miao YR, Ke YJ, Guo AY, Zhang Q. A comprehensive landscape of transcription profiles and data resources for human leukemia. Blood Adv 2023; 7:3435-3449. [PMID: 36595475 PMCID: PMC10362280 DOI: 10.1182/bloodadvances.2022008410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 01/04/2023] Open
Abstract
As a heterogeneous group of hematologic malignancies, leukemia has been widely studied at the transcriptome level. However, a comprehensive transcriptomic landscape and resources for different leukemia subtypes are lacking. Thus, in this study, we integrated the RNA sequencing data sets of >3000 samples from 14 leukemia subtypes and 53 related cell lines via a unified analysis pipeline. We depicted the corresponding transcriptomic landscape and developed a user-friendly data portal LeukemiaDB. LeukemiaDB was designed with 5 main modules: protein-coding gene, long noncoding RNA (lncRNA), circular RNA, alternative splicing, and fusion gene modules. In LeukemiaDB, users can search and browse the expression level, regulatory modules, and molecular information across leukemia subtypes or cell lines. In addition, a comprehensive analysis of data in LeukemiaDB demonstrates that (1) different leukemia subtypes or cell lines have similar expression distribution of the protein-coding gene and lncRNA; (2) some alternative splicing events are shared among nearly all leukemia subtypes, for example, MYL6 in A3SS, MYB in A5SS, HMBS in retained intron, GTPBP10 in mutually exclusive exons, and POLL in skipped exon; (3) some leukemia-specific protein-coding genes, for example, ABCA6, ARHGAP44, WNT3, and BLACE, and fusion genes, for example, BCR-ABL1 and KMT2A-AFF1 are involved in leukemogenesis; (4) some highly correlated regulatory modules were also identified in different leukemia subtypes, for example, the HOXA9 module in acute myeloid leukemia and the NOTCH1 module in T-cell acute lymphoblastic leukemia. In summary, the developed LeukemiaDB provides valuable insights into oncogenesis and progression of leukemia and, to the best of our knowledge, is the most comprehensive transcriptome resource of human leukemia available to the research community.
Collapse
Affiliation(s)
- Mei Luo
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, People’s Republic of China
- Center for Artificial Intelligence Biology, Hubei Bioinformatics & Molecular Imaging Key Laboratory, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Ya-Ru Miao
- Center for Artificial Intelligence Biology, Hubei Bioinformatics & Molecular Imaging Key Laboratory, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Ya-Juan Ke
- Dian Diagnostics Group Co, Ltd, Hangzhou, China
- Key Laboratory of Digital Technology in Medical Diagnostics of Zhejiang Province, Hangzhou, China
| | - An-Yuan Guo
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
- Center for Artificial Intelligence Biology, Hubei Bioinformatics & Molecular Imaging Key Laboratory, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Qiong Zhang
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
6
|
Krawczyk E, Kitlińska J. Preclinical Models of Neuroblastoma-Current Status and Perspectives. Cancers (Basel) 2023; 15:3314. [PMID: 37444423 PMCID: PMC10340830 DOI: 10.3390/cancers15133314] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Preclinical in vitro and in vivo models remain indispensable tools in cancer research. These classic models, including two- and three-dimensional cell culture techniques and animal models, are crucial for basic and translational studies. However, each model has its own limitations and typically does not fully recapitulate the course of the human disease. Therefore, there is an urgent need for the development of novel, advanced systems that can allow for efficient evaluation of the mechanisms underlying cancer development and progression, more accurately reflect the disease pathophysiology and complexity, and effectively inform therapeutic decisions for patients. Preclinical models are especially important for rare cancers, such as neuroblastoma, where the availability of patient-derived specimens that could be used for potential therapy evaluation and screening is limited. Neuroblastoma modeling is further complicated by the disease heterogeneity. In this review, we present the current status of preclinical models for neuroblastoma research, discuss their development and characteristics emphasizing strengths and limitations, and describe the necessity of the development of novel, more advanced and clinically relevant approaches.
Collapse
Affiliation(s)
- Ewa Krawczyk
- Department of Pathology, Center for Cell Reprogramming, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Joanna Kitlińska
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC 20057, USA
| |
Collapse
|
7
|
Beaumel S, Verbrugge L, Fieschi F, Stasia MJ. CRISPR-gene-engineered CYBB knock-out PLB-985 cells, a useful model to study functional impact of X-linked chronic granulomatous disease mutations: application to the G412E X91+-CGD mutation. Clin Exp Immunol 2023; 212:156-165. [PMID: 36827093 PMCID: PMC10128165 DOI: 10.1093/cei/uxad028] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/24/2023] [Accepted: 02/22/2023] [Indexed: 02/25/2023] Open
Abstract
Chronic granulomatous disease (CGD) is a rare primary immune disorder caused by mutations in one of the five subunits of the NADPH oxidase complex expressed in phagocytes. Two-thirds of CGD cases are caused by mutations in CYBB that encodes NOX2 or gp91phox. Some rare X91+-CGD point mutations lead to a loss of function but with a normal expression of the mutated NOX2 protein. It is therefore necessary to ensure that this mutation is indeed responsible for the loss of activity in order to make a safe diagnosis for genetic counselling. We previously used the X-CGD PLB-985 cell model of M.C. Dinauer obtained by homologous recombination in the original PLB-985 human myeloid cell line, in order to study the functional impact of such mutations. Although the PLB-985 cell line was originally described by K.A. Tucker et al. in1987 as a distinct cell line isolated from a patient with acute nonlymphocytic leukemia, it is actually identified as a subclone of the HL-60 cells. In order to use a cellular model that meets the quality standard for the functional study of X91+-CGD mutations in CGD diagnosis, we developed our own model using the CRISPR-Cas9 technology in a certified PLB-985 cell line from DSMZ-German Collection of Microorganisms and Cell Cultures. Thanks to this new X-CGD model, we demonstrated that the G412E mutation in NOX2 found in a X91+-CGD patient prohibits access of the electron donor NADPH to its binding site explaining the absence of superoxide production in his neutrophils.
Collapse
Affiliation(s)
- Sylvain Beaumel
- Centre Hospitalier Universitaire Grenoble Alpes, Pôle Biologie, CDiReC, Grenoble, France
| | - Lucile Verbrugge
- Centre Hospitalier Universitaire Grenoble Alpes, Pôle Biologie, CDiReC, Grenoble, France
| | - Franck Fieschi
- Univ. Grenoble Alpes, CNRS, CEA, UMR5075, Institut de Biologie Structurale, Grenoble, France
- Institut Universitaire de France (IUF), Ministère de l'Enseignement supérieur, de la Recherche et de l'Innovation, Paris, France
| | - Marie José Stasia
- Centre Hospitalier Universitaire Grenoble Alpes, Pôle Biologie, CDiReC, Grenoble, France
- Univ. Grenoble Alpes, CNRS, CEA, UMR5075, Institut de Biologie Structurale, Grenoble, France
| |
Collapse
|
8
|
Skopek R, Palusińska M, Kaczor-Keller K, Pingwara R, Papierniak-Wyglądała A, Schenk T, Lewicki S, Zelent A, Szymański Ł. Choosing the Right Cell Line for Acute Myeloid Leukemia (AML) Research. Int J Mol Sci 2023; 24:5377. [PMID: 36982453 PMCID: PMC10049680 DOI: 10.3390/ijms24065377] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/01/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
Immortalized cell lines are widely used in vitro tools in oncology and hematology research. While these cell lines represent artificial systems and may accumulate genetic aberrations with each passage, they are still considered valuable models for pilot, preliminary, and screening studies. Despite their limitations, cell lines are cost-effective and provide repeatable and comparable results. Choosing the appropriate cell line for acute myeloid leukemia (AML) research is crucial for obtaining reliable and relevant results. Several factors should be considered when selecting a cell line for AML research, such as specific markers and genetic abnormalities associated with different subtypes of AML. It is also essential to evaluate the karyotype and mutational profile of the cell line, as these can influence the behavior and response to the treatment of the cells. In this review, we evaluate immortalized AML cell lines and discuss the issues surrounding them concerning the revised World Health Organization and the French-American-British classifications.
Collapse
Affiliation(s)
- Rafał Skopek
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postępu 36A, 05-552 Magdalenka, Poland
| | - Małgorzata Palusińska
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postępu 36A, 05-552 Magdalenka, Poland
| | - Katarzyna Kaczor-Keller
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postępu 36A, 05-552 Magdalenka, Poland
| | - Rafał Pingwara
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, 02-787 Warsaw, Poland
| | | | - Tino Schenk
- Department of Hematology and Medical Oncology, Clinic of Internal Medicine II, Jena University Hospital, 07747 Jena, Germany
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine Jena (CMB), Jena University Hospital, 07747 Jena, Germany
| | - Sławomir Lewicki
- Faculty of Medical Sciences and Health Sciences, Kazimierz Pulaski University of Technology and Humanities, 26-600 Radom, Poland
- Institute of Outcomes Research, Maria Sklodowska-Curie Medical Academy, 00-001 Warsaw, Poland
| | - Artur Zelent
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postępu 36A, 05-552 Magdalenka, Poland
| | - Łukasz Szymański
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postępu 36A, 05-552 Magdalenka, Poland
| |
Collapse
|
9
|
Antioxidant Strategies to Modulate NETosis and the Release of Neutrophil Extracellular Traps during Chronic Inflammation. Antioxidants (Basel) 2023; 12:antiox12020478. [PMID: 36830036 PMCID: PMC9952818 DOI: 10.3390/antiox12020478] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/10/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
Extracellular traps are released by neutrophils and other immune cells as part of the innate immune response to combat pathogens. Neutrophil extracellular traps (NETs) consist of a mesh of DNA and histone proteins decorated with various anti-microbial granule proteins, such as elastase and myeloperoxidase (MPO). In addition to their role in innate immunity, NETs are also strongly linked with numerous pathological conditions, including atherosclerosis, sepsis and COVID-19. This has led to significant interest in developing strategies to inhibit NET release. In this study, we have examined the efficacy of different antioxidant approaches to selectively modulate the inflammatory release of NETs. PLB-985 neutrophil-like cells were shown to release NETs on exposure to phorbol myristate acetate (PMA), hypochlorous acid or nigericin, a bacterial peptide derived from Streptomyces hygroscopicus. Studies with the probe R19-S indicated that treatment of the PLB-985 cells with PMA, but not nigericin, resulted in the production of HOCl. Therefore, studies were extended to examine the efficacy of a range of antioxidant compounds that modulate HOCl production by MPO to prevent NETosis. It was shown that thiocyanate, selenocyanate and various nitroxides could prevent NETosis in PLB-985 neutrophils exposed to PMA and HOCl, but not nigericin. These results were confirmed in analogous experiments with freshly isolated primary human neutrophils. Taken together, these data provide new information regarding the utility of supplementation with MPO inhibitors and/or HOCl scavengers to prevent NET release, which could be important to more specifically target pathological NETosis in vivo.
Collapse
|
10
|
Yang J, Jin L, Kim HS, Tian F, Yi Z, Bedi K, Ljungman M, di Magliano MP, Crawford H, Shi J. KDM6A Loss Recruits Tumor-Associated Neutrophils and Promotes Neutrophil Extracellular Trap Formation in Pancreatic Cancer. Cancer Res 2022; 82:4247-4260. [PMID: 36306422 PMCID: PMC9669233 DOI: 10.1158/0008-5472.can-22-0968] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 08/10/2022] [Accepted: 09/13/2022] [Indexed: 12/14/2022]
Abstract
Lysine (K)-specific demethylase 6A (KDM6A) is a frequently mutated tumor suppressor gene in pancreatic ductal adenocarcinoma (PDAC). However, the impact of KDM6A loss on the PDAC tumor immune microenvironment is not known. This study used a genetically engineered, pancreas-specific Kdm6a knockout (KO) PDAC mouse model and human PDAC tissue samples to demonstrate that KDM6A loss correlates with increased tumor-associated neutrophils and neutrophil extracellular traps (NET) formation, which are known to contribute to PDAC progression. Genome-wide bromouridine sequencing analysis to evaluate nascent RNA synthesis showed that the expression of many chemotactic cytokines, especially CXC motif chemokine ligand 1 (CXCL1), was upregulated in KDM6A KO PDAC cells. KDM6A-deficient PDAC cells secreted higher levels of CXCL1 protein, which in turn recruited neutrophils. Furthermore, in a syngeneic orthotopic mouse model, treatment with a CXCL1 neutralizing antibody blocked the chemotactic and NET-promoting properties of KDM6A-deficient PDAC cells and suppressed tumor growth, confirming CXCL1 as a key mediator of chemotaxis and PDAC growth driven by KDM6A loss. These findings shed light on how KDM6A regulates the tumor immune microenvironment and PDAC progression and suggests that the CXCL1-CXCR2 axis may be a candidate target in PDAC with KDM6A loss. SIGNIFICANCE KDM6A loss in pancreatic cancer cells alters the immune microenvironment by increasing CXCL1 secretion and neutrophil recruitment, providing a rationale for targeting the CXCL1-CXCR2 signaling axis in tumors with low KDM6A.
Collapse
Affiliation(s)
- Jing Yang
- Department of Pathology & Clinical Labs, Rogel Cancer Center and Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Pathology, Guangzhou first people’s hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, China
| | - Lin Jin
- Department of Pathology & Clinical Labs, Rogel Cancer Center and Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI 48109, USA
- Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Hong Sun Kim
- Department of Pathology & Clinical Labs, Rogel Cancer Center and Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Feng Tian
- Department of Pathology & Clinical Labs, Rogel Cancer Center and Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI 48109, USA
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Zhujun Yi
- Department of Pathology & Clinical Labs, Rogel Cancer Center and Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Karan Bedi
- Cancer Data Science-Shared Resource, Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Mats Ljungman
- Department of Radiation Oncology, Rogel Cancer Center and Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | - Jiaqi Shi
- Department of Pathology & Clinical Labs, Rogel Cancer Center and Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI 48109, USA
- Corresponding author: Jiaqi Shi, Department of Pathology & Clinical Labs, University of Michigan, 2800 Plymouth Rd, NCRC building 35, Ann Arbor, MI 48109, USA. Phone: 1-734-936-6770,
| |
Collapse
|
11
|
Arya SB, Chen S, Jordan-Javed F, Parent CA. Ceramide-rich microdomains facilitate nuclear envelope budding for non-conventional exosome formation. Nat Cell Biol 2022; 24:1019-1028. [PMID: 35739317 DOI: 10.1038/s41556-022-00934-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 05/05/2022] [Indexed: 02/06/2023]
Abstract
Neutrophils migrating towards chemoattractant gradients amplify their recruitment range by releasing the secondary chemoattractant leukotriene B4 (LTB4) refs. 1,2. We previously demonstrated that LTB4 and its synthesizing enzymes, 5-lipoxygenase (5-LO), 5-LO activating protein (FLAP) and leukotriene A4 hydrolase, are packaged and released in exosomes3. Here we report that the biogenesis of the LTB4-containing exosomes originates at the nuclear envelope (NE) of activated neutrophils. We show that the neutral sphingomyelinase 1 (nSMase1)-mediated generation of ceramide-enriched lipid-ordered microdomains initiates the clustering of the LTB4-synthesizing enzymes on the NE. We isolated and analysed exosomes from activated neutrophils and established that the FLAP/5-LO-positive exosome population is distinct from that of the CD63-positive exosome population. Furthermore, we observed a strong co-localization between ALIX and FLAP at the periphery of nuclei and within cytosolic vesicles. We propose that the initiation of NE curvature and bud formation is mediated by nSMase1-dependent ceramide generation, which leads to FLAP and ALIX recruitment. Together, these observations elucidate the mechanism for LTB4 secretion and identify a non-conventional pathway for exosome generation.
Collapse
Affiliation(s)
- Subhash B Arya
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA.,Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Song Chen
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Fatima Jordan-Javed
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Carole A Parent
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA. .,Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA. .,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA. .,Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
12
|
Zuñiga Martinez MDL, López Mendoza CM, Tenorio Salazar J, García Carrancá AM, Cerbón Cervantes MA, Alcántara-Quintana LE. Establishment, authenticity, and characterization of cervical cancer cell lines. Mol Cell Oncol 2022; 9:2078628. [PMID: 35692560 PMCID: PMC9176225 DOI: 10.1080/23723556.2022.2078628] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Cell lines have been considered excellent research models in many areas of biomedicine and, specifically, in the study of carcinogenesis. However, they cease to be effective models if their behavior changes. Although studies on the cross-contamination of cell lines originating from different tissues have been performed, little is known about cell lines derived from cervical neoplasia. We know that high-risk HPV (HR-HPV) is associated with the development of this type of cancer. This link between HPV infection and cancer was first established over 35 years ago when HPV16 DNA was found to be present in a large proportion of cervical cancer biopsies. The present review paper aims to report the status of the establishment, authenticity, and characterization of cervical cancer (CC) cell lines. This is a systematic review of articles on the establishment, authenticity, and characterization of CC cell lines, published from 1960 to date in the databases and in cell repository databases. 52 cell lines were identified in the literature. Only 25 cell lines were derived from cervical neoplasia, of which only 45.8% have a reported identity test (genomic fingerprint). Despite the increase in the establishment of cell lines of cervical neoplasia and the standards for the regulation of these study models, the criteria for their characterization continue to be diverse.
Collapse
Affiliation(s)
- Ma de Lourdes Zuñiga Martinez
- Posgrado en Ciencias Biomédicas Básicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México,Unidad de Innovación en Diagnóstico Celular y Molecular. Coordinación para la Innovación y la Aplicación de la Ciencia y Tecnología, San Luis Potosí, México
| | - Carlos Miguel López Mendoza
- Unidad de Innovación en Diagnóstico Celular y Molecular. Coordinación para la Innovación y la Aplicación de la Ciencia y Tecnología, San Luis Potosí, México
| | - Jared Tenorio Salazar
- Unidad de Innovación en Diagnóstico Celular y Molecular. Coordinación para la Innovación y la Aplicación de la Ciencia y Tecnología, San Luis Potosí, México
| | | | - Marco Antonio Cerbón Cervantes
- – Facultad de Química, Universidad Nacional Autónoma de MéxicoUnidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología “Isidro Espinosa de los Reyes” , Ciudad de México, México
| | - Luz Eugenia Alcántara-Quintana
- Catedra CONACYT, Unidad de Innovación en Diagnóstico Celular y Molecular. Coordinación para la Innovación y la Aplicación de la Ciencia y Tecnología, San LuisPotosí, México,CONTACT Luz Eugenia Alcántara-Quintana CIACYT, Universidad Autónoma de San Luis Potosí, Avenida Sierra Leona No. 550, C.P. 78210, Colonia Lomas Segunda Sección, San Luis Potosí, México
| |
Collapse
|
13
|
Gomes MT, Palasiewicz K, Gadiyar V, Lahey K, Calianese D, Birge RB, Ucker DS. Phosphatidylserine externalization by apoptotic cells is dispensable for specific recognition leading to innate apoptotic immune responses. J Biol Chem 2022; 298:102034. [PMID: 35588784 PMCID: PMC9234239 DOI: 10.1016/j.jbc.2022.102034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 12/22/2022] Open
Abstract
Surface determinants newly expressed by apoptotic cells that are involved in triggering potent immunosuppressive responses, referred to as “innate apoptotic immunity (IAI)” have not been characterized fully. It is widely assumed, often implicitly, that phosphatidylserine, a phospholipid normally cloistered in the inner leaflet of cells and externalized specifically during apoptosis, is involved in triggering IAI, just as it plays an essential role in the phagocytic recognition of apoptotic cells. It is notable, however, that the triggering of IAI in responder cells is not dependent on the engulfment of apoptotic cells by those responders. Contact between the responder and the apoptotic target, on the other hand, is necessary to elicit IAI. Previously, we demonstrated that exposure of protease-sensitive determinants on the apoptotic cell surface are essential for initiating IAI responses; exposed glycolytic enzyme molecules were implicated in particular. Here, we report our analysis of the involvement of externalized phosphatidylserine in triggering IAI. To analyze the role of phosphatidylserine, we employed a panel of target cells that either externalized phosphatidylserine constitutively, independently of apoptosis, or did not, as well as their WT parental cells that externalized the phospholipid in an apoptosis-dependent manner. We found that the externalization of phosphatidylserine, which can be fully uncoupled from apoptosis, is neither sufficient nor necessary to trigger the profound immunomodulatory effects of IAI. These results reinforce the view that apoptotic immunomodulation and phagocytosis are dissociable and further underscore the significance of protein determinants localized to the cell surface during apoptosis in triggering innate apoptotic immunity.
Collapse
Affiliation(s)
- Marta T Gomes
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, Illinois, USA
| | - Karol Palasiewicz
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, Illinois, USA
| | - Varsha Gadiyar
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers-New Jersey Medical School, Newark, New Jersey, USA
| | - Kevin Lahey
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers-New Jersey Medical School, Newark, New Jersey, USA
| | - David Calianese
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers-New Jersey Medical School, Newark, New Jersey, USA
| | - Raymond B Birge
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers-New Jersey Medical School, Newark, New Jersey, USA
| | - David S Ucker
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, Illinois, USA.
| |
Collapse
|
14
|
Griffin RJ, Avery E, Xia CQ. Predicting Approximate Clinically Effective Doses in Oncology Using Preclinical Efficacy and Body Surface Area Conversion: A Retrospective Analysis. Front Pharmacol 2022; 13:830972. [PMID: 35559235 PMCID: PMC9087189 DOI: 10.3389/fphar.2022.830972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/16/2022] [Indexed: 11/30/2022] Open
Abstract
The correlation between efficacious doses in human tumor-xenograft mouse models and the human clinical doses of approved oncology agents was assessed using published preclinical data and recommended clinical doses. For 90 approved small molecule anti-cancer drugs, body surface area (BSA) corrected mouse efficacious doses were strongly predictive of human clinical dose ranges with 85.6% of the predictions falling within three-fold (3×) of the recommended clinical doses and 63.3% within 2×. These results suggest that BSA conversion is a useful tool for estimating human doses of small molecule oncology agents from mouse xenograft models from the early discovery stage. However, the BSA based dose conversion poorly predicts for the intravenous antibody and antibody drug conjugate anti-cancer drugs. For antibody-based drugs, five out of 30 (16.7%) predicted doses were within 3× of the recommended clinical dose. The body weight-based dose projection was modestly predictive with 66.7% of drugs predicted within 3× of the recommended clinical dose. The correlation was slightly better in ADCs (77.7% in 3×). The application and limitations of such simple dose estimation methods in the early discovery stage and in the design of clinical trials are also discussed in this retrospective analysis.
Collapse
Affiliation(s)
| | - Ethan Avery
- Takeda Pharmaceuticals, Cambridge, MA, United States
| | - Cindy Q Xia
- Takeda Pharmaceuticals, Cambridge, MA, United States
| |
Collapse
|
15
|
Hepkema WM, Horbach SPJM, Hoek JM, Halffman W. Misidentified biomedical resources: Journal guidelines are not a quick fix. Int J Cancer 2022; 150:1233-1243. [PMID: 34807460 PMCID: PMC9300184 DOI: 10.1002/ijc.33882] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 10/14/2021] [Accepted: 11/02/2021] [Indexed: 01/22/2023]
Abstract
Biomedical researchers routinely use a variety of biological models and resources, such as cultured cell lines, antibodies and laboratory animals. Unfortunately, these resources are not flawless: cell lines can be misidentified; for antibodies, problems with specificity, lot-to-lot consistency and sensitivity are common; and the reliability of animal models is questioned due to poor translation of animal studies to human clinical trials. In some cases, these problems can render the results of a study meaningless. As a response, some journals have implemented guidelines regarding the use and reporting of cell lines, antibodies and laboratory animals. In our study we use a portfolio of existing and newly created datasets to investigate identification and authentication information of cell lines, antibodies and organisms before and after guideline introduction, compared to journals without guidelines. We observed a general improvement of reporting quality over time, which the implementation of guidelines accelerated only in some cases. We therefore conclude that the effectiveness of journal guidelines is likely to be context dependent, affected by factors such as implementation conditions, research community support and monitoring and resource availability. Hence, journal reporting guidelines in themselves are not a quick fix to repair shortcomings in biomedical resource documentation, even though they can be part of the solution.
Collapse
Affiliation(s)
| | - Serge P. J. M. Horbach
- Danish Centre for Studies in Research and Research PolicyAarhus UniversityAarhusDenmark
- Centre for Science and Technology StudiesLeiden UniversityLeidenThe Netherlands
| | - Joyce M. Hoek
- Department of PsychologyUniversity of GroningenGroningenThe Netherlands
| | - Willem Halffman
- Institute for Science in SocietyRadboud University NijmegenNijmegenThe Netherlands
| |
Collapse
|
16
|
Brunetti RM, Kockelkoren G, Raghavan P, Bell GR, Britain D, Puri N, Collins SR, Leonetti MD, Stamou D, Weiner OD. WASP integrates substrate topology and cell polarity to guide neutrophil migration. J Cell Biol 2022; 221:e202104046. [PMID: 34964841 PMCID: PMC8719638 DOI: 10.1083/jcb.202104046] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 10/19/2021] [Accepted: 12/10/2021] [Indexed: 12/02/2022] Open
Abstract
To control their movement, cells need to coordinate actin assembly with the geometric features of their substrate. Here, we uncover a role for the actin regulator WASP in the 3D migration of neutrophils. We show that WASP responds to substrate topology by enriching to sites of inward, substrate-induced membrane deformation. Superresolution imaging reveals that WASP preferentially enriches to the necks of these substrate-induced invaginations, a distribution that could support substrate pinching. WASP facilitates recruitment of the Arp2/3 complex to these sites, stimulating local actin assembly that couples substrate features with the cytoskeleton. Surprisingly, WASP only enriches to membrane deformations in the front half of the cell, within a permissive zone set by WASP's front-biased regulator Cdc42. While WASP KO cells exhibit relatively normal migration on flat substrates, they are defective at topology-directed migration. Our data suggest that WASP integrates substrate topology with cell polarity by selectively polymerizing actin around substrate-induced membrane deformations in the front half of the cell.
Collapse
Affiliation(s)
- Rachel M. Brunetti
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA
- Center for Geometrically Engineered Cellular Membranes, University of California, San Francisco, San Francisco, CA
| | - Gabriele Kockelkoren
- Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
- Center for Geometrically Engineered Cellular Membranes, University of Copenhagen, Copenhagen, Denmark
| | - Preethi Raghavan
- University of California, Berkeley–University of California, San Francisco Graduate Program in Bioengineering, University of California, San Francisco, San Francisco, CA
- Chan Zuckerberg Biohub, San Francisco, CA
| | - George R.R. Bell
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA
| | - Derek Britain
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA
- Center for Geometrically Engineered Cellular Membranes, University of California, San Francisco, San Francisco, CA
| | - Natasha Puri
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA
| | - Sean R. Collins
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA
| | | | - Dimitrios Stamou
- Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
- Center for Geometrically Engineered Cellular Membranes, University of Copenhagen, Copenhagen, Denmark
| | - Orion D. Weiner
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA
- Center for Geometrically Engineered Cellular Membranes, University of California, San Francisco, San Francisco, CA
| |
Collapse
|
17
|
Manjunath HS, James N, Mathew R, Al Hashmi M, Silcock L, Biunno I, De Blasio P, Manickam C, Tomei S. Human sample authentication in biomedical research: comparison of two platforms. Sci Rep 2021; 11:13982. [PMID: 34234171 PMCID: PMC8263568 DOI: 10.1038/s41598-021-92978-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 06/07/2021] [Indexed: 11/08/2022] Open
Abstract
Samples used in biomedical research are often collected over years, in some cases from subjects that may have died and thus cannot be retrieved in any way. The value of these samples is priceless. Sample misidentification or mix-up are unfortunately common problems in biomedical research and can eventually result in the publication of incorrect data. Here we have compared the Fluidigm SNPtrace and the Agena iPLEX Sample ID panels for the authentication of human genomic DNA samples. We have tested 14 pure samples and simulated their cross-contamination at different percentages (2%, 5%, 10%, 25% and 50%). For both panels, we report call rate, allele intensity/probability score, performance in distinguishing pure samples and contaminated samples at different percentages, and sex typing. We show that both panels are reliable and efficient methods for sample authentication and we highlight their advantages and disadvantages. We believe that the data provided here is useful for sample authentication especially in biorepositories and core facility settings.
Collapse
Affiliation(s)
| | | | - Rebecca Mathew
- Omics Core, Integrated Genomic Services, Research Branch, Sidra Medicine, PO 26999, Doha, Qatar
| | - Muna Al Hashmi
- Omics Core, Integrated Genomic Services, Research Branch, Sidra Medicine, PO 26999, Doha, Qatar
| | | | - Ida Biunno
- Integrated Systems Engineering, Milan, Italy
| | | | - Chidambaram Manickam
- Omics Core, Integrated Genomic Services, Research Branch, Sidra Medicine, PO 26999, Doha, Qatar
| | - Sara Tomei
- Omics Core, Integrated Genomic Services, Research Branch, Sidra Medicine, PO 26999, Doha, Qatar.
| |
Collapse
|
18
|
Zak A, Merino-Cortés SV, Sadoun A, Mustapha F, Babataheri A, Dogniaux S, Dupré-Crochet S, Hudik E, He HT, Barakat AI, Carrasco YR, Hamon Y, Puech PH, Hivroz C, Nüsse O, Husson J. Rapid viscoelastic changes are a hallmark of early leukocyte activation. Biophys J 2021; 120:1692-1704. [PMID: 33730552 PMCID: PMC8204340 DOI: 10.1016/j.bpj.2021.02.042] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 11/23/2020] [Accepted: 02/23/2021] [Indexed: 11/27/2022] Open
Abstract
To accomplish their critical task of removing infected cells and fighting pathogens, leukocytes activate by forming specialized interfaces with other cells. The physics of this key immunological process are poorly understood, but it is important to understand them because leukocytes have been shown to react to their mechanical environment. Using an innovative micropipette rheometer, we show in three different types of leukocytes that, when stimulated by microbeads mimicking target cells, leukocytes become up to 10 times stiffer and more viscous. These mechanical changes start within seconds after contact and evolve rapidly over minutes. Remarkably, leukocyte elastic and viscous properties evolve in parallel, preserving a well-defined ratio that constitutes a mechanical signature specific to each cell type. Our results indicate that simultaneously tracking both elastic and viscous properties during an active cell process provides a new, to our knowledge, way to investigate cell mechanical processes. Our findings also suggest that dynamic immunomechanical measurements can help discriminate between leukocyte subtypes during activation.
Collapse
Affiliation(s)
- Alexandra Zak
- LadHyX, CNRS, Ecole polytechnique, Institut Polytechnique de Paris, Palaiseau, France; Institut de Chimie Physique, CNRS UMR8000, Université Paris-Saclay, Orsay, France
| | | | - Anaïs Sadoun
- Aix-Marseille University, LAI UM 61, Marseille, France; Inserm, UMR_S 1067, Marseille, France; CNRS, UMR 7333, Marseille, France
| | - Farah Mustapha
- Aix-Marseille University, LAI UM 61, Marseille, France; Inserm, UMR_S 1067, Marseille, France; CNRS, UMR 7333, Marseille, France; Centre Interdisciplinaire de Nanoscience de Marseille, CNRS, Aix-Marseille University, Marseille, France
| | - Avin Babataheri
- LadHyX, CNRS, Ecole polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Stéphanie Dogniaux
- Integrative analysis of T cell activation team, Institut Curie-PSL Research University, INSERM U932, Paris, France
| | - Sophie Dupré-Crochet
- Institut de Chimie Physique, CNRS UMR8000, Université Paris-Saclay, Orsay, France
| | - Elodie Hudik
- Institut de Chimie Physique, CNRS UMR8000, Université Paris-Saclay, Orsay, France
| | - Hai-Tao He
- Aix-Marseille University, CNRS, INSERM, CIML, Marseille, France
| | - Abdul I Barakat
- LadHyX, CNRS, Ecole polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Yolanda R Carrasco
- B Lymphocyte Dynamics Laboratory, Centro Nacional de Biotecnología (CNB)-CSIC, Madrid, Spain
| | - Yannick Hamon
- Aix-Marseille University, CNRS, INSERM, CIML, Marseille, France
| | - Pierre-Henri Puech
- Aix-Marseille University, LAI UM 61, Marseille, France; Inserm, UMR_S 1067, Marseille, France; CNRS, UMR 7333, Marseille, France
| | - Claire Hivroz
- Integrative analysis of T cell activation team, Institut Curie-PSL Research University, INSERM U932, Paris, France
| | - Oliver Nüsse
- Institut de Chimie Physique, CNRS UMR8000, Université Paris-Saclay, Orsay, France
| | - Julien Husson
- LadHyX, CNRS, Ecole polytechnique, Institut Polytechnique de Paris, Palaiseau, France.
| |
Collapse
|
19
|
Genomic Landscape of Hodgkin Lymphoma. Cancers (Basel) 2021; 13:cancers13040682. [PMID: 33567641 PMCID: PMC7915917 DOI: 10.3390/cancers13040682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/01/2021] [Accepted: 02/04/2021] [Indexed: 12/26/2022] Open
Abstract
Simple Summary Hodgkin lymphoma (HL) is composed of many reactive and only a few cancer cells, so-called Hodgkin and Reed-Sternberg (HRS) or lymphocyte predominant (LP) cells. Due to the scarcity of these cells, it was difficult to perform high-throughput molecular investigations on them for a long time. With the help of recently developed methods, it is now possible to analyze their genomes. This review summarizes the genetic alterations found in HRS and LP cells that impact immune evasion, proliferation and circumvention of programmed cell death in HL. Understanding these underlying molecular mechanisms is essential, as they may be of prognostic and predictive value and help to improve the therapy especially for patients with recurrent or treatment-resistant disease. Abstract Background: Hodgkin lymphoma (HL) is predominantly composed of reactive, non-neoplastic cells surrounding scarcely distributed tumor cells, that is, so-called Hodgkin and Reed-Sternberg (HRS) or lymphocyte predominant (LP) cells. This scarcity impeded the analysis of the tumor cell genomes for a long time, but recently developed methods (especially laser capture microdissection, flow cytometry/fluorescence-activated cell sorting) facilitated molecular investigation, elucidating the pathophysiological principles of “Hodgkin lymphomagenesis”. Methods: We reviewed the relevant literature of the last three decades focusing on the genomic landscape of classic and nodular lymphocyte predominant HL (NLPHL) and summarized molecular cornerstones. Results: Firstly, the malignant cells of HL evade the immune system by altered expression of PDL1/2, B2M and MHC class I and II due to various genetic alterations. Secondly, tumor growth is promoted by permanently activated JAK/STAT signaling due to pervasive mutations of multiple genes involved in the pathway. Thirdly, apoptosis of neoplastic cells is prevented by alterations of NF-κB compounds and the PI3K/AKT/mTOR axis. Additionally, Epstein-Barr virus infection can simultaneously activate JAK/STAT and NF-κB, similarly leading to enhanced survival and evasion of apoptosis. Finally, epigenetic phenomena such as promoter hypermethylation lead to the downregulation of B-lineage-specific, tumor-suppressor and immune regulation genes. Conclusion: The blueprint of HL genomics has been laid, paving the way for future investigations into its complex pathophysiology.
Collapse
|
20
|
Blanter M, Gouwy M, Struyf S. Studying Neutrophil Function in vitro: Cell Models and Environmental Factors. J Inflamm Res 2021; 14:141-162. [PMID: 33505167 PMCID: PMC7829132 DOI: 10.2147/jir.s284941] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 12/04/2020] [Indexed: 01/21/2023] Open
Abstract
Neutrophils are the most abundant immune cell type in the blood and constitute the first line of defense against invading pathogens. Despite their important role in many diseases, they are challenging to study due to their short life span and the inability to cryopreserve or expand them in vitro. Thus, research into neutrophils has to rely on cells freshly isolated from peripheral blood of human donors, introducing donor-dependent variation in the experimental data. To counteract these problems, researchers tried to develop adequate cell models, such as cell lines. For those functional studies that cannot rely on cell models, a standardization of protocols regarding neutrophil purification and culturing could be a solution. In this review, we provide an overview of the most commonly used models for neutrophil function (HL-60, PLB-985, NB4, Kasumi-1 and induced pluripotent stem cells). In addition, we describe the effects of glucose concentration, pH, oxygen tension and temperature on neutrophil function.
Collapse
Affiliation(s)
- Marfa Blanter
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, University of Leuven, Leuven 3000, Belgium
| | - Mieke Gouwy
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, University of Leuven, Leuven 3000, Belgium
| | - Sofie Struyf
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, University of Leuven, Leuven 3000, Belgium
| |
Collapse
|
21
|
Peavey J, Malek G. Cell Line Authentication in Vision Research and Beyond: A Tale Retold. Invest Ophthalmol Vis Sci 2021; 61:19. [PMID: 32516405 PMCID: PMC7415283 DOI: 10.1167/iovs.61.6.19] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
We live in an age where new technologies, and organizations involved in the distribution of biological materials, such as cell culture lines, have eased accessibility to a variety of in vitro models, developed, and/or harvested from different sources. In translational and basic ophthalmology research, in vitro assays are an essential component to discovery and preclinical studies. It is, therefore, of utmost importance for vision researchers to be cognizant of the risks surrounding the use of newly developed cell culture models and how scientific integrity could be impacted when standard operating procedures are not followed for cell line validation and identification. Herein, we discuss authentication challenges we faced when we obtained a newly marketed human choroidal endothelial cell line for vision research, and outline our process of validating and characterizing primary human choroidal endothelial cell lines in the laboratory.
Collapse
|
22
|
Gu M, Liu J, Yang M, Zhang M, Yang J, Duan S, Ding X, Liu J, Chen C, Zeng Y, Shen C. Advantages of a 21-loci short tandem repeat method for detection of cross-contamination in human cell lines. Gene 2020; 763:145048. [DOI: 10.1016/j.gene.2020.145048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
23
|
Mansour NM, Balas EA, Yang FM, Vernon MM. Prevalence and Prevention of Reproducibility Deficiencies in Life Sciences Research: Large-Scale Meta-Analyses. Med Sci Monit 2020; 26:e922016. [PMID: 32960878 PMCID: PMC7519945 DOI: 10.12659/msm.922016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 03/18/2020] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Studies have found that many published life sciences research results are irreproducible. Our goal was to provide comprehensive risk estimates of familiar reproducibility deficiencies to support quality improvement in research. MATERIAL AND METHODS Reports included were peer-reviewed, published between 1980 and 2016, and presented frequency data of basic biomedical research deficiencies. Manual and electronic literature searches were performed in seven bibliographic databases. For deficiency concepts with at least four frequency studies and with a sample size of at least 15 units in each, a meta-analysis was performed. RESULTS Overall, 68 publications met our inclusion criteria. The study identified several major groups of research quality defects: study design, cell lines, statistical analysis, and reporting. In the study design group of 3 deficiencies, missing power calculation was the most frequent (82.3% [95% Confidence Interval (CI): 69.9-94.6]). Among the 6 cell line deficiencies, mixed contamination was the most frequent (22.4% [95% CI: 10.4-34.3]). Among the 3 statistical analysis deficiencies, the use of chi-square test when expected cells frequency was <5 was the most prevalent (15.7% [95% CI: -3.2-34.7]). In the reporting group of 12 deficiencies, failure to state the number of tails was the most frequent (65% [95% CI: 39.3-90.8]). CONCLUSIONS The results of this study could serve as a general reference when consistently measurable sources of deficiencies need to be identified in research quality improvement.
Collapse
Affiliation(s)
- Nadine M. Mansour
- Biomedical Research Innovation Laboratory, Augusta University, Augusta, GA, U.S.A
- Department of Public Health, Cairo University, Cairo, Egypt
| | - E. Andrew Balas
- Biomedical Research Innovation Laboratory, Augusta University, Augusta, GA, U.S.A
| | | | - Marlo M. Vernon
- Medical College of Georgia, Augusta University, Augusta, GA, U.S.A
| |
Collapse
|
24
|
Dratwa M, Wysoczanska B, Turlej E, Anisiewicz A, Maciejewska M, Wietrzyk J, Bogunia-Kubik K. Heterogeneity of telomerase reverse transcriptase mutation and expression, telomerase activity and telomere length across human cancer cell lines cultured in vitro. Exp Cell Res 2020; 396:112298. [PMID: 32971118 DOI: 10.1016/j.yexcr.2020.112298] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/18/2020] [Accepted: 09/19/2020] [Indexed: 12/12/2022]
Abstract
Promoter region of the telomerase reverse transcriptase gene (TERTp) constitutes a regulatory element capable to affect TERT expression (TE), telomerase activity (TA) and telomere length (TL). TERTp mutation status, TL, TA and TE were assessed in 27 in vitro cultured human cell lines, including 11 solid tumour, 13 haematological and 3 normal cell lines. C228T and C250T TERTp mutations were detected in 5 solid tumour and none of haematological cell lines (p = 0.0100). As compared to other solid tumour cell lines, those with the presence of somatic mutations were characterized by: shorter TL, lower TA and TE. Furthermore, cell lines carrying TERTp mutations showed a linear correlation between TE and TA (R = 0.9708, p = 0.0021). Moreover, haematological cell lines exhibited higher TE compared to solid tumour cell lines (p = 0.0007). TL and TA were correlated in both solid tumour (R = 0.4875, p = 0.0169) and haematological (R = 0.4719, p = 0.0095) cell lines. Our results based on the in vitro model suggest that oncogenic processes may differ between solid tumours and haematological malignancies with regard to their TERT gene regulation mechanisms.
Collapse
Affiliation(s)
- Marta Dratwa
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Barbara Wysoczanska
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Eliza Turlej
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Artur Anisiewicz
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Magdalena Maciejewska
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Joanna Wietrzyk
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Katarzyna Bogunia-Kubik
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland.
| |
Collapse
|
25
|
Drexler HG, Quentmeier H. The LL-100 Cell Lines Panel: Tool for Molecular Leukemia-Lymphoma Research. Int J Mol Sci 2020; 21:ijms21165800. [PMID: 32823535 PMCID: PMC7461097 DOI: 10.3390/ijms21165800] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/04/2020] [Accepted: 08/11/2020] [Indexed: 12/17/2022] Open
Abstract
Certified cell line models provide ideal experimental platforms to answer countless scientific questions. The LL-100 panel is a cohort of cell lines that are broadly representative of all leukemia–lymphoma entities (including multiple myeloma and related diseases), rigorously authenticated and validated, and comprehensively annotated. The process of the assembly of the LL-100 panel was based on evidence and experience. To expand the genetic characterization across all LL-100 cell lines, we performed whole-exome sequencing and RNA sequencing. Here, we describe the conception of the panel and showcase some exemplary applications with a focus on cancer genomics. Due diligence was paid to exclude cross-contaminated and non-representative cell lines. As the LL-100 cell lines are so well characterized and readily available, the panel will be a valuable resource for identifying cell lines with mutations in cancer genes, providing superior model systems. The data also add to the current knowledge of the molecular pathogenesis of leukemia–lymphoma. Additional efforts to expand the breadth of available high-quality cell lines are clearly warranted.
Collapse
Affiliation(s)
- Hans G. Drexler
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, 38124 Braunschweig, Germany;
- Faculty of Life Sciences, Technical University of Braunschweig, 38124 Braunschweig, Germany
- Correspondence:
| | - Hilmar Quentmeier
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, 38124 Braunschweig, Germany;
| |
Collapse
|
26
|
van der Meer D, Barthorpe S, Yang W, Lightfoot H, Hall C, Gilbert J, Francies HE, Garnett MJ. Cell Model Passports-a hub for clinical, genetic and functional datasets of preclinical cancer models. Nucleic Acids Res 2020; 47:D923-D929. [PMID: 30260411 PMCID: PMC6324059 DOI: 10.1093/nar/gky872] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 09/17/2018] [Indexed: 12/31/2022] Open
Abstract
In vitro cancer cell cultures are facile experimental models used widely for research and drug development. Many cancer cell lines are available and efforts are ongoing to derive new models representing the histopathological and molecular diversity of tumours. Cell models have been generated by multiple laboratories over decades and consequently their annotation is incomplete and inconsistent. Furthermore, the relationships between many patient-matched and derivative cell lines have been lost, and accessing information and datasets is time-consuming and difficult. Here, we describe the Cell Model Passports database; cellmodelpassports.sanger.ac.uk, which provides details of cell model relationships, patient and clinical information, as well as access to associated genetic and functional datasets. The Passports database currently contains curated details and standardized annotation for >1200 cell models, including cancer organoid cultures. The Passports will be updated with newly derived cell models and datasets as they are generated. Users can navigate the database via tissue, cancer-type, genetic feature and data availability to select a model most suitable for specific applications. A flexible REST-API provides programmatic data access and exploration. The Cell Model Passports are a valuable tool enabling access to high-dimensional genomic and phenotypic cancer cell model datasets empowering diverse research applications.
Collapse
Affiliation(s)
| | - Syd Barthorpe
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| | - Wanjuan Yang
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| | - Howard Lightfoot
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| | - Caitlin Hall
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| | - James Gilbert
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| | - Hayley E Francies
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| | - Mathew J Garnett
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| |
Collapse
|
27
|
Way GP, Zietz M, Rubinetti V, Himmelstein DS, Greene CS. Compressing gene expression data using multiple latent space dimensionalities learns complementary biological representations. Genome Biol 2020; 21:109. [PMID: 32393369 PMCID: PMC7212571 DOI: 10.1186/s13059-020-02021-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 04/16/2020] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Unsupervised compression algorithms applied to gene expression data extract latent or hidden signals representing technical and biological sources of variation. However, these algorithms require a user to select a biologically appropriate latent space dimensionality. In practice, most researchers fit a single algorithm and latent dimensionality. We sought to determine the extent by which selecting only one fit limits the biological features captured in the latent representations and, consequently, limits what can be discovered with subsequent analyses. RESULTS We compress gene expression data from three large datasets consisting of adult normal tissue, adult cancer tissue, and pediatric cancer tissue. We train many different models across a large range of latent space dimensionalities and observe various performance differences. We identify more curated pathway gene sets significantly associated with individual dimensions in denoising autoencoder and variational autoencoder models trained using an intermediate number of latent dimensionalities. Combining compressed features across algorithms and dimensionalities captures the most pathway-associated representations. When trained with different latent dimensionalities, models learn strongly associated and generalizable biological representations including sex, neuroblastoma MYCN amplification, and cell types. Stronger signals, such as tumor type, are best captured in models trained at lower dimensionalities, while more subtle signals such as pathway activity are best identified in models trained with more latent dimensionalities. CONCLUSIONS There is no single best latent dimensionality or compression algorithm for analyzing gene expression data. Instead, using features derived from different compression models across multiple latent space dimensionalities enhances biological representations.
Collapse
Affiliation(s)
- Gregory P Way
- Genomics and Computational Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, 10-131 SCTR 34th and Civic Center Blvd, Philadelphia, PA, 19104, USA
- Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Michael Zietz
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, 10-131 SCTR 34th and Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - Vincent Rubinetti
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, 10-131 SCTR 34th and Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - Daniel S Himmelstein
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, 10-131 SCTR 34th and Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - Casey S Greene
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, 10-131 SCTR 34th and Civic Center Blvd, Philadelphia, PA, 19104, USA.
- Childhood Cancer Data Lab, Alex's Lemonade Stand Foundation, Philadelphia, PA, 19102, USA.
| |
Collapse
|
28
|
Salmonella Extracellular Polymeric Substances Modulate Innate Phagocyte Activity and Enhance Tolerance of Biofilm-Associated Bacteria to Oxidative Stress. Microorganisms 2020; 8:microorganisms8020253. [PMID: 32070067 DOI: 10.3390/microorganisms8020253] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/28/2020] [Accepted: 02/10/2020] [Indexed: 12/13/2022] Open
Abstract
Salmonella enterica serovar Typhi causes 14.3 million acute cases of typhoid fever that are responsible for 136,000 deaths each year. Chronic infections occur in 3%-5% of those infected and S. Typhi persists primarily in the gallbladder by forming biofilms on cholesterol gallstones, but how these bacterial communities evade host immunity is not known. Salmonella biofilms produce several extracellular polymeric substances (EPSs) during chronic infection, which are hypothesized to prevent pathogen clearance either by protecting biofilm-associated bacteria from direct humoral attack or by modulating innate phagocyte interaction with biofilms. Using wild-type and EPS-deficient planktonic and biofilm Salmonella, the direct attack hypothesis was tested by challenging biofilms with human serum and antimicrobial peptides. Biofilms were found to be tolerant to these molecules, but these phenotypes were independent of the tested EPSs. By examining macrophage and neutrophil responses, new roles for biofilm-associated capsular polysaccharides and slime polysaccharides were identified. The S. Typhi Vi antigen was found to modulate innate immunity by reducing macrophage nitric oxide production and neutrophil reactive oxygen species (ROS) production. The slime polysaccharides colanic acid and cellulose were found to be immune-stimulating and represent a key difference between non-typhoidal serovars and typhoidal serovars, which do not express colanic acid. Furthermore, biofilm tolerance to the exogenously-supplied ROS intermediates hydrogen peroxide (H2O2) and hypochlorite (ClO) indicated an additional role of the capsular polysaccharides for both serovars in recalcitrance to H2O2 but not ClO, providing new understanding of the stalemate that arises during chronic infections and offering new directions for mechanistic and clinical studies.
Collapse
|
29
|
There is a Scientific Need for the Right Leukemia-Lymphoma Cell Lines. Hemasphere 2019; 3:e315. [PMID: 31976487 PMCID: PMC6924560 DOI: 10.1097/hs9.0000000000000315] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 10/19/2019] [Indexed: 01/20/2023] Open
|
30
|
Cancer Cell Lines Are Useful Model Systems for Medical Research. Cancers (Basel) 2019; 11:cancers11081098. [PMID: 31374935 PMCID: PMC6721418 DOI: 10.3390/cancers11081098] [Citation(s) in RCA: 167] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/17/2019] [Accepted: 07/30/2019] [Indexed: 12/19/2022] Open
Abstract
Cell lines are in vitro model systems that are widely used in different fields of medical research, especially basic cancer research and drug discovery. Their usefulness is primarily linked to their ability to provide an indefinite source of biological material for experimental purposes. Under the right conditions and with appropriate controls, authenticated cancer cell lines retain most of the genetic properties of the cancer of origin. During the last few years, comparing genomic data of most cancer cell lines has corroborated this statement and those that were observed studying the tumoral tissue equivalents included in the The Cancer Genome Atlas (TCGA) database. We are at the disposal of comprehensive open access cell line datasets describing their molecular and cellular alterations at an unprecedented level of accuracy. This aspect, in association with the possibility of setting up accurate culture conditions that mimic the in vivo microenvironment (e.g., three-dimensional (3D) coculture), has strengthened the importance of cancer cell lines for continuing to sustain medical research fields. However, it is important to consider that the appropriate use of cell lines needs to follow established guidelines for guaranteed data reproducibility and quality, and to prevent the occurrence of detrimental events (i.e., those that are linked to cross-contamination and mycoplasma contamination).
Collapse
|
31
|
Abstract
Characteristic components of Hodgkin lymphoma (HL) tissue are the mono- or multinucleated Hodgkin-Reed-Sternberg (HRS) cells. Given the challenges of isolating these rare malignant cells and the difficulty in culturing cells from patients, many investigators have tried to establish cell lines in efforts to develop cellular tools for in vitro studies. A limited number of HL cell lines exist and have provided valuable insights into HL pathobiology. A literature survey indicated that 35 cell lines derived from HL patients have been published. To determine whether all these alleged HL cell lines hold up to scrutiny, we examined the available data and also put some of these cell lines to the test of hierarchical clustering, providing additional information regarding assignment to cell line type and tissue derivation. Hierarchical clustering separated the bona fide (classical) HL cell lines completely from cell lines derived from other lymphoma categories and proved conclusively that HL cell lines represent a distinct entity, irrespective of the cellular origin of the HRS cells. We conclude by pointing out the need for an intensified search for new cell culture avenues in order to develop a new generation of informative HL cell lines covering more widely the spectrum of HL stages and subtypes.
Collapse
Affiliation(s)
- Hans G Drexler
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstr. 7B, D-38124 Braunschweig, Germany
| | - Claudia Pommerenke
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstr. 7B, D-38124 Braunschweig, Germany
| | - Sonja Eberth
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstr. 7B, D-38124 Braunschweig, Germany
| | - Stefan Nagel
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstr. 7B, D-38124 Braunschweig, Germany
| |
Collapse
|
32
|
Korch C, Varella-Garcia M. Tackling the Human Cell Line and Tissue Misidentification Problem Is Needed for Reproducible Biomedical Research. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.yamp.2018.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
33
|
Rincón E, Rocha-Gregg BL, Collins SR. A map of gene expression in neutrophil-like cell lines. BMC Genomics 2018; 19:573. [PMID: 30068296 PMCID: PMC6090850 DOI: 10.1186/s12864-018-4957-6] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 07/23/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Human neutrophils are central players in innate immunity, a major component of inflammatory responses, and a leading model for cell motility and chemotaxis. However, primary neutrophils are short-lived, limiting their experimental usefulness in the laboratory. Thus, human myeloid cell lines have been characterized for their ability to undergo neutrophil-like differentiation in vitro. The HL-60 cell line and its PLB-985 sub-line are commonly used to model human neutrophil behavior, but how closely gene expression in differentiated cells resembles that of primary neutrophils has remained unclear. RESULTS In this study, we compared the effectiveness of differentiation protocols and used RNA sequencing (RNA-seq) to compare the transcriptomes of HL-60 and PLB-985 cells with published data for human and mouse primary neutrophils. Among commonly used differentiation protocols for neutrophil-like cell lines, addition of dimethyl sulfoxide (DMSO) gave the best combination of cell viability and expression of markers for differentiation. However, combining DMSO with the serum-free-supplement Nutridoma resulted in increased chemotactic response, phagocytic activity, oxidative burst and cell surface expression of the neutrophil markers FPR1 and CD11b without a cost in viability. RNA-seq analysis of HL-60 and PLB-985 cells before and after differentiation showed that differentiation broadly increases the similarity in gene expression between the cell lines and primary neutrophils. Furthermore, the gene expression pattern of the differentiated cell lines correlated slightly better with that of human neutrophils than the mouse neutrophil pattern did. Finally, we created a publicly available gene expression database that is searchable by gene name and protein domain content, where users can compare gene expression in HL-60, PLB-985 and primary human and mouse neutrophils. CONCLUSIONS Our study verifies that a DMSO-based differentiation protocol for HL-60 and PLB-985 cell lines gives superior differentiation and cell viability relative to other common protocols, and indicates that addition of Nutridoma may be preferable for studies of chemotaxis, phagocytosis, or oxidative burst. Our neutrophil gene expression database will be a valuable tool to identify similarities and differences in gene expression between the cell lines and primary neutrophils, to compare expression levels for genes of interest, and to improve the design of tools for genetic perturbations.
Collapse
Affiliation(s)
- Esther Rincón
- Department of Microbiology and Molecular Genetics, University of California, Davis, One Shields Avenue, Davis, CA 95616 USA
| | - Briana L. Rocha-Gregg
- Department of Microbiology and Molecular Genetics, University of California, Davis, One Shields Avenue, Davis, CA 95616 USA
| | - Sean R. Collins
- Department of Microbiology and Molecular Genetics, University of California, Davis, One Shields Avenue, Davis, CA 95616 USA
| |
Collapse
|
34
|
Co-fuse: a new class discovery analysis tool to identify and prioritize recurrent fusion genes from RNA-sequencing data. Mol Genet Genomics 2018; 293:1217-1229. [PMID: 29882166 DOI: 10.1007/s00438-018-1454-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 05/31/2018] [Indexed: 10/14/2022]
Abstract
Recurrent oncogenic fusion genes play a critical role in the development of various cancers and diseases and provide, in some cases, excellent therapeutic targets. To date, analysis tools that can identify and compare recurrent fusion genes across multiple samples have not been available to researchers. To address this deficiency, we developed Co-occurrence Fusion (Co-fuse), a new and easy to use software tool that enables biologists to merge RNA-seq information, allowing them to identify recurrent fusion genes, without the need for exhaustive data processing. Notably, Co-fuse is based on pattern mining and statistical analysis which enables the identification of hidden patterns of recurrent fusion genes. In this report, we show that Co-fuse can be used to identify 2 distinct groups within a set of 49 leukemic cell lines based on their recurrent fusion genes: a multiple myeloma (MM) samples-enriched cluster and an acute myeloid leukemia (AML) samples-enriched cluster. Our experimental results further demonstrate that Co-fuse can identify known driver fusion genes (e.g., IGH-MYC, IGH-WHSC1) in MM, when compared to AML samples, indicating the potential of Co-fuse to aid the discovery of yet unknown driver fusion genes through cohort comparisons. Additionally, using a 272 primary glioma sample RNA-seq dataset, Co-fuse was able to validate recurrent fusion genes, further demonstrating the power of this analysis tool to identify recurrent fusion genes. Taken together, Co-fuse is a powerful new analysis tool that can be readily applied to large RNA-seq datasets, and may lead to the discovery of new disease subgroups and potentially new driver genes, for which, targeted therapies could be developed. The Co-fuse R source code is publicly available at https://github.com/sakrapee/co-fuse .
Collapse
|
35
|
Poynton FE, Bright SA, Blasco S, Williams DC, Kelly JM, Gunnlaugsson T. The development of ruthenium(ii) polypyridyl complexes and conjugates for in vitro cellular and in vivo applications. Chem Soc Rev 2018; 46:7706-7756. [PMID: 29177281 DOI: 10.1039/c7cs00680b] [Citation(s) in RCA: 302] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ruthenium(ii) [Ru(ii)] polypyridyl complexes have been the focus of intense investigations since work began exploring their supramolecular interactions with DNA. In recent years, there have been considerable efforts to translate this solution-based research into a biological environment with the intention of developing new classes of probes, luminescent imaging agents, therapeutics and theranostics. In only 10 years the field has expanded with diverse applications for these complexes as imaging agents and promising candidates for therapeutics. In light of these efforts this review exclusively focuses on the developments of these complexes in biological systems, both in cells and in vivo, and hopes to communicate to readers the diversity of applications within which these complexes have found use, as well as new insights gained along the way and challenges that researchers in this field still face.
Collapse
Affiliation(s)
- Fergus E Poynton
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin, Dublin 2, Ireland.
| | | | | | | | | | | |
Collapse
|
36
|
Degrossoli A, Müller A, Xie K, Schneider JF, Bader V, Winklhofer KF, Meyer AJ, Leichert LI. Neutrophil-generated HOCl leads to non-specific thiol oxidation in phagocytized bacteria. eLife 2018; 7:32288. [PMID: 29506649 PMCID: PMC5839695 DOI: 10.7554/elife.32288] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 02/02/2018] [Indexed: 12/20/2022] Open
Abstract
Phagocytic immune cells kill pathogens in the phagolysosomal compartment with a cocktail of antimicrobial agents. Chief among them are reactive species produced in the so-called oxidative burst. Here, we show that bacteria exposed to a neutrophil-like cell line experience a rapid and massive oxidation of cytosolic thiols. Using roGFP2-based fusion probes, we could show that this massive breakdown of the thiol redox homeostasis was dependent on phagocytosis, presence of NADPH oxidase and ultimately myeloperoxidase. Interestingly, the redox-mediated fluorescence change in bacteria expressing a glutathione-specific Grx1-roGFP2 fusion protein or an unfused roGFP2 showed highly similar reaction kinetics to the ones observed with roGFP2-Orp1, under all conditions tested. We recently observed such an indiscriminate oxidation of roGFP2-based fusion probes by HOCl with fast kinetics in vitro. In line with these observations, abating HOCl production in immune cells with a myeloperoxidase inhibitor significantly attenuated the oxidation of all three probes in bacteria. A group of cells of the immune system defends the body against infections by wrapping themselves around bacteria, and effectively ‘eating’ them. During this process, called phagocytosis, the cell also douses the bacterium with a deadly cocktail of chemicals, including an antiseptic – hydrogen peroxide – and bleach. This mixture chemically burns, and then kills, the invader. The immune cells create hydrogen peroxide and bleach through chemical reactions that require two enzymes, NOX2 and MPO. The NOX2 enzyme is activated first, and produces a compound which is then transformed into hydrogen peroxide. In turn, hydrogen peroxide is used by MPO to make bleach. Phagocytosis is still poorly understood, and difficult to study: for example, it is not clear when the toxic mix is released, and which of its components are the most important. Here, Degrossoli et al. peer into this process: to do so, they genetically engineer bacteria and give them a built-in chemical burn tracker. The bacteria are made to carry fluorescent proteins which normally glow under blue light, but start to also react to violet light if they are exposed to a chemical burn. Under the microscope, when these bacteria encounter immune cells, they start glowing under violet light only a few seconds after they have been phagocytized. This shows that, during phagocytosis, the chemical mix is used almost immediately. The new technique also reveals that cells without a working NOX2 enzyme – which cannot produce hydrogen peroxide – could not burn the bacteria. However, hydrogen peroxide is also used by MPO to create bleach. If just MPO is deactivated, the cells can burn the bacteria, but much less efficiently. This, and the speed with which these fluorescent proteins were burnt, shows that the bleach is the main component of the toxic mix used during phagocytosis. Chronic granulomatous disease is a condition where patients can have a faulty version of NOX2, which makes it harder for them to fight infection. Understanding the mechanisms and the enzymes associated with phagocytosis could lead to improved treatment in the future.
Collapse
Affiliation(s)
- Adriana Degrossoli
- Institute for Biochemistry and Pathobiochemistry - Microbial Biochemistry, Ruhr-Universität Bochum, Bochum, Germany
| | - Alexandra Müller
- Institute for Biochemistry and Pathobiochemistry - Microbial Biochemistry, Ruhr-Universität Bochum, Bochum, Germany
| | - Kaibo Xie
- Institute for Biochemistry and Pathobiochemistry - Microbial Biochemistry, Ruhr-Universität Bochum, Bochum, Germany
| | - Jannis F Schneider
- Institute for Biochemistry and Pathobiochemistry - Microbial Biochemistry, Ruhr-Universität Bochum, Bochum, Germany
| | - Verian Bader
- Institute for Biochemistry and Pathobiochemistry - Molecular Cell Biology, Ruhr-Universität Bochum, Bochum, Germany
| | - Konstanze F Winklhofer
- Institute for Biochemistry and Pathobiochemistry - Molecular Cell Biology, Ruhr-Universität Bochum, Bochum, Germany
| | - Andreas J Meyer
- INRES - Chemical Signalling, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Lars I Leichert
- Institute for Biochemistry and Pathobiochemistry - Microbial Biochemistry, Ruhr-Universität Bochum, Bochum, Germany
| |
Collapse
|
37
|
Bell GRR, Natwick DE, Collins SR. Parallel High-Resolution Imaging of Leukocyte Chemotaxis Under Agarose with Rho-Family GTPase Biosensors. Methods Mol Biol 2018; 1821:71-85. [PMID: 30062406 DOI: 10.1007/978-1-4939-8612-5_6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Neutrophils are key early responders in the innate immune response that use chemotaxis, the directed migration along chemical gradients, to reach sites of infection or inflammation. This process requires integrating inputs from cell surface receptors with the cell's polarity and motility signaling network, in which highly dynamic and interconnected signaling by Rho-family GTPases plays a central role. To understand this fundamentally important behavior, we describe a high-resolution, under-agarose chemotaxis assay for use with neutrophil-like cell lines (HL-60 or PLB-985) or with primary neutrophils. We also describe how to use optical uncaging of chemoattractants to stimulate cells in this assay. These techniques are compatible with epifluorescence, total internal reflection fluorescence (TIRF), and confocal microscopy. Additionally, we cover how to measure the activities of Rho-family GTPases in this context using Förster resonance energy transfer (FRET)-based biosensors. The specific experimental steps outlined in this chapter include how to (1) set up the under-agarose assay, (2) optically pattern chemoattractant gradients, (3) image cells, and (4) conduct basic image analysis for FRET biosensors.
Collapse
Affiliation(s)
- George R R Bell
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, USA
| | - Dean E Natwick
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, USA
| | - Sean R Collins
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, USA.
| |
Collapse
|
38
|
Chan JY, Ahmad Kayani AB, Md Ali MA, Kok CK, Yeop Majlis B, Hoe SLL, Marzuki M, Khoo ASB, Ostrikov K(K, Ataur Rahman M, Sriram S. Dielectrophoresis-based microfluidic platforms for cancer diagnostics. BIOMICROFLUIDICS 2018; 12:011503. [PMID: 29531634 PMCID: PMC5825230 DOI: 10.1063/1.5010158] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 12/27/2017] [Indexed: 05/15/2023]
Abstract
The recent advancement of dielectrophoresis (DEP)-enabled microfluidic platforms is opening new opportunities for potential use in cancer disease diagnostics. DEP is advantageous because of its specificity, low cost, small sample volume requirement, and tuneable property for microfluidic platforms. These intrinsic advantages have made it especially suitable for developing microfluidic cancer diagnostic platforms. This review focuses on a comprehensive analysis of the recent developments of DEP enabled microfluidic platforms sorted according to the target cancer cell. Each study is critically analyzed, and the features of each platform, the performance, added functionality for clinical use, and the types of samples, used are discussed. We address the novelty of the techniques, strategies, and design configuration used in improving on existing technologies or previous studies. A summary of comparing the developmental extent of each study is made, and we conclude with a treatment of future trends and a brief summary.
Collapse
Affiliation(s)
- Jun Yuan Chan
- Center for Advanced Materials and Green Technology, Multimedia University, 75450 Melaka, Malaysia
| | | | - Mohd Anuar Md Ali
- Institute of Microengineering and Nanoelectronics, Universiti Kebangsaan Malaysia, Bangi, 43600 Selangor, Malaysia
| | - Chee Kuang Kok
- Center for Advanced Materials and Green Technology, Multimedia University, 75450 Melaka, Malaysia
| | - Burhanuddin Yeop Majlis
- Institute of Microengineering and Nanoelectronics, Universiti Kebangsaan Malaysia, Bangi, 43600 Selangor, Malaysia
| | - Susan Ling Ling Hoe
- Molecular Pathology Unit, Cancer Research Centre, Institute for Medical Research, 50588 Kuala Lumpur, Malaysia
| | - Marini Marzuki
- Molecular Pathology Unit, Cancer Research Centre, Institute for Medical Research, 50588 Kuala Lumpur, Malaysia
| | | | | | - Md. Ataur Rahman
- Functional Materials and Microsystems Research Group, Micro Nano Research Facility, RMIT University, Melbourne, Victoria 3001, Australia
| | - Sharath Sriram
- Functional Materials and Microsystems Research Group, Micro Nano Research Facility, RMIT University, Melbourne, Victoria 3001, Australia
| |
Collapse
|
39
|
Horbach SPJM, Halffman W. The ghosts of HeLa: How cell line misidentification contaminates the scientific literature. PLoS One 2017; 12:e0186281. [PMID: 29023500 PMCID: PMC5638414 DOI: 10.1371/journal.pone.0186281] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 09/28/2017] [Indexed: 01/11/2023] Open
Abstract
While problems with cell line misidentification have been known for decades, an unknown number of published papers remains in circulation reporting on the wrong cells without warning or correction. Here we attempt to make a conservative estimate of this ‘contaminated’ literature. We found 32,755 articles reporting on research with misidentified cells, in turn cited by an estimated half a million other papers. The contamination of the literature is not decreasing over time and is anything but restricted to countries in the periphery of global science. The decades-old and often contentious attempts to stop misidentification of cell lines have proven to be insufficient. The contamination of the literature calls for a fair and reasonable notification system, warning users and readers to interpret these papers with appropriate care.
Collapse
Affiliation(s)
| | - Willem Halffman
- Radboud University, Institute for Science in Society, Nijmegen, The Netherlands
- * E-mail:
| |
Collapse
|
40
|
Ellison MA, Gearheart CM, Porter CC, Ambruso DR. IFN-γ alters the expression of diverse immunity related genes in a cell culture model designed to represent maturing neutrophils. PLoS One 2017; 12:e0185956. [PMID: 28982143 PMCID: PMC5628906 DOI: 10.1371/journal.pone.0185956] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 09/24/2017] [Indexed: 12/20/2022] Open
Abstract
The cytokine interferon-γ (IFN-γ) is approved as a drug to treat chronic granulomatous disease (CGD) and osteopetrosis and is also used in hyperimmunoglobulin E syndromes. Patients with CGD have defects in proteins of the NOX2 NADPH oxidase system. This leads to reduced production of microbicidal ROS by PMNs and recurrent life threatening infections. The goal of this study was to better understand how IFN-γ might support phagocyte function in these diseases, and to obtain information that might expand potential uses for IFN-γ. Neutrophils mature in the bone marrow and then enter the blood where they quickly undergo apoptotic cell death with a half-life of only 5–10 hours. Therefore we reasoned that IFN-γ might exert its effects on neutrophils via prolonged exposure to cells undergoing maturation in the marrow rather than by its brief exposure to short-lived circulating cells. To explore this possibility we made use of PLB-985 cells, a myeloblast-like myeloid cell line that can be differentiated into a mature, neutrophil-like state by treatment with various agents including DMSO. In initial studies we investigated transcription and protein expression in PLB-985 cells undergoing maturation in the presence or absence of IFN-γ. We observed IFN-γ induced differences in expression of genes known to be involved in classical aspects of neutrophil function (transmigration, chemotaxis, phagocytosis, killing and pattern recognition) as well as genes involved in apoptosis and other mechanisms that regulating neutrophil number. We also observed differences for genes involved in the major histocompatibility complex I (MHCI) and MHCII systems whose involvement in neutrophil function is controversial and not well defined. Finally, we observed significant changes in expression of genes encoding guanylate binding proteins (Gbps) that are known to have roles in immunity but which have not as yet been linked to neutrophil function. We propose that changes in the expression within these classes of genes could help explain the immune supportive effects of IFN-γ. Next we explored if the effect of IFN-γ on expression of these genes is dependent on whether the cells are undergoing maturation; to do this we compared the effects of IFN-γ on cells cultured with and without DMSO. For a subset of genes the expression level changes caused by IFN-γ were much greater in maturing cells than non-maturing cells. These findings indicate that developmental changes associated with cell maturation can modulate the effects of IFN-γ but that this is gene specific. Since the effects of IFN-γ depend on whether cells are maturing, the gene expression changes observed in this study must be due to more than just prolonged application of IFN-γ and are instead the result of interplay between cell maturation and changes caused by the chemokine. This supports our hypothesis that the effects of IFN-γ on developing neutrophils in the bone marrow may be very different from its effects on mature cells in the blood. Collectively the findings in this study enhance our understanding of the effects of IFN-γ on maturing myeloid cells and indicate possible mechanisms by which this cytokine could support immune function.
Collapse
Affiliation(s)
- Michael A. Ellison
- Department of Pediatrics, University of Colorado Denver, The Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Christy M. Gearheart
- Department of Pediatrics, University of Colorado Denver, The Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Christopher C. Porter
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Daniel R. Ambruso
- Department of Pediatrics, University of Colorado Denver, The Anschutz Medical Campus, Aurora, Colorado, United States of America
- Department of Pathology, University of Colorado Denver, The Anschutz Medical Campus, Aurora, Colorado, United States of America
- The Center for Cancer and Blood Disorders, Transfusion Services, Children's Hospital Colorado, Aurora, Colorado, United States of America
- Hematology/Oncology and Bone Marrow Transplantation Laboratories, Aurora, Colorado, United States of America
- * E-mail:
| |
Collapse
|
41
|
Flow injection amperometric sandwich-type aptasensor for the determination of human leukemic lymphoblast cancer cells using MWCNTs-Pd nano/PTCA/aptamer as labeled aptamer for the signal amplification. Anal Chim Acta 2017; 985:61-68. [PMID: 28864195 DOI: 10.1016/j.aca.2017.07.054] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/16/2017] [Accepted: 07/21/2017] [Indexed: 12/29/2022]
Abstract
In this research, we demonstrated a flow injection amperometric sandwich-type aptasensor for the determination of human leukemic lymphoblasts (CCRF-CEM) based on poly(3,4-ethylenedioxythiophene) decorated with gold nanoparticles (PEDOT-Aunano) as a nano platform to immobilize thiolated sgc8c aptamer and multiwall carbon nanotubes decorated with palladium nanoparticles/3,4,9,10-perylene tetracarboxylic acid (MWCNTs-Pdnano/PTCA) to fabricate catalytic labeled aptamer. In the proposed sensing strategy, the CCRF-CEM cancer cells were sandwiched between immobilized sgc8c aptamer on PEDOT-Aunano modified surface electrode and catalytic labeled sgc8c aptamer (MWCNTs-Pdnano/PTCA/aptamer). After that, the concentration of CCRF-CEM cancer cells was determined in presence of 0.1 mM hydrogen peroxide (H2O2) as an electroactive component. The attached MWCNTs-Pdnano nanocomposites to CCRF-CEM cancer cells amplified the electrocatalytic reduction of H2O2 and improved the sensitivity of the sensor to CCRF-CEM cancer cells. The MWCNT-Pdnano nanocomposite was characterized with transmission electron microscopy (TEM) and energy dispersive X-ray (EDX). The electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) were used to confirm the stepwise changes in the electrochemical surface properties of the electrode. The proposed sandwich-type electrochemical aptasensor exhibited an excellent analytical performance for the detection of CCRF-CEM cancer cells ranging from 1.0 × 101 to 5.0 × 105 cells mL-1. The limit of detection was 8 cells mL-1. The proposed aptasensor showed high selectivity toward CCRF-CEM cancer cells. The proposed aptasensor was also applied to the determination of CCRF-CEM cancer cells in human serum samples.
Collapse
|
42
|
Squiban B, Ahmed ST, Frazer JK. Creation of a human T-ALL cell line online database. Leuk Lymphoma 2017; 58:2728-2730. [PMID: 28609209 DOI: 10.1080/10428194.2017.1300896] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Barbara Squiban
- a Section of Pediatric Hematology/Oncology, Department of Pediatrics , University of Oklahoma Health Sciences Center , Oklahoma City , OK , USA
| | - Syed Talha Ahmed
- a Section of Pediatric Hematology/Oncology, Department of Pediatrics , University of Oklahoma Health Sciences Center , Oklahoma City , OK , USA
| | - J Kimble Frazer
- a Section of Pediatric Hematology/Oncology, Department of Pediatrics , University of Oklahoma Health Sciences Center , Oklahoma City , OK , USA
| |
Collapse
|
43
|
Corral-Vázquez C, Aguilar-Quesada R, Catalina P, Lucena-Aguilar G, Ligero G, Miranda B, Carrillo-Ávila JA. Cell lines authentication and mycoplasma detection as minimun quality control of cell lines in biobanking. Cell Tissue Bank 2017; 18:271-280. [PMID: 28255773 PMCID: PMC5429902 DOI: 10.1007/s10561-017-9617-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 02/23/2017] [Indexed: 11/24/2022]
Abstract
Establishment of continuous cell lines from human normal and tumor tissues is an extended and useful methodology for molecular characterization of cancer pathophysiology and drug development in research laboratories. The exchange of these cell lines between different labs is a common practice that can compromise assays reliability due to contamination with microorganism such as mycoplasma or cells from different flasks that compromise experiment reproducibility and reliability. Great proportions of cell lines are contaminated with mycoplasma and/or are replaced by cells derived for a different origin during processing or distribution process. The scientific community has underestimated this problem and thousand of research experiment has been done with cell lines that are incorrectly identified and wrong scientific conclusions have been published. Regular contamination and authentication tests are necessary in order to avoid negative consequences of widespread misidentified and contaminated cell lines. Cell banks generate, store and distribute cell lines for research, being mandatory a consistent and continuous quality program. Methods implementation for guaranteeing both, the absence of mycoplasma and authentication in the supplied cell lines, has been performed in the Andalusian Health System Biobank. Specifically, precise results were obtained using real time PCR detection for mycoplasma and 10 STRs identification by capillary electrophoresis for cell line authentication. Advantages and disadvantages of these protocols are discussed.
Collapse
Affiliation(s)
- C Corral-Vázquez
- Andalusian Public Health System Biobank, Avenida Del Conocimiento S/N, 18016, Granada, Spain
| | - R Aguilar-Quesada
- Andalusian Public Health System Biobank, Avenida Del Conocimiento S/N, 18016, Granada, Spain
| | - P Catalina
- Andalusian Public Health System Biobank, Avenida Del Conocimiento S/N, 18016, Granada, Spain
| | - G Lucena-Aguilar
- Andalusian Public Health System Biobank, Avenida Del Conocimiento S/N, 18016, Granada, Spain
| | - G Ligero
- Andalusian Public Health System Biobank, Avenida Del Conocimiento S/N, 18016, Granada, Spain
| | - B Miranda
- Andalusian Public Health System Biobank, Avenida Del Conocimiento S/N, 18016, Granada, Spain
| | - J A Carrillo-Ávila
- Andalusian Public Health System Biobank, Avenida Del Conocimiento S/N, 18016, Granada, Spain.
| |
Collapse
|
44
|
Drexler HG, Dirks WG, MacLeod RAF, Uphoff CC. False and mycoplasma-contaminated leukemia-lymphoma cell lines: time for a reappraisal. Int J Cancer 2017; 140:1209-1214. [PMID: 27870004 DOI: 10.1002/ijc.30530] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 11/04/2016] [Accepted: 11/08/2016] [Indexed: 01/23/2023]
Abstract
Leukemia-lymphoma cell lines are important research tools in a variety of fields. To represent adequate model systems it is of utmost importance that cell lines faithfully model the primary tumor material and are not cross-contaminated with unrelated cell material (or contaminated with mycoplasma). As it has been previously reported that cross-contaminated cell lines represent a significant problem, it is of interest to know whether any improvement in the prevalence of such "false cell lines" had occurred since we called the alert in 1999. A retrospective review of our data archives covered 848 cell lines received from 1990 to 2014 from 290 laboratories in 23 countries spanning the spectrum of leukemia-lymphoma entities. Two variables were considered: authenticity and freedom from mycoplasma infection. Regarding provenance, we separately considered primary sources (original investigators having established the cell lines or reference repositories) and secondary sources. The percentages of mycoplasma-contaminated cell lines decreased significantly over the 25-year timespan. Among primary sourced material: mycoplasma-contamination fell from 23% to 0%; among secondary sourced: from 48% to 21%. The corresponding figures for cross-contamination declined from 15% to 6%, while among material obtained from secondary sources prevalence remained remarkably high, throughout the time periods at 14-18%. Taken together, our data indicate that using non-authenticated cell lines from secondary sources carries a risk of about 1:6 for obtaining a false cell line. The use of authentic leukemia-lymphoma cell lines holds important translational value for their model character and the reproducibility of the laboratory data in the clinical arena.
Collapse
Affiliation(s)
- Hans G Drexler
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Wilhelm G Dirks
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Roderick A F MacLeod
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Cord C Uphoff
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| |
Collapse
|
45
|
Fusenig NE, Capes-Davis A, Bianchini F, Sundell S, Lichter P. The need for a worldwide consensus for cell line authentication: Experience implementing a mandatory requirement at the International Journal of Cancer. PLoS Biol 2017; 15:e2001438. [PMID: 28414712 PMCID: PMC5393552 DOI: 10.1371/journal.pbio.2001438] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Cell lines are used in life science research worldwide as biological surrogates. All cell lines are subject to major limitations when used as research tools, including (i) cross-contamination with other cells cultured in the same laboratory environment and (ii) evolution in vitro that renders a given cell line inappropriate as a surrogate for a specific biological hypothesis. There is ample evidence that cross-contamination or phenotypic drift of cells in culture can generate irreproducible or misleading data. A small number of scientific journals—the International Journal of Cancer being at the forefront—and funding agencies have recently moved forward to ask for obligatory cell line authentication data. The history of implementing such rules by the International Journal of Cancer exemplifies the difficulties encountered when installing mandatory quality measures in life sciences.
Collapse
Affiliation(s)
| | - Amanda Capes-Davis
- CellBank Australia, Children's Medical Research Institute, University of Sydney, Westmead, New South Wales, Australia
| | - Franca Bianchini
- German Cancer Research Center (DKFZ), International Journal of Cancer, Heidelberg, Germany
| | - Sherryl Sundell
- German Cancer Research Center (DKFZ), International Journal of Cancer, Heidelberg, Germany
| | - Peter Lichter
- Division of Molecular Genetics and German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- * E-mail:
| |
Collapse
|
46
|
Wrona D, Siler U, Reichenbach J. CRISPR/Cas9-generated p47 phox-deficient cell line for Chronic Granulomatous Disease gene therapy vector development. Sci Rep 2017; 7:44187. [PMID: 28287132 PMCID: PMC5347011 DOI: 10.1038/srep44187] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 02/06/2017] [Indexed: 01/11/2023] Open
Abstract
Development of gene therapy vectors requires cellular models reflecting the genetic background of a disease thus allowing for robust preclinical vector testing. For human p47phox-deficient chronic granulomatous disease (CGD) vector testing we generated a cellular model using clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 to introduce a GT-dinucleotide deletion (ΔGT) mutation in p47phox encoding NCF1 gene in the human acute myeloid leukemia PLB-985 cell line. CGD is a group of hereditary immunodeficiencies characterized by impaired respiratory burst activity in phagocytes due to a defective phagocytic nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. In Western countries autosomal-recessive p47phox-subunit deficiency represents the second largest CGD patient cohort with unique genetics, as the vast majority of p47phox CGD patients carries ΔGT deletion in exon two of the NCF1 gene. The established PLB-985 NCF1 ΔGT cell line reflects the most frequent form of p47phox-deficient CGD genetically and functionally. It can be differentiated to granulocytes efficiently, what creates an attractive alternative to currently used iPSC models for rapid testing of novel gene therapy approaches.
Collapse
Affiliation(s)
- Dominik Wrona
- Division of Immunology, University Children's Hospital Zurich, Zurich, Switzerland.,Children's Research Center, Zurich, Switzerland.,University of Zurich, Zurich, Switzerland
| | - Ulrich Siler
- Division of Immunology, University Children's Hospital Zurich, Zurich, Switzerland.,Children's Research Center, Zurich, Switzerland.,University of Zurich, Zurich, Switzerland
| | - Janine Reichenbach
- Division of Immunology, University Children's Hospital Zurich, Zurich, Switzerland.,Children's Research Center, Zurich, Switzerland.,University of Zurich, Zurich, Switzerland
| |
Collapse
|
47
|
Are your results valid? Cellular authentication a need from the past, an emergency on the present. In Vitro Cell Dev Biol Anim 2017; 53:430-434. [PMID: 28127703 DOI: 10.1007/s11626-016-0124-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 12/19/2016] [Indexed: 10/20/2022]
Abstract
The cultures of immortalized cells have been established in the 50s and become popular as a biological model for in vitro assays. The success and popularization brought side effects. Still, in the 60 years emerge the first cases of misidentification/contamination of cell line. Because of that, the scientific community has been oriented to authenticate their lines before performing assays. The use of cells with incorrect identification or contamination has been identified as responsible for an increasing number of unmatched results and a waste of resources. For this reason, we implemented the Cell Line Authentication Service at Brazilian Metrology Institute (Inmetro), open to Brazilian scientific community and society in general. From 2012 to 2014 were conducted 111 cell line authentication test, of which 13.8% had some problem. Here are the description and discussion of these data and simple guidelines to minimize the risk of contamination and misidentification, and invite the scientific community to maintain an alert system to avoid spending unnecessary resources and produce unreliable data.
Collapse
|
48
|
The CD24 surface antigen in neural development and disease. Neurobiol Dis 2016; 99:133-144. [PMID: 27993646 DOI: 10.1016/j.nbd.2016.12.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 12/12/2016] [Accepted: 12/15/2016] [Indexed: 12/11/2022] Open
Abstract
A cell's surface molecular signature enables its reciprocal interactions with the associated microenvironments in development, tissue homeostasis and pathological processes. The CD24 surface antigen (heat-stable antigen, nectadrin; small cell lung cancer antigen cluster-4) represents a prime example of a neural surface molecule that has long been known, but whose diverse molecular functions in intercellular communication we have only begun to unravel. Here, we briefly summarize the molecular fundamentals of CD24 structure and provide a comprehensive review of CD24 expression and functional studies in mammalian neural developmental systems and disease models (rodent, human). Striving for an integrated view of the intracellular signaling processes involved, we discuss the most pertinent routes of CD24-mediated signaling pathways and functional networks in neurobiology (neural migration, neurite extension, neurogenesis) and pathology (tumorigenesis, multiple sclerosis).
Collapse
|
49
|
Poret N, Fu Q, Guihard S, Cheok M, Miller K, Zeng G, Quesnel B, Troussard X, Galiègue-Zouitina S, Shelley CS. CD38 in Hairy Cell Leukemia Is a Marker of Poor Prognosis and a New Target for Therapy. Cancer Res 2016; 75:3902-11. [PMID: 26170397 DOI: 10.1158/0008-5472.can-15-0893] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hairy cell leukemia (HCL) is characterized by underexpression of the intracellular signaling molecule RhoH. Reconstitution of RhoH expression limits HCL pathogenesis in a mouse model, indicating this could represent a new therapeutic strategy. However, while RhoH reconstitution is theoretically possible as a therapy, it is technically immensely challenging as an appropriately functional RhoH protein needs to be specifically targeted. Because of this problem, we sought to identify druggable proteins on the HCL surface that were dependent upon RhoH underexpression. One such protein was identified as CD38. Analysis of 51 HCL patients demonstrated that 18 were CD38-positive. Interrogation of the clinical record of 23 relapsed HCL patients demonstrated those that were CD38-positive had a mean time to salvage therapy 71 months shorter than patients who were CD38-negative. Knockout of the CD38 gene in HCL cells increased apoptosis, inhibited adherence to endothelial monolayers, and compromised ability to produce tumors in vivo. Furthermore, an anti-CD38 antibody proved effective against pre-existing HCL tumors. Taken together, our data indicate that CD38 expression in HCL drives poor prognosis by promoting survival and heterotypic adhesion. Our data also indicate that CD38-positive HCL patients might benefit from treatments based on CD38 targeting.
Collapse
Affiliation(s)
- Nicolas Poret
- Institut National de la Santé et de la Recherche Medicale UMR-S1172, Centre Jean-Pierre Aubert, Institut pour la Recherche sur le Cancer de Lille and Université de Lille, Lille, France
| | - Qiangwei Fu
- Kabara Cancer Research Institute, Gundersen Medical Foundation, La Crosse, Wisconsin
| | - Soizic Guihard
- Institut National de la Santé et de la Recherche Medicale UMR-S1172, Centre Jean-Pierre Aubert, Institut pour la Recherche sur le Cancer de Lille and Université de Lille, Lille, France
| | - Meyling Cheok
- Institut National de la Santé et de la Recherche Medicale UMR-S1172, Centre Jean-Pierre Aubert, Institut pour la Recherche sur le Cancer de Lille and Université de Lille, Lille, France
| | - Katie Miller
- Department of Biology, Saint Mary's University of Minnesota, Winona, Minnesota
| | - Gordon Zeng
- Department of Pathology, Gundersen Health System, La Crosse, Wisconsin
| | - Bruno Quesnel
- Institut National de la Santé et de la Recherche Medicale UMR-S1172, Centre Jean-Pierre Aubert, Institut pour la Recherche sur le Cancer de Lille and Université de Lille, Lille, France. Service des Maladies du Sang, Hôpital Huriez, Centre Hospitalier Universitaire de Lille, Lille, France
| | - Xavier Troussard
- Laboratoire d'Hématologie, Centre Hospitalier Universitaire de Caen, Caen, France
| | - Sylvie Galiègue-Zouitina
- Institut National de la Santé et de la Recherche Medicale UMR-S1172, Centre Jean-Pierre Aubert, Institut pour la Recherche sur le Cancer de Lille and Université de Lille, Lille, France.
| | - Carl Simon Shelley
- Kabara Cancer Research Institute, Gundersen Medical Foundation, La Crosse, Wisconsin.
| |
Collapse
|
50
|
Kwasnik A, Tonry C, Ardle AM, Butt AQ, Inzitari R, Pennington SR. Proteomes, Their Compositions and Their Sources. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 919:3-21. [DOI: 10.1007/978-3-319-41448-5_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|