1
|
Wu L, Huang W, Peng K, Wang Y, Chen Q, Lu B. Enhancing the stability, BBB permeability and neuroprotective activity of verbascoside in vitro using lipid nanocapsules in combination with menthol. Food Chem 2023; 414:135682. [PMID: 36827775 DOI: 10.1016/j.foodchem.2023.135682] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/13/2023] [Accepted: 02/09/2023] [Indexed: 02/13/2023]
Abstract
Verbascoside (VER) shows promising neuroprotective activity. However, the instability and low permeability in crossing the blood-brain barrier (BBB) greatly hinder its application. In the present study, verbascoside was encapsulated into lipid nanocapsules (LNC) by reverse micelle (RM) to increase its stability. Besides, we used VER-RM-LNC combined with an envoy drug, menthol, to improve its BBB permeability and neuroprotective activity. VER-RM-LNC was prepared by the phase inversion temperature method, resulting in an encapsulation efficiency of nearly 85 %. The formulated VER-RM-LNC was stable for 6 months at 4 °C. VER encapsulated into LNC possessed enhanced stability and a reduced release profile. Menthol increased the cellular uptake and the permeability of VER-RM-LNC in the BBB model in vitro. In addition, the improved neuroprotective activity of VER through incubation with menthol and VER-RM-LNC was verified in the neurotoxic human brain microvascular endothelial cells model induced by Aβ25-35.
Collapse
Affiliation(s)
- Lipeng Wu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China; Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311200, China
| | - Weisu Huang
- Zhejiang Institute of Economics and Trade, Hangzhou 310058, China
| | - Kejie Peng
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China; Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311200, China
| | - Yixuan Wang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China; Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311200, China
| | - Qi Chen
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China; Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311200, China
| | - Baiyi Lu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China; Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311200, China.
| |
Collapse
|
2
|
Giansanti M, De Gabrieli A, Prete SP, Ottone T, Divona MD, Karimi T, Ciccarone F, Voso MT, Graziani G, Faraoni I. Poly(ADP-Ribose) Polymerase Inhibitors for Arsenic Trioxide-Resistant Acute Promyelocytic Leukemia: Synergistic In Vitro Antitumor Effects with Hypomethylating Agents or High-Dose Vitamin C. J Pharmacol Exp Ther 2021; 377:385-397. [PMID: 33820831 DOI: 10.1124/jpet.121.000537] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/29/2021] [Indexed: 11/22/2022] Open
Abstract
Arsenic trioxide (ATO) is an anticancer agent used for the treatment ofacute promyelocytic leukemia (APL). However, 5%-10% of patients fail to respond or experience disease relapse. Based on poly(ADP-ribose) polymerase (PARP) 1 involvement in the processing of DNA demethylation, here we have tested the in vitro susceptibility of ATO-resistant clones (derived from the human APL cell line NB4) to PARP inhibitors (PARPi) in combination with hypomethylating agents (azacitidine and decitabine) or high-dose vitamin C (ascorbate), which induces 5-hydroxymethylcytosine (5hmC)-mediated DNA demethylation. ATO-sensitive and -resistant APL cell clones were generated and initially analyzed for their susceptibility to five clinically used PARPi (olaparib, niraparib, rucaparib, veliparib, and talazoparib). The obtained PARPi IC50 values were far below (olaparib and niraparib), within the range (talazoparib), or above (rucaparib and veliparib) the C max reported in patients, likely as a result of differences in the mechanisms of their cytotoxic activity. ATO-resistant APL cells were also susceptible to clinically relevant concentrations of azacitidine and decitabine and to high-dose ascorbate. Interestingly, the combination of these agents with olaparib, niraparib, or talazoparib resulted in synergistic antitumor activity. In combination with ascorbate, PARPi increased the ascorbate-mediated induction of 5hmC, which likely resulted in stalled DNA repair and cytotoxicity. Talazoparib was the most effective PARPi in synergizing with ascorbate, in accordance with its marked ability to trap PARP1 at damaged DNA. These findings suggest that ATO and PARPi have nonoverlapping resistance mechanisms and support further investigation on PARPi combination with hypomethylating agents or high-dose ascorbate for relapsed/ATO-refractory APL, especially in frail patients. SIGNIFICANCE STATEMENT: This study found that poly(ADP-ribose) inhibitors (PARPi) show activity as single agents against human acute promyelocytic leukemia cells resistant to arsenic trioxide at clinically relevant concentrations. Furthermore, PARPi enhance the in vitro efficacy of azacitidine, decitabine, and high-dose vitamin C, all agents that alter DNA methylation. In combination with vitamin C, PARPi increase the levels of 5-hydroxymethylcytosine, likely as a result of altered processing of the oxidized intermediates associated with DNA demethylation.
Collapse
Affiliation(s)
- Manuela Giansanti
- Pharmacology Section, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy (M.G., A.D.G., S.P.P., T.K., G.G., I.F.); Department of Physiology and Pharmacology "V. Erspamer," Sapienza University of Rome, Rome, Italy (M.G.); Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy (T.O., M.D., M.T.V.); Unit of Neuro-Oncohematology, Santa Lucia Foundation-IRCCS, Rome, Italy (T.O., M.T.V.); and IRCCS San Raffaele Pisana, Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Rome, Italy (F.C.)
| | - Antonio De Gabrieli
- Pharmacology Section, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy (M.G., A.D.G., S.P.P., T.K., G.G., I.F.); Department of Physiology and Pharmacology "V. Erspamer," Sapienza University of Rome, Rome, Italy (M.G.); Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy (T.O., M.D., M.T.V.); Unit of Neuro-Oncohematology, Santa Lucia Foundation-IRCCS, Rome, Italy (T.O., M.T.V.); and IRCCS San Raffaele Pisana, Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Rome, Italy (F.C.)
| | - Salvatore Pasquale Prete
- Pharmacology Section, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy (M.G., A.D.G., S.P.P., T.K., G.G., I.F.); Department of Physiology and Pharmacology "V. Erspamer," Sapienza University of Rome, Rome, Italy (M.G.); Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy (T.O., M.D., M.T.V.); Unit of Neuro-Oncohematology, Santa Lucia Foundation-IRCCS, Rome, Italy (T.O., M.T.V.); and IRCCS San Raffaele Pisana, Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Rome, Italy (F.C.)
| | - Tiziana Ottone
- Pharmacology Section, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy (M.G., A.D.G., S.P.P., T.K., G.G., I.F.); Department of Physiology and Pharmacology "V. Erspamer," Sapienza University of Rome, Rome, Italy (M.G.); Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy (T.O., M.D., M.T.V.); Unit of Neuro-Oncohematology, Santa Lucia Foundation-IRCCS, Rome, Italy (T.O., M.T.V.); and IRCCS San Raffaele Pisana, Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Rome, Italy (F.C.)
| | - Maria Domenica Divona
- Pharmacology Section, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy (M.G., A.D.G., S.P.P., T.K., G.G., I.F.); Department of Physiology and Pharmacology "V. Erspamer," Sapienza University of Rome, Rome, Italy (M.G.); Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy (T.O., M.D., M.T.V.); Unit of Neuro-Oncohematology, Santa Lucia Foundation-IRCCS, Rome, Italy (T.O., M.T.V.); and IRCCS San Raffaele Pisana, Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Rome, Italy (F.C.)
| | - Terry Karimi
- Pharmacology Section, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy (M.G., A.D.G., S.P.P., T.K., G.G., I.F.); Department of Physiology and Pharmacology "V. Erspamer," Sapienza University of Rome, Rome, Italy (M.G.); Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy (T.O., M.D., M.T.V.); Unit of Neuro-Oncohematology, Santa Lucia Foundation-IRCCS, Rome, Italy (T.O., M.T.V.); and IRCCS San Raffaele Pisana, Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Rome, Italy (F.C.)
| | - Fabio Ciccarone
- Pharmacology Section, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy (M.G., A.D.G., S.P.P., T.K., G.G., I.F.); Department of Physiology and Pharmacology "V. Erspamer," Sapienza University of Rome, Rome, Italy (M.G.); Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy (T.O., M.D., M.T.V.); Unit of Neuro-Oncohematology, Santa Lucia Foundation-IRCCS, Rome, Italy (T.O., M.T.V.); and IRCCS San Raffaele Pisana, Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Rome, Italy (F.C.)
| | - Maria Teresa Voso
- Pharmacology Section, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy (M.G., A.D.G., S.P.P., T.K., G.G., I.F.); Department of Physiology and Pharmacology "V. Erspamer," Sapienza University of Rome, Rome, Italy (M.G.); Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy (T.O., M.D., M.T.V.); Unit of Neuro-Oncohematology, Santa Lucia Foundation-IRCCS, Rome, Italy (T.O., M.T.V.); and IRCCS San Raffaele Pisana, Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Rome, Italy (F.C.)
| | - Grazia Graziani
- Pharmacology Section, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy (M.G., A.D.G., S.P.P., T.K., G.G., I.F.); Department of Physiology and Pharmacology "V. Erspamer," Sapienza University of Rome, Rome, Italy (M.G.); Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy (T.O., M.D., M.T.V.); Unit of Neuro-Oncohematology, Santa Lucia Foundation-IRCCS, Rome, Italy (T.O., M.T.V.); and IRCCS San Raffaele Pisana, Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Rome, Italy (F.C.)
| | - Isabella Faraoni
- Pharmacology Section, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy (M.G., A.D.G., S.P.P., T.K., G.G., I.F.); Department of Physiology and Pharmacology "V. Erspamer," Sapienza University of Rome, Rome, Italy (M.G.); Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy (T.O., M.D., M.T.V.); Unit of Neuro-Oncohematology, Santa Lucia Foundation-IRCCS, Rome, Italy (T.O., M.T.V.); and IRCCS San Raffaele Pisana, Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Rome, Italy (F.C.)
| |
Collapse
|
3
|
Noguera NI, Catalano G, Banella C, Divona M, Faraoni I, Ottone T, Arcese W, Voso MT. Acute Promyelocytic Leukemia: Update on the Mechanisms of Leukemogenesis, Resistance and on Innovative Treatment Strategies. Cancers (Basel) 2019; 11:cancers11101591. [PMID: 31635329 PMCID: PMC6826966 DOI: 10.3390/cancers11101591] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/04/2019] [Accepted: 10/10/2019] [Indexed: 12/15/2022] Open
Abstract
This review highlights new findings that have deepened our understanding of the mechanisms of leukemogenesis, therapy and resistance in acute promyelocytic leukemia (APL). Promyelocytic leukemia-retinoic acid receptor α (PML-RARa) sets the cellular landscape of acute promyelocytic leukemia (APL) by repressing the transcription of RARa target genes and disrupting PML-NBs. The RAR receptors control the homeostasis of tissue growth, modeling and regeneration, and PML-NBs are involved in self-renewal of normal and cancer stem cells, DNA damage response, senescence and stress response. The additional somatic mutations in APL mainly involve FLT3, WT1, NRAS, KRAS, ARID1B and ARID1A genes. The treatment outcomes in patients with newly diagnosed APL improved dramatically since the advent of all-trans retinoic acid (ATRA) and arsenic trioxide (ATO). ATRA activates the transcription of blocked genes and degrades PML-RARα, while ATO degrades PML-RARa by promoting apoptosis and has a pro-oxidant effect. The resistance to ATRA and ATO may derive from the mutations in the RARa ligand binding domain (LBD) and in the PML-B2 domain of PML-RARa, but such mutations cannot explain the majority of resistances experienced in the clinic, globally accounting for 5-10% of cases. Several studies are ongoing to unravel clonal evolution and resistance, suggesting the therapeutic potential of new retinoid molecules and combinatorial treatments of ATRA or ATO with different drugs acting through alternative mechanisms of action, which may lead to synergistic effects on growth control or the induction of apoptosis in APL cells.
Collapse
Affiliation(s)
- N I Noguera
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133 Rome, Italy.
- Santa Lucia Foundation, Unit of Neuro-Oncoematologia, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), 00143 Rome, Italy.
| | - G Catalano
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133 Rome, Italy.
- Santa Lucia Foundation, Unit of Neuro-Oncoematologia, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), 00143 Rome, Italy.
| | - C Banella
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133 Rome, Italy.
- Santa Lucia Foundation, Unit of Neuro-Oncoematologia, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), 00143 Rome, Italy.
| | - M Divona
- Policlinico Tor vergata, 00133 Rome, Italy.
| | - I Faraoni
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy.
| | - T Ottone
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133 Rome, Italy.
- Santa Lucia Foundation, Unit of Neuro-Oncoematologia, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), 00143 Rome, Italy.
| | - W Arcese
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133 Rome, Italy.
| | - M T Voso
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133 Rome, Italy.
- Santa Lucia Foundation, Unit of Neuro-Oncoematologia, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), 00143 Rome, Italy.
| |
Collapse
|
4
|
Sayyed K, Le Vee M, Abdel-Razzak Z, Fardel O. Inhibition of organic anion transporter (OAT) activity by cigarette smoke condensate. Toxicol In Vitro 2017. [DOI: 10.1016/j.tiv.2017.06.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
5
|
Sertel S, Tome M, Briehl MM, Bauer J, Hock K, Plinkert PK, Efferth T. Factors determining sensitivity and resistance of tumor cells to arsenic trioxide. PLoS One 2012; 7:e35584. [PMID: 22590507 PMCID: PMC3349672 DOI: 10.1371/journal.pone.0035584] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 03/19/2012] [Indexed: 11/30/2022] Open
Abstract
Previously, arsenic trioxide showed impressive regression rates of acute promyelocytic leukemia. Here, we investigated molecular determinants of sensitivity and resistance of cell lines of different tumor types towards arsenic trioxide. Arsenic trioxide was the most cytotoxic compound among 8 arsenicals investigated in the NCI cell line panel. We correlated transcriptome-wide microarray-based mRNA expression to the IC(50) values for arsenic trioxide by bioinformatic approaches (COMPARE and hierarchical cluster analyses, Ingenuity signaling pathway analysis). Among the identified pathways were signaling routes for p53, integrin-linked kinase, and actin cytoskeleton. Genes from these pathways significantly predicted cellular response to arsenic trioxide. Then, we analyzed whether classical drug resistance factors may also play a role for arsenic trioxide. Cell lines transfected with cDNAs for catalase, thioredoxin, or the anti-apoptotic bcl-2 gene were more resistant to arsenic trioxide than mock vector transfected cells. Multidrug-resistant cells overexpressing the MDR1, MRP1 or BCRP genes were not cross-resistant to arsenic trioxide. Our approach revealed that response of tumor cells towards arsenic trioxide is multi-factorial.
Collapse
Affiliation(s)
- Serkan Sertel
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Heidelberg, Heidelberg, Germany
- Pharmaceutical Biology (C015), German Cancer Research Center, Heidelberg, Germany
- Department of Pharmaceutical Biology, Institute of Pharmaceutical Biology, University of Mainz, Mainz, Germany
| | - Margaret Tome
- Department of Pathology, University of Arizona, Tucson, Arizona, United States of America
| | - Margaret M. Briehl
- Department of Pathology, University of Arizona, Tucson, Arizona, United States of America
| | - Judith Bauer
- Pharmaceutical Biology (C015), German Cancer Research Center, Heidelberg, Germany
| | - Kai Hock
- Pharmaceutical Biology (C015), German Cancer Research Center, Heidelberg, Germany
| | - Peter K. Plinkert
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Heidelberg, Heidelberg, Germany
| | - Thomas Efferth
- Pharmaceutical Biology (C015), German Cancer Research Center, Heidelberg, Germany
- Department of Pharmaceutical Biology, Institute of Pharmaceutical Biology, University of Mainz, Mainz, Germany
| |
Collapse
|
6
|
Metabolism of arsenic in human liver: the role of membrane transporters. Arch Toxicol 2009; 84:3-16. [DOI: 10.1007/s00204-009-0499-7] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Accepted: 12/02/2009] [Indexed: 10/20/2022]
|
7
|
Takeshita A, Shinjo K, Yamakage N, Ono T, Hirano I, Matsui H, Shigeno K, Nakamura S, Tobita T, Maekawa M, Ohnishi K, Sugimoto Y, Kiyoi H, Naoe T, Ohno R. CMC-544 (inotuzumab ozogamicin) shows less effect on multidrug resistant cells: analyses in cell lines and cells from patients with B-cell chronic lymphocytic leukaemia and lymphoma. Br J Haematol 2009; 146:34-43. [DOI: 10.1111/j.1365-2141.2009.07701.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
HEFFETER P, JUNGWIRTH U, JAKUPEC M, HARTINGER C, GALANSKI M, ELBLING L, MICKSCHE M, KEPPLER B, BERGER W. Resistance against novel anticancer metal compounds: Differences and similarities. Drug Resist Updat 2008; 11:1-16. [DOI: 10.1016/j.drup.2008.02.002] [Citation(s) in RCA: 189] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Revised: 02/14/2008] [Accepted: 02/15/2008] [Indexed: 11/26/2022]
|
9
|
Shen S, Lee J, Sun X, Wang H, Weinfeld M, Le XC. Elevation of cellular BPDE uptake by human cells: a possible factor contributing to co-carcinogenicity by arsenite. ENVIRONMENTAL HEALTH PERSPECTIVES 2006; 114:1832-7. [PMID: 17185271 PMCID: PMC1764144 DOI: 10.1289/ehp.9284] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
BACKGROUND Arsenite (iAsIII) can promote mutagenicity and carcinogenicity of other carcinogens. Considerable attention has focused on interference with DNA repair by inorganic arsenic, especially the nucleotide excision repair (NER) pathway, whereas less is known about the effect of arsenic on the induction of DNA damage by other agents. OBJECTIVES We examined how arsenic modulates DNA damage by other chemicals. METHODS We used an NER-deficient cell line to dissect DNA damage induction from DNA repair and to examine the effects of iAsIII on the formation of benzo[a]pyrene diol epoxide (BPDE)-DNA adducts. RESULTS We found that pretreatment with iAsIII at subtoxic concentrations (10 microM) led to enhanced formation of BPDE-DNA adducts. Reduced glutathione levels, glutathione S-transferase activity and chromatin accessibility were also measured after iAsIII treatment, but none of these factors appeared to account for the enhanced formation of DNA adducts. However, we found that pretreatment with iAsIII increased the cellular uptake of BPDE in a dose-dependent manner. CONCLUSIONS Our results suggest that iAsIII enhanced the formation of BPDE-DNA adducts by increasing the cellular uptake of BPDE. Therefore, the ability of arsenic to increase the bioavailability of other carcinogens may contribute to arsenic co-carcinogenicity.
Collapse
MESH Headings
- 7,8-Dihydro-7,8-dihydroxybenzo(a)pyrene 9,10-oxide/chemistry
- 7,8-Dihydro-7,8-dihydroxybenzo(a)pyrene 9,10-oxide/pharmacokinetics
- 7,8-Dihydro-7,8-dihydroxybenzo(a)pyrene 9,10-oxide/pharmacology
- Arsenites/pharmacology
- Carcinogens/chemistry
- Carcinogens/pharmacokinetics
- Carcinogens/pharmacology
- Cell Line
- Cell Line, Transformed
- Chromatin/metabolism
- DNA Adducts/drug effects
- DNA Damage/drug effects
- DNA Repair/drug effects
- Glutathione/metabolism
- Humans
Collapse
Affiliation(s)
- Shengwen Shen
- Department of Public Health Sciences and Department of Laboratory Medicine and Pathology and
| | - Jane Lee
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Xuejun Sun
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Hailin Wang
- Department of Public Health Sciences and Department of Laboratory Medicine and Pathology and
| | - Michael Weinfeld
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - X. Chris Le
- Department of Public Health Sciences and Department of Laboratory Medicine and Pathology and
- Address correspondence to X.C. Le, Department of Public Health Sciences and Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, 10-102 Clinical Sciences Building, Edmonton, Alberta, Canada T6G 2G3. Telephone: (780) 492-6416. Fax: (780) 492-7800. E-mail:
| |
Collapse
|
10
|
Abstract
Arsenic trioxide (As(2)O(3)) for leukaemia treatment was described a century ago. Recent resurgence in the use of arsenic trioxide is related to its high efficacy in acute promyelocytic leukaemia (APL). Most arsenic trioxide preparations are intravenous, although an oral formulation is similarly efficacious. Side effects of arsenic trioxide are usually minor, including skin reactions, gastrointestinal upset, and reversible increases in transaminases. During therapy, a leukocytosis occasionally occurs, which may be complicated by fluid accumulation and pulmonary infiltration. Arsenic trioxide causes an asymptomatic QT prolongation in most patients. However, if concomitant cardiopulmonary diseases or electrolyte disturbances are present, more sinister arrhythmias may develop. Therefore, before commencement of arsenic trioxide therapy, a full cardiac assessment and avoidance of drugs that prolong QT interval should be instituted. Arsenic trioxide is partly renally excreted and, therefore, dose adjustment is required when renal function is impaired. In addition to its use in APL, arsenic trioxide is now tested in other malignancies, notably multiple myeloma.
Collapse
Affiliation(s)
- Yok-Lam Kwong
- University of Hong Kong, Department of Medicine, Queen Mary Hospital, Pokfulam Road, Hong Kong.
| |
Collapse
|
11
|
Takeshita A, Shinjo K, Naito K, Matsui H, Sahara N, Shigeno K, Horii T, Shirai N, Maekawa M, Ohnishi K, Naoe T, Ohno R. Efficacy of gemtuzumab ozogamicin on ATRA- and arsenic-resistant acute promyelocytic leukemia (APL) cells. Leukemia 2005; 19:1306-11. [PMID: 15920495 DOI: 10.1038/sj.leu.2403807] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Acute promyelocytic leukemia (APL) cells express a considerable level of CD33, which is a target of gemtuzumab ozogamicin (GO), and a significantly lower level of P-glycoprotein (P-gp). In this study, we examined whether GO was effective on all-trans retinoic acid (ATRA)- or arsenic trioxide (ATO)-resistant APL cells. Cells used were an APL cell line in which P-gp was undetectable (NB4), ATRA-resistant NB4 (NB4/RA), NB4 and NB4/RA that had been transfected with MDR-1 cDNA (NB4/MDR and NB4/RA/MDR, respectively), ATO-resistant NB4 (NB4/As) and blast cells from eight patients with clinically ATRA-resistant APL including two patients with ATRA- and ATO-resistant APL. The efficacy of GO was analyzed by (3)H-thymidine incorporation, the dye exclusion test and cell cycle distribution. GO suppressed the growth of NB4, NB4/RA and NB4/As cells in a dose-dependent manner. GO increased the percentage of hypodiploid cells significantly in NB4, NB4/RA and NB4/As cells, and by a limited degree in NB4/MDR and NB4/RA/MDR cells. Similar results were obtained using blast cells from the patients with APL. GO is effective against ATRA- or ATO-resistant APL cells that do not express P-gp, and the mechanism of resistance to GO is not related to the mechanism of resistance to ATRA or ATO in APL cells. Leukemia (2005) 19, 1306-1311. doi:10.1038/sj.leu.2403807; published online 26 May 2005.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/analysis
- Aminoglycosides/pharmacology
- Antibodies, Monoclonal/pharmacology
- Antibodies, Monoclonal, Humanized
- Arsenic Trioxide
- Arsenicals/pharmacology
- Cell Cycle
- Cell Proliferation/drug effects
- Drug Resistance, Neoplasm
- Gemtuzumab
- Humans
- Leukemia, Promyelocytic, Acute/drug therapy
- Leukemia, Promyelocytic, Acute/pathology
- Oxides/pharmacology
- Treatment Outcome
- Tretinoin/pharmacology
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- A Takeshita
- Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Kimura A, Ishida Y, Wada T, Yokoyama H, Mukaida N, Kondo T. MRP-1 expression levels determine strain-specific susceptibility to sodium arsenic-induced renal injury between C57BL/6 and BALB/c mice. Toxicol Appl Pharmacol 2005; 203:53-61. [PMID: 15694464 DOI: 10.1016/j.taap.2004.07.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2004] [Accepted: 07/27/2004] [Indexed: 11/23/2022]
Abstract
To clarify the pathophysiological mechanism underlying acute renal injury caused by acute exposure to arsenic, we subcutaneously injected both BALB/c and C57BL/6 mice with sodium arsenite (NaAs; 13.5 mg/kg). BALB/c mice exhibited exaggerated elevation of serum blood urea nitrogen (BUN) and creatinine (CRE) levels, compared with C57BL/6 mice. Moreover, half of BALB/c mice died by 24 h, whereas all C57BL/6 mice survived. Histopathological examination on kidney revealed severe hemorrhages, acute tubular necrosis, neutrophil infiltration, cast formation, and disappearance of PAS-positive brush borders in BALB/c mice, later than 10 h. These pathological changes were remarkably attenuated in C57BL/6 mice, accompanied with lower intrarenal arsenic concentrations, compared with BALB/c mice. Among heavy metal inducible proteins including multidrug resistance-associated protein (MRP)-1, multidrug resistance gene (MDR)-1, metallothionein (MT)-1, and arsenite inducible, cysteine- and histidine-rich RNA-associated protein (AIRAP), intrarenal MDR-1, MT-1, and AIRAP gene expression was enhanced to a similar extent in both strains, whereas NaAs challenge augmented intrarenal MRP-1 mRNA and protein expression levels in C57BL/6 but not BALB/c mice. Moreover, the administration of a specific inhibitor of MRP-1, MK-571, significantly exaggerated acute renal injury in C57BL/6 mice. Thus, MRP-1 is crucially involved in arsenic efflux and eventually prevention of acute renal injury upon acute exposure to NaAs.
Collapse
Affiliation(s)
- Akihiko Kimura
- Department of Forensic Medicine, Wakayama Medical University, Kimiidera, 641-8509 Wakayama, Japan
| | | | | | | | | | | |
Collapse
|
13
|
Tabellini G, Cappellini A, Tazzari PL, Falà F, Billi AM, Manzoli L, Cocco L, Martelli AM. Phosphoinositide 3-kinase/Akt involvement in arsenic trioxide resistance of human leukemia cells. J Cell Physiol 2005; 202:623-34. [PMID: 15316930 DOI: 10.1002/jcp.20153] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The purpose of this study was to evaluate the possible involvement of the phosphoinositide 3-kinase (PI3K)/Akt survival pathway in determining resistance to arsenic trioxide (As2O3)-induced apoptosis. We employed a HL60 cell clone (HL60AR) with a constitutively active PI3K/Akt survival pathway, as well as U937 and K562 cells. In addition, we used parental (PT) HL60 cells overexpressing a constitutively active Akt. Selective pharmacological inhibitors of the PI3K/Akt axis (LY294002, wortmannin) were employed to influence the sensitivity to As2O3. While HL60PT cells were sensitive to 2.5 microM As2O3 and died of apoptosis, HL60AR cells were resistant up to 5 microM As2O3. Treatment with either LY294002 or wortmannin lowered resistance of HL60AR cells to As2O3. Also in U937 and K562 cells, inhibitors of the PI3K/Akt axis caused a decrease in As2O3 resistance. Overexpression of constitutively active Akt in HL60PT cells caused the induction of resistance to 2.5 microM As2O3. Conversely, forced expression of a dominant negative Akt in HL60AR cells resulted in a decrease in As2O3 resistance. Moreover, HL60 cell resistance to 2.5 microM As2O3 could be significantly reduced by incubation with SN50, a peptide inhibitor selective for the NF-kappaB transcription factor. Taken together our findings suggest that a constitutive activation of the PI3K/Akt pathway, which is increasingly detected in some types of acute myeloid leukemia, may contribute to As2O3 resistance, most likely through NF-kappaB activation. Selective pharmacological inhibitors of this survival pathway, as well as of NF-kappaB, might be usefully employed in the future to reverse resistance to this treatment.
Collapse
Affiliation(s)
- Giovanna Tabellini
- Dipartimento di Scienze Anatomiche Umane e Fisiopatologia dell'Apparato Locomotore, Sezione di Anatomia, Cell Signalling Laboratory, Università di Bologna, Italy
| | | | | | | | | | | | | | | |
Collapse
|