1
|
Casalin I, Ceneri E, Ratti S, Manzoli L, Cocco L, Follo MY. Nuclear Phospholipids and Signaling: An Update of the Story. Cells 2024; 13:713. [PMID: 38667329 PMCID: PMC11048846 DOI: 10.3390/cells13080713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
In the last three decades, the presence of phospholipids in the nucleus has been shown and thoroughly investigated. A considerable amount of interest has been raised about nuclear inositol lipids, mainly because of their role in signaling acting. Here, we review the main issues of nuclear phospholipid localization and the role of nuclear inositol lipids and their related enzymes in cellular signaling, both in physiological and pathological conditions.
Collapse
Affiliation(s)
| | | | | | | | - Lucio Cocco
- Cellular Signaling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy; (I.C.); (E.C.); (S.R.); (L.M.); (M.Y.F.)
| | | |
Collapse
|
2
|
Marvi MV, Mongiorgi S, Ramazzotti G, Follo MY, Billi AM, Zoli M, Mazzatenta D, Morandi L, Asioli S, Papa V, McCubrey JA, Suh PG, Manzoli L, Cocco L, Ratti S. Role of PLCγ1 in the modulation of cell migration and cell invasion in glioblastoma. Adv Biol Regul 2022; 83:100838. [PMID: 34819252 DOI: 10.1016/j.jbior.2021.100838] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/12/2021] [Accepted: 11/16/2021] [Indexed: 06/13/2023]
Abstract
Phosphoinositide-specific phospholipases C (PLCs) are a class of enzymes involved in several cell activities, such as cell cycle regulation, proliferation, differentiation and cytoskeletal dynamics. Among these enzymes, PLCγ1 is one of the most expressed PLCs in the brain, contributing to a complex network in the developing nervous system. Several studies have shown that PLCγ1 signaling imbalance is linked to several brain disorders, including glioblastoma, the most aggressive brain tumor in adults. Indeed, it has been demonstrated a link between PLCγ1 inhibition and the arrest of glioma cell motility of fetal rat brain aggregates and the impairment of cell invasion abilities following its down-regulation. This study aims to determine the pathological influence of PLCγ1 in glioblastoma, through a translational study which combines in silico data, data from glioblastoma patients' samples and data on engineered cell lines. We found out that PLCγ1 gene expression correlates with the pathological grade of gliomas, and it is higher in fifty patients' glioblastoma tissue samples compared to twenty healthy controls. Moreover, it was demonstrated that PLCγ1 silencing in U87-MG leads to a reduction in cell migration and invasion abilities. The opposite trend was observed following PLCγ1 overexpression, suggesting an interesting possible involvement of PLCγ1 in gliomas' aggressiveness.
Collapse
Affiliation(s)
- Maria Vittoria Marvi
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Sara Mongiorgi
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Giulia Ramazzotti
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Matilde Y Follo
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Anna Maria Billi
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Matteo Zoli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; Pituitary Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Diego Mazzatenta
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; Pituitary Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Luca Morandi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; Functional and Molecular Neuroimaging Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Sofia Asioli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; Pituitary Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy; Anatomic Pathology Unit, Azienda USL di Bologna, Bologna, Italy
| | - Veronica Papa
- Department of Motor Sciences and Wellness (DiSMeB), Università Degli Studi di Napoli "Parthenope,", 80133, Napoli, Italy
| | - James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - Pann-Ghill Suh
- Korea Brain Research Institute, Daegu, 41062, South Korea; School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 689-798, South Korea
| | - Lucia Manzoli
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Lucio Cocco
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Stefano Ratti
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy.
| |
Collapse
|
3
|
The basis of nuclear phospholipase C in cell proliferation. Adv Biol Regul 2021; 82:100834. [PMID: 34710785 DOI: 10.1016/j.jbior.2021.100834] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/17/2021] [Accepted: 10/21/2021] [Indexed: 11/23/2022]
Abstract
Ca2+ is a highly versatile intracellular signal that regulates many biological processes such as cell death and proliferation. Broad Ca2+-signaling machinery is used to assemble signaling systems with a precise spatial and temporal resolution to achieve this versatility. Ca2+-signaling components can be organized in different regions of the cell and local increases in Ca2+ within the nucleus can regulate different cellular functions from the increases in cytosolic Ca2+. However, the mechanisms and pathways that promote localized increases in Ca2+ levels in the nucleus are still under investigation. This review presents evidence that the nucleus has its own Ca2+ stores and signaling machinery, which modulate processes such as cell proliferation and tumor growth. We focus on what is known about the functions of nuclear Phospholipase C (PLC) in the generation of nuclear Ca2+ transients that are involved in cell proliferation.
Collapse
|
4
|
Darici S, Zavatti M, Braglia L, Accordi B, Serafin V, Horne GA, Manzoli L, Palumbo C, Huang X, Jørgensen HG, Marmiroli S. Synergistic cytotoxicity of dual PI3K/mTOR and FLT3 inhibition in FLT3-ITD AML cells. Adv Biol Regul 2021; 82:100830. [PMID: 34555701 DOI: 10.1016/j.jbior.2021.100830] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/09/2021] [Accepted: 09/13/2021] [Indexed: 01/17/2023]
Abstract
Acute myeloid leukemia (AML) is an aggressive hematopoietic malignancy, characterized by a heterogeneous genetic landscape and complex clonal evolution, with poor outcomes. Mutation at the internal tandem duplication of FLT3 (FLT3-ITD) is one of the most common somatic alterations in AML, associated with high relapse rates and poor survival due to the constitutive activation of the FLT3 receptor tyrosine kinase and its downstream effectors, such as PI3K signaling. Thus, aberrantly activated FLT3-kinase is regarded as an attractive target for therapy for this AML subtype, and a number of small molecule inhibitors of this kinase have been identified, some of which are approved for clinical practice. Nevertheless, acquired resistance to these molecules is often observed, leading to severe clinical outcomes. Therapeutic strategies to tackle resistance include combining FLT3 inhibitors with other antileukemic agents. Here, we report on the preclinical activity of the combination of the FLT3 inhibitor quizartinib with the dual PI3K/mTOR inhibitor PF-04691502 in FLT3-ITD cells. Briefly, we show that the association of these two molecules displays synergistic cytotoxicity in vitro in FLT3-ITD AML cells, triggering 90% cell death at nanomolar concentrations after 48 h.
Collapse
Affiliation(s)
- Salihanur Darici
- Cellular Signaling Unit, Section of Human Morphology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, 41125, Italy; Haemato-Oncology/Systems Medicine Group, Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, G12 0ZD, UK
| | - Manuela Zavatti
- Cellular Signaling Unit, Section of Human Morphology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, 41125, Italy
| | - Luca Braglia
- Cellular Signaling Unit, Section of Human Morphology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, 41125, Italy; Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Benedetta Accordi
- Department of Woman and Child Health, Haemato-Oncology Laboratory, University of Padua, Via Giustiniani 3 and IRP Città Della Speranza, Corso Stati Uniti 4, 35128, Padua, Italy
| | - Valentina Serafin
- Department of Woman and Child Health, Haemato-Oncology Laboratory, University of Padua, Via Giustiniani 3 and IRP Città Della Speranza, Corso Stati Uniti 4, 35128, Padua, Italy
| | - Gillian A Horne
- Haemato-Oncology/Systems Medicine Group, Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, G12 0ZD, UK
| | - Lucia Manzoli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Carla Palumbo
- Cellular Signaling Unit, Section of Human Morphology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, 41125, Italy
| | - Xu Huang
- Haemato-Oncology/Systems Medicine Group, Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, G12 0ZD, UK.
| | - Heather G Jørgensen
- Haemato-Oncology/Systems Medicine Group, Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, G12 0ZD, UK
| | - Sandra Marmiroli
- Cellular Signaling Unit, Section of Human Morphology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, 41125, Italy.
| |
Collapse
|
5
|
Cappellini A, Mongiorgi S, Finelli C, Fazio A, Ratti S, Marvi MV, Curti A, Salvestrini V, Pellagatti A, Billi AM, Suh PG, McCubrey JA, Boultwood J, Manzoli L, Cocco L, Follo MY. Phospholipase C beta1 (PI-PLCbeta1)/Cyclin D3/protein kinase C (PKC) alpha signaling modulation during iron-induced oxidative stress in myelodysplastic syndromes (MDS). FASEB J 2020; 34:15400-15416. [PMID: 32959428 DOI: 10.1096/fj.202000933rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 08/31/2020] [Accepted: 09/09/2020] [Indexed: 01/10/2023]
Abstract
MDS are characterized by anemia and transfusion requirements. Transfused patients frequently show iron overload that negatively affects hematopoiesis. Iron chelation therapy can be effective in these MDS cases, but the molecular consequences of this treatment need to be further investigated. That is why we studied the molecular features of iron effect and Deferasirox therapy on PI-PLCbeta1 inositide signaling, using hematopoietic cells and MDS samples. At baseline, MDS patients showing a positive response after iron chelation therapy displayed higher levels of PI-PLCbeta1/Cyclin D3/PKCalpha expression. During treatment, these responder patients, as well as hematopoietic cells treated with FeCl3 and Deferasirox, showed a specific reduction of PI-PLCbeta1/Cyclin D3/PKCalpha expression, indicating that this signaling pathway is targeted by Deferasirox. The treatment was also able to specifically decrease the production of ROS. This effect correlated with a reduction of IL-1A and IL-2, as well as Akt/mTOR phosphorylation. In contrast, cells exposed only to FeCl3 and cells from MDS patients refractory to Deferasirox showed a specific increase of ROS and PI-PLCbeta1/Cyclin D3/PKCalpha expression. All in all, our data show that PI-PLCbeta1 signaling is a target for iron-induced oxidative stress and suggest that baseline PI-PLCbeta1 quantification could predict iron chelation therapy response in MDS.
Collapse
Affiliation(s)
- Alessandra Cappellini
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Sara Mongiorgi
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Carlo Finelli
- Department of Hematology and Oncology, Institute of Hematology "L. and A. Seràgnoli, University-Hospital S.Orsola-Malpighi, Bologna, Italy
| | - Antonietta Fazio
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Stefano Ratti
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Maria Vittoria Marvi
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Antonio Curti
- Department of Hematology and Oncology, Institute of Hematology "L. and A. Seràgnoli, University-Hospital S.Orsola-Malpighi, Bologna, Italy
| | - Valentina Salvestrini
- Department of Hematology and Oncology, Institute of Hematology "L. and A. Seràgnoli, University-Hospital S.Orsola-Malpighi, Bologna, Italy
| | - Andrea Pellagatti
- Blood Cancer UK Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, and Oxford BRC Haematology Theme, Oxford, UK
| | - Anna Maria Billi
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Pann-Ghill Suh
- Korea Brain Research Institute, Daegu, Republic of Korea.,School of Life Sciences, UNIST, Ulsan, Republic of Korea
| | - James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Jacqueline Boultwood
- Blood Cancer UK Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, and Oxford BRC Haematology Theme, Oxford, UK
| | - Lucia Manzoli
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Lucio Cocco
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Matilde Y Follo
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
6
|
Subcellular Localization Relevance and Cancer-Associated Mechanisms of Diacylglycerol Kinases. Int J Mol Sci 2020; 21:ijms21155297. [PMID: 32722576 PMCID: PMC7432101 DOI: 10.3390/ijms21155297] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/21/2020] [Accepted: 07/24/2020] [Indexed: 12/12/2022] Open
Abstract
An increasing number of reports suggests a significant involvement of the phosphoinositide (PI) cycle in cancer development and progression. Diacylglycerol kinases (DGKs) are very active in the PI cycle. They are a family of ten members that convert diacylglycerol (DAG) into phosphatidic acid (PA), two-second messengers with versatile cellular functions. Notably, some DGK isoforms, such as DGKα, have been reported to possess promising therapeutic potential in cancer therapy. However, further studies are needed in order to better comprehend their involvement in cancer. In this review, we highlight that DGKs are an essential component of the PI cycle that localize within several subcellular compartments, including the nucleus and plasma membrane, together with their PI substrates and that they are involved in mediating major cancer cell mechanisms such as growth and metastasis. DGKs control cancer cell survival, proliferation, and angiogenesis by regulating Akt/mTOR and MAPK/ERK pathways. In addition, some DGKs control cancer cell migration by regulating the activities of the Rho GTPases Rac1 and RhoA.
Collapse
|
7
|
Phosphoinositide-specific phospholipase C isoforms are conveyed by osteosarcoma-derived extracellular vesicles. J Cell Commun Signal 2020; 14:417-426. [PMID: 32583269 DOI: 10.1007/s12079-020-00571-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 06/14/2020] [Indexed: 10/24/2022] Open
Abstract
Cancer cells are able to release high amounts of extracellular vesicles, thereby conditioning the normal cells in the surrounding tissue and/or in distant target organs. In the context of bone cancers, previous studies suggested that osteosarcoma cancer cells produce transforming extracellular vesicles able to induce a tumour-like phenotype in normal recipient cells. Indeed, phosphoinositide-specific phospholipase C (PI-PLC) enzymes are differentially expressed in osteosarcoma cell lines with increasing aggressiveness, thus providing helpful insights to better define their role and functions in this bone tumour. By confocal microscopy analysis, we demonstrated that osteosarcoma-derived extracellular vesicles convey all the assessed PI-PLC isoforms, and that they localize into cell membrane bubble-like structures, resembling extracellular vesicles about to be released, as conveyed and/or membrane protein. Cytofluorimetric analysis confirmed the presence of PI-PLC isoforms in the extracellular vesicles collected from conditioned media of osteosarcoma cells. These findings suggest the feasibility to use circulating extracellular vesicles as biomarkers of osteosarcoma progression and/or the monitoring of this distressing disease.
Collapse
|
8
|
Follo MY, Pellagatti A, Ratti S, Ramazzotti G, Faenza I, Fiume R, Mongiorgi S, Suh PG, McCubrey JA, Manzoli L, Boultwood J, Cocco L. Recent advances in MDS mutation landscape: Splicing and signalling. Adv Biol Regul 2019; 75:100673. [PMID: 31711974 DOI: 10.1016/j.jbior.2019.100673] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 10/28/2019] [Accepted: 11/01/2019] [Indexed: 12/13/2022]
Abstract
Recurrent cytogenetic aberrations, genetic mutations and variable gene expression have been consistently recognized in solid cancers and in leukaemia, including in Myelodysplastic Syndromes (MDS). Besides conventional cytogenetics, the growing accessibility of new techniques has led to a deeper analysis of the molecular significance of genetic variations. Indeed, gene mutations affecting splicing genes, as well as genes implicated in essential signalling pathways, play a pivotal role in MDS physiology and pathophysiology, representing potential new molecular targets for innovative therapeutic strategies.
Collapse
Affiliation(s)
- Matilde Y Follo
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.
| | - Andrea Pellagatti
- Bloodwise Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford and Oxford BRC Haematology Theme, Oxford, UK
| | - Stefano Ratti
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Giulia Ramazzotti
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Irene Faenza
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Roberta Fiume
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Sara Mongiorgi
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Pann-Ghill Suh
- Korea Brain Research Institute, Daegu, Republic of Korea; School of Life Sciences, UNIST, Ulsan, Republic of Korea
| | - James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Lucia Manzoli
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Jacqueline Boultwood
- Bloodwise Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford and Oxford BRC Haematology Theme, Oxford, UK
| | - Lucio Cocco
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
9
|
PLCB4 upregulation is associated with unfavorable prognosis in pediatric acute myeloid leukemia. Oncol Lett 2019; 18:6057-6065. [PMID: 31788080 PMCID: PMC6865073 DOI: 10.3892/ol.2019.10921] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 08/21/2019] [Indexed: 02/07/2023] Open
Abstract
Phospholipase C (PLC) is a membrane-associated enzyme that regulates several cellular behaviors including cell motility, growth, transformation and differentiation. PLC is involved in cancer migration, invasion and drug resistance. However, the expression status and prognostic role of PLCB4 in acute myeloid leukemia (AML) remain unclear. In the present study, the complete clinical and mRNA expression data of 285 pediatric patients with de novo AML were obtained from the Therapeutically Available Research to Generate Effective Treatments database. The association between PLCB4 expression and clinical and molecular features was explored. The expression of PLCB4 was significantly higher in patients with AML who relapsed compared with those with long-term complete remission. Patients with PLCB4 upregulation had significantly lower overall survival (OS) and event free survival (EFS) rate compared with those with low PLCB4 expression. Multivariate Cox's regression analyses demonstrated that high PLCB4 expression was an independent risk factor of adverse OS (P<0.01; HR, 2.081) and EFS (P<0.01; HR, 2.130). Following stratification analysis according to transplant status in cases of first complete remission, the patients with high expression of PLCB4 had significantly lower OS and EFS rate in the chemotherapy group, but not the stem cell transplant group. Furthermore, PLCB4-associated genes were identified using Spearman's rank correlation analysis. KEGG pathway analysis revealed that PLCB4 and its associated genes were mainly involved in three potential pathways, including the Rap1 signaling pathway. Overall, the findings of the present study suggest that increased PLCB4 expression is associated with poor clinical outcome in pediatric patients with AML, and thus may represent a potential prognostic biomarker and therapeutic target for AML.
Collapse
|
10
|
Lo Vasco VR, Leopizzi M, Di Maio V, Della Rocca C. U-73122 reduces the cell growth in cultured MG-63 ostesarcoma cell line involving Phosphoinositide-specific Phospholipases C. SPRINGERPLUS 2016; 5:156. [PMID: 27026853 PMCID: PMC4766154 DOI: 10.1186/s40064-016-1768-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 02/12/2016] [Indexed: 11/24/2022]
Abstract
The definition of the number and nature of the signal transduction pathways involved in the pathogenesis and the identification of the molecules promoting metastasis spread might improve the knowledge of the natural history of osteosarcoma, also allowing refine the prognosis and opening the way to novel therapeutic strategies. Phosphatydil inositol (4,5) bisphosphate (PIP2), belonging to the Phosphoinositide (PI) signal transduction pathway, was related to the regulation of ezrin, an ezrin-radixin-moesin protein involved in metastatic osteosarcoma spread. The levels of PIP2 are regulated by means of the PI-specific Phospholipase C (PLC) enzymes. Recent literature data suggested that in osteosarcoma the panel of expression of PLC isoforms varies in a complex and unclear manner and is related to ezrin, probably networking with Ras GTPases, such as RhoA and Rac1. We analyzed the expression and the subcellular localization of PLC enzymes in cultured human osteosarcoma MG-63 cells, commonly used as an experimental model for human osteoblasts, using U-73122 PLC inhibitor, U-73343 inactive analogue, and by silencing ezrin. The treatment with U-73122 significantly reduces the number of MG-63 viable cells and contemporarily modifies the expression and the subcellular localization of selected PLC isoforms. U-73122 reduces the cell growth in cultured MG-63 ostesarcoma cell line involving PI-specific Phospholipases C.
Collapse
Affiliation(s)
- Vincenza Rita Lo Vasco
- />Sensory Organs Department, Policlinico Umberto I, Faculty of Medicine and Dentistry, Sapienza University of Rome, viale dell’Università, 33, 00157 Rome, Italy
| | - Martina Leopizzi
- />Medico-Surgical Sciences and Biotechnology Department, Polo Pontino- Sapienza University of Rome, 04100 Latina, Italy
| | - Valeria Di Maio
- />Medico-Surgical Sciences and Biotechnology Department, Polo Pontino- Sapienza University of Rome, 04100 Latina, Italy
| | - Carlo Della Rocca
- />Medico-Surgical Sciences and Biotechnology Department, Polo Pontino- Sapienza University of Rome, 04100 Latina, Italy
| |
Collapse
|
11
|
Zekri ARN, Hassan ZK, Bahnassy AA, Khaled HM, El-Rouby MN, Haggag RM, Abu-Taleb FM. Differentially expressed genes in metastatic advanced Egyptian bladder cancer. Asian Pac J Cancer Prev 2016; 16:3543-9. [PMID: 25921176 DOI: 10.7314/apjcp.2015.16.8.3543] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bladder cancer is one of the most common cancers worldwide. Gene expression profiling using microarray technologies improves the understanding of cancer biology. The aim of this study was to determine the gene expression profile in Egyptian bladder cancer patients. MATERIALS AND METHODS Samples from 29 human bladder cancers and adjacent non-neoplastic tissues were analyzed by cDNA microarray, with hierarchical clustering and multidimensional analysis. RESULTS Five hundred and sixteen genes were differentially expressed of which SOS1, HDAC2, PLXNC1, GTSE1, ULK2, IRS2, ABCA12, TOP3A, HES1, and SRP68 genes were involved in 33 different pathways. The most frequently detected genes were: SOS1 in 20 different pathways; HDAC2 in 5 different pathways; IRS2 in 3 different pathways. There were 388 down-regulated genes. PLCB2 was involved in 11 different pathways, MDM2 in 9 pathways, FZD4 in 5 pathways, p15 and FGF12 in 4 pathways, POLE2 in 3 pathways, and MCM4 and POLR2E in 2 pathways. Thirty genes showed significant differences between transitional cell cancer (TCC) and squamous cell cancer (SCC) samples. Unsupervised cluster analysis of DNA microarray data revealed a clear distinction between low and high grade tumors. In addition 26 genes showed significant differences between low and high tumor stages, including fragile histidine triad, Ras and sialyltransferase 8 (alpha) and 16 showed significant differences between low and high tumor grades, like methionine adenosyl transferase II, beta. CONCLUSIONS The present study identified some genes, that can be used as molecular biomarkers or target genes in Egyptian bladder cancer patients.
Collapse
Affiliation(s)
- Abdel-Rahman N Zekri
- Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt E-mail :
| | | | | | | | | | | | | |
Collapse
|
12
|
Lo Vasco VR, Leopizzi M, Della Rocca C. Ezrin-related Phosphoinositide pathway modifies RhoA and Rac1 in human osteosarcoma cell lines. J Cell Commun Signal 2015; 9:55-62. [PMID: 25618778 DOI: 10.1007/s12079-015-0265-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Accepted: 01/16/2015] [Indexed: 11/24/2022] Open
Abstract
Selected Phosphoinositide-specific Phospholipase C (PI-PLC) enzymes occupy the convergence point of the broad range of pathways that promote Rho and Ras GTPase mediated signalling, which also regulate the activation of ezrin, a member of the ezrin-radixin-moesin (ERM) proteins family involved in the metastatic osteosarcoma spread. Previous studies described that in distinct human osteosarcoma cell lines ezrin networks the PI-PLC with complex interplay controlling the expression of the PLC genes, which codify for PI-PLC enzymes. In the present study, we analyzed the expression and the sub-cellular distribution of RhoA and Rac1 respectively after ezrin silencing and after PI-PLC ε silencing, in order to investigate whether ezrin-RhoGTPAses signalling might involve one or more specific PI-PLC isoforms in cultured 143B and Hs888 human osteosarcoma cell lines. In the present experiments, both ezrin and PLCE gene silencing had different effects upon RhoA and Rac1 expression and sub-cellular localization. Displacements of Ezrin and of RhoA localization were observed, probably playing functional roles.
Collapse
Affiliation(s)
- V R Lo Vasco
- Organi di Senso Department, Policlinico Umberto I, Faculty of Medicine and Dentistry, Sapienza University, viale del Policlinico 155, 00185, Rome, Italy,
| | | | | |
Collapse
|
13
|
Ezrin silencing remodulates the expression of Phosphoinositide-specific Phospholipase C enzymes in human osteosarcoma cell lines. J Cell Commun Signal 2014; 8:219-29. [PMID: 25073508 DOI: 10.1007/s12079-014-0235-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 06/04/2014] [Indexed: 12/22/2022] Open
Abstract
Ezrin, a protein belonging to the Ezrin, radixin and moesin (ERM) family, was engaged in the metastatic spread of osteosarcoma. The Protein 4.1, Ezrin, radixin, moesin (FERM) domain of Ezrin binds the membrane Phosphatydil inositol (4,5) bisphosphate (PIP2), a crucial molecule belonging to the Phosphoinositide (PI) signal transduction pathway. The cytoskeleton cross-linker function of Ezrin largely depends on membrane PIP2 levels, and thus upon the activity of related enzymes belonging to the PI-specific phospholipase C (PI-PLC) family. Based on the role of Ezrin in tumour progression and metastasis, we silenced the expression of Vil2 (OMIM *123900), the gene which codifies for Ezrin, in cultured human osteosarcoma 143B and Hs888 cell lines. After Ezrin silencing, the growth rate of both cell lines was significantly reduced and morphogical changes were observed. We also observed moderate variations both of selected PI-PLC enzymes within the cell and of expression of the corresponding PLC genes. In 143B cell line the transcription of PLCB1 decreased, of PLCG2 increased and of PLCE differed in a time-dependent manner. In Hs888, the expression of PLCB1 and of PLCD4 significantly increased, of PLCE moderately increased in a time dependent manner; the expression of PLCG2 was up-regulated. These observations indicate that Ezrin silencing affects the transcription of selected PLC genes, suggesting that Ezrin might influence the expression regulation of PI-PLC enzymes.
Collapse
|
14
|
Abstract
Rapid progress has recently been made regarding how phospholipase C (PLC)-β functions downstream of G protein-coupled receptors and how PLC-β functions in the nucleus. PLC-β has also been shown to interplay with tyrosine kinase-based signaling pathways, specifically to inhibit Stat5 activation by recruiting the protein-tyrosine phosphatase SHP-1. In this regard, a new multimolecular signaling platform, named SPS complex, has been identified. The SPS complex has important regulatory roles in tumorigenesis and immune cell activation. Furthermore, a growing body of work suggests that PLC-β also participates in the differentiation and activation of immune cells that control both the innate and adaptive immune systems.
Collapse
Affiliation(s)
- Wenbin Xiao
- Department of Pathology, University Hospital Case Medical Center, Case Western Reserve University, Cleveland, OH 44106, USA.
| | | | | |
Collapse
|
15
|
Huang W, Barrett M, Hajicek N, Hicks S, Harden TK, Sondek J, Zhang Q. Small molecule inhibitors of phospholipase C from a novel high-throughput screen. J Biol Chem 2013; 288:5840-8. [PMID: 23297405 DOI: 10.1074/jbc.m112.422501] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Phospholipase C (PLC) isozymes are important signaling molecules, but few small molecule modulators are available to pharmacologically regulate their function. With the goal of developing a general approach for identification of novel PLC inhibitors, we developed a high-throughput assay based on the fluorogenic substrate reporter WH-15. The assay is highly sensitive and reproducible: screening a chemical library of 6280 compounds identified three novel PLC inhibitors that exhibited potent activities in two separate assay formats with purified PLC isozymes in vitro. Two of the three inhibitors also inhibited G protein-coupled receptor-stimulated PLC activity in intact cell systems. These results demonstrate the power of the high-throughput assay for screening large collections of small molecules to identify novel PLC modulators. Potent and selective modulators of PLCs will ultimately be useful for dissecting the roles of PLCs in cellular processes, as well as provide lead compounds for the development of drugs to treat diseases arising from aberrant phospholipase activity.
Collapse
Affiliation(s)
- Weigang Huang
- Division of Chemical Biology and Medicinal Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Molecular cytogenetic interphase analysis of Phosphoinositide-specific Phospholipase C β1 gene in paraffin-embedded brain samples of major depression patients. J Affect Disord 2012; 136:177-180. [PMID: 21880371 DOI: 10.1016/j.jad.2011.07.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 07/25/2011] [Accepted: 07/25/2011] [Indexed: 11/23/2022]
Abstract
Mood disorders represent a major medical need, as their chronic treatments are not effective in all patients. Literature data suggested that phosphoinositides (PI) signal transduction pathway and related molecules such as the Phosphoinositide-specific Phospholipase C (PI-PLC) enzymes, might be involved in the pathophysiology of mood disorders, including major depression. By using interphase fluorescent in situ hybridization methodology, we analyzed PLCB1 gene, which codifies for the PI-PLC β1 enzyme, in paraffin embedded samples of orbito-frontal cortex of 15 patients affected with major depression and in 15 normal controls. No deletions of PLCB1 were identified with the methodology used, which allows to exclude wide gene deletions. The results, the technical aspects of the FISH methodology, and its limitations are discussed.
Collapse
|
17
|
Lo Vasco VR, Pacini L, Di Raimo T, D'arcangelo D, Businaro R. Expression of phosphoinositide-specific phospholipase C isoforms in human umbilical vein endothelial cells. J Clin Pathol 2011; 64:911-5. [DOI: 10.1136/jclinpath-2011-200096] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
AimsThe signalling system of phosphoinositides (PIs) is involved in a number of cell and tissue functions including membrane trafficking, ion channel activity, cell cycle, apoptosis, differentiation and cell and tissue polarity. Recently, a role in cell migration was hypothesised for PI and related molecules including the phosphoinositide-specific phospholipases C (PI-PLCs), main players in PI signalling. The expression of PI-PLCs is tissue-specific and evidence suggests that it varies under different conditions such as tumour progression or cell activation. In order to obtain a complete picture, the expression of all PI-PLC isoforms was analysed in human endothelial cells (EC).MethodsUsing molecular biology methods (RT-PCR), the expression of PI-PLC isoforms was analysed in human umbilical vein endothelial cells (HUVEC), a widely used experimental model for human EC.ResultsAll the PI-PLC isoforms except PI-PLC β1, PI-PLC ɛ and PI-PLC ζ were expressed in HUVEC.ConclusionsThe growing interest in the complex cascade of events occurring in angiogenesis will provide useful insights for therapeutic strategies. The expression of PI-PLC isoforms in HUVEC is a useful tool for further studies directed to understanding their role in angiogenesis. However, although HUVEC represent a widely used experimental model for human macrovascular EC, limitations remain in that they cannot fully represent the metabolic properties and interactions of the EC distributed in the entire organism.
Collapse
|
18
|
Lo Vasco VR, Fabrizi C, Panetta B, Fumagalli L, Cocco L. Expression pattern and sub-cellular distribution of phosphoinositide specific phospholipase C enzymes after treatment with U-73122 in rat astrocytoma cells. J Cell Biochem 2010; 110:1005-12. [PMID: 20564200 DOI: 10.1002/jcb.22614] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Phosphoinositide specific phospholipase C (PI-PLC) enzymes interfere with the metabolism of inositol phospholipids (PI), molecules involved in signal transduction, a complex process depending on various components. Many evidences support the hypothesis that, in the glia, isoforms of PI-PLC family display different expression and/or sub cellular distribution under non-physiological conditions such as the rat astrocytes activation during neurodegeneration, the tumoural progression of some neoplasms and the inflammatory cascade activation after lipopolysaccharide administration, even if their role remains not completely elucidated. Treatment of a cultured established glioma cell line (C6 rat astrocytoma cell line) induces a modification in the pattern of expression and of sub cellular distribution of PI-PLCs compared to untreated cells. Special attention require PI-PLC beta3 and PI-PLC gamma2 isoforms, whose expression and sub cellular localization significantly differ after U-73122 treatment. The meaning of these modifications is unclear, also because the use of this N-aminosteroid compound remains controversial, inasmuch it has further actions which might contribute to the global effect recorded on the treated cells.
Collapse
Affiliation(s)
- Vincenza Rita Lo Vasco
- Department of Otorinolaringoiatria, Audiologia and Foniatria "G. Ferreri", Policlinico Umberto I, Rome, Italy.
| | | | | | | | | |
Collapse
|
19
|
Lo Vasco VR, Fabrizi C, Fumagalli L, Cocco L. Expression of phosphoinositide-specific phospholipase C isoenzymes in cultured astrocytes activated after stimulation with lipopolysaccharide. J Cell Biochem 2010; 109:1006-12. [PMID: 20082315 DOI: 10.1002/jcb.22480] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Signal transduction pathways, involved in cell cycle and activities, depend on various components including lipid signalling molecules, such as phosphoinositides and related enzymes. Many evidences support the hypothesis that inositol lipid cycle is involved in astrocytes activation during neurodegeneration. Previous studies investigated the pattern of expression of phosphoinositide-specific phospholipase C (PI-PLC) family isoforms in astrocytes, individuating in cultured neonatal rat astrocytes, supposed to be quiescent cells, the absence of some isoforms, accordingly to their well known tissue specificity. The same study was conducted in cultured rat astrocytoma C6 cells and designed a different pattern of expression of PI-PLCs in the neoplastic counterpart, accordingly to literature suggesting a PI signalling involvement in tumour progression. It is not clear the role of PI-PLC isoforms in inflammation; recent data demonstrate they are involved in cytokines production, with special regard to IL-6. PI-PLCs expression in LPS treated neonatal rat astrocytes performed by using RT-PCR, observed at 3, 6, 18 and 24 h intervals, expressed: PI-PLC beta1, beta4 and gamma1 in all intervals analysed; PI-PLC delta1 at 6, 18 and 24 h; PI-PLC delta3 at 6 h after treatment. PI-PLC beta3, delta4 and epsilon, present in untreated astrocytes, were not detected after LPS treatment. Immunocytochemical analysis, performed to visualize the sub-cellular distribution of the expressed isoforms, demonstrated different patterns of localisation at different times of exposure. These observations suggest that PI-PLCs expression and distribution may play a role in ongoing inflammation process of CNS.
Collapse
Affiliation(s)
- Vincenza Rita Lo Vasco
- Department of Otorinolaringoiatria, Audiologia and Foniatria G. Ferreri, Policlinico Umberto I, Rome, Italy.
| | | | | | | |
Collapse
|
20
|
Fukami K, Inanobe S, Kanemaru K, Nakamura Y. Phospholipase C is a key enzyme regulating intracellular calcium and modulating the phosphoinositide balance. Prog Lipid Res 2010; 49:429-37. [PMID: 20553968 DOI: 10.1016/j.plipres.2010.06.001] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Spatial and temporal activation of phosphoinositide turnover enables eukaryotic cells to perform various functions such as cell proliferation/differentiation, fertilization, neuronal functions, and cell motility. In this system, phospholipase C (PLC) is a key enzyme, which hydrolyzes phosphatidylinositol 4,5-bisphosphate (PI(4,5)P(2)) into two second messengers, inositol 1,4,5-trisphosphate (Ins(1,4,5)P(3)) and diacylglycerol (DAG). Ins(1,4,5)P(3) triggers the release of calcium from intracellular stores, and DAG mediates the activation of protein kinase C (PKC). In parallel, PI(4,5)P(2) also directly regulates a variety of cellular functions, including cytoskeletal remodeling, cytokinesis, phagocytosis, membrane dynamics, and channel activity, in addition to its role as a substrate for PLC and phosphatidylinositol 3-kinase (PI3K), which generates PI(3,4,5)P(3). An imbalance of these phosphoinositides contributes to the pathogeneses of various human diseases. Therefore, strict regulation of the levels of PI(4,5)P(2) and PI(3,4,5)P(3) by PLC or other interconverting enzymes is necessary for cellular functions. In this review, we focus on the roles of PLC as a calcium-regulating enzyme and as a modulator of the phosphoinositide balance.
Collapse
Affiliation(s)
- Kiyoko Fukami
- Laboratory of the Genome and Biosignals, Tokyo University of Pharmacy and Life Science, 1432-1 Horinouchi, Hachioji, Tokyo, Japan.
| | | | | | | |
Collapse
|
21
|
Lo Vasco VR. Signalling in the genomic era. J Cell Commun Signal 2010; 4:115-7. [PMID: 21063501 DOI: 10.1007/s12079-010-0091-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Accepted: 05/19/2010] [Indexed: 01/21/2023] Open
Abstract
For a complex organism, short range signalling is not sufficient to coordinate the behaviour of all cells composing itself. The response to stimuli is the reprogramming of cell activity (resulting in differentiation, proliferation, stand by or apoptosis depending on the set of signals). Cells own elaborate and complex systems of proteins that enable them to communicate, including both secreted signalling molecules and related factors, deriving from relic mechanisms. The intra and intercellular signalling are actively studied not only to comprehend the basic mechanisms that allowed the evolution of mammals species on earth, but also because the alteration of one or more of these pathways is recognized to be involved in a crescent number of human diseases, both degenerative and tumoural. That is, a growing body of evidences suggest that every human disease may be analyzed and classified by a "signalling disease" point of view. This approach opens new therapeutic perspectives, virtually amplifying for every single disease the number of therapeutic targets (in terms of both genes and proteins) to upstream and/or downstream, short and/or long distance proteins interacting with the altered molecule, thus individuating many other targets to which act upon.
Collapse
Affiliation(s)
- Vincenza Rita Lo Vasco
- Department of Otorinolaringoiatria, Foniatria e Audiologia "G. Ferreri", University of Rome "Sapienza", viale del Policlinico, 155 - 00185 Rome, Italy
| |
Collapse
|
22
|
Damm F, Lange K, Heuser M, Oberacker T, Morgan M, Wagner K, Krauter J, Schlegelberger B, Ganser A, Göhring G. Phosphoinositide phospholipase Cbeta1 (PI-PLCbeta1) gene in myelodysplastic syndromes and cytogenetically normal acute myeloid leukemia: not a deletion, but increased PI-PLCbeta1 expression is an independent prognostic factor. J Clin Oncol 2010; 28:e384-7; author reply e388-9. [PMID: 20516454 DOI: 10.1200/jco.2010.28.6971] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
23
|
Abstract
Cytokinesis is the final stage of cell division during which the two daughter cells separate completely. Although less well understood than some of the earlier phases of the cell cycle, recent discoveries have shed light on the mechanisms that orchestrate this process, including cleavage furrow formation, midbody maturation and abscission. One of the reasons why research on cytokinesis has been attracting increasing attention is the concept that failure of this process in mammals is associated with carcinogenesis. In this minireview, we will discuss the possible links between cytokinesis and cancer, and highlight key mechanisms that connect these processes.
Collapse
|
24
|
Chng WJ, Gertz MA, Chung TH, Van Wier S, Keats JJ, Baker A, Bergsagel PL, Carpten J, Fonseca R. Correlation between array-comparative genomic hybridization-defined genomic gains and losses and survival: identification of 1p31-32 deletion as a prognostic factor in myeloma. Leukemia 2010; 24:833-42. [PMID: 20220778 DOI: 10.1038/leu.2010.21] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In this study, we correlated array-comparative genomic hybridization-defined abnormalities with survival in two different cohorts of patients treated with therapy based on high-dose melphalan with autologous stem-cell transplantation (64 from the Mayo Clinic and 67 from the University of Arkansas Medical School) and identified that several regions of genomic gains and losses were significantly associated with poorer survival. Three noncontiguous survival relevant regions covering 1p31-33 and two noncontiguous regions covering 20p12.3-12.1 were common between the two datasets. The prognostic relevance of these hotspots was validated in an independent cohort using fluorescent in situ hybridization, which showed that 1p31-32 loss is significantly associated with shorter survival (24.5 months versus 40 months, log-rank P-value=0.01), whereas 20p12 loss has a trend toward shorter survival (26.3 months versus 40 months, log-rank P-value=0.06). On multivariate analysis, 1p31-32 loss is an independent prognostic factor. On further analysis, the prognostic impact of 1p31-32 loss is due to shortening of post-relapse survival as there is no impact on complete response rates and progression-free survival.
Collapse
Affiliation(s)
- W J Chng
- Department of Hematology, Comprehensive Cancer Center, Mayo Clinic, Scottsdale, AZ 85259, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Cocco L, Follo MY, Faenza I, Billi AM, Ramazzotti G, Martelli AM, Manzoli L, Weber G. Inositide signaling in the nucleus: From physiology to pathology. ACTA ACUST UNITED AC 2010; 50:2-11. [DOI: 10.1016/j.advenzreg.2009.10.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
26
|
Liu X, Zhao Q, Araki S, Zhang S, Miao J. Contrasting Effects of Phosphatidylinosital-and Phosphatidylcholine-Specific Phospholipase C on Apoptosis in Cultured Endothelial Cells. ACTA ACUST UNITED AC 2009; 13:205-11. [PMID: 16840176 DOI: 10.1080/10623320600760423] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
In the authors' previous studies, they found that phosphatidylcholine-specific phospholipase C (PC-PLC) and phosphatidylinositol-specific phospholipase C (PI-PLC) played contrary roles in the apoptosis of vascular endothelial cells (VECs), but the mechanism underlying the phenomenon remains unclear. To address this question, in this study, the authors investigated the changes of cell cycle distribution, the expression of P53, and the phosphorylation of Akt when PI-PLC was inhibited by its specific inhibitor compound 48/80, and they also examined the phosphorylation of Akt when VEC apoptosis was inhibited by D609, a specific inhibitor of PC-PLC. The results showed that suppression of PI-PLC promoted VEC apoptosis by inhibiting Akt phosphorylation, elevating P53 expression, and affecting the cell cycle distribution. Contrarily, suppression of PC-PLC promoted the phosphorylation of Akt. The data suggested that PI-PLC and PC-PLC might control the apoptosis by jointly regulating Akt phosphorylation, P53 expression, and affecting cell cycle in VECs.
Collapse
Affiliation(s)
- Xia Liu
- Institute of Developmental Biology, School of Life Science, Shandong University, Jinan, China
| | | | | | | | | |
Collapse
|
27
|
Follo MY, Finelli C, Clissa C, Mongiorgi S, Bosi C, Martinelli G, Baccarani M, Manzoli L, Martelli AM, Cocco L. Phosphoinositide-Phospholipase C β1 Mono-Allelic Deletion Is Associated With Myelodysplastic Syndromes Evolution Into Acute Myeloid Leukemia. J Clin Oncol 2009; 27:782-790. [DOI: 10.1200/jco.2008.19.3748] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Abstract
Purpose To evaluate the association between the presence of phosphoinositide-phospholipase C β1 (PI-PLCβ1) mono-allelic deletion with the clinical outcome of myelodysplastic syndromes (MDS) patients. Methods PI-PLCβ1, PI-PLCβ4, and PI-PLCγ1 cytogenetic investigations were performed on 80 newly diagnosed MDS patients (18 low risk, 26 intermediate 1, 18 intermediate 2, 18 high risk) comparing the results with the clinical outcome of the patients. Moreover, fluorescent in situ hybridization results were validated by real-time polymerase chain reaction (PCR). Finally, PI-PLCβ1 gene and protein expression were assessed by both real-time PCR and immunocytochemical experiments. Results Collectively, 35 (43.75%) of 80 of the MDS patients showed a specific mono-allelic deletion of PI-PLCβ1. Kaplan-Meier analysis revealed a significant association (P < .0001) between the PI-PLCβ1 mono-allelic deletion and a higher risk of evolution into acute myeloid leukemia (AML), since 23 of 35 MDS patients (65.7%) bearing the PI-PLCβ1 mono-allelic deletion evolved into AML. Even in multivariate analysis, the PI-PLCβ1 mono-allelic deletion retained a higher significance, with a P < .001, as a prognostic factor of evolution into AML (odds ratio [OR] 1.83; 95% CI, 2.26 to 17.24; P = .00045). Finally, PI-PLCβ1 deletion was related to an altered gene and protein expression. Conclusion PI-PLCβ1 mono-allelic deletion is associated with a worse clinical outcome in MDS patients, hinting at the identification of a new group at higher risk of AML evolution and representing a reliable prognostic tool. Moreover, targeting PI-PLCβ1 pathways might emerge as a new therapeutic strategy for MDS.
Collapse
Affiliation(s)
- Matilde Y. Follo
- From the Cellular Signalling Laboratory, Department of Human Anatomical Sciences; Institute of Hematology and Medical Oncology “L. e A. Seràgnoli”, University of Bologna; Hematology Unit, Ospedale Civile di Piacenza; and the Istituto per i Trapianti d'Organo e l'Immunocitologia del CNR, Sezione di Bologna, Bologna, Italy
| | - Carlo Finelli
- From the Cellular Signalling Laboratory, Department of Human Anatomical Sciences; Institute of Hematology and Medical Oncology “L. e A. Seràgnoli”, University of Bologna; Hematology Unit, Ospedale Civile di Piacenza; and the Istituto per i Trapianti d'Organo e l'Immunocitologia del CNR, Sezione di Bologna, Bologna, Italy
| | - Cristina Clissa
- From the Cellular Signalling Laboratory, Department of Human Anatomical Sciences; Institute of Hematology and Medical Oncology “L. e A. Seràgnoli”, University of Bologna; Hematology Unit, Ospedale Civile di Piacenza; and the Istituto per i Trapianti d'Organo e l'Immunocitologia del CNR, Sezione di Bologna, Bologna, Italy
| | - Sara Mongiorgi
- From the Cellular Signalling Laboratory, Department of Human Anatomical Sciences; Institute of Hematology and Medical Oncology “L. e A. Seràgnoli”, University of Bologna; Hematology Unit, Ospedale Civile di Piacenza; and the Istituto per i Trapianti d'Organo e l'Immunocitologia del CNR, Sezione di Bologna, Bologna, Italy
| | - Costanza Bosi
- From the Cellular Signalling Laboratory, Department of Human Anatomical Sciences; Institute of Hematology and Medical Oncology “L. e A. Seràgnoli”, University of Bologna; Hematology Unit, Ospedale Civile di Piacenza; and the Istituto per i Trapianti d'Organo e l'Immunocitologia del CNR, Sezione di Bologna, Bologna, Italy
| | - Giovanni Martinelli
- From the Cellular Signalling Laboratory, Department of Human Anatomical Sciences; Institute of Hematology and Medical Oncology “L. e A. Seràgnoli”, University of Bologna; Hematology Unit, Ospedale Civile di Piacenza; and the Istituto per i Trapianti d'Organo e l'Immunocitologia del CNR, Sezione di Bologna, Bologna, Italy
| | - Michele Baccarani
- From the Cellular Signalling Laboratory, Department of Human Anatomical Sciences; Institute of Hematology and Medical Oncology “L. e A. Seràgnoli”, University of Bologna; Hematology Unit, Ospedale Civile di Piacenza; and the Istituto per i Trapianti d'Organo e l'Immunocitologia del CNR, Sezione di Bologna, Bologna, Italy
| | - Lucia Manzoli
- From the Cellular Signalling Laboratory, Department of Human Anatomical Sciences; Institute of Hematology and Medical Oncology “L. e A. Seràgnoli”, University of Bologna; Hematology Unit, Ospedale Civile di Piacenza; and the Istituto per i Trapianti d'Organo e l'Immunocitologia del CNR, Sezione di Bologna, Bologna, Italy
| | - Alberto M. Martelli
- From the Cellular Signalling Laboratory, Department of Human Anatomical Sciences; Institute of Hematology and Medical Oncology “L. e A. Seràgnoli”, University of Bologna; Hematology Unit, Ospedale Civile di Piacenza; and the Istituto per i Trapianti d'Organo e l'Immunocitologia del CNR, Sezione di Bologna, Bologna, Italy
| | - Lucio Cocco
- From the Cellular Signalling Laboratory, Department of Human Anatomical Sciences; Institute of Hematology and Medical Oncology “L. e A. Seràgnoli”, University of Bologna; Hematology Unit, Ospedale Civile di Piacenza; and the Istituto per i Trapianti d'Organo e l'Immunocitologia del CNR, Sezione di Bologna, Bologna, Italy
| |
Collapse
|
28
|
Mellman DL, Anderson RA. A novel gene expression pathway regulated by nuclear phosphoinositides. ACTA ACUST UNITED AC 2009; 49:11-28. [DOI: 10.1016/j.advenzreg.2009.01.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
29
|
Cocco L, Faenza I, Follo MY, Billi AM, Ramazzotti G, Papa V, Martelli AM, Manzoli L. Nuclear inositides: PI-PLC signaling in cell growth, differentiation and pathology. ACTA ACUST UNITED AC 2009; 49:2-10. [DOI: 10.1016/j.advenzreg.2008.12.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
Suh PG, Park JI, Manzoli L, Cocco L, Peak JC, Katan M, Fukami K, Kataoka T, Yun SU, Ryu SH. Multiple roles of phosphoinositide-specific phospholipase C isozymes. BMB Rep 2008; 41:415-34. [DOI: 10.5483/bmbrep.2008.41.6.415] [Citation(s) in RCA: 369] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
31
|
Cocco L, Faenza I, Follo MY, Ramazzotti G, Gaboardi GC, Billi AM, Martelli AM, Manzoli L. Inositide signaling: Nuclear targets and involvement in myelodysplastic syndromes. ACTA ACUST UNITED AC 2008; 48:2-9. [PMID: 18280812 DOI: 10.1016/j.advenzreg.2007.11.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Lucio Cocco
- Cellular Signalling Laboratory, Department of Anatomical Sciences, University of Bologna, via Irnerio 48, 40126 Bologna, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Follo MY, Finelli C, Bosi C, Martinelli G, Mongiorgi S, Baccarani M, Manzoli L, Blalock WL, Martelli AM, Cocco L. PI-PLCβ-1 and activated Akt levels are linked to azacitidine responsiveness in high-risk myelodysplastic syndromes. Leukemia 2007; 22:198-200. [PMID: 17625605 DOI: 10.1038/sj.leu.2404855] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
33
|
Heck JN, Mellman DL, Ling K, Sun Y, Wagoner MP, Schill NJ, Anderson RA. A conspicuous connection: structure defines function for the phosphatidylinositol-phosphate kinase family. Crit Rev Biochem Mol Biol 2007; 42:15-39. [PMID: 17364683 DOI: 10.1080/10409230601162752] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The phosphatidylinositol phosphate (PIP) kinases are a unique family of enzymes that generate an assortment of lipid messengers, including the pivotal second messenger phosphatidylinositol 4,5-bisphosphate (PI4,5P2). While members of the PIP kinase family function by catalyzing a similar phosphorylation reaction, the specificity loop of each PIP kinase subfamily determines substrate preference and partially influences distinct subcellular targeting. Specific protein-protein interactions that are unique to particular isoforms or splice variants play a key role in targeting PIP kinases to appropriate subcellular compartments to facilitate the localized generation of PI4,5P2 proximal to effectors, a mechanism key for the function of PI4,5P2 as a second messenger. This review documents the discovery of the PIP kinases and their signaling products, and summarizes our current understanding of the mechanisms underlying the localized generation of PI4,5P2 by PIP kinases for the regulation of cellular events including actin cytoskeleton dynamics, vesicular trafficking, cell migration, and an assortment of nuclear events.
Collapse
Affiliation(s)
- Jessica N Heck
- Program in Molecular and Cellular Pharmacology, Department of Pharmacology, University of Wisconsin-Madison, University of Wisconsin Medical School, Madison, WI 53706, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Bertagnolo V, Benedusi M, Brugnoli F, Lanuti P, Marchisio M, Querzoli P, Capitani S. Phospholipase C-β2 promotes mitosis and migration of human breast cancer-derived cells. Carcinogenesis 2007; 28:1638-45. [PMID: 17429106 DOI: 10.1093/carcin/bgm078] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Like most human neoplasm, breast cancer has aberrations in signal transduction elements that can lead to increased proliferative potential, apoptosis inhibition, tissue invasion and metastasis. Due to the high heterogeneity of this tumor, currently, no markers are clearly associated with the insurgence of breast cancer, as well as with its progression from in situ lesion to invasive carcinoma. We have recently demonstrated an altered expression of the beta2 isoform of the phosphoinositide-dependent phospholipase C (PLC) in invasive breast tumors with different histopathological features. In primary breast tumor cells, elevated amounts of this protein are closely correlated with a poor prognosis of patients with mammary carcinoma, suggesting that PLC-beta2 may be involved in the development and worsening of the malignant phenotype. Here we demonstrate that PLC-beta2 may improve some malignant characteristics of tumor cells, like motility and invasion capability, but it fails to induce tumorigenesis in non-transformed breast-derived cells. We also report that, compared with the G(0)/G(1) phases of the cell cycle, the cells in S/G(2)/M phases show high PLC-beta2 expressions that reach the greatest levels during the late mitotic stages. In addition, even if unable to modify the proliferation rate and the expression of cell cycle-related enzymes of malignant cells, PLC-beta2 may promote the G(2)/M progression, a critical event in cancer evolution. Since phosphoinositides, substrates of PLC, are involved in regulating cytoskeleton architecture, PLC-beta2 in breast tumor cells may mediate the modification of cell shape that characterizes cell division, motility and invasion. On the basis of these data, PLC-beta2 may constitute a molecular marker of breast tumor cells able to monitor the progression to invasive cancers and a target for novel therapeutic breast cancer strategies.
Collapse
Affiliation(s)
- Valeria Bertagnolo
- Signal Transduction Unit, Laboratory of Cell Biology, Section of Human Anatomy, Department of Morphology and Embryology, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | | | | | | | | | | | | |
Collapse
|
35
|
Bavelloni A, Faenza I, Cioffi G, Piazzi M, Parisi D, Matic I, Maraldi NM, Cocco L. Proteomic-based analysis of nuclear signaling: PLCbeta1 affects the expression of the splicing factor SRp20 in Friend erythroleukemia cells. Proteomics 2007; 6:5725-34. [PMID: 17022104 DOI: 10.1002/pmic.200600318] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
An extensive body of evidence links inositide-specific phospholipase C (PLC) to the nucleus and the main isoform located in the nucleus is PLCbeta(1). Constitutive overexpression of nuclear PLCbeta(1) has been previously shown to inhibit Friend erythroleukemia cells differentiation and to induce cell cycle progression targeting cyclin D3. The aim of this study was to identify new proteins regulated by PLCbeta(1) overexpression, given the role exerted by its signaling in the nucleus during cell growth and differentiation. To identify novel downstream effectors of nuclear PLCbeta(1)-dependent signaling in Friend erythroleukemia cells, we performed the high-resolution 2-DE-based proteomic analysis. Using a proteomic approach we found that SRp20, a member of the highly conserved SR family of splicing regulators, was down-regulated in cells overexpressing nuclear PLCbeta(1) as compared with wild-type cells. Reduction in SRp20 was confirmed by 2-D Western blotting. Moreover, we have shown that nuclear PLCbeta(1) is bound to the SRp20 splicing factor. Indeed, by immunoprecipitation and subcellular fractioning, we have demonstrated that endogenous PLCbeta(1) and SRp20 physically interact in the nucleus. Here we show the existence of a PLCbeta(1)-specific target, the splicing factor SRp20, whose expression is specifically down-regulated by the nuclear signaling evoked by PLCbeta(1).
Collapse
MESH Headings
- Animals
- Blotting, Western
- Cell Nucleus/metabolism
- Cells, Cultured
- Down-Regulation
- Electrophoresis, Gel, Two-Dimensional
- Fluorescein-5-isothiocyanate
- Fluorescent Antibody Technique, Direct
- Fluorescent Dyes
- Gene Expression Regulation, Neoplastic
- Isoelectric Focusing
- Isoenzymes/genetics
- Isoenzymes/metabolism
- Leukemia, Erythroblastic, Acute/metabolism
- Leukemia, Erythroblastic, Acute/pathology
- Mice
- Microscopy, Fluorescence
- Peptide Mapping
- Phospholipase C beta
- Precipitin Tests
- Proteomics/methods
- RNA-Binding Proteins/metabolism
- RNA-Binding Proteins/physiology
- Serine-Arginine Splicing Factors
- Signal Transduction
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- Subcellular Fractions/metabolism
- Type C Phospholipases/genetics
- Type C Phospholipases/metabolism
Collapse
Affiliation(s)
- Alberto Bavelloni
- Laboratory of Cell Biology and Electron Microscopy, IOR, Bologna Italy
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Lo Vasco VR, Fabrizi C, Artico M, Cocco L, Billi AM, Fumagalli L, Manzoli FA. Expression of phosphoinositide-specific phospholipase C isoenzymes in cultured astrocytes. J Cell Biochem 2007; 100:952-9. [PMID: 17063484 DOI: 10.1002/jcb.21048] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Signal transduction from plasma membrane to cell nucleus is a complex process depending on various components including lipid signaling molecules, in particular phosphoinositides and their related enzymes, which act at cell periphery and/or plasma membrane as well as at nuclear level. As far as the nervous system may concern the inositol lipid cycle has been hypothesized to be involved in numerous neural as well as glial functions. In this context, however, a precise panel of glial PLC isoforms has not been determined yet. In the present experiments we investigated astrocytic PLC isoforms in astrocytes obtained from foetal primary cultures of rat brain and from an established cultured (C6) rat astrocytoma cell line, two well known cell models for experimental studies on glia. Identification of PLC isoforms was achieved by using a combination of RT-PCR and immunocytochemistry experiments. While in both cell models the most represented PI-PLC isoforms were beta4, gamma1, delta4, and epsilon, isoforms PI-PLC beta2 and delta3 were not detected. Moreover, in primary astrocyte cultures PI-PLC delta3 resulted well expressed in C6 cells but was absent in astrocytes. Immunocytochemistry performed with antibodies against specific PLC isoforms substantially confirmed this pattern of expression both in astrocytes and C6 glioma cells. In particular while some isoenzymes (namely isoforms beta3 and beta4) resulted mainly nuclear, others (isoforms delta4 and epsilon) were preferentially localized at cytoplasmic and plasma membrane level.
Collapse
Affiliation(s)
- Vincenza Rita Lo Vasco
- Department of Fisiologia e Farmacologia V Erspamer, Respiratorie e Morfologiche, University of Rome La Sapienza, Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
37
|
Cocco L, Follo MY, Faenza I, Bavelloni A, Billi AM, Martelli AM, Manzoli L. Nuclear inositide signaling: An appraisal of phospholipase C β1 behavior in myelodysplastic and leukemia cells. ACTA ACUST UNITED AC 2007; 47:2-9. [PMID: 17335878 DOI: 10.1016/j.advenzreg.2006.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Lucio Cocco
- Cellular Signalling Laboratory, Department of Anatomical Sciences, University of Bologna, via Irnerio 48, 40126 Bologna, Italy.
| | | | | | | | | | | | | |
Collapse
|
38
|
Cocco L, Faenza I, Fiume R, Maria Billi A, Gilmour RS, Manzoli FA. Phosphoinositide-specific phospholipase C (PI-PLC) β1 and nuclear lipid-dependent signaling. Biochim Biophys Acta Mol Cell Biol Lipids 2006; 1761:509-21. [PMID: 16624616 DOI: 10.1016/j.bbalip.2006.03.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2005] [Revised: 03/02/2006] [Accepted: 03/03/2006] [Indexed: 10/24/2022]
Abstract
Over the last years, evidence has suggested that phosphoinositides, which are involved in the regulation of a large variety of cellular processes both in the cytoplasm and in the plasma membrane, are present also within the nucleus. A number of advances has resulted in the discovery that phosphoinositide-specific phospholipase C signalling in the nucleus is involved in cell growth and differentiation. Remarkably, the nuclear inositide metabolism is regulated independently from that present elsewhere in the cell. Even though nuclear inositol lipids hydrolysis generates second messengers such as diacylglycerol and inositol 1,4,5-trisphosphate, it is becoming increasingly clear that in the nucleus polyphosphoinositides may act by themselves to influence pre-mRNA splicing and chromatin structure. Among phosphoinositide-specific phospholipase C, the beta(1) isoform appears to be one of the key players of the nuclear lipid signaling. This review aims at highlighting the most significant and up-dated findings about phosphoinositide-specific phospholipase C beta(1) in the nucleus.
Collapse
Affiliation(s)
- Lucio Cocco
- Cellular Signalling Laboratory, Department of Human Anatomical Sciences, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy.
| | | | | | | | | | | |
Collapse
|
39
|
|
40
|
Reply to Lo Vasco et al. Leukemia 2006. [DOI: 10.1038/sj.leu.2404111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
41
|
Herens C, Ketelslegers O, Tassin F, Hansen S, Bours V. Inositide-specific phospholipase c β1 gene deletion is a rare event in myelodysplastic syndromes. Leukemia 2006; 20:521-2; author reply 522-3. [PMID: 16424863 DOI: 10.1038/sj.leu.2404109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
42
|
Cocco L, Martelli AM, Fiume R, Faenza I, Billi AM, Manzoli FA. Signal transduction within the nucleus: Revisiting phosphoinositide inositide–specific phospholipase Cβ1. ACTA ACUST UNITED AC 2006; 46:2-11. [PMID: 16846636 DOI: 10.1016/j.advenzreg.2006.01.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Lucio Cocco
- Cellular Signaling Laboratory, Department of Anatomical Sciences, University of Bologna, via Irnerio 48, 40126 Bologna, Italy.
| | | | | | | | | | | |
Collapse
|
43
|
Martelli AM, Follo MY, Evangelisti C, Falà F, Fiume R, Billi AM, Cocco L. Nuclear inositol lipid metabolism: more than just second messenger generation? J Cell Biochem 2005; 96:285-92. [PMID: 16088939 DOI: 10.1002/jcb.20527] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A distinct polyphosphoinositide cycle is present in the nucleus, and growing evidence suggests its importance in DNA replication, gene transcription, and apoptosis. Even though it was initially thought that nuclear inositol lipids would function as a source for second messengers, recent findings strongly indicate that lipids present in the nucleus also fulfil other roles. The scope of this review is to highlight the most intriguing advances made in the field over the last few years, such as the possibility that nuclear phosphatidylinositol (4,5) bisphosphate is involved in maintaining chromatin in a transcriptionally active conformation, the new emerging roles for intranuclear phosphatidylinositol (3,4,5) trisphosphate and phosphoinositide 3-kinase, and the evidence which suggests a tight relationship between a decreased level of nuclear phosphoinositide specific phospholipase C-beta1 and the evolution of myelodisplastic syndrome into acute myeloid leukemia.
Collapse
Affiliation(s)
- Alberto M Martelli
- Dipartimento di Scienze Anatomiche Umane e Fisiopatologia dell'Apparato Locomotore, Sezione di Anatomia Umana, Cell Signalling Laboratory, Università di Bologna, 40126 Bologna, Italy
| | | | | | | | | | | | | |
Collapse
|
44
|
Verburgh E, Verhoef G, Vandenberghe P, Hagemeijer A. Deletion of the inositide-specific phospholipase c β1 gene is a rare event in myelodysplastic syndrome and thus of limited value to predict leukemic progression. Leukemia 2005; 19:2011-3. [PMID: 16193086 DOI: 10.1038/sj.leu.2403964] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
45
|
Smits SM, van der Nobelen S, Hornman KJM, von Oerthel L, Burbach JPH, Smidt MP. Signalling through phospholipase C beta 4 is not essential for midbrain dopaminergic neuron survival. Neuroscience 2005; 136:171-9. [PMID: 16198487 DOI: 10.1016/j.neuroscience.2005.07.053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2005] [Revised: 06/21/2005] [Accepted: 07/19/2005] [Indexed: 11/21/2022]
Abstract
The most prominent progressive neurodegenerative movement disorder, Parkinson's disease, is attributed to selective loss of dopamine neurons in the substantia nigra pars compacta, resulting in severe deficiency of dopamine. The homeo-domain gene, Pit x 3, is essential for proper development of midbrain dopaminergic neurons in the substantia nigra pars compacta and might be involved in midbrain dopaminergic survival pathways. The mGluR1-signaling downstream-effector phospholipase C beta 4 was identified in a suppression subtractive hybridization screen comparing wild-type and Pit x 3-deficient Aphakia midbrain dopaminergic neurons. Expression pattern analysis revealed that phospholipase C beta 4 was expressed in midbrain dopaminergic neurons of the substantia nigra pars compacta and part of the ventral tegmental area, whereas expression of mGluR1alpha was predominantly observed in the more vulnerable midbrain dopaminergic neurons in the lateral substantia nigra pars compacta. However, clear expression of phospholipase C beta 4 in spared midbrain dopaminergic neurons of Aphakia mice located in the ventral tegmental area, indicated that induction and maintenance of phospholipase C beta 4 expression is Pit x 3-independent in these neurons. Furthermore, we report here a normal distribution of midbrain dopaminergic cell bodies and axonal projection to the striatum in phospholipase C beta 4-/- mice, indicating that signaling of phospholipase C beta 4 is not essential for the survival of midbrain dopaminergic neurons.
Collapse
Affiliation(s)
- S M Smits
- Rudolf Magnus Institute of Neuroscience, Department of Pharmacology and Anatomy, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
46
|
Ruggeri A, Montebugnoli L, Matteucci A, Zini N, Solimando L, Servidio D, Suppa P, Cadenaro M, Cocco L, Breschi L. Cyclosporin A specifically affects nuclear PLCbeta1 in immunodepressed heart transplant patients with gingival overgrowth. J Dent Res 2005; 84:747-51. [PMID: 16040734 DOI: 10.1177/154405910508400812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
One of the most commonly observed adverse effects of cyclosporin A (CsA) is the development of gingival overgrowth (GO). Fibroblasts are involved in GO, but the question why only a percentage of patients undergoing CsA treatment shows this side-effect remains unanswered. In a previous study, CsA has been demonstrated to induce over-expression of phospholipase C (PLC) beta(1) in fibroblasts of patients with clinical GO, in cells from both enlarged and clinically healthy gingival sites. In this work, we assessed the expression of PLCbeta isoforms to investigate whether the exaggerated fibroblast response to CsA related to increased PLCbeta(1) expression could also be detected in CsA-treated patients without clinical signs of GO. Our results support the hypothesis of a multi-factorial origin of gingival overgrowth, including specific changes within the gingival tissues orchestrating fibroblastic hyper-responsiveness as a consequence of a long-term in vivo exposure to cyclosporin A.
Collapse
Affiliation(s)
- A Ruggeri
- Department of SAU&FAL, University of Bologna, c/o IOR, Bologna, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Cocco L, Manzoli L, Palka G, Martelli AM. Nuclear phospholipase C beta1, regulation of the cell cycle and progression of acute myeloid leukemia. ACTA ACUST UNITED AC 2005; 45:126-35. [PMID: 16024064 DOI: 10.1016/j.advenzreg.2005.02.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
A large number of observations have hinted at the fact that location impinges on function of some of the main players of nuclear inositol lipid cycle. PLC beta1 is a well-known example, given that it has been shown that only the enzyme located in the nucleus targets the cyclin D3/cdk4 complex, playing, in turn, a key role in the control of normal progression through the G1 phase of the cell cycle. The PLC beta1 gene, which is constituted of 36 small exons and large introns, maps on the short arm of human chromosome 20 (20pl2, nearby markers D20S917 and D20S177) with the specific probe (PAC clone HS881E24) spanning from exon 19 to 32 of the gene itself. The chromosome band 20pl2 has been shown to be rearranged in human diseases such as solid tumors without a more accurate definition of the alteration, maybe because of the absence of candidate genes or specific probes. Moreover, non-specific alterations in chromosome 20 have been found in patients affected by MDS and acute myeloid leukemia AML. MDS is an adult hematological disease that evolves into AML in about 30% of the cases. The availability of a highly specific probe gave an opportunity to perform in patients affected with MDS/AML, associated with normal karyotype, painting and FISH analysis aimed to check the PLC beta1 gene, given that this signaling molecule is a key player in the control of some checkpoints of the normal progression through the cell cycle. FISH analysis disclosed in a small group of MDS/AML patients with normal karyotype the monoallelic deletion of the PLC beta1 gene. In contrast, PLC beta4, another gene coding for a signaling molecule, located on 20pl2.3 at a distance as far as less than 1 Mb from PLC beta1, is unaffected in MDS patients with the deletion of PLC beta1 gene, hinting at an interstitial deletion. The MDS patients, bearing the deletion, rapidly evolved to AML, whilst the normal karyotype MDS patients, showing non-deletion of PLC beta1 gene, are still alive at least 24 months after the diagnosis. The immunocytochemical analysis using an anti PLC beta1 monoclonal antibody showed that all the AML/MDS patients who were normal at FISH analysis also had normal staining of the nucleus, which is a preferential site for PLC beta1. In contrast, the monoallelic deletion gave rise to a dramatic decrease of the nuclear staining suggesting a decreased expression of the nuclear PLC beta1. The reported data strengthen the contention of a key role played by PLC beta1 in the nucleus, suggest a possible involvement of PLC beta1 in the progression of MDS to AML and pave the way for a larger investigation aimed at identifying a possible high risk group among MDS patients with a normal karyotype.
Collapse
Affiliation(s)
- Lucio Cocco
- Cellular Signaling Laboratory, Department of Anatomical Sciences, University of Bologna, Via Irnerio 48, Bologna 40126, Italy.
| | | | | | | |
Collapse
|