1
|
DuVall AS, Wesevich A, Larson RA. Developing Targeted Therapies for T Cell Acute Lymphoblastic Leukemia/Lymphoma. Curr Hematol Malig Rep 2023; 18:217-225. [PMID: 37490229 PMCID: PMC11748120 DOI: 10.1007/s11899-023-00706-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2023] [Indexed: 07/26/2023]
Abstract
PURPOSE OF REVIEW Largely, treatment advances in relapsed and/or refractory acute lymphoblastic leukemia (ALL) have been made in B cell disease leaving T cell ALL reliant upon high-intensity chemotherapy. Recent advances in the understanding of the biology of T-ALL and the improvement in immunotherapies have led to new therapeutic pathways to target and exploit. Here, we review the more promising pathways that are able to be targeted and other therapeutic possibilities for T-ALL. RECENT FINDINGS Preclinical models and early-phase clinical trials have shown promising results in some case in the treatment of T-ALL. Targeting many different pathways could lead to the next advancement in the treatment of relapsed and/or refractory disease. Recent advances in cellular therapies have also shown promise in this space. When reviewing the literature as a whole, targeting important pathways and antigens likely will lead to the next advancement in T-ALL survival since intensifying chemotherapy.
Collapse
Affiliation(s)
- Adam S DuVall
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, USA.
| | - Austin Wesevich
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, USA
| | - Richard A Larson
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, USA
| |
Collapse
|
2
|
Gou X, Zhang Y, Zhu S, Yu X, Qin L, Cheng X, Zhang Y, Ding S, Chen R, Tang H, Cheng W. Asymmetric Hairpins DNA Encapsulated Silver Nanoclusters for In Situ Fluorescence Imaging of Fusion Gene Isoforms in Bone Marrow. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303034. [PMID: 37365695 DOI: 10.1002/smll.202303034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/30/2023] [Indexed: 06/28/2023]
Abstract
Rapid and accurate imaging of the BCR/ABL fusion gene isoforms (e.g., e13a2, e14a2 and co-expression type) of chronic myeloid leukemia (CML) is of vital importance to first-line drug selection, but there is no assay that meets clinical needs (e.g., clinical kits > 18 h without isoforms information). Herein, an in situ imaging platform is developed for the rapid and accurate detection of CML fusion gene isoforms using asymmetric sequence-enhanced hairpins DNA encapsulated silver nanoclusters (ADHA) and catalyzed hairpin assembly (CHA). The specific detection of e13a2 and e14a2 fusion gene isoforms with detection limits of 19.2 am (11.558 copies µL-1 ) and 32.56 am (19.601 copies µL-1 ) in one-pot is achieved. The feasibility of the developed assay for real-world applications are demonstrated by one-step fluorescence imaging (40 min) of e13a2, e14a2 and co-expression type in bone marrow quantitatively (International Standard: 15.66%-168.878%) and further validated by cDNA-sequencing. This work suggests that the developed imaging platform holds great potential for rapid identification of the fusion gene isoforms and isoform related treatment monitoring.
Collapse
MESH Headings
- Humans
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/therapeutic use
- Bone Marrow
- Silver/therapeutic use
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/diagnosis
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Protein Isoforms/genetics
- DNA, Complementary
- Optical Imaging
Collapse
Affiliation(s)
- Xiaolong Gou
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Yangli Zhang
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Shasha Zhu
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Xiaolin Yu
- Department of Laboratory Medicine, Zigong Fourth People's Hospital, Sichuan, 643000, P. R. China
| | - Lu Qin
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Xiaoxue Cheng
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Yuhong Zhang
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Shijia Ding
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Rui Chen
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Hua Tang
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Wei Cheng
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China
| |
Collapse
|
3
|
Virk H, Sreedharanunni S, Palla S, Rastogi P, Rathore S, Anshu A, Trehan A. Detection of NUP214-ABL1 translocation using BCR-ABL1 dual color FISH probes in T-cell acute lymphoblastic leukemia-an illustrative report and review of literature. Blood Res 2022; 57:278-281. [PMID: 36348635 PMCID: PMC9812733 DOI: 10.5045/br.2022.2022134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/17/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022] Open
Affiliation(s)
- Harpreet Virk
- Department of Hematology, Advanced Paediatric Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Sreejesh Sreedharanunni
- Department of Hematology, Advanced Paediatric Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India,Correspondence to: Sreejesh Sreedharanunni Department of Hematology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India, E-mail:
| | - Swetha Palla
- Unit of Paediatric Haemato-Oncology, Department of Paediatrics, Advanced Paediatric Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Pulkit Rastogi
- Department of Hematology, Advanced Paediatric Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Shailja Rathore
- Department of Hematology, Advanced Paediatric Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Anshu Anshu
- Department of Hematology, Advanced Paediatric Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Amita Trehan
- Unit of Paediatric Haemato-Oncology, Department of Paediatrics, Advanced Paediatric Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
4
|
Pocock R, Farah N, Richardson SE, Mansour MR. Current and emerging therapeutic approaches for T-cell acute lymphoblastic leukaemia. Br J Haematol 2021; 194:28-43. [PMID: 33942287 DOI: 10.1111/bjh.17310] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
T-cell ALL (T-ALL) is an aggressive malignancy of T-cell progenitors. Although survival outcomes in T-ALL have greatly improved over the past 50 years, relapsed and refractory cases remain extremely challenging to treat and those who cannot tolerate intensive treatment continue to have poor outcomes. Furthermore, T-ALL has proven a more challenging immunotherapeutic target than B-ALL. In this review we explore our expanding knowledge of the basic biology of T-ALL and how this is paving the way for repurposing established treatments and the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Rachael Pocock
- Department of Haematology, UCL Cancer Institute, University College London, London, UK
| | - Nadine Farah
- Department of Haematology, UCL Cancer Institute, University College London, London, UK
| | - Simon E Richardson
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Jeffrey Cheah Biomedical Centre, Cambridge, UK
| | - Marc R Mansour
- Department of Haematology, UCL Cancer Institute, University College London, London, UK
| |
Collapse
|
5
|
Tirado CA, Reyes A, Yeh W, Yee J, King J, Kane J, Koss W. Ring chromosome 7 in a child with T-cell acute lymphoblastic leukemia with myeloid markers. Proc (Bayl Univ Med Cent) 2021; 34:302-304. [PMID: 33678971 DOI: 10.1080/08998280.2020.1864700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Ring chromosomes are uncommon in hematological diseases. Here we present the case of a 13-year-old girl with leukocytosis, anemia, and lymphadenopathy. Flow cytometry analysis revealed a predominant precursor T lymphoid population expressing CD7, CD5, CD2, and cytoplasmic CD3 with partial expression of CD33, CD34, CD117, and CD11c; TdT was positive, and myeloperoxidase was negative. The bone marrow aspirate showed markedly increased blasts that were positive for CD3, CD7, CD34, TdT, and myeloperoxidase (rare positivity) by immunohistochemistry stain, consistent with T-cell acute lymphoblastic leukemia (T-ALL) extensively involving a hypercellular marrow for age. The karyotype showed a ring 7 in 12 of the 21 metaphase cells examined and deletions of the subtelomeric regions on chromosome 7. Deletions in the short arm of chromosome 7 and the long arm of chromosome 7 are present in 2% to 4% of pediatric T-ALL cases. Ring chromosome 7 is typically seen in myeloid malignancies, including acute myeloid leukemia.
Collapse
Affiliation(s)
- Carlos A Tirado
- The International Circle of Genetics Studies, Los Angeles, California.,Department of Pathology, Baylor Scott and White Health, Temple, Texas
| | - Andrew Reyes
- The International Circle of Genetics Studies, Los Angeles, California.,Department of Biology, University of California Los Angeles, Los Angeles, California
| | - Wilson Yeh
- The International Circle of Genetics Studies, Los Angeles, California.,Department of Biology, University of California Los Angeles, Los Angeles, California
| | - Justin Yee
- The International Circle of Genetics Studies, Los Angeles, California.,Department of Biology, University of California Los Angeles, Los Angeles, California
| | - Joy King
- Department of Pathology, Baylor Scott and White Health, Temple, Texas
| | - Javier Kane
- Department of Pediatric Hematology Oncology, Baylor Scott and White Health, Temple, Texas
| | - William Koss
- Department of Pathology, Baylor Scott and White Health, Temple, Texas
| |
Collapse
|
6
|
Zhong Y, Lin F, Xu F, Schubert J, Wu J, Wainwright L, Zhao X, Cao K, Fan Z, Chen J, Lang SS, Kennedy BC, Viaene AN, Santi M, Resnick AC, Storm PB, Li MM. Genomic characterization of a PPP1CB-ALK fusion with fusion gene amplification in a congenital glioblastoma. Cancer Genet 2020; 252-253:37-42. [PMID: 33341678 DOI: 10.1016/j.cancergen.2020.12.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/22/2020] [Accepted: 12/06/2020] [Indexed: 12/26/2022]
Abstract
ALK (Anaplastic lymphoma kinase) fusion proteins are oncogenic and have been seen in various tumors. PPP1CB-ALK fusions are rare but have been reported in a few patients with low- or high-grade gliomas. However, little is known regarding the mechanism of fusion formation and genomic break points of this fusion. We performed genomic characterization of a PPP1CB-ALK fusion with fusion gene amplification in a congenital glioblastoma. The PPP1CB-ALK consists of exons 1-5 of PPP1CB and exons 20-29 of ALK. The genomic translocation breakpoints were determined by real-time quantitative PCR (RT-qPCR) and Sanger sequencing of genomic DNA. Next generation sequencing, RT-qPCR and fluorescence in situ hybridization analyses demonstrated PPP1CB-ALK amplification. Copy number analyses of genes between PPP1CB and ALK using RT-qPCR suggest that the PPP1CB-ALK is likely the result of local chromothripsis followed by episomal amplification. Transcriptome sequencing demonstrated high-level SOX2 expression and predicted WNT/β-catenin pathway activation, suggesting possible therapeutic approaches.
Collapse
Affiliation(s)
- Yiming Zhong
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Fumin Lin
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Feng Xu
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Jeff Schubert
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Jinhua Wu
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Luanne Wainwright
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Xiaonan Zhao
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Kajia Cao
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Zhiqian Fan
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Jiani Chen
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Shih-Shan Lang
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Benjamin C Kennedy
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Angela N Viaene
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Mariarita Santi
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Adam C Resnick
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Phillip B Storm
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Marilyn M Li
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| |
Collapse
|
7
|
Beck RC, Kim AS, Goswami RS, Weinberg OK, Yeung CCS, Ewalt MD. Molecular/Cytogenetic Education for Hematopathology Fellows. Am J Clin Pathol 2020; 154:149-177. [PMID: 32444878 DOI: 10.1093/ajcp/aqaa038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVES At a discussion on molecular/cytogenetic education for hematopathology fellows at the 2018 Society for Hematopathology Program Directors Meeting, consensus was that fellows should understand basic principles and indications for and limitations of molecular/cytogenetic testing used in routine practice. Fellows should also be adept at integrating results of such testing for rendering a final diagnosis. To aid these consensus goals, representatives from the Society for Hematopathology and the Association for Molecular Pathology formed a working group to devise a molecular/cytogenetic curriculum for hematopathology fellow education. CURRICULUM SUMMARY The curriculum includes a primer on cytogenetics and molecular techniques. The bulk of the curriculum reviews the molecular pathology of individual malignant hematologic disorders, with applicable molecular/cytogenetic testing for each and following the 2017 World Health Organization classification of hematologic neoplasms. Benign hematologic disorders and bone marrow failure syndromes are also discussed briefly. Extensive tables are used to summarize genetics of individual disorders and appropriate methodologies. CONCLUSIONS This curriculum provides an overview of the current understanding of the molecular biology of hematologic disorders and appropriate ancillary testing for their evaluation. The curriculum may be used by program directors for training hematopathology fellows or by practicing hematopathologists.
Collapse
Affiliation(s)
- Rose C Beck
- Department of Pathology, University Hospitals of Cleveland, Case Western Reserve University, Cleveland, OH (Society for Hematopathology Representative)
| | - Annette S Kim
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA (Association for Molecular Pathology Representative)
| | - Rashmi S Goswami
- Department of Laboratory Medicine and Molecular Diagnostics, Sunnybrook Health Sciences Centre, and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Olga K Weinberg
- Department of Pathology, Boston Children’s Hospital, Boston, MA
| | - Cecilia C S Yeung
- Department of Pathology, University of Washington, and Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Mark D Ewalt
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora
| |
Collapse
|
8
|
van der Zwet JCG, Cordo' V, Canté-Barrett K, Meijerink JPP. Multi-omic approaches to improve outcome for T-cell acute lymphoblastic leukemia patients. Adv Biol Regul 2019; 74:100647. [PMID: 31523030 DOI: 10.1016/j.jbior.2019.100647] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/20/2019] [Accepted: 08/23/2019] [Indexed: 06/10/2023]
Abstract
In the last decade, tremendous progress in curative treatment has been made for T-ALL patients using high-intensive, risk-adapted multi-agent chemotherapy. Further treatment intensification to improve the cure rate is not feasible as it will increase the number of toxic deaths. Hence, about 20% of pediatric patients relapse and often die due to acquired therapy resistance. Personalized medicine is of utmost importance to further increase cure rates and is achieved by targeting specific initiation, maintenance or resistance mechanisms of the disease. Genomic sequencing has revealed mutations that characterize genetic subtypes of many cancers including T-ALL. However, leukemia may have various activated pathways that are not accompanied by the presence of mutations. Therefore, screening for mutations alone is not sufficient to identify all molecular targets and leukemic dependencies for therapeutic inhibition. We review the extent of the driving type A and the secondary type B genomic mutations in pediatric T-ALL that may be targeted by specific inhibitors. Additionally, we review the need for additional screening methods on the transcriptional and protein levels. An integrated 'multi-omic' screening will identify potential targets and biomarkers to establish significant progress in future individualized treatment of T-ALL patients.
Collapse
Affiliation(s)
| | - Valentina Cordo'
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | | | | |
Collapse
|
9
|
Diagnosis and subclassification of acute lymphoblastic leukemia. Mediterr J Hematol Infect Dis 2014; 6:e2014073. [PMID: 25408859 PMCID: PMC4235437 DOI: 10.4084/mjhid.2014.073] [Citation(s) in RCA: 161] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 10/20/2014] [Indexed: 01/13/2023] Open
Abstract
Acute lymphoblastic leukemia (ALL) is a disseminated malignancy of B- or T-lymphoblasts which imposes a rapid and accurate diagnostic process to support an optimal risk-oriented therapy and thus increase the curability rate. The need for a precise diagnostic algorithm is underlined by the awareness that both ALL therapy and related success rates may vary greatly between ALL subsets, from standard chemotherapy in patients with standard-risk ALL, to allotransplantation (SCT) and targeted therapy in high-risk patients and cases expressing suitable biological targets, respectively. This review summarizes how best to identify ALL and the most relevant ALL subsets.
Collapse
|
10
|
Hoogstraat M, Hinrichs JWJ, Besselink NJM, Radersma-van Loon JH, de Voijs CMA, Peeters T, Nijman IJ, de Weger RA, Voest EE, Willems SM, Cuppen E, Koudijs MJ. Simultaneous detection of clinically relevant mutations and amplifications for routine cancer pathology. J Mol Diagn 2014; 17:10-8. [PMID: 25445215 DOI: 10.1016/j.jmoldx.2014.09.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 08/21/2014] [Accepted: 09/11/2014] [Indexed: 12/28/2022] Open
Abstract
In routine cancer molecular pathology, various independent experiments are required to determine mutation and amplification status of clinically relevant genes. Most of these tests are designed to identify a limited number of genetic aberrations, most likely in a given tumor type. We present a modified version of a multiplexed PCR and IonTorrent-based sequencing approach that can replace a large number of existing assays. The test allows for the simultaneous detection of point mutations and gene amplifications in 40 genes, including known hotspot regions in oncogenes (KRAS, BRAF), inactivating mutations in tumor suppressors (TP53, PTEN), and oncogene amplifications (ERBB2, EGFR). All point mutations were confirmed using certified diagnostic assays, and a sensitivity and specificity of 100% (95% CI, 0.875-1.0) and 99% (95% CI, 0.960-0.999), respectively, were determined for amplifications in FFPE material. Implementation of a single assay to effectively detect mutations and amplifications in clinically relevant genes not only improves the efficiency of the workflow within diagnostic laboratories but also increases the chance of detecting (rare) actionable variants for a given tumor type that are typically missed in routine pathology. The ability to obtain comprehensive and rapid mutational overviews is key for improving the efficiency of cancer patient care through tailoring treatments based on the genetic characteristics of individual tumors.
Collapse
Affiliation(s)
- Marlous Hoogstraat
- Department of Medical Oncology, University Medical Center Utrecht, Heidelberglaan Utrecht, Utrecht, the Netherlands; Netherlands Center for Personalized Cancer Treatment, Universiteitsweg Utrecht, Utrecht, the Netherlands
| | - John W J Hinrichs
- Department of Pathology, University Medical Center Utrecht, Universiteitsweg Utrecht, Utrecht, the Netherlands
| | - Nicolle J M Besselink
- Department of Medical Oncology, University Medical Center Utrecht, Heidelberglaan Utrecht, Utrecht, the Netherlands; Netherlands Center for Personalized Cancer Treatment, Universiteitsweg Utrecht, Utrecht, the Netherlands
| | - Joyce H Radersma-van Loon
- Department of Pathology, University Medical Center Utrecht, Universiteitsweg Utrecht, Utrecht, the Netherlands
| | - Carmen M A de Voijs
- Department of Pathology, University Medical Center Utrecht, Universiteitsweg Utrecht, Utrecht, the Netherlands
| | - Ton Peeters
- Department of Pathology, University Medical Center Utrecht, Universiteitsweg Utrecht, Utrecht, the Netherlands
| | - Isaac J Nijman
- Netherlands Center for Personalized Cancer Treatment, Universiteitsweg Utrecht, Utrecht, the Netherlands; Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg Utrecht, Utrecht, the Netherlands
| | - Roel A de Weger
- Department of Pathology, University Medical Center Utrecht, Universiteitsweg Utrecht, Utrecht, the Netherlands
| | - Emile E Voest
- Department of Medical Oncology, University Medical Center Utrecht, Heidelberglaan Utrecht, Utrecht, the Netherlands; Netherlands Center for Personalized Cancer Treatment, Universiteitsweg Utrecht, Utrecht, the Netherlands
| | - Stefan M Willems
- Netherlands Center for Personalized Cancer Treatment, Universiteitsweg Utrecht, Utrecht, the Netherlands; Department of Pathology, University Medical Center Utrecht, Universiteitsweg Utrecht, Utrecht, the Netherlands.
| | - Edwin Cuppen
- Netherlands Center for Personalized Cancer Treatment, Universiteitsweg Utrecht, Utrecht, the Netherlands; Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg Utrecht, Utrecht, the Netherlands; Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, the Netherlands.
| | - Marco J Koudijs
- Department of Medical Oncology, University Medical Center Utrecht, Heidelberglaan Utrecht, Utrecht, the Netherlands; Netherlands Center for Personalized Cancer Treatment, Universiteitsweg Utrecht, Utrecht, the Netherlands
| |
Collapse
|
11
|
Philadelphia chromosome positive pre-T cell acute lymphoblastic leukemia: a rare case report and short review. Indian J Hematol Blood Transfus 2014; 30:177-9. [PMID: 25332571 DOI: 10.1007/s12288-013-0314-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 12/17/2013] [Indexed: 10/25/2022] Open
Abstract
Pre-T cell acute lymphoblastic leukemia is a relatively rare leukemia. Twenty to 30 % of adult B cell leukemia cases are Philadelphia chromosome positive and it has a therapeutic and prognostic significance. Incidence and outcome of Ph+ T cell acute lymphoblastic leukemia (T cell ALL) is unknown. Only about 25 cases of de novo Ph+ T cell ALL and 44 cases of Ph+ T ALL in blastic phase of CML has been reported. Differentiation between Ph+ Pre-T ALL/LBL and T cell lymphoblastic crises of chronic myeloid leukemia may be difficult. We report a case of adult T cell ALL having Philadelphia chromosome as the cytogenetic abnormality. He was treated with acute lymphoblastic leukemia induction chemotherapy and Imatinib and achieved complete remission.
Collapse
|
12
|
Haltrich I, Csóka M, Kovács G, Török D, Alpár D, Ottoffy G, Fekete G. Six cases of rare gene amplifications and multiple copy of fusion gene in childhood acute lymphoblastic leukemia. Pathol Oncol Res 2013; 19:123-8. [PMID: 22528566 DOI: 10.1007/s12253-012-9533-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Accepted: 04/08/2012] [Indexed: 11/28/2022]
Abstract
Cytogenetic aberrations are very important factors in risk assessment of childhood hematological malignancies. We report six childhood acute lymphoid leukemia (ALL) cases with rare cytogenetic aberrations: five with RUNX1, ABL1 or MLL proto-oncogene amplification and one case of multiple copies of ETV6/RUNX1 fusion genes. The simultaneous presence of two adverse genetic aberrations is of special interest: ETV6-RUNX1 fusion gene is associated with good prognosis and intrachromosomal amplification of the homologue RUNX1 gene is associated with poor prognosis. We also report a patient with MLL amplification, a unique finding in childhood T-ALL. Report of these subtle rearrangements contributes to our understanding of diagnostic and prognostic significance of these rare cytogenetic abnormalities.
Collapse
Affiliation(s)
- Irén Haltrich
- 2nd Department of Pediatrics, Faculty of Medicine, Semmelweis University, 1094 Budapest, Tűzoltó utca 7-9, Hungary.
| | | | | | | | | | | | | |
Collapse
|
13
|
Cetin Z, Yakut S, Karadogan I, Kupesiz A, Timuragaoglu A, Salim O, Tezcan G, Alanoglu G, Ozbalci D, Hazar V, Yesilipek MA, Undar L, Luleci G, Berker S. Aberrations of chromosomes 9 and 22 in acute lymphoblastic leukemia cases detected by ES-fluorescence in situ hybridization. Genet Test Mol Biomarkers 2012; 16:318-23. [PMID: 22360868 DOI: 10.1089/gtmb.2011.0186] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A reciprocal translocation between chromosomes 9 and 22 creates oncogenic BCR/ABL fusion in the breakpoint region of the derivative chromosome 22. The aim of this study was to evaluate the importance of atypical fluorescence in situ hybridization (FISH) signal patterns in pediatric and adult acute lymphoblastic leukemia (ALL) cases. We evaluated t(9;22) translocation in 208 cases with ALL (294 tests), including 139 childhood and 69 adult cases by FISH technique using BCR/ABL extra signal (ES) probe. FISH signal patterns observed in pediatric ALL cases were as follows; Major-BCR/ABL (M-BCR/ABL) (1.4%), minor-BCR/ABL (m-BCR/ABL) (3.6%), trisomy 9 (4.3%), trisomy 22 (4.3%), trisomy or tetrasomy of both chromosomes 9 and 22 (2.9%), monosomy 9 (1.4%), monosomy 22 (0.7%), ABL gene amplification (1.4%), derivative chromosome 9 deletion (1.4%), and extra copies of the Philadelphia chromosome (1.4%). FISH signal patterns observed in adult ALL cases were as follows; M-BCR/ABL (5.8%), m-BCR/ABL (11.6%), two different cell clones with major and minor BCR/ABL signal pattern (2.9%), extra copies of Philadelphia chromosome (4.3%), derivative chromosome 9 deletion (1.4%), trisomy 9 (2.9%), tetraploidy (1.4%), monosomy 9 (1.4%), trisomy 22 (1.4%), and coexistence of both trisomy 22 and monosomy 9 (1.4%). Trisomy 9, trisomy 22, and polyploidy of chromosomes 9 and 22 were specific atypical FISH signal patterns for childhood B cell acute lymphoblastic leukemia (B-ALL) patients. However, monosomy 9 and ABL gene amplification were highly specific for childhood T cell acute lymphoblastic leukemia (T-ALL) patients. Our report presents the correlation between atypical FISH signal patterns and clinical findings of a large group of ALL cases.
Collapse
Affiliation(s)
- Zafer Cetin
- Department of Medical Biology, Akdeniz University, Antalya, Turkey
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
De Braekeleer E, Douet-Guilbert N, Rowe D, Bown N, Morel F, Berthou C, Férec C, De Braekeleer M. ABL1 fusion genes in hematological malignancies: a review. Eur J Haematol 2011; 86:361-71. [PMID: 21435002 DOI: 10.1111/j.1600-0609.2011.01586.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Chromosomal rearrangements involving the ABL1 gene, leading to a BCR-ABL1 fusion gene, have been mainly associated with chronic myeloid leukemia and B-cell acute lymphoblastic leukemia (ALL). At present, six other genes have been shown to fuse to ABL1. The kinase domain of ABL1 is retained in all chimeric proteins that are also composed of the N-terminal part of the partner protein that often includes a coiled-coil or a helix-loop-helix domain. These latter domains allow oligomerization of the protein that is required for tyrosine kinase activation, cytoskeletal localization, and neoplastic transformation. Fusion genes that have a break in intron 1 or 2 (BCR-ABL1, ETV6-ABL1, ZMIZ1-ABL1, EML1-ABL1, and NUP214-ABL1) have transforming activity, although NUP214-ABL1 requires amplification to be efficient. The NUP214-ABL1 gene is the second most prevalent fusion gene involving ABL1 in malignant hemopathies, with a frequency of 5% in T-cell ALL. Both fusion genes (SFPQ-ABL1 and RCSD1-ABL1) characterized by a break in intron 4 of ABL1 are associated with B-cell ALL, as the chimeric proteins lacked the SH2 domain of ABL1. Screening for ABL1 chimeric genes could be performed in patients with ALL, more particularly in those with T-cell ALL because ABL1 modulates T-cell development and plays a role in cytoskeletal remodeling processes in T cells.
Collapse
Affiliation(s)
- Etienne De Braekeleer
- Université de Brest, Faculté de Médecine et des Sciences de la Santé, Brest Institut National de la Santé et de la Recherche Médicale (INSERM), Brest CHRU Brest, Hôpital Morvan, Service de Cytogénétique, Cytologie et Biologie de la Reproduction, Brest, France
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Hagemeijer A, Graux C. ABL1 rearrangements in T-cell acute lymphoblastic leukemia. Genes Chromosomes Cancer 2010; 49:299-308. [PMID: 20073070 DOI: 10.1002/gcc.20743] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is the result of multiple oncogenic insults of thymocytes. Recently, new ABL1 fusion genes have been identified that provide proliferation and survival advantage to lymphoblasts. These are the NUP214-ABL1 fusion gene, on amplified episomes, the unique case of EML1-ABL1 fusion due to a cryptic t(9;14)(q34;q32) and the seldom reported BCR-ABL1 and ETV6-ABL1 chimeric genes. The most frequent and strictly associated with T-ALL is the NUP214-ABL1 fusion identified in 6% of cases, in both children and adults. Patients present with classical T-ALL features. Cytogenetically, the fusion is cryptic but seen by FISH on amplified episomes or more rarely as a small hsr. The ABL1 fusion is a late event associated with other genetic alterations like NOTCH1 activating mutation, deletion of CDKN2A locus, and ectopic expression of TLX1 or TLX3. The mechanism of activation of the NUP214-ABL1 protein is unique and requires localization at the nucleopore complex and interaction with other nuclear pore proteins for crossphosphorylation and constitutive kinase activity. The ABL1 fusion proteins are sensitive to tyrosine kinase inhibitors, which can be included in future treatment strategy.
Collapse
Affiliation(s)
- Anne Hagemeijer
- Department of Human Genetics, University of Leuven, Leuven, Belgium.
| | | |
Collapse
|
16
|
Attarbaschi A, Pisecker M, Inthal A, Mann G, Janousek D, Dworzak M, Pötschger U, Ullmann R, Schrappe M, Gadner H, Haas OA, Panzer-Grümayer R, Strehl S. Prognostic relevance ofTLX3 (HOX11L2)expression in childhood T-cell acute lymphoblastic leukaemia treated with BerlinâFrankfurtâMünster (BFM) protocols containing early and late re-intensification elements. Br J Haematol 2010; 148:293-300. [DOI: 10.1111/j.1365-2141.2009.07944.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
17
|
Mrózek K, Harper DP, Aplan PD. Cytogenetics and molecular genetics of acute lymphoblastic leukemia. Hematol Oncol Clin North Am 2009; 23:991-1010, v. [PMID: 19825449 PMCID: PMC3607311 DOI: 10.1016/j.hoc.2009.07.001] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Acute lymphoblastic leukemia (ALL) is a malignant disease that often features nonrandom numerical or structural chromosome aberrations that can be detected microscopically. The application of contemporary genome-wide molecular analyses is revealing additional genetic alterations that are not detectable cytogenetically. This article describes the cytogenetic methodology and summarizes major cytogenetic findings and their clinical relevance in ALL. The article provides a review of modern molecular techniques and their application in the research on the genetics and epigenetics of ALL.
Collapse
Affiliation(s)
- Krzysztof Mrózek
- Division of Hematology and Oncology, Department of Internal Medicine, Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | - David P. Harper
- Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD
- Department of Pediatrics, Uniformed Services University of the Health Sciences, Bethesda, MD
| | - Peter D. Aplan
- Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| |
Collapse
|
18
|
Array-Based Comparative Genomic Hybridization as a Tool for Analyzing the Leukemia Genome. Methods Mol Biol 2009; 538:151-77. [DOI: 10.1007/978-1-59745-418-6_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
19
|
Deenik W, Beverloo HB, van der Poel-van de Luytgaarde SCPAM, Wattel MM, van Esser JWJ, Valk PJM, Cornelissen JJ. Rapid complete cytogenetic remission after upfront dasatinib monotherapy in a patient with a NUP214-ABL1-positive T-cell acute lymphoblastic leukemia. Leukemia 2008; 23:627-9. [PMID: 18987655 DOI: 10.1038/leu.2008.318] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
20
|
Abstract
Cytogenetics has determined the incidence and prognostic significance of chromosomal abnormalities in acute lymphoblastic leukaemia (ALL). The development of fluorescence in situ hybridization (FISH) and array technologies has led to the discovery of novel aberrations. Five 'hot topics' are presented in which cytogenetics and related techniques have been instrumental in understanding the role of genetics in leukaemogenesis: (i) genetic changes are integral to the biology of T-cell ALL; (ii) intrachromosomal amplification of chromosome 21 is a new recurrent abnormality in precursor-B ALL (BCP-ALL); (iii) the immunoglobulin heavy chain gene (IGH@) is significant in BCP-ALL; (iv) alterations in genes involved in B-cell development and cell cycle control contribute to the pathogenesis of BCP-ALL; (v) age-related cytogenetic profiles define ALL in children and adolescents as distinct biological entities. In this molecular era, cytogenetics continues to be integral to our understanding of the genetics of this disease.
Collapse
Affiliation(s)
- Christine J Harrison
- Leukaemia Research Cytogenetics Group, Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne, UK.
| |
Collapse
|
21
|
Graux C, Stevens-Kroef M, Lafage M, Dastugue N, Harrison CJ, Mugneret F, Bahloula K, Struski S, Grégoire MJ, Nadal N, Lippert E, Taviaux S, Simons A, Kuiper RP, Moorman AV, Barber K, Bosly A, Michaux L, Vandenberghe P, Lahortiga I, De Keersmaecker K, Wlodarska I, Cools J, Hagemeijer A, Poirel HA. Heterogeneous patterns of amplification of the NUP214-ABL1 fusion gene in T-cell acute lymphoblastic leukemia. Leukemia 2008; 23:125-33. [PMID: 18923437 DOI: 10.1038/leu.2008.278] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Episomes with the NUP214-ABL1 fusion gene have been observed in 6% of T-ALL. In this multicentric study we collected 27 cases of NUP214-ABL1-positive T-ALL. Median age was 15 years with male predominance. Outcome was poor in 12 patients. An associated abnormality involving TLX1 or TLX3 was found in all investigated cases. Fluorescent in situ hybridization revealed a heterogeneous pattern of NUP214-ABL1 amplification. Multiple episomes carrying the fusion were detected in 24 patients. Episomes were observed in a significant number of nuclei in 18 cases, but in only 1-5% of nuclei in 6. In addition, intrachromosomal amplification (small hsr) was identified either as the only change or in association with episomes in four cases and two T-ALL cell lines (PEER and ALL-SIL). One case showed insertion of apparently non-amplified NUP214-ABL1 sequences at 14q12. The amplified sequences were analyzed using array-based CGH.These findings confirm that the NUP214-ABL1 gene requires amplification for oncogenicity; it is part of a multistep process of leukemogenesis; and it can be a late event present only in subpopulations. Data also provide in vivo evidence for a model of episome formation, amplification and optional reintegration into the genome. Implications for the use of kinase inhibitors are discussed.
Collapse
Affiliation(s)
- C Graux
- Hematologic Section of the Human Genetics Centre, Cliniques universitaires UCL Saint-Luc, Brussels, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Quintás-Cardama A, Tong W, Manshouri T, Vega F, Lennon PA, Cools J, Gilliland DG, Lee F, Cortes J, Kantarjian H, Garcia-Manero G. Activity of tyrosine kinase inhibitors against human NUP214-ABL1-positive T cell malignancies. Leukemia 2008; 22:1117-24. [PMID: 18401417 DOI: 10.1038/leu.2008.80] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Amplification of the NUP214-ABL1 oncogene can be detected in patients with T cell acute lymphoblastic leukemia (T-ALL). We screened 29 patients with T cell malignancies for the expression of NUP214-ABL1 by reverse transcription-polymerase chain reaction (RT-PCR). NUP214-ABL1 was detected in three (10%) patients. These results were confirmed by fluorescence in situ hybridization techniques. We also studied the activity of imatinib, nilotinib and dasatinib against the human NUP214-ABL1-positive cell lines PEER and BE-13. All three tyrosine kinase inhibitors decreased the viability of PEER and BE-13 cells, but nilotinib and dasatinib had >1-log lower IC(50) values than imatinib (P<0.001). In contrast, the NUP214-ABL-negative T-ALL cell line Jurkat, was remarkably resistant to tyrosine kinase inhibition. The inhibition of cellular proliferation was associated with time-dependent induction of apoptosis and inhibition of ABL, CrKL and STAT5 phosphorylation. Moreover, dasatinib was active in a NUP214-ABL1-positive leukemia xenograft murine model and in marrow lymphoblasts from a patient with NUP214-ABL1-positive T-ALL. On the basis of these results, ABL1 kinase inhibitors warrant clinical investigation in patients with NUP214-ABL1-positive T-cell malignancies.
Collapse
Affiliation(s)
- A Quintás-Cardama
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Myllykangas S, Böhling T, Knuutila S. Specificity, selection and significance of gene amplifications in cancer. Semin Cancer Biol 2006; 17:42-55. [PMID: 17161620 DOI: 10.1016/j.semcancer.2006.10.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Accepted: 10/17/2006] [Indexed: 12/16/2022]
Abstract
DNA copy number amplifications activate oncogenes and are found in the majority of advanced solid tumors. Cell-lineage specificity and oncogene affinity of DNA amplifications in cancer suggest that properties of precursor stem cells and selection pressure in the tissue micro-environment determine the genomic location of gene amplifications. Biological specificity and significance of gene amplifications make them potential targets for clinical applications. Here we discuss the specificity of non-randomly occurring DNA copy number amplifications as defining features for cancers, their selection in the tumor tissue, and significance in the clinical practice.
Collapse
Affiliation(s)
- Samuel Myllykangas
- Department of Pathology, Haartman Institute and HUSLAB, University of Helsinki and Helsinki University Central Hospital, POB 21 (Haartmaninkatu 3), FI-00014 University of Helsinki, Helsinki, Finland
| | | | | |
Collapse
|
24
|
De Keersmaecker K, Lahortiga I, Graux C, Marynen P, Maertens J, Cools J, Vandenberghe P. Transition from EML1-ABL1 to NUP214-ABL1 positivity in a patient with acute T-lymphoblastic leukemia. Leukemia 2006; 20:2202-4. [PMID: 17024111 DOI: 10.1038/sj.leu.2404425] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
25
|
Chase A, Cross NCP. Signal transduction therapy in haematological malignancies: identification and targeting of tyrosine kinases. Clin Sci (Lond) 2006; 111:233-49. [PMID: 16961463 DOI: 10.1042/cs20060035] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Tyrosine kinases play key roles in cell proliferation, survival and differentiation. Their aberrant activation, caused either by the formation of fusion genes by chromosome translocation or by intragenic changes, such as point mutations or internal duplications, is of major importance in the development of many haematological malignancies. An understanding of the mechanisms by which BCR-ABL contributes to the pathogenesis of chronic myeloid leukaemia led to the development of imatinib, the first of several tyrosine kinase inhibitors to enter clinical trials. Although the development of resistance has been problematic, particularly in aggressive disease, the development of novel inhibitors and combination with other forms of therapy shows promise.
Collapse
Affiliation(s)
- Andrew Chase
- Wessex Regional Genetics Laboratory, Salisbury and Human Genetics Division, University of Southampton, Salisbury District Hospital, Salisbury SP2 8BJ, U.K
| | | |
Collapse
|
26
|
Gadner H, Masera G, Schrappe M, Eden T, Benoit Y, Harrison C, Nachman J, Pui CH. The Eighth International Childhood Acute Lymphoblastic Leukemia Workshop ('Ponte di legno meeting') report: Vienna, Austria, April 27-28, 2005. Leukemia 2006; 20:9-17. [PMID: 16281070 DOI: 10.1038/sj.leu.2404016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The International Acute Lymphoblastic Leukemia Working Group, the so-called 'Ponte di Legno Workshop' has led to substantial progress in international collaboration in leukemia research. On April 27-28, 2005, the 8th Meeting was held in Vienna, Austria, to continue the discussions about special common treatment elements in randomized clinical trials, ethical and clinical aspects of therapy. Furthermore, collaborative projects of clinical relevance with special emphasis on rare genetic subtypes of Childhood ALL were established. The following report summarizes the achievements and aspects of possible future cooperation.
Collapse
Affiliation(s)
- H Gadner
- Berlin-Frankfurt-Münster Study Group and St Anna Children's Hospital, Vienna, Austria.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Although most patients with adult acute lymphoblastic leukaemia (ALL) can achieve a remission when treated with conventional, DNA-damaging chemotherapy, in more than half of all cases the disease relapses and ultimately results in death. Therefore, there is a substantial need for new antileukaemic drugs. Recent advances in the understanding of the molecular alterations in ALL have lead to the identification of new targets and the arrival of molecular-targeted therapies in the clinical setting. The prototype for this approach is the treatment of Philadelphia chromosome-positive ALL with imatinib mesylate. Here, the targeting of a molecular abnormality--inhibition of BCR-ABL tyrosine kinase--has turned a very poor-prognosis disease into one in which promising results are achieved. Promising new therapies are under development that target various goals, including the NOTCH signalling pathway, purine nucleoside phosphorylase activity, mammalian target of rapamycin and tyrosine kinase. This review outlines recent advances in the development of emerging drugs for the treatment of adult ALL. The recent advances in the understanding of the biology and pathogenesis of ALL have helped to determine prognosis and to plan the therapy of adult patients with ALL. Still, despite improved complete remission rates of 65-90% with current therapy, only 20-40% of patients can be considered cured. New therapeutic alternatives are needed to improve these results. With a better understanding of the disease, more target-specific therapies could be designed. The aim of this review is to highlight new pharmacotherapies and those emerging drug treatments for patients with adult ALL.
Collapse
Affiliation(s)
- Xavier Thomas
- Department of Hematology, Edouard Herriot Hospital, Lyon, France.
| |
Collapse
|
28
|
Abstract
Chronic myeloproliferative diseases (CMPDs) are characterized by the abnormal proliferation and survival of one or more myeloid cell types. The archetype of this class of hematological diseases is chronic myeloid leukemia (CML), characterized by the presence of the Philadelphia (Ph) chromosome, the result of t(9;22)(q34;q11), and the associated BCR-ABL1 oncogene. Some of the Ph-negative myeloproliferative diseases are characterized by other chromosomal translocations involving a variety of tyrosine kinase genes, including ABL1, ABL2, PDGFRA, PDGFRB, FGFR1, and JAK2. The majority of Ph-negative CMPDs, however, such as chronic eosinophilic leukemia, polycythemia vera, essential thrombocythemia, and idiopathic myelofibrosis are not characterized by the presence of recurrent chromosomal abnormalities. Recent studies have identified the FIP1L1-PDGFRA fusion gene, generated due to a small cryptic deletion on chromosome 4q12, and the activating V617F mutation in JAK2 in a significant fraction of Ph-negative CMPDs. These results show that abnormalities in tyrosine kinase genes are central to the molecular pathogenesis of CMPDs. Genome-wide screenings to identify novel tyrosine kinase abnormalities in CMPDs may contribute to further improvement of the diagnosis and the treatment of these diseases.
Collapse
Affiliation(s)
- K De Keersmaecker
- Department of Human Genetics, Flanders Interuniversity Institute for Biotechnology (VIB), University of Leuven, Leuven, Belgium
| | | |
Collapse
|
29
|
Stergianou K, Fox C, Russell NH. Fusion of NUP214 to ABL1 on amplified episomes in T-ALL--implications for treatment. Leukemia 2005; 19:1680-1. [PMID: 16015385 DOI: 10.1038/sj.leu.2403877] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
30
|
Bernasconi P, Calatroni S, Giardini I, Inzoli A, Castagnola C, Cavigliano PM, Rocca B, Boni M, Quarna J, Zappatore R, Caresana M, Bianchessi C, Pallavicini EB, Lazzarino M. ABL1 amplification in T-cell acute lymphoblastic leukemia. ACTA ACUST UNITED AC 2005; 162:146-50. [PMID: 16213363 DOI: 10.1016/j.cancergencyto.2005.04.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2004] [Revised: 03/28/2005] [Accepted: 04/07/2005] [Indexed: 10/25/2022]
Abstract
ABL1 amplification, due to a cryptic episomal translocation NUP214/ABL1, is a novel finding in T-cell acute lymphoblastic leukemia (ALL). Here we report on the incidence and clinical features of this genetic defect in a series of 30 consecutive adult T-cell ALL patients. Multiple copies of the ABL1 gene were detected in two patients (6.6%), one with the karyotype 46,XY,t(1;3)(p36;p21),del(6)(q23)/46,XY and the other without analyzable metaphases. Metaphase/interphase fluorescence in situ hybridization (FISH) detected multiple uncountable signals corresponding to ABL1 in mitotic cells and nuclei from both patients. In one patient, no signals corresponded with the 9p21 chromosomal region, which contains the p16INK4a gene, and in the other one signal was observed. Quantitative reverse-transcriptase polymerase chain reaction (RT-PCR) demonstrated that in these patients ABL1 gene expression was 14- and 18-fold greater than in normal controls, and returned to normal levels only when complete remission was achieved. We reached the following conclusions: (1) FISH is the only technique that promptly identifies T-cell ALL patients with ABL1 amplification, (2) quick identification with FISH is fundamental in the clinic because this T-cell ALL subset is imatinib sensitive but may become resistant due to development of additional mutations, and (3) ABL1 quantitative RT-PCR may be easily applied to monitor minimal residual disease.
Collapse
Affiliation(s)
- Paolo Bernasconi
- Division of Hematology, IRCCS Policlinico San Matteo, University of Pavia, Piazzale Golgi No. 5, 27100 Pavia, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Affiliation(s)
- Daniela S Krause
- Molecular Oncology Research Institute, Division of Hematology-Oncology, Tufts-New England Medical Center, Boston, MA 02111, USA
| | | |
Collapse
|
32
|
Kearney L, Horsley SW. Molecular cytogenetics in haematological malignancy: current technology and future prospects. Chromosoma 2005; 114:286-94. [PMID: 16003502 DOI: 10.1007/s00412-005-0002-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2005] [Revised: 04/25/2005] [Accepted: 04/25/2005] [Indexed: 01/22/2023]
Abstract
Cytogenetics has played a pivotal role in haematological malignancy, both as an aid to diagnosis and in identifying recurrent chromosomal rearrangements, an essential prerequisite to identifying genes involved in leukaemia and lymphoma pathogenesis. In the late 1980s, a series of technologies based around fluorescence in situ hybridisation (FISH) revolutionised the field. Interphase FISH, multiplex-FISH (M-FISH, SKY) and comparative genomic hybridisation (CGH) have emerged as the most significant of these. More recently, microarray technologies have come to prominence. In the acute leukaemias, the finding of characteristic gene expression signatures corresponding to biological subgroups has heralded gene expression profiling as a possible future alternative to current cytogenetic and morphological methods for diagnosis. In the lymphomas, high-resolution array CGH has successfully identified new regions of deletion and amplification, providing the prospect of disease-specific arrays.
Collapse
Affiliation(s)
- Lyndal Kearney
- Section of Haemato-Oncology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK.
| | | |
Collapse
|
33
|
|
34
|
Pui CH. Quest for effective agents to combat T-cell acute lymphoblastic leukemia. Eur J Cancer 2005; 41:1243-5. [PMID: 15939259 DOI: 10.1016/j.ejca.2005.03.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2005] [Accepted: 03/01/2005] [Indexed: 11/16/2022]
|
35
|
Raanani P, Trakhtenbrot L, Rechavi G, Rosenthal E, Avigdor A, Brok-Simoni F, Leiba M, Amariglio N, Nagler A, Ben-Bassat I. Philadelphia-chromosome-positive T-lymphoblastic leukemia: acute leukemia or chronic myelogenous leukemia blastic crisis. Acta Haematol 2005; 113:181-9. [PMID: 15870488 DOI: 10.1159/000084448] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2004] [Accepted: 12/13/2004] [Indexed: 11/19/2022]
Abstract
The Ph1 chromosome has rarely been reported in T-lineage acute lymphoblastic leukemia (T-ALL), and the clinical relevance of this translocation in T-ALL is currently unknown. In chronic myelogenous leukemia (CML) some data indicate derivation of T-cells from the leukemic clone and only a few cases of T-derived blastic crisis have been reported and quite often disputed. Particularly in cases identified initially in blastic crisis it may be difficult to distinguish those from Ph1-positive T-ALL. We herein report 2 patients who presented with a clinical picture of Ph1-positive T-ALL and who raised a differential diagnosis from T-cell blastic crisis of CML. We review the literature and suggest clinical and laboratory features that can help in the diagnosis. According to our literature review, 23 cases of Ph1-positive T-ALL and 44 cases of T-cell blastic crisis of CML, including ours, were reported. Some major differences between the two entities could help in establishing a diagnosis of Ph1-positive T-cell blastic crisis of CML vs. Ph1-positive T-ALL: Male sex and younger age was more predominant in T-ALL. While in most cases of CML blastic crisis there was a history of CML there was no such history in the T-ALL cases. Medullary involvement with lymphoblastic leukemia was present in all cases of T-ALL but only in about half of the cases of CML blastic crisis. None of the CML-blastic crisis cases tested by RT-PCR showed the minor breakpoint transcript, while 2 cases with T-ALL had the minor breakpoint transcript and 1 had both transcripts. Combined morphologic and FISH analysis can help to distinguish between the two entities and was applied in one of our cases. Although both entities carry a severe prognosis, differentiating between them might have clinical relevance, especially in the imatinib era.
Collapse
MESH Headings
- Blast Crisis/genetics
- Blast Crisis/pathology
- Cell Lineage/genetics
- Diagnosis, Differential
- Female
- Fusion Proteins, bcr-abl/genetics
- Humans
- In Situ Hybridization, Fluorescence
- Karyotyping
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Leukemia-Lymphoma, Adult T-Cell/genetics
- Leukemia-Lymphoma, Adult T-Cell/pathology
- Male
- Middle Aged
- Philadelphia Chromosome
- Reverse Transcriptase Polymerase Chain Reaction
- Translocation, Genetic/genetics
Collapse
Affiliation(s)
- Pia Raanani
- Institute of Hematology, Sheba Medical Center and Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Harrison CJ, Moorman AV, Barber KE, Broadfield ZJ, Cheung KL, Harris RL, Jalali GR, Robinson HM, Strefford JC, Stewart A, Wright S, Griffiths M, Ross FM, Harewood L, Martineau M. Interphase molecular cytogenetic screening for chromosomal abnormalities of prognostic significance in childhood acute lymphoblastic leukaemia: a UK Cancer Cytogenetics Group Study. Br J Haematol 2005; 129:520-30. [PMID: 15877734 DOI: 10.1111/j.1365-2141.2005.05497.x] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Summary Interphase fluorescence in situ hybridization (iFISH) was used independently to reveal chromosomal abnormalities of prognostic importance in a large, consecutive series of children (n = 2367) with acute lymphoblastic leukaemia (ALL). The fusions, TEL/AML1 and BCR/ABL, and rearrangements of the MLL gene occurred at frequencies of 22% (n = 447/2027) (25% in B-lineage ALL), 2% (n = 43/2027) and 2% (n = 47/2016) respectively. There was considerable variation in iFISH signal patterns both between and within patient samples. The TEL/AML1 probe showed the highest incidence of variation (59%, n = 524/884), which included 38 (2%) patients with clustered, multiple copies of AML1. We were thus able to define amplification of AML1 as a new recurrent abnormality in ALL, associated with a poor prognosis. Amplification involving the ABL gene, a rare recurrent abnormality confined to T ALL patients, was identified for the first time. The use of centromeric probes revealed significant hidden high hyperdiploidy of 33% and 59%, respectively, in patients with normal (n = 21/64) or failed (n = 32/54) cytogenetic results. The iFISH contributed significantly to the high success rate of 91% (n = 2114/2323) and the remarkable abnormality detection rate of 89% (n = 1879/2114). This study highlights the importance of iFISH as a complementary tool to cytogenetics in routine screening for significant chromosomal abnormalities in ALL.
Collapse
Affiliation(s)
- Christine J Harrison
- Leukaemia Research Fund Cytogenetics Group, Cancer Sciences Division, University of Southampton, General Hospital, Southampton SO16 6YD, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Speleman F, Cauwelier B, Dastugue N, Cools J, Verhasselt B, Poppe B, Van Roy N, Vandesompele J, Graux C, Uyttebroeck A, Boogaerts M, De Moerloose B, Benoit Y, Selleslag D, Billiet J, Robert A, Huguet F, Vandenberghe P, De Paepe A, Marynen P, Hagemeijer A. A new recurrent inversion, inv(7)(p15q34), leads to transcriptional activation of HOXA10 and HOXA11 in a subset of T-cell acute lymphoblastic leukemias. Leukemia 2005; 19:358-66. [PMID: 15674412 DOI: 10.1038/sj.leu.2403657] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Chromosomal translocations with breakpoints in T-cell receptor (TCR) genes are recurrent in T-cell malignancies. These translocations involve the TCRalphadelta gene (14q11), the TCRbeta gene (7q34) and to a lesser extent the TCRgamma gene at chromosomal band 7p14 and juxtapose T-cell oncogenes next to TCR regulatory sequences leading to deregulated expression of those oncogenes. Here, we describe a new recurrent chromosomal inversion of chromosome 7, inv(7)(p15q34), in a subset of patients with T-cell acute lymphoblastic leukemia characterized by CD2 negative and CD4 positive, CD8 negative blasts. This rearrangement juxtaposes the distal part of the HOXA gene cluster on 7p15 to the TCRbeta locus on 7q34. Real time quantitative PCR analysis for all HOXA genes revealed high levels of HOXA10 and HOXA11 expression in all inv(7) positive cases. This is the first report of a recurrent chromosome rearrangement targeting the HOXA gene cluster in T-cell malignancies resulting in deregulated HOXA gene expression (particularly HOXA10 and HOXA11) and is in keeping with a previous report suggesting HOXA deregulation in MLL-rearranged T- and B cell lymphoblastic leukemia as the key factor in leukaemic transformation. Finally, our observation also supports the previous suggested role of HOXA10 and HOXA11 in normal thymocyte development.
Collapse
Affiliation(s)
- F Speleman
- Centre for Medical Genetics, Ghent University Hospital, Ghent, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Ballerini P, Busson M, Fasola S, van den Akker J, Lapillonne H, Romana SP, Marynen P, Bernard OA, Landman-Parker J, Berger R. NUP214-ABL1 amplification in t(5;14)/HOX11L2-positive ALL present with several forms and may have a prognostic significance. Leukemia 2005; 19:468-70. [PMID: 15674415 DOI: 10.1038/sj.leu.2403654] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
39
|
Graux C, Cools J, Melotte C, Quentmeier H, Ferrando A, Levine R, Vermeesch JR, Stul M, Dutta B, Boeckx N, Bosly A, Heimann P, Uyttebroeck A, Mentens N, Somers R, MacLeod RAF, Drexler HG, Look AT, Gilliland DG, Michaux L, Vandenberghe P, Wlodarska I, Marynen P, Hagemeijer A. Fusion of NUP214 to ABL1 on amplified episomes in T-cell acute lymphoblastic leukemia. Nat Genet 2004; 36:1084-9. [PMID: 15361874 DOI: 10.1038/ng1425] [Citation(s) in RCA: 292] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2004] [Accepted: 08/09/2004] [Indexed: 11/10/2022]
Abstract
In T-cell acute lymphoblastic leukemia (T-ALL), transcription factors are known to be deregulated by chromosomal translocations, but mutations in protein tyrosine kinases have only rarely been identified. Here we describe the extrachromosomal (episomal) amplification of ABL1 in 5 of 90 (5.6%) individuals with T-ALL, an aberration that is not detectable by conventional cytogenetics. Molecular analyses delineated the amplicon as a 500-kb region from chromosome band 9q34, containing the oncogenes ABL1 and NUP214 (refs. 5,6). We identified a previously undescribed mechanism for activation of tyrosine kinases in cancer: the formation of episomes resulting in a fusion between NUP214 and ABL1. We detected the NUP214-ABL1 transcript in five individuals with the ABL1 amplification, in 5 of 85 (5.8%) additional individuals with T-ALL and in 3 of 22 T-ALL cell lines. The constitutively phosphorylated tyrosine kinase NUP214-ABL1 is sensitive to the tyrosine kinase inhibitor imatinib. The recurrent cryptic NUP214-ABL1 rearrangement is associated with increased HOX expression and deletion of CDKN2A, consistent with a multistep pathogenesis of T-ALL. NUP214-ABL1 expression defines a new subgroup of individuals with T-ALL who could benefit from treatment with imatinib.
Collapse
Affiliation(s)
- C Graux
- Department of Human Genetics, University of Leuven, Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|