1
|
Apple polyphenol phloretin complexed with ruthenium is capable of reprogramming the breast cancer microenvironment through modulation of PI3K/Akt/mTOR/VEGF pathways. Toxicol Appl Pharmacol 2022; 434:115822. [PMID: 34896434 DOI: 10.1016/j.taap.2021.115822] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/10/2021] [Accepted: 12/05/2021] [Indexed: 12/15/2022]
Abstract
Our recent investigation directed to synthesize a novel ruthenium-phloretin complex accompanied by the study of antioxidant in addition to DNA binding capabilities, to determine the chemotherapeutic activity against breast carcinoma in vitro and in vivo. Ruthenium-phloretin complex was synthesized and characterized by different spectroscopic methods. The complex was further investigated to determine its efficacy in both MCF-7 and MDA-MB-231 human carcinoma cell lines and finally in an in vivo model of mammary carcinogenesis induced by DMBA in rats. Our studies confirm that the chelation of the metal and ligand was materialize by the 3-OH and 9-OH functional groups of the ligand and the complex is found crystalline and was capable of intercalating with CT-DNA. The complex was capable of reducing cellular propagation and initiate apoptotic events in MCF-7 and MDA-MB-231 breast carcinoma cell lines. Ruthenium-phloretin complex could modulate p53 intervene apoptosis in the breast carcinoma, initiated by the trail of intrinsic apoptosis facilitated through Bcl2 and Bax and at the same time down regulating the PI3K/Akt/mTOR pathway coupled with MMP9 regulated tumor invasive pathways. Ruthenium-phloretin chemotherapy could interrupt, revoke or suspend the succession of breast carcinoma by altering intrinsic apoptosis along with the anti-angiogenic pathway.
Collapse
|
2
|
Li B, Jia R, Li W, Zhou Y, Guo D, Teng Q, Du S, Li M, Li W, Sun T, Ma D, Ji M, Ji C. PAK1 Mediates Bone Marrow Stromal Cell-Induced Drug Resistance in Acute Myeloid Leukemia via ERK1/2 Signaling Pathway. Front Cell Dev Biol 2021; 9:686695. [PMID: 34307365 PMCID: PMC8297649 DOI: 10.3389/fcell.2021.686695] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 06/03/2021] [Indexed: 12/20/2022] Open
Abstract
Background Chemoresistance is emerging as a major barrier to successful treatment in acute myeloid leukemia (AML), and bone marrow stromal cells (BMSCs) protect leukemia cells from chemotherapy eventually leading to recurrence. This study was designed to investigate the role of p21-activated kinase 1 (PAK1) in AML progression and chemosensitivity, highlighting the mechanism of stroma-mediated chemoresistance. Methods The GEPIA and TCGA datasets were used to analyze the relationship between PAK1 mRNA expression and various clinical parameters of AML patients. Cell proliferation and apoptosis were examined to evaluate the role of PAK1 on chemosensitivity in AML by silencing PAK1 with shRNA or small molecular inhibitor. Human BMSC (HS-5) was utilized to mimic the leukemia bone marrow microenvironment (BMM) in vitro, and co-culture model was established to investigate the role of PAK1 in BMSC-mediated drug resistance. Results p21-activated kinase 1 high expression was shown to be associated with shorter overall survival in AML patients. The silence of PAK1 could repress cell proliferation, promote apoptosis, and enhance the sensitivity of AML cells to chemotherapeutic agents. More importantly, BMSCs induced PAK1 up-regulation in AML cells, subsequently activating the ERK1/2 signaling pathway. The effect of BMSC-mediated apoptotic-resistance could be partly reversed by knock down of PAK1. Conclusion p21-activated kinase 1 is a potential prognostic predictor for AML patients. PAK1 may play a pivotal role in mediating BMM-induced drug resistance, representing a novel therapeutic target in AML.
Collapse
Affiliation(s)
- Banban Li
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Hematology, Taian City Central Hospital, Taian, China
| | - Ruinan Jia
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wei Li
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ying Zhou
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Dongmei Guo
- Department of Hematology, Taian City Central Hospital, Taian, China
| | - Qingliang Teng
- Department of Hematology, Taian City Central Hospital, Taian, China
| | - Shenghong Du
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Hematology, Taian City Central Hospital, Taian, China
| | - Mingying Li
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wěi Li
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tao Sun
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Key Laboratory of Immunohematology, Qilu Hospital, Shandong University, Jinan, China
| | - Daoxin Ma
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Key Laboratory of Immunohematology, Qilu Hospital, Shandong University, Jinan, China
| | - Min Ji
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chunyan Ji
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
3
|
Aydin E, Faehling S, Saleh M, Llaó Cid L, Seiffert M, Roessner PM. Phosphoinositide 3-Kinase Signaling in the Tumor Microenvironment: What Do We Need to Consider When Treating Chronic Lymphocytic Leukemia With PI3K Inhibitors? Front Immunol 2021; 11:595818. [PMID: 33552053 PMCID: PMC7857022 DOI: 10.3389/fimmu.2020.595818] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 12/07/2020] [Indexed: 12/12/2022] Open
Abstract
Phosphoinositide 3-kinases (PI3Ks) and their downstream proteins constitute a signaling pathway that is involved in both normal cell growth and malignant transformation of cells. Under physiological conditions, PI3K signaling regulates various cellular functions such as apoptosis, survival, proliferation, and growth, depending on the extracellular signals. A deterioration of these extracellular signals caused by mutational damage in oncogenes or growth factor receptors may result in hyperactivation of this signaling cascade, which is recognized as a hallmark of cancer. Although higher activation of PI3K pathway is common in many types of cancer, it has been therapeutically targeted for the first time in chronic lymphocytic leukemia (CLL), demonstrating its significance in B-cell receptor (BCR) signaling and malignant B-cell expansion. The biological activity of the PI3K pathway is not only limited to cancer cells but is also crucial for many components of the tumor microenvironment, as PI3K signaling regulates cytokine responses, and ensures the development and function of immune cells. Therefore, the success or failure of the PI3K inhibition is strongly related to microenvironmental stimuli. In this review, we outline the impacts of PI3K inhibition on the tumor microenvironment with a specific focus on CLL. Acknowledging the effects of PI3K inhibitor-based therapies on the tumor microenvironment in CLL can serve as a rationale for improved drug development, explain treatment-associated adverse events, and suggest novel combinatory treatment strategies in CLL.
Collapse
Affiliation(s)
- Ebru Aydin
- Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Institute of Clinical Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Sebastian Faehling
- Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Medical Faculty, University of Heidelberg, Heidelberg, Germany
| | - Mariam Saleh
- Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Molecular Medicine, Ulm University, Ulm, Germany
| | - Laura Llaó Cid
- Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Bioscience, University of Heidelberg, Heidelberg, Germany
| | - Martina Seiffert
- Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Philipp M Roessner
- Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
4
|
Park YL, Kim HP, Cho YW, Min DW, Cheon SK, Lim YJ, Song SH, Kim SJ, Han SW, Park KJ, Kim TY. Activation of WNT/β-catenin signaling results in resistance to a dual PI3K/mTOR inhibitor in colorectal cancer cells harboring PIK3CA mutations. Int J Cancer 2018; 144:389-401. [PMID: 29978469 PMCID: PMC6587482 DOI: 10.1002/ijc.31662] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 04/18/2018] [Accepted: 06/07/2018] [Indexed: 01/28/2023]
Abstract
PIK3CA is a frequently mutated gene in cancer, including about ~15 to 20% of colorectal cancers (CRC). PIK3CA mutations lead to activation of the PI3K/AKT/mTOR signaling pathway, which plays pivotal roles in tumorigenesis. Here, we investigated the mechanism of resistance of PIK3CA-mutant CRC cell lines to gedatolisib, a dual PI3K/mTOR inhibitor. Out of a panel of 29 CRC cell lines, we identified 7 harboring one or more PIK3CA mutations; of these, 5 and 2 were found to be sensitive and resistant to gedatolisib, respectively. Both of the gedatolisib-resistant cell lines expressed high levels of active glycogen synthase kinase 3-beta (GSK3β) and harbored the same frameshift mutation (c.465_466insC; H155fs*) in TCF7, which encodes a positive transcriptional regulator of the WNT/β-catenin signaling pathway. Inhibition of GSK3β activity in gedatolisib-resistant cells by siRNA-mediated knockdown or treatment with a GSK3β-specific inhibitor effectively reduced the activity of molecules downstream of mTOR and also decreased signaling through the WNT/β-catenin pathway. Notably, GSK3β inhibition rendered the resistant cell lines sensitive to gedatolisib cytotoxicity, both in vitro and in a mouse xenograft model. Taken together, these data demonstrate that aberrant regulation of WNT/β-catenin signaling and active GSK3β induced by the TCF7 frameshift mutation cause resistance to the dual PI3K/mTOR inhibitor gedatolisib. Cotreatment with GSK3β inhibitors may be a strategy to overcome the resistance of PIK3CA- and TCF7-mutant CRC to PI3K/mTOR-targeted therapies.
Collapse
Affiliation(s)
- Ye-Lim Park
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea.,Cancer Research Institute, Seoul National University, Seoul, South Korea
| | - Hwang-Phill Kim
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea.,Cancer Research Institute, Seoul National University, Seoul, South Korea
| | - Young-Won Cho
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea.,Cancer Research Institute, Seoul National University, Seoul, South Korea
| | - Dong-Wook Min
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea.,Cancer Research Institute, Seoul National University, Seoul, South Korea
| | - Seul-Ki Cheon
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea.,Cancer Research Institute, Seoul National University, Seoul, South Korea
| | - Yoo Joo Lim
- Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Sang-Hyun Song
- Cancer Research Institute, Seoul National University, Seoul, South Korea
| | - Sung Jin Kim
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA
| | - Sae-Won Han
- Cancer Research Institute, Seoul National University, Seoul, South Korea.,Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Kyu Joo Park
- Department of Surgery, Seoul National University College of Medicine, Seoul, South Korea
| | - Tae-You Kim
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea.,Cancer Research Institute, Seoul National University, Seoul, South Korea.,Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea
| |
Collapse
|
5
|
Simioni C, Martelli AM, Zauli G, Vitale M, McCubrey JA, Capitani S, Neri LM. Targeting the phosphatidylinositol 3-kinase/Akt/mechanistic target of rapamycin signaling pathway in B-lineage acute lymphoblastic leukemia: An update. J Cell Physiol 2018; 233:6440-6454. [PMID: 29667769 DOI: 10.1002/jcp.26539] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 02/12/2018] [Indexed: 12/26/2022]
Abstract
Despite considerable progress in treatment protocols, B-lineage acute lymphoblastic leukemia (B-ALL) displays a poor prognosis in about 15-20% of pediatric cases and about 60% of adult patients. In addition, life-long irreversible late effects from chemo- and radiation therapy, including secondary malignancies, are a growing problem for leukemia survivors. Targeted therapy holds promising perspectives for cancer treatment as it may be more effective and have fewer side effects than conventional therapies. The phosphatidylinositol 3-phosphate kinase (PI3K)/Akt/mechanistic target of rapamycin (mTOR) signaling pathway is a key regulatory cascade which controls proliferation, survival and drug-resistance of cancer cells, and it is frequently upregulated in the different subtypes of B-ALL, where it plays important roles in the pathophysiology, maintenance and progression of the disease. Moreover, activation of this signaling cascade portends a poorer prognosis in both pediatric and adult B-ALL patients. Promising preclinical data on PI3K/Akt/mTOR inhibitors have documented their anticancer activity in B-ALL and some of these novel drugs have entered clinical trials as they could lead to a longer event-free survival and reduce therapy-associated toxicity for patients with B-ALL. This review highlights the current status of PI3K/Akt/mTOR inhibitors in B-ALL, with an emphasis on emerging evidence of the superior efficacy of synergistic combinations involving the use of traditional chemotherapeutics or other novel, targeted agents.
Collapse
Affiliation(s)
- Carolina Simioni
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Alberto M Martelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Giorgio Zauli
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Marco Vitale
- Department of Medicine and Surgery, University of Parma, Parma, Italy.,CoreLab, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina
| | - Silvano Capitani
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Luca M Neri
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
6
|
Kim Y, Kim C, Son SM, Song H, Hong HS, Han SH, Mook-Jung I. The novel RAGE interactor PRAK is associated with autophagy signaling in Alzheimer's disease pathogenesis. Mol Neurodegener 2016; 11:4. [PMID: 26758977 PMCID: PMC4709948 DOI: 10.1186/s13024-016-0068-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 01/04/2016] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND The receptor for advanced glycation end products (RAGE) has been found to interact with amyloid β (Aβ). Although RAGE does not have any kinase motifs in its cytosolic domain, the interaction between RAGE and Aβ triggers multiple cellular signaling involved in Alzheimer's disease (AD). However, the mechanism of signal transduction by RAGE remains still unknown. Therefore, identifying binding proteins of RAGE may provide novel therapeutic targets for AD. RESULTS In this study, we identified p38-regulated/activated protein kinase (PRAK) as a novel RAGE interacting molecule. To investigate the effect of Aβ on PRAK mediated RAGE signaling pathway, we treated SH-SY5Y cells with monomeric form of Aβ. We demonstrated that Aβ significantly increased the phosphorylation of PRAK as well as the interaction between PRAK and RAGE. We showed that knockdown of PRAK rescued mTORC1 inactivation induced by Aβ treatment and decreased the formation of Aβ-induced autophagosome. CONCLUSIONS We provide evidence that PRAK plays a critical role in AD pathology as a key interactor of RAGE. Thus, our data suggest that PRAK might be a potential therapeutic target of AD involved in RAGE-mediated cell signaling induced by Aβ.
Collapse
Affiliation(s)
- Yoonhee Kim
- Department of Biochemistry and Biomedical Sciences, Seoul National University College of Medicine, 103 Daehak-ro, Jongro-gu, Seoul, 110-799, Korea.
| | - Chaeyoung Kim
- Department of Biochemistry and Biomedical Sciences, Seoul National University College of Medicine, 103 Daehak-ro, Jongro-gu, Seoul, 110-799, Korea.
| | - Sung Min Son
- Department of Biochemistry and Biomedical Sciences, Seoul National University College of Medicine, 103 Daehak-ro, Jongro-gu, Seoul, 110-799, Korea.
| | - Hyundong Song
- Department of Biochemistry and Biomedical Sciences, Seoul National University College of Medicine, 103 Daehak-ro, Jongro-gu, Seoul, 110-799, Korea.
| | - Hyun Seok Hong
- Department of Biochemistry and Biomedical Sciences, Seoul National University College of Medicine, 103 Daehak-ro, Jongro-gu, Seoul, 110-799, Korea.
| | - Sun-ho Han
- Department of Biochemistry and Biomedical Sciences, Seoul National University College of Medicine, 103 Daehak-ro, Jongro-gu, Seoul, 110-799, Korea.
| | - Inhee Mook-Jung
- Department of Biochemistry and Biomedical Sciences, Seoul National University College of Medicine, 103 Daehak-ro, Jongro-gu, Seoul, 110-799, Korea.
| |
Collapse
|
7
|
Abstract
Alzheimer's disease (AD) is characterized by cognitive impairment in clinical presentation, and by β-amyloid (Aβ) production and the hyper-phosphorylation of tau in basic research. More highlights demonstrate that the activation of the mammalian target of rapamycin (mTOR) enhances Aβ generation and deposition by modulating amyloid precursor protein (APP) metabolism and upregulating β- and γ-secretases. mTOR, an inhibitor of autophagy, decreases Aβ clearance by scissoring autophagy function. mTOR regulates Aβ generation or Aβ clearance by regulating several key signaling pathways, including phosphoinositide 3-kinase (PI3-K)/protein kinase B (Akt), glycogen synthase kinase 3 [GSK-3], AMP-activated protein kinase (AMPK), and insulin/insulin-like growth factor 1 (IGF-1). The activation of mTOR is also a contributor to aberrant hyperphosphorylated tau. Rapamycin, the inhibitor of mTOR, may mitigate cognitive impairment and inhibit the pathologies associated with amyloid plaques and neurofibrillary tangles by promoting autophagy. Furthermore, the upstream and downstream components of mTOR signaling are involved in the pathogenesis and progression of AD. Hence, inhibiting the activation of mTOR may be an important therapeutic target for AD.
Collapse
Affiliation(s)
- Zhiyou Cai
- Department of Neurology, Renmin Hospital, Hubei University of Medicine, Shiyan Renmin Hospital, Shiyan, Hubei Province, People's Republic of China
| | - Guanghui Chen
- Department of Neurology, Renmin Hospital, Hubei University of Medicine, Shiyan Renmin Hospital, Shiyan, Hubei Province, People's Republic of China
| | - Wenbo He
- Department of Neurology, Renmin Hospital, Hubei University of Medicine, Shiyan Renmin Hospital, Shiyan, Hubei Province, People's Republic of China
| | - Ming Xiao
- Department of Anatomy, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Liang-Jun Yan
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, USA
| |
Collapse
|
8
|
Chen C, Zhang HX, Wang M, Song XG, Cao J, Wang L, Qiao JL, Lu XY, Han ZX, Zhu P, Pan B, Wu QY, Zhao K, Yan ZL, Li ZY, Zeng LY, Xu KL. Stromal cells attenuate the cytotoxicity of imatinib on Philadelphia chromosome-positive leukemia cells by up-regulating the VE-cadherin/β-catenin signal. Leuk Res 2014; 38:1460-8. [PMID: 25443888 DOI: 10.1016/j.leukres.2014.09.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 08/04/2014] [Accepted: 09/13/2014] [Indexed: 11/24/2022]
Abstract
β-Catenin is a key regulator of leukemia stem cell maintenance and drug resistance. Herein, we investigated the protective effects of the stromal cell-mediated VE-cadherin-β-catenin signal on Ph+ leukemia cells during imatinib treatment. We found stromal cells could desensitize imatinib and up-regulate VE-cadherin expression on Ph+ leukemia cells (K562 and SUP-B15 cells), which further stabilized and activated β-catenin. Knockdown of VE-cadherin with shRNA diminished the β-catenin protein and partly resensitized Ph+ leukemia cells to imatinib despite the presence of stromal cells, suggesting VE-cadherin is a potential target in the treatment of Ph+ leukemia.
Collapse
Affiliation(s)
- Chong Chen
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, China; Laboratory of Transplantation and Immunology, Xuzhou Medical College, Xuzhou, China
| | - Huan-Xin Zhang
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, China
| | - Man Wang
- Laboratory of Transplantation and Immunology, Xuzhou Medical College, Xuzhou, China
| | - Xu-Guang Song
- Laboratory of Transplantation and Immunology, Xuzhou Medical College, Xuzhou, China
| | - Jiang Cao
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, China; Laboratory of Transplantation and Immunology, Xuzhou Medical College, Xuzhou, China
| | - Lin Wang
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, China; Laboratory of Transplantation and Immunology, Xuzhou Medical College, Xuzhou, China
| | - Jian-Lin Qiao
- Laboratory of Transplantation and Immunology, Xuzhou Medical College, Xuzhou, China
| | - Xiao-Yun Lu
- Laboratory of Transplantation and Immunology, Xuzhou Medical College, Xuzhou, China
| | - Zheng-Xiang Han
- Department of Oncology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, China
| | - Ping Zhu
- Department of Oncology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, China
| | - Bin Pan
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, China
| | - Qing-Yun Wu
- Laboratory of Transplantation and Immunology, Xuzhou Medical College, Xuzhou, China
| | - Kai Zhao
- Laboratory of Transplantation and Immunology, Xuzhou Medical College, Xuzhou, China
| | - Zhi-Ling Yan
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, China
| | - Zhen-Yu Li
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, China
| | - Ling-Yu Zeng
- Laboratory of Transplantation and Immunology, Xuzhou Medical College, Xuzhou, China
| | - Kai-Lin Xu
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, China; Laboratory of Transplantation and Immunology, Xuzhou Medical College, Xuzhou, China.
| |
Collapse
|
9
|
Baraz R, Cisterne A, Saunders PO, Hewson J, Thien M, Weiss J, Basnett J, Bradstock KF, Bendall LJ. mTOR inhibition by everolimus in childhood acute lymphoblastic leukemia induces caspase-independent cell death. PLoS One 2014; 9:e102494. [PMID: 25014496 PMCID: PMC4094511 DOI: 10.1371/journal.pone.0102494] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 06/19/2014] [Indexed: 12/11/2022] Open
Abstract
Increasingly, anti-cancer medications are being reported to induce cell death mechanisms other than apoptosis. Activating alternate death mechanisms introduces the potential to kill cells that have defects in their apoptotic machinery, as is commonly observed in cancer cells, including in hematological malignancies. We, and others, have previously reported that the mTOR inhibitor everolimus has pre-clinical efficacy and induces caspase-independent cell death in acute lymphoblastic leukemia cells. Furthermore, everolimus is currently in clinical trial for acute lymphoblastic leukemia. Here we characterize the death mechanism activated by everolimus in acute lymphoblastic leukemia cells. We find that cell death is caspase-independent and lacks the morphology associated with apoptosis. Although mitochondrial depolarization is an early event, permeabilization of the outer mitochondrial membrane only occurs after cell death has occurred. While morphological and biochemical evidence shows that autophagy is clearly present it is not responsible for the observed cell death. There are a number of features consistent with paraptosis including morphology, caspase-independence, and the requirement for new protein synthesis. However in contrast to some reports of paraptosis, the activation of JNK signaling was not required for everolimus-induced cell death. Overall in acute lymphoblastic leukemia cells everolimus induces a cell death that resembles paraptosis.
Collapse
Affiliation(s)
- Rana Baraz
- Centre for Cancer Research, Westmead Millennium Institute, University of Sydney, Westmead, NSW, Australia
| | - Adam Cisterne
- Centre for Cancer Research, Westmead Millennium Institute, University of Sydney, Westmead, NSW, Australia
| | - Philip O. Saunders
- Centre for Cancer Research, Westmead Millennium Institute, University of Sydney, Westmead, NSW, Australia
| | - John Hewson
- Centre for Cancer Research, Westmead Millennium Institute, University of Sydney, Westmead, NSW, Australia
| | - Marilyn Thien
- Centre for Cancer Research, Westmead Millennium Institute, University of Sydney, Westmead, NSW, Australia
| | - Jocelyn Weiss
- Centre for Cancer Research, Westmead Millennium Institute, University of Sydney, Westmead, NSW, Australia
| | - Jordan Basnett
- Centre for Cancer Research, Westmead Millennium Institute, University of Sydney, Westmead, NSW, Australia
| | | | - Linda J. Bendall
- Centre for Cancer Research, Westmead Millennium Institute, University of Sydney, Westmead, NSW, Australia
- * E-mail:
| |
Collapse
|
10
|
Shishido S, Bönig H, Kim YM. Role of integrin alpha4 in drug resistance of leukemia. Front Oncol 2014; 4:99. [PMID: 24904821 PMCID: PMC4033044 DOI: 10.3389/fonc.2014.00099] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 04/22/2014] [Indexed: 11/20/2022] Open
Abstract
Chemotherapeutic drug resistance in acute lymphoblastic leukemia (ALL) is a significant problem, resulting in poor responsiveness to first-line treatment or relapse after transient remission. Classical anti-leukemic drugs are non-specific cell cycle poisons; some more modern drugs target oncogenic pathways in leukemia cells, although in ALL these do not play a very significant role. By contrast, the molecular interactions between microenvironment and leukemia cells are often neglected in the design of novel therapies against drug resistant leukemia. It was shown however, that chemotherapy resistance is promoted in part through cell–cell contact of leukemia cells with bone marrow (BM) stromal cells, also called cell adhesion-mediated drug resistance (CAM-DR). Incomplete response to chemotherapy results in persistence of resistant clones with or without detectable minimal residual disease (MRD). Approaches for how to address CAM-DR and MRD remain elusive. Specifically, studies using anti-functional antibodies and genetic models have identified integrin alpha4 as a critical molecule regulating BM homing and active retention of normal and leukemic cells. Pre-clinical evidence has been provided that interference with alpha4-mediated adhesion of ALL cells can sensitize them to chemotherapy and thus facilitate eradication of ALL cells in an MRD setting. To this end, Andreeff and colleagues recently provided evidence of stroma-induced and alpha4-mediated nuclear factor-κB signaling in leukemia cells, disruption of which depletes leukemia cells of strong survival signals. We here review the available evidence supporting the targeting of alpha4 as a novel strategy for treatment of drug resistant leukemia.
Collapse
Affiliation(s)
- Stephanie Shishido
- Division of Hematology and Oncology, Department of Pediatrics, Children's Hospital Los Angeles, University of Southern California Keck School of Medicine , Los Angeles, CA , USA
| | - Halvard Bönig
- Institute for Transfusion Medicine and Immunohematology, German Red Cross Blood Service Baden-Wuerttemberg-Hessen, Goethe University , Frankfurt , Germany
| | - Yong-Mi Kim
- Division of Hematology and Oncology, Department of Pediatrics, Children's Hospital Los Angeles, University of Southern California Keck School of Medicine , Los Angeles, CA , USA
| |
Collapse
|
11
|
Cirone P, Andresen CJ, Eswaraka JR, Lappin PB, Bagi CM. Patient-derived xenografts reveal limits to PI3K/mTOR- and MEK-mediated inhibition of bladder cancer. Cancer Chemother Pharmacol 2014; 73:525-38. [PMID: 24442130 DOI: 10.1007/s00280-014-2376-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 01/06/2014] [Indexed: 02/07/2023]
Abstract
BACKGROUND Metastatic bladder cancer is a serious condition with a 5-year survival rate of approximately 14 %, a rate that has remained unchanged for almost three decades. Thus, there is a profound need to identify the driving mutations for these aggressive tumors to better determine appropriate treatments. Mutational analyses of clinical samples suggest that mutations in either the phosphoinositide-3 kinase (PI3K)-AKT-mammalian target of rapamycin (mTOR) or RAS/MEK/ERK pathways drive bladder cancer progression, although it remains to be tested whether the inhibition of either (or both) of these pathways can arrest PI3K/mTOR- or Ras-driven proliferation. METHODS Herein, we used several bladder cancer cell lines to determine drug sensitivity according to genetic background and also studied mouse models of engrafted UM-UC-3 cells and patient-derived xenografts (PDXs) to test PI3K/mTOR and MEK inhibition in vivo. RESULTS Inhibition of these pathways utilizing PF-04691502, a PI3K and mTOR inhibitor, and PD-0325901, a MEK inhibitor, slowed the tumor growth of PDX models of bladder cancer. The growth inhibitory effect of combination therapy was similar to that of the clinical maximum dose of cisplatin; mechanistically, this appeared to predominantly occur via drug-induced cytostatic growth inhibition as well as diminished vascular endothelial growth factor secretion in the tumor models. Kinase arrays of tumors harvested after treatment demonstrated activated p53 and Axl as well as STAT1 and STAT3. CONCLUSION Taken together, these results indicate that clinically relevant doses of PF-04691502 and PD-0325901 can suppress bladder tumor growth in PDX models, thus offering additional potential treatment options by a precision medicine approach.
Collapse
|
12
|
Nemes K, Sebestyén A, Márk Á, Hajdu M, Kenessey I, Sticz T, Nagy E, Barna G, Váradi Z, Kovács G, Kopper L, Csóka M. Mammalian target of rapamycin (mTOR) activity dependent phospho-protein expression in childhood acute lymphoblastic leukemia (ALL). PLoS One 2013; 8:e59335. [PMID: 23573198 PMCID: PMC3616065 DOI: 10.1371/journal.pone.0059335] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 02/13/2013] [Indexed: 11/19/2022] Open
Abstract
Modern treatment strategies have improved the prognosis of childhood ALL; however, treatment still fails in 25–30% of patients. Further improvement of treatment may depend on the development of targeted therapies. mTOR kinase, a central mediator of several signaling pathways, has recently attracted remarkable attention as a potential target in pediatric ALL. However, limited data exists about the activity of mTOR. In the present study, the amount of mTOR activity dependent phospho-proteins was characterized by ELISA in human leukemia cell lines and in lymphoblasts from childhood ALL patients (n = 49). Expression was measured before and during chemotherapy and at relapses. Leukemia cell lines exhibited increased mTOR activity, indicated by phospho-S6 ribosomal protein (p-S6) and phosphorylated eukaryotic initiation factor 4E binding protein (p-4EBP1). Elevated p-4EBP1 protein levels were detected in ALL samples at diagnosis; efficacy of chemotherapy was followed by the decrease of mTOR activity dependent protein phosphorylation. Optical density (OD) for p-4EBP1 (ELISA) was significantly higher in patients with poor prognosis at diagnosis, and in the samples of relapsed patients. Our results suggest that measuring mTOR activity related phospho-proteins such as p-4EBP1 by ELISA may help to identify patients with poor prognosis before treatment, and to detect early relapses. Determining mTOR activity in leukemic cells may also be a useful tool for selecting patients who may benefit from future mTOR inhibitor treatments.
Collapse
Affiliation(s)
- Karolina Nemes
- 2 Department of Pediatrics, Semmelweis University, Budapest, Hungary
- 1 Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Anna Sebestyén
- 1 Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
- Tumor Progression Research Group of the Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Ágnes Márk
- 1 Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Melinda Hajdu
- 1 Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - István Kenessey
- 2 Department of Pathology, Semmelweis University, Budapest, Hungary
| | - Tamás Sticz
- 1 Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Eszter Nagy
- National Institute of Rheumatology and Physiotherapy, Budapest, Hungary
| | - Gábor Barna
- 1 Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Zsófia Váradi
- 2 Department of Pediatrics, Semmelweis University, Budapest, Hungary
- 1 Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Gábor Kovács
- 2 Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - László Kopper
- 1 Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Monika Csóka
- 2 Department of Pediatrics, Semmelweis University, Budapest, Hungary
- 1 Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
- Tumor Progression Research Group of the Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
- 2 Department of Pathology, Semmelweis University, Budapest, Hungary
- National Institute of Rheumatology and Physiotherapy, Budapest, Hungary
- * E-mail:
| |
Collapse
|
13
|
Cao Y, Chong Y, Shen H, Zhang M, Huang J, Zhu Y, Zhang Z. Combination of TNF-α and graphene oxide-loaded BEZ235 to enhance apoptosis of PIK3CA mutant colorectal cancer cells. J Mater Chem B 2013; 1:5602-5610. [DOI: 10.1039/c3tb20764a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
Martelli AM, Chiarini F, Evangelisti C, Cappellini A, Buontempo F, Bressanin D, Fini M, McCubrey JA. Two hits are better than one: targeting both phosphatidylinositol 3-kinase and mammalian target of rapamycin as a therapeutic strategy for acute leukemia treatment. Oncotarget 2012; 3:371-94. [PMID: 22564882 PMCID: PMC3380573 DOI: 10.18632/oncotarget.477] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Phosphatidylinositol 3-kinase (PI3K) and mammalian target of rapamycin (mTOR) are two key components of the PI3K/Akt/mTOR signaling pathway. This signal transduction cascade regulates a wide range of physiological cell processes, that include differentiation, proliferation, apoptosis, autophagy, metabolism, motility, and exocytosis. However, constitutively active PI3K/Akt/mTOR signaling characterizes many types of tumors where it negatively influences response to therapeutic treatments. Hence, targeting PI3K/Akt/mTOR signaling with small molecule inhibitors may improve cancer patient outcome. The PI3K/Akt/mTOR signaling cascade is overactive in acute leukemias, where it correlates with enhanced drug-resistance and poor prognosis. The catalytic sites of PI3K and mTOR share a high degree of sequence homology. This feature has allowed the synthesis of ATP-competitive compounds targeting the catalytic site of both kinases. In preclinical models, dual PI3K/mTOR inhibitors displayed a much stronger cytotoxicity against acute leukemia cells than either PI3K inhibitors or allosteric mTOR inhibitors, such as rapamycin. At variance with rapamycin, dual PI3K/mTOR inhibitors targeted both mTOR complex 1 and mTOR complex 2, and inhibited the rapamycin-resistant phosphorylation of eukaryotic initiation factor 4E-binding protein 1, resulting in a marked inhibition of oncogenic protein translation. Therefore, they strongly reduced cell proliferation and induced an important apoptotic response. Here, we reviewed the evidence documenting that dual PI3K/mTOR inhibitors may represent a promising option for future targeted therapies of acute leukemia patients.
Collapse
Affiliation(s)
- Alberto M Martelli
- Department of Human Anatomy, University of Bologna, Cellular Signalling Laboratory, Bologna, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Aberrant STAT5 and PI3K/mTOR pathway signaling occurs in human CRLF2-rearranged B-precursor acute lymphoblastic leukemia. Blood 2012; 120:833-42. [PMID: 22685175 DOI: 10.1182/blood-2011-12-389932] [Citation(s) in RCA: 167] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Adults and children with high-risk CRLF2-rearranged acute lymphoblastic leukemia (ALL) respond poorly to current cytotoxic chemotherapy and suffer unacceptably high rates of relapse, supporting the need to use alternative therapies. CRLF2 encodes the thymic stromal lymphopoietin (TSLP) receptor, which activates cell signaling in normal lymphocytes on binding its ligand, TSLP. We hypothesized that aberrant cell signaling occurs in CRLF2-rearranged ALL and can be targeted by signal transduction inhibitors of this pathway. In a large number of primary CRLF2-rearranged ALL samples, we observed increased basal levels of pJAK2, pSTAT5, and pS6. We thus characterized the biochemical sequelae of CRLF2 and JAK alterations in CRLF2-rearranged ALL primary patient samples via analysis of TSLP-mediated signal transduction. TSLP stimulation of these leukemias further induced robust JAK/STAT and PI3K/mTOR pathway signaling. JAK inhibition abrogated phosphorylation of JAK/STAT and, surprisingly, of PI3K/mTOR pathway members, suggesting an interconnection between these signaling networks and providing a rationale for testing JAK inhibitors in clinical trials. The PI3K/mTOR pathway inhibitors rapamycin, PI103, and PP242 also inhibited activated signal transduction and translational machinery proteins of the PI3K/mTOR pathway, suggesting that signal transduction inhibitors targeting this pathway also may have therapeutic relevance for patients with CRLF2-rearranged ALL and merit further preclinical testing.
Collapse
|
16
|
Role of stromal cell-mediated Notch signaling in CLL resistance to chemotherapy. Blood Cancer J 2012; 2:e73. [PMID: 22829975 PMCID: PMC3366070 DOI: 10.1038/bcj.2012.17] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 03/27/2012] [Accepted: 04/03/2012] [Indexed: 02/06/2023] Open
Abstract
Stromal cells are essential components of the bone marrow (BM) microenvironment that regulate and support the survival of different tumors, including chronic lymphocytic leukemia (CLL). In this study, we investigated the role of Notch signaling in the promotion of survival and chemoresistance of human CLL cells in coculture with human BM-mesenchymal stromal cells (hBM-MSCs) of both autologous and allogeneic origin. The presence of BM-MSCs rescued CLL cells from apoptosis both spontaneously and following induction with various drugs, including Fludarabine, Cyclophosphamide, Bendamustine, Prednisone and Hydrocortisone. The treatment with a combination of anti-Notch-1, Notch-2 and Notch-4 antibodies or γ-secretase inhibitor XII (GSI XII) reverted this protective effect by day 3, even in presence of the above-mentioned drugs. Overall, our findings show that stromal cell-mediated Notch-1, Notch-2 and Notch-4 signaling has a role in CLL survival and resistance to chemotherapy. Therefore, its blocking could be an additional tool to overcome drug resistance and improve the therapeutic strategies for CLL.
Collapse
|
17
|
Abstract
Abstract
Notch signaling pathway regulates many different events of embryonic and adult development; among them, Notch plays an essential role in the onset of hematopoietic stem cells and influences multiple maturation steps of developing lymphoid and myeloid cells. Deregulation of Notch signaling determines several human disorders, including cancer. In the last decade it became evident that Notch signaling plays pivotal roles in the onset and development of T- and B-cell acute lymphoblastic leukemia by regulating the intracellular molecular pathways involved in leukemia cell survival and proliferation. On the other hand, bone marrow stromal cells are equally necessary for leukemia cell survival by preventing blast cell apoptosis and favoring their reciprocal interactions and cross-talk with bone marrow microenvironment. Quite surprisingly, the link between Notch signaling pathway and bone marrow stromal cells in acute lymphoblastic leukemia has been pointed out only recently. In fact, bone marrow stromal cells express Notch receptors and ligands, through which they can interact with and influence normal and leukemia T- and B-cell survival. Here, the data concerning the development of T- and B-cell acute lymphoblastic leukemia has been critically reviewed in light of the most recent findings on Notch signaling in stromal microenvironment.
Collapse
|
18
|
Huang L, Huang J, Wu P, Li Q, Rong L, Xue Y, Lu Q, Li J, Tong N, Wang M, Zhang Z, Fang Y. Association of genetic variations in mTOR with risk of childhood acute lymphoblastic leukemia in a Chinese population. Leuk Lymphoma 2011; 53:947-51. [PMID: 21973240 DOI: 10.3109/10428194.2011.628062] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The mammalian target of rapamycin (mTOR) is an important protein kinase regulating cell survival and apoptosis. To determine whether genetic variations in mTOR are associated with risk of acute lymphoblastic leukemia (ALL) in Chinese children, we genotyped two tag single nucleotide poymorphisms (SNPs) in mTOR (rs2536 and rs2295080) in a case-control study. We observed that the variant genotype TC of mTOR rs2536 was associated with a significantly decreased risk of childhood ALL (adjusted odds ratio [OR] = 0.67, 95% confidence interval [CI] = 0.46-0.96), and the association was more pronounced in high-risk ALL and T-phenotype ALL groups. Additionally, we found that the combined genotypes TC/CC decreased the risk of ALL only in the high-risk ALL group (adjusted OR = 0.54, 95% CI = 0.32-0.91) and T-phenotype ALL group (adjusted OR = 0.29, 95% CI = 0.10-0.84). These results suggest that the mTOR rs2536 polymorphism is involved in the susceptibility to childhood ALL in a Chinese population.
Collapse
Affiliation(s)
- Lizhen Huang
- Department of Hematology and Oncology, Nanjing Medical University, Nanjing, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Ex vivo rapamycin treatment of human cord blood CD34+ cells enhances their engraftment of NSG mice. Blood Cells Mol Dis 2011; 46:318-20. [PMID: 21411351 DOI: 10.1016/j.bcmd.2011.02.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Accepted: 02/16/2011] [Indexed: 02/07/2023]
Abstract
Since cord blood (CB) has become a commonly used source of transplantable hematopoietic stem (HSC) and hematopoietic progenitor cells (HPC), there has been a need to overcome the limited HSC and HPC numbers available to transplant from a single CB, especially for adult recipients. Our laboratory previously demonstrated that Rheb2 overexpression significantly impaired the repopulating ability of HSC. Since overexpression of Rheb2 leads to increased signaling through mTOR, we examined the effect of the mTOR inhibitor rapamycin ex vivo on cytokine expanded CD34(+) CB cells for the engraftment of these cells in non-obese diabetic, severe combined immunodeficient, IL-2 receptor γ chain null (NSG) mice. We observed significant enhancement in engraftment of the CB treated ex vivo with cytokines in the presence of rapamycin prior to transplant, effects seen in primary as well as secondary transplants. These pre-clinical results suggest a positive role for rapamycin during ex vivo culture of CB SCID repopulating cells/HSC.
Collapse
|
20
|
Notch-3 and Notch-4 signaling rescue from apoptosis human B-ALL cells in contact with human bone marrow-derived mesenchymal stromal cells. Blood 2011; 118:380-9. [PMID: 21602525 DOI: 10.1182/blood-2010-12-326694] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Although many literature data are available on the role of Notch signaling in T-cell acute lymphoblastic leukemia (ALL) biology, the importance of this molecular pathway in the development of B-lineage ALL (B-ALL) cells in the BM microenvironment is unknown so far. In this study, we used anti-Notch molecules neutralizing Abs and γ-secretase inhibitor (GSI) XII to investigate the role of the Notch signaling pathway in the promotion of human B-ALL cell survival in presence of stromal cell support. The treatment with combinations of anti-Notch molecule neutralizing Abs resulted in the decrease of B-ALL cell survival, either cultured alone or cocultured in presence of stromal cells from normal donors and B-ALL patients. Interestingly, the inhibition of Notch-3 and -4 or Jagged-1/-2 and DLL-1 resulted in a dramatic increase of apoptotic B-ALL cells by 3 days, similar to what is obtained by blocking all Notch signaling with the GSI XII. Our data suggest that the stromal cell-mediated antiapoptotic effect on B- ALL cells is mediated by Notch-3 and -4 or Jagged-1/-2 and DLL-1 in a synergistic manner.
Collapse
|
21
|
Pistoia V, Raffaghello L. Disclosing the mysteries of the central nervous system sanctuary for acute lymphoblastic leukemia cells. Leuk Res 2011; 35:699-700. [PMID: 21329976 DOI: 10.1016/j.leukres.2011.01.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Revised: 01/25/2011] [Accepted: 01/27/2011] [Indexed: 12/25/2022]
|
22
|
Tyrosine dephosphorylation is required for Bak activation in apoptosis. EMBO J 2010; 29:3853-68. [PMID: 20959805 DOI: 10.1038/emboj.2010.244] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Accepted: 09/08/2010] [Indexed: 12/22/2022] Open
Abstract
Activation of the cell-death mediator Bak commits a cell to mitochondrial apoptosis. The initial steps that govern Bak activation are poorly understood. To further clarify these pivotal events, we have investigated whether post-translational modifications of Bak impinge on its activation potential. In this study, we report that on apoptotic stimulation Bak undergoes dephosphorylation at tyrosine residue 108 (Y108), a critical event that is necessary but not sufficient for Bak activation, but is required both for early exposure of the occluded N-terminal domain and multimerisation. RNA interference (RNAi) screening identified non-receptor tyrosine phosphatases (PTPNs) required for Bak dephosphorylation and apoptotic induction through chemotherapeutic agents. Specifically, modulation of PTPN5 protein expression by siRNA and overexpression directly affected both Bak-Y108 phosphorylation and the initiation of Bak activation. We further show that MEK/ERK signalling directly affects Bak phosphorylation through inhibition of PTPN5 to promote cell survival. We propose a model of Bak activation in which the regulation of Bak dephosphorylation constitutes the initial step in the activation process, which reveals a previously unsuspected mechanism controlling the initiation of mitochondrial apoptosis.
Collapse
|
23
|
Gibbons JJ, Abraham RT, Yu K. Mammalian target of rapamycin: discovery of rapamycin reveals a signaling pathway important for normal and cancer cell growth. Semin Oncol 2010; 36 Suppl 3:S3-S17. [PMID: 19963098 DOI: 10.1053/j.seminoncol.2009.10.011] [Citation(s) in RCA: 160] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Since the discovery of rapamycin, considerable progress has been made in unraveling the details of the mammalian target of rapamycin (mTOR) signaling network, including the upstream mechanisms that modulate mTOR signaling functions, and the roles of mTOR in the regulation of mRNA translation and other cell growth-related responses. mTOR is found in two different complexes within the cell, mTORC1 and mTORC2, but only mTORC1 is sensitive to inhibition by rapamycin. mTORC1 is a master controller of protein synthesis, integrating signals from growth factors within the context of the energy and nutritional conditions of the cell. Activated mTORC1 regulates protein synthesis by directly phosphorylating 4E-binding protein 1 (4E-BP1) and p70S6K (S6K), translation initiation factors that are important to cap-dependent mRNA translation, which increases the level of many proteins that are needed for cell cycle progression, proliferation, angiogenesis, and survival pathways. In normal physiology, the roles of mTOR in both glucose and lipid catabolism underscore the importance of the mTOR pathway in the production of metabolic energy in quantities sufficient to fuel cell growth and mitotic cell division. Several oncogenes and tumor-suppressor genes that activate mTORC1, often through the phosphatidylinositol 3-kinase (PI3K)/AKT pathway, are frequently dysregulated in cancer. Novel analogs of rapamycin (temsirolimus, everolimus, and deforolimus), which have improved pharmaceutical properties, were designed for oncology indications. Clinical trials of these analogs have already validated the importance of mTOR inhibition as a novel treatment strategy for several malignancies. Inhibition of mTOR now represents an attractive anti-tumor target, either alone or in combination with strategies to target other pathways that may overcome resistance. The far-reaching downstream consequences of mTOR inhibition make defining the critical molecular effector mechanisms that mediate the anti-tumor response and associated biomarkers that predict responsiveness to mTOR inhibitors a challenge and priority for the field.
Collapse
Affiliation(s)
- James J Gibbons
- Department of Oncology Discovery, Pfizer Inc., 401 N Middletown Rd., Pearl River, NY 10960, USA.
| | | | | |
Collapse
|
24
|
Fathi AT, Grant S, Karp JE. Exploiting cellular pathways to develop new treatment strategies for AML. Cancer Treat Rev 2010; 36:142-50. [PMID: 20056334 DOI: 10.1016/j.ctrv.2009.12.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Revised: 12/01/2009] [Accepted: 12/05/2009] [Indexed: 12/14/2022]
Abstract
The standard approaches to the treatment of acute myeloid leukemia (AML) have been predominantly based on cytarabine and anthracyclines. Yet, the outcomes associated with AML continue to be poor, especially for those patients who are older or carry higher-risk disease. In recent years, extensive research has led to the development and study of novel agents which target AML by diverse and varied mechanisms. Among these are targeted therapeutics such as kinase inhibitors and oligonucleotide constructs. These aim to suppress the production or activity of proteins, such as FLT3 and BCL2, among others, and thus disrupt related signaling cascades essential for leukemogenesis and proliferation. In addition, other agents like flavopiridol appear to target the myeloid blast by various mechanisms including suppression of cyclin-dependent kinases and interference with nucleotide synthesis. Another class of novel therapies includes inhibitors of histone deacetylase, which cause growth arrest and apoptosis through histone acetylation and resultant conformational changes. Clinical trials are now studying these and other agents alone and in combination with traditional cytotoxic therapies, with some encouraging results. In this review, we aim to provide a summary of the preclinical and clinical investigations of selected promising agents currently under study.
Collapse
Affiliation(s)
- Amir T Fathi
- Division of Hematologic Malignancies, Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, 1650 Orleans Street, Baltimore, MD 21231, USA.
| | | | | |
Collapse
|
25
|
Overexpression of Rheb2 enhances mouse hematopoietic progenitor cell growth while impairing stem cell repopulation. Blood 2009; 114:3392-401. [PMID: 19690340 DOI: 10.1182/blood-2008-12-195214] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Molecular mechanisms preserving hematopoietic stem cell (HSC) self-renewal by maintaining a balance between proliferation, differentiation, and other processes are not fully understood. Hyperactivation of the mammalian target of rapamycin (mTOR) pathway, causing sustained proliferative signals, can lead to exhaustion of HSC repopulating ability. We examined the role of the novel ras gene Rheb2, an activator of the mTOR kinase, in colony-forming ability, survival, and repopulation of immature mouse hematopoietic cells. In a cell line model of mouse hematopoietic progenitor cells (HPCs), we found enhanced proliferation and mTOR signaling in cells overexpressing Rheb2. In addition, overexpression of Rheb2 enhanced colony-forming ability and survival of primary mouse bone marrow HPCs. Expansion of phenotypic HSCs in vitro was enhanced by Rheb2 overexpression. Consistent with these findings, Rheb2 overexpression transiently expanded phenotypically defined immature hematopoietic cells after in vivo transplantation; however, these Rheb2-transduced cells were significantly impaired in overall repopulation of primary and secondary congenic transplantation recipients. Our findings suggest that HPCs and HSCs behave differently in response to growth-promoting signals stimulated by Rheb2. These results may have value in elucidating mechanisms controlling the balance between proliferation and repopulating ability, a finding of importance in clinical uses of HPCs/HSCs.
Collapse
|
26
|
Brown VI, Seif AE, Reid GSD, Teachey DT, Grupp SA. Novel molecular and cellular therapeutic targets in acute lymphoblastic leukemia and lymphoproliferative disease. Immunol Res 2009; 42:84-105. [PMID: 18716718 DOI: 10.1007/s12026-008-8038-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
While the outcome for pediatric patients with lymphoproliferative disorders (LPD) or lymphoid malignancies, such as acute lymphoblastic leukemia (ALL), has improved dramatically, patients often suffer from therapeutic sequelae. Additionally, despite intensified treatment, the prognosis remains dismal for patients with refractory or relapsed disease. Thus, novel biologically targeted treatment approaches are needed. These targets can be identified by understanding how a loss of lymphocyte homeostasis can result in LPD or ALL. Herein, we review potential molecular and cellular therapeutic strategies that (i) target key signaling networks (e.g., PI3K/AKT/mTOR, JAK/STAT, Notch1, and SRC kinase family-containing pathways) which regulate lymphocyte growth, survival, and function; (ii) block the interaction of ALL cells with stromal cells or lymphoid growth factors secreted by the bone marrow microenvironment; or (iii) stimulate innate and adaptive immune responses.
Collapse
Affiliation(s)
- Valerie I Brown
- Division of Oncology, Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, ARC 902, 3615 Civic Center Boulevard, Philadelphia, PA, 19104, USA.
| | | | | | | | | |
Collapse
|
27
|
Potentiating effects of RAD001 (Everolimus) on vincristine therapy in childhood acute lymphoblastic leukemia. Blood 2009; 113:3297-306. [PMID: 19196656 DOI: 10.1182/blood-2008-02-137752] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Despite advances in the treatment of acute lymphoblastic leukemia (ALL), the majority of children who relapse still die of ALL. Therefore, the development of more potent but less toxic drugs for the treatment of ALL is imperative. We investigated the effects of the mammalian target of rapamycin inhibitor, RAD001 (Everolimus), in a nonobese diabetic/severe combined immunodeficiency model of human childhood B-cell progenitor ALL. RAD001 treatment of established disease increased the median survival of mice from 21.3 days to 42.3 days (P < .02). RAD001 together with vincristine significantly increased survival compared with either treatment alone (P < .02). RAD001 induced a cell-cycle arrest in the G(0/1) phase with associated dephosphorylation of the retinoblastoma protein, and reduced levels of cyclin-dependent kinases 4 and 6. Ultrastructure analysis demonstrated the presence of autophagy and limited apoptosis in cells of RAD001-treated animals. In contrast, cleaved poly(ADP-ribose) polymerase suggested apoptosis in cells from animals treated with vincristine or the combination of RAD001 and vincristine, but not in those receiving RAD001 alone. In conclusion, we have demonstrated activity of RAD001 in an in vivo leukemia model supporting further clinical development of target of rapamycin inhibitors for the treatment of patients with ALL.
Collapse
|
28
|
Tabe Y, Jin L, Tsutsumi-Ishii Y, Xu Y, McQueen T, Priebe W, Mills GB, Ohsaka A, Nagaoka I, Andreeff M, Konopleva M. Activation of Integrin-Linked Kinase Is a Critical Prosurvival Pathway Induced in Leukemic Cells by Bone Marrow–Derived Stromal Cells. Cancer Res 2007; 67:684-94. [PMID: 17234779 DOI: 10.1158/0008-5472.can-06-3166] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Integrin-linked kinase (ILK) directly interacts with beta integrins and phosphorylates Akt in a phosphatidylinositol 3-kinase (PI3K)-dependent manner. In this study, we examined the functional role of ILK activation in leukemic and bone marrow stromal cells on their direct contact. Coculture of leukemic NB4 cells with bone marrow-derived stromal mesenchymal stem cells (MSC) resulted in robust activation of multiple signaling pathways, including ILK/Akt, extracellular signal-regulated kinase 1/2 (ERK1/2), signal transducers and activators of transcription 3 (STAT3), and Notch1/Hes. Blockade of PI3K or ILK signaling with pharmacologic inhibitors LY294002 or QLT0267 specifically inhibited stroma-induced phosphorylation of Akt and glycogen synthase kinase 3beta, suppressed STAT3 and ERK1/2 activation, and decreased Notch1 and Hes1 expression in leukemic cells. This resulted in induction of apoptosis in both leukemic cell lines and in primary acute myelogenous leukemia samples that was not abrogated by MSC coculture. In turn, leukemic cells growing in direct contact with bone marrow stromal elements induce activation of Akt, ERK1/2, and STAT3 signaling in MSC, accompanied by significant increase in Hes1 and Bcl-2 proteins, which were all suppressed by QLT0267 and LY294002. In summary, our results indicate reciprocal activation of ILK/Akt in both leukemic and bone marrow stromal cells. We propose that ILK/Akt is a proximal signaling pathway critical for survival of leukemic cells within the bone marrow microenvironment. Hence, disruption of these interactions by ILK inhibitors represents a potential novel therapeutic strategy to eradicate leukemia in the bone marrow microenvironment by simultaneous targeting of both leukemic cells and activated bone marrow stromal cells.
Collapse
Affiliation(s)
- Yoko Tabe
- Section of Molecular Hematology and Therapy, Department of Blood and Marrow Transplantation, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Kornblau SM, Womble M, Qiu YH, Jackson CE, Chen W, Konopleva M, Estey EH, Andreeff M. Simultaneous activation of multiple signal transduction pathways confers poor prognosis in acute myelogenous leukemia. Blood 2006; 108:2358-65. [PMID: 16763210 PMCID: PMC1895551 DOI: 10.1182/blood-2006-02-003475] [Citation(s) in RCA: 209] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Deregulation of signal transduction pathways (STPs) may promote leukemogenesis by conferring cell proliferation and survival advantages in acute myelogenous leukemia (AML). Several agents targeting STPs are under development; however, redundancy and cross-talk between STPs could activate multiple downstream effectors and this could negate the effect of single-target inhibition. The frequency of concurrent activation of multiple STPs in AML and the prognostic relevance of STP activation in AML are unknown. STP protein expression (PKCalpha, ERK2, pERK2, AKT, and pAKT) was measured by Western blot in samples from 188 patients with newly diagnosed, untreated AML. In univariate and multivariate analysis high levels of PKCalpha, ERK, pERK, and pAKT, but not AKT, were adverse factors for survival as was the combination variable PKCalpha-ERK2&pERK2-pAKT. Survival progressively decreased as the number of activated pathways increased. Patients were more likely to have none or all 3 pathways activated than was predicted based on the frequency of individual pathway activation, strongly suggesting that cross-activation occurred. Simultaneous activation of multiple STPs is common in AML and has a progressively worse adverse effect on prognosis. It is thus likely that only combinations of agents that target the multiply activated STPs will be beneficial for patients with AML.
Collapse
Affiliation(s)
- Steven M Kornblau
- Section of Molecular Hematology and Therapy, Unit 448, University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Sourbier C, Lindner V, Lang H, Agouni A, Schordan E, Danilin S, Rothhut S, Jacqmin D, Helwig JJ, Massfelder T. The phosphoinositide 3-kinase/Akt pathway: a new target in human renal cell carcinoma therapy. Cancer Res 2006; 66:5130-42. [PMID: 16707436 DOI: 10.1158/0008-5472.can-05-1469] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Metastatic renal cell carcinoma is resistant to current therapies. The phosphoinositide 3-kinase (PI3K)/Akt signaling cascade induces cell growth, cell transformation, and neovascularization. We evaluated whether targeting this pathway could be of therapeutic value against human renal cell carcinoma. The activation of the PI3K/Akt pathway and its role in renal cell carcinoma progression was evaluated in vitro in seven human cell lines by Western blot, cell counting, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, terminal deoxyribonucleotide transferase-mediated nick-end labeling assays, and fluorescence-activated cell sorting analysis, using two PI3K inhibitors, LY294002 and wortmannin, as well as by transfection with various Akt constructs and through Akt knockdown by small interfering RNA (siRNA). In vivo nude mice bearing human renal cell carcinoma tumor xenografts were treated with LY294002 (75 mg/kg/wk, 4 weeks, i.p.). Tumor growth was measured and tumors were subjected to Western blot and immunohistochemical analysis. Akt was constitutively activated in all cell lines. Constitutive phosphorylation of glycogen synthase kinase-3 (GSK-3) was observed in all cell lines, whereas forkhead transcription factor and mammalian target of rapamycin, although expressed, were not constitutively phosphorylated. Exposure to LY294002 or wortmannin decreased Akt activation and GSK-3 phosphorylation and reduced cell growth by up to 70% through induction of cell apoptosis. These effects were confirmed by transfection experiments with Akt constructs or Akt siRNA. Importantly, LY294002 induced up to 50% tumor regression in mice through tumor cell apoptosis. Tumor neovascularization was significantly increased by LY294002 treatment. Blood chemistries showed no adverse effects of the treatment. Our results suggest an important role of PI3K/Akt inhibitors as a potentially useful treatment for patients with renal cell carcinoma.
Collapse
Affiliation(s)
- Carole Sourbier
- Institut National de la Sante et de la Recherche Medicale U727, University Louis Pasteur School of Medicine and Departments of Pathology and Urology, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Oliver L, Vallette FM. The role of caspases in cell death and differentiation. Drug Resist Updat 2005; 8:163-70. [PMID: 15946892 DOI: 10.1016/j.drup.2005.05.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2005] [Revised: 05/21/2005] [Accepted: 05/24/2005] [Indexed: 12/19/2022]
Abstract
The complexity, redundancy and interdependence of the biological systems involved in tumour response to different treatments hamper progress towards developing specific and effective therapies. In addition, the many and even contradictory roles played by certain key proteins can significantly amend our view on tumourigenesis. The role of caspases in the modulation of cell death and differentiation is a prominent example of such a complexity. Here we focus on the role of caspases in apoptotic cell death, mainly in haematological malignancies, tumourigenesis, sepsis, T-cell proliferation and cell differentiation.
Collapse
Affiliation(s)
- Lisa Oliver
- Equipe 4 Labellisée Ligue contre le Cancer, UMR 601 INSERM/Université de Nantes, 9 Quai Moncousu, 44035 Nantes Cedex 01, France.
| | | |
Collapse
|