1
|
Fontana D, Zambrotta GPM, Scannella A, Piazza R, Gambacorti-Passerini C. Late relapse of chronic myeloid leukemia after allogeneic bone marrow transplantation points to KANSARL (KANSL1::ARL17A) alteration: a case report with insights on the molecular landscape. Ann Hematol 2024; 103:1561-1568. [PMID: 38321229 PMCID: PMC11009776 DOI: 10.1007/s00277-024-05649-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/31/2024] [Indexed: 02/08/2024]
Abstract
Chronic myeloid leukemia is a myeloproliferative neoplasm characterized by the presence of the Philadelphia chromosome and the consequent BCR::ABL1 oncoprotein. In the era before the introduction of tyrosine kinase inhibitors (TKIs), the only potentially curative treatment was allogeneic hematopoietic stem cell transplantation (HSCT). Here, we present the case of a patient affected by CML who experienced a relapse 20 years after allogeneic HSCT. Following relapse, the patient was treated with imatinib and bosutinib, resulting in a deep molecular response and successfully discontinued treatment. Additional analysis including whole-exome sequencing and RNA sequencing provided some insights on the molecular mechanisms of the relapse: the identification of the fusion transcript KANSL1::ARL17A (KANSARL), a cancer predisposition fusion gene, could justify a condition of genomic instability which may be associated with the onset and/or probably the late relapse of his CML.
Collapse
Affiliation(s)
- Diletta Fontana
- Department of Medicine and Surgery, University of Milano-Bicocca, via Cadore 48, Monza, MB, 20900, Italy.
| | - Giovanni Paolo Maria Zambrotta
- Department of Medicine and Surgery, University of Milano-Bicocca, via Cadore 48, Monza, MB, 20900, Italy
- Hematology Division and Bone Marrow Unit, IRCCS, San Gerardo dei Tintori, Monza, Italy
| | - Antonio Scannella
- Department of Medicine and Surgery, University of Milano-Bicocca, via Cadore 48, Monza, MB, 20900, Italy
| | - Rocco Piazza
- Department of Medicine and Surgery, University of Milano-Bicocca, via Cadore 48, Monza, MB, 20900, Italy
- Hematology Division and Bone Marrow Unit, IRCCS, San Gerardo dei Tintori, Monza, Italy
| | - Carlo Gambacorti-Passerini
- Department of Medicine and Surgery, University of Milano-Bicocca, via Cadore 48, Monza, MB, 20900, Italy
- Hematology Division and Bone Marrow Unit, IRCCS, San Gerardo dei Tintori, Monza, Italy
| |
Collapse
|
2
|
Maleki EH, Bahrami AR, Matin MM. Cancer cell cycle heterogeneity as a critical determinant of therapeutic resistance. Genes Dis 2024; 11:189-204. [PMID: 37588236 PMCID: PMC10425754 DOI: 10.1016/j.gendis.2022.11.025] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 10/20/2022] [Accepted: 11/16/2022] [Indexed: 01/15/2023] Open
Abstract
Intra-tumor heterogeneity is now arguably one of the most-studied topics in tumor biology, as it represents a major obstacle to effective cancer treatment. Since tumor cells are highly diverse at genetic, epigenetic, and phenotypic levels, intra-tumor heterogeneity can be assumed as an important contributing factor to the nullification of chemotherapeutic effects, and recurrence of the tumor. Based on the role of heterogeneous subpopulations of cancer cells with varying cell-cycle dynamics and behavior during cancer progression and treatment; herein, we aim to establish a comprehensive definition for adaptation of neoplastic cells against therapy. We discuss two parallel and yet distinct subpopulations of tumor cells that play pivotal roles in reducing the effects of chemotherapy: "resistant" and "tolerant" populations. Furthermore, this review also highlights the impact of the quiescent phase of the cell cycle as a survival mechanism for cancer cells. Beyond understanding the mechanisms underlying the quiescence, it provides an insightful perspective on cancer stem cells (CSCs) and their dual and intertwined functions based on their cell cycle state in response to treatment. Moreover, CSCs, epithelial-mesenchymal transformed cells, circulating tumor cells (CTCs), and disseminated tumor cells (DTCs), which are mostly in a quiescent state of the cell cycle are proved to have multiple biological links and can be implicated in our viewpoint of cell cycle heterogeneity in tumors. Overall, increasing our knowledge of cell cycle heterogeneity is a key to identifying new therapeutic solutions, and this emerging concept may provide us with new opportunities to prevent the dreadful cancer recurrence.
Collapse
Affiliation(s)
- Ebrahim H. Maleki
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, 9177948974 Mashhad, Iran
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 31-007 Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, 30-348 Krakow, Poland
| | - Ahmad Reza Bahrami
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, 9177948974 Mashhad, Iran
- Industrial Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, 9177948974 Mashhad, Iran
| | - Maryam M. Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, 9177948974 Mashhad, Iran
- Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, 9177948974 Mashhad, Iran
- Stem Cell and Regenerative Medicine Research Group, Iranian Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, 917751376 Mashhad, Iran
| |
Collapse
|
3
|
Garimella SV, Gampa SC, Chaturvedi P. Mitochondria in Cancer Stem Cells: From an Innocent Bystander to a Central Player in Therapy Resistance. Stem Cells Cloning 2023; 16:19-41. [PMID: 37641714 PMCID: PMC10460581 DOI: 10.2147/sccaa.s417842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 08/15/2023] [Indexed: 08/31/2023] Open
Abstract
Cancer continues to rank among the world's leading causes of mortality despite advancements in treatment. Cancer stem cells, which can self-renew, are present in low abundance and contribute significantly to tumor recurrence, tumorigenicity, and drug resistance to various therapies. The drug resistance observed in cancer stem cells is attributed to several factors, such as cellular quiescence, dormancy, elevated aldehyde dehydrogenase activity, apoptosis evasion mechanisms, high expression of drug efflux pumps, protective vascular niche, enhanced DNA damage response, scavenging of reactive oxygen species, hypoxic stability, and stemness-related signaling pathways. Multiple studies have shown that mitochondria play a pivotal role in conferring drug resistance to cancer stem cells, through mitochondrial biogenesis, metabolism, and dynamics. A better understanding of how mitochondria contribute to tumorigenesis, heterogeneity, and drug resistance could lead to the development of innovative cancer treatments.
Collapse
Affiliation(s)
- Sireesha V Garimella
- Department of Biotechnology, School of Science, GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh, 530045, India
| | - Siri Chandana Gampa
- Department of Biotechnology, School of Science, GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh, 530045, India
| | - Pankaj Chaturvedi
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
4
|
Qiu Q, yang L, Feng Y, Zhu Z, Li N, Zheng L, Sun Y, Pan C, Qiu H, Cui X, He W, Wang F, Yi Y, Tang M, Yang Z, Yang Y, Li Z, Chen L, Hu Y. HDAC I/IIb selective inhibitor Purinostat Mesylate combined with GLS1 inhibition effectively eliminates CML stem cells. Bioact Mater 2023; 21:483-498. [PMID: 36185739 PMCID: PMC9486186 DOI: 10.1016/j.bioactmat.2022.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/01/2022] [Accepted: 08/06/2022] [Indexed: 11/25/2022] Open
Abstract
Purinostat Mesylate (PM) is a novel highly selective and active HDAC I/IIb inhibitor, and the injectable formulation of PM (PMF) based on the compound prescription containing cyclodextrin completely can overcome PM's poor solubility and improves its stability and pharmacokinetic properties. Here, we showed that PM effectively repressed the survival of Ph+ leukemia cells and CD34+ leukemia cells from CML patients in vitro. In vivo studies demonstrated that PMF significantly prevented BCR-ABL(T315I) induced CML progression by restraining leukemia stem cells (LSCs), which are insensitive to chemotherapy and responsible for CML relapse. Mechanism studies revealed that targeting HDAC I/IIb repressed several important factors for LSCs survival including c-Myc, β-Catenin, E2f, Ezh2, Alox5, and mTOR, as well as interrupted some critical biologic processes. Additionally, PMF increased glutamate metabolism in LSCs by increasing GLS1. The combination of PMF and glutaminase inhibitor BPTES synergistically eradicated LSCs by altering multiple key proteins and signaling pathways which are critical for LSC survival and self-renewal. Overall, our findings represent a new therapeutic strategy for eliminating LSCs by targeting HDAC I/IIb and glutaminolysis, which potentially provides a guidance for PMF clinical trials in the future for TKI resistance CML patients. PM is a novel HDACI/IIb inhibitor with better selectivity and inhibitory activity than currently marketed HDAC inhibitors. PMF completely overcomes the problem of PM's poor solubility, and improved PM stability and pharmacokinetic properties. PMF effectively inhibits disease progression and abrogates leukemia stem cells survival in TKI-resistant CML mouse model. Simultaneous targeting of I/IIb HDACs and glutaminolysis could sufficiently eradicated LSCs in the mouse model.
Collapse
|
5
|
Dormancy, stemness, and therapy resistance: interconnected players in cancer evolution. Cancer Metastasis Rev 2023; 42:197-215. [PMID: 36757577 PMCID: PMC10014678 DOI: 10.1007/s10555-023-10092-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/26/2023] [Indexed: 02/10/2023]
Abstract
The biological complexity of cancer represents a tremendous clinical challenge, resulting in the frequent failure of current treatment protocols. In the rapidly evolving scenario of a growing tumor, anticancer treatments impose a drastic perturbation not only to cancer cells but also to the tumor microenvironment, killing a portion of the cells and inducing a massive stress response in the survivors. Consequently, treatments can act as a double-edged sword by inducing a temporary response while laying the ground for therapy resistance and subsequent disease progression. Cancer cell dormancy (or quiescence) is a central theme in tumor evolution, being tightly linked to the tumor's ability to survive cytotoxic challenges, metastasize, and resist immune-mediated attack. Accordingly, quiescent cancer cells (QCCs) have been detected in virtually all the stages of tumor development. In recent years, an increasing number of studies have focused on the characterization of quiescent/therapy resistant cancer cells, unveiling QCCs core transcriptional programs, metabolic plasticity, and mechanisms of immune escape. At the same time, our partial understanding of tumor quiescence reflects the difficulty to identify stable QCCs biomarkers/therapeutic targets and to control cancer dormancy in clinical settings. This review focuses on recent discoveries in the interrelated fields of dormancy, stemness, and therapy resistance, discussing experimental evidences in the frame of a nonlinear dynamics approach, and exploring the possibility that tumor quiescence may represent not only a peril but also a potential therapeutic resource.
Collapse
|
6
|
Mancini M, De Santis S, Monaldi C, Castagnetti F, Lonetti A, Bruno S, Dan E, Sinigaglia B, Rosti G, Cavo M, Gugliotta G, Soverini S. Polo-like kinase-1, Aurora kinase A and WEE1 kinase are promising druggable targets in CML cells displaying BCR::ABL1-independent resistance to tyrosine kinase inhibitors. Front Oncol 2022; 12:901132. [PMID: 35992847 PMCID: PMC9391055 DOI: 10.3389/fonc.2022.901132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/08/2022] [Indexed: 11/18/2022] Open
Abstract
In chronic myeloid leukemia (CML), Aurora kinase A and Polo like kinase 1 (PLK1), two serine-threonine kinases involved in the maintenance of genomic stability by preserving a functional G2/M checkpoint, have been implicated in BCR::ABL1-independent resistance to the tyrosine kinase inhibitor (TKI) imatinib mesylate and in leukemic stem cell (LSC) persistence. It can be speculated that the observed deregulated activity of Aurora A and Plk1 enhances DNA damage, promoting the occurrence of additional genomic alterations contributing to TKI resistance and ultimately driving progression from chronic phase to blast crisis (BC). In this study, we propose a new therapeutic strategy based on the combination of Aurora kinase A or PLK1 inhibition with danusertib or volasertib, respectively, and WEE1 inhibition with AZD1775. Danusertib and volasertib used as single drugs induced apoptosis and G2/M-phase arrest, associated with accumulation of phospho-WEE1. Subsequent addition of the WEE1 inhibitor AZD1775 in combination significantly enhanced the induction of apoptotic cell death in TKI-sensitive and -resistant cell lines as compared to both danusertib and volasertib alone and to the simultaneous combination. This schedule indeed induced a significant increase of the DNA double-strand break marker γH2AX, forcing the cells through successive replication cycles ultimately resulting in apoptosis. Finally, combination of danusertib or volasertib+AZD1775 significantly reduced the clonogenic potential of CD34+ CML progenitors from BC patients. Our results may have implications for the development of innovative therapeutic approaches aimed to improve the outcomes of patients with multi-TKI-resistant or BC CML.
Collapse
Affiliation(s)
- Manuela Mancini
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, Bologna, Italy
- *Correspondence: Manuela Mancini,
| | - Sara De Santis
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale Università di Bologna, Bologna, Italy
| | - Cecilia Monaldi
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale Università di Bologna, Bologna, Italy
| | - Fausto Castagnetti
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, Bologna, Italy
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale Università di Bologna, Bologna, Italy
| | - Annalisa Lonetti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Samantha Bruno
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale Università di Bologna, Bologna, Italy
| | - Elisa Dan
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, Bologna, Italy
| | - Barbara Sinigaglia
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, Bologna, Italy
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale Università di Bologna, Bologna, Italy
| | - Gianantonio Rosti
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, Bologna, Italy
| | - Michele Cavo
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, Bologna, Italy
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale Università di Bologna, Bologna, Italy
| | - Gabriele Gugliotta
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, Bologna, Italy
| | - Simona Soverini
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale Università di Bologna, Bologna, Italy
| |
Collapse
|
7
|
Splenic red pulp macrophages provide a niche for CML stem cells and induce therapy resistance. Leukemia 2022; 36:2634-2646. [PMID: 36163264 PMCID: PMC7613762 DOI: 10.1038/s41375-022-01682-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 08/03/2022] [Accepted: 08/09/2022] [Indexed: 11/10/2022]
Abstract
Disease progression and relapse of chronic myeloid leukemia (CML) are caused by therapy resistant leukemia stem cells (LSCs), and cure relies on their eradication. The microenvironment in the bone marrow (BM) is known to contribute to LSC maintenance and resistance. Although leukemic infiltration of the spleen is a hallmark of CML, it is unknown whether spleen cells form a niche that maintains LSCs. Here, we demonstrate that LSCs preferentially accumulate in the spleen and contribute to disease progression. Spleen LSCs were located in the red pulp close to red pulp macrophages (RPM) in CML patients and in a murine CML model. Pharmacologic and genetic depletion of RPM reduced LSCs and decreased their cell cycling activity in the spleen. Gene expression analysis revealed enriched stemness and decreased myeloid lineage differentiation in spleen leukemic stem and progenitor cells (LSPCs). These results demonstrate that splenic RPM form a niche that maintains CML LSCs in a quiescent state, resulting in disease progression and resistance to therapy.
Collapse
|
8
|
Wu A, Ansari AS, Uludaǧ H, Jiang X. Multiple gene knockdown strategies for investigating the properties of human leukemia stem cells and exploring new therapies. Methods Cell Biol 2022; 171:1-22. [DOI: 10.1016/bs.mcb.2022.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
Kaempferol sensitizes tumor necrosis factor-related apoptosis-inducing ligand-resistance chronic myelogenous leukemia cells to apoptosis. Mol Biol Rep 2021; 49:19-29. [PMID: 34820749 DOI: 10.1007/s11033-021-06778-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/14/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND The tumor necrosis factor (TNF)-related apoptosis-inducing ligand, TRAIL, an apoptosis-inducing cytokine, has attracted much attention in the treatment of cancer for its selective toxicity to malignant rather than normal cells. However, the apoptosis-inducing ability of TRAIL is weaker than expected primarily due to cancer cell resistance. As one of the dietary flavonoids, kaempferol, has been shown to be antiproliferative and might have a protective effect against TRAIL resistance, particularly for hematologic malignancies. METHODS AND RESULTS Here, we studied the potential of kaempferol to enhance the TRAIL-induced cytotoxicity and apoptosis in human chronic myelogenous leukemia (CML) cell line K-562, as well as the expression of specific genes with impact on TRAIL signal regulation. Analysis of flowcytometry data showed that treatment with kaempferol did enhance sensitivity of CML cells to pro-apoptotic effects of anti-TRAIL antibody. Although the gene expression levels were heterogeneous, cFLIP, cIAP1 and cIAP2 expression were generally downregulated where co-treatment of kaempferol and TRAIL was employed and these effects appeared to be dose-dependent. We further demonstrated that the expression of death receptors 4 and 5 tended to increase subsequent to the combination treatment. CONCLUSIONS Consequently, it is reasonable to conclude that sensitization of chronic leukemia cells to TRAIL by kaempferol in vitro should be considered as a way of focusing clinical attention on leukemia therapy.
Collapse
|
10
|
Li Y, Gao Y, Liang B, Nie W, Zhao L, Wang L. Combined effects on leukemia cell growth by targeting sphingosine kinase 1 and sirtuin 1 signaling. Exp Ther Med 2020; 20:262. [PMID: 33199987 PMCID: PMC7664611 DOI: 10.3892/etm.2020.9392] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 09/08/2020] [Indexed: 12/17/2022] Open
Abstract
Targeting multiple signaling pathways is a potential novel therapeutic strategy for the treatment of leukemias. Leukemia cells express high levels of sphingosine kinase 1 (Sphk1) and sirtuin 1 (SIRT1). However, to the best of our knowledge, their interaction and potential synergistic inhibitory effects on the growth and survival of leukemia cells have not been investigated. The present study revealed the role of the Sphk1/S1P/SIRT1 axis in K562, KCL22 and TF1 cells and hypothesized that the inhibition of Sphk1 and SIRT1 had synergistic effects on the growth and survival of leukemia cells. Cell viability was tested using a Cell Counting Kit-8 assay and cell colony forming assay. Cell apoptosis was detected using Annexin V-APC/PI staining. The stages of the cell cycle were measured using PI staining. Protein levels were measured by western blotting. Treatment of leukemia cells with S1P resulted in the upregulation of SIRT1 expression, whereas inhibition of Sphk1 induced SIRT1 downregulation in leukemia cells. Both SKI-II and EX527 actively suppressed growth, blocked cell cycle progression and induced apoptosis of leukemia cells. Furthermore, inhibition of Sphk1 and SIRT1 exhibited suppressive effects on the growth and survival of leukemia cells. Notably, the inhibition of Sphk1 and SIRT1 suppressed cell growth and induced apoptosis of T-315I mutation-harboring cells. Additionally, treatment with SKI-II and EX527 suppressed the ERK and STAT5 pathways in leukemia cells. These data indicated that targeting the Sphk1/S1P/SIRT1 axis may be a novel therapeutic strategy for the treatment of leukemia.
Collapse
Affiliation(s)
- Yuxiang Li
- School of Nursing, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yuxia Gao
- School of Nursing, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Bing Liang
- School of Nursing, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Wenbo Nie
- School of Nursing, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Lijing Zhao
- School of Nursing, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Lisheng Wang
- School of Nursing, Jilin University, Changchun, Jilin 130021, P.R. China.,Department of Molecular Diagnosis and Regenerative Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| |
Collapse
|
11
|
Polymethine Dye-Functionalized Nanoparticles for Targeting CML Stem Cells. MOLECULAR THERAPY-ONCOLYTICS 2020; 18:372-381. [PMID: 32913887 PMCID: PMC7452122 DOI: 10.1016/j.omto.2020.07.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/22/2020] [Indexed: 11/22/2022]
Abstract
In chronic myelogenous leukemia (CML), treatment with tyrosine kinase inhibitors (TKI) is unable to eradicate leukemic stem cells (LSC). Polymethine dye-functionalized nanoparticles can be internalized by specific cell types using transmembrane carrier proteins. In this study we investigated the uptake behavior of various polymethine dyes on leukemia cell lines and searched for carrier proteins that guide dye transport using RNA interference. The results show that the uptake of DY-635 is dependent on organic anion transport protein 1B3 (OATP1B3) in CML cells and immature myeloid precursor cells of CML patients. In contrast to nonspecific poly(lactide-co-glycolic acid) (PLGA) nanoparticle constructs, DY-635-functionalization of nanoparticles led to an uptake in CML cells. Investigation of these nanoparticles on bone marrow of CML patients showed a preferred uptake in LSC. The transcription of OATP1B3 is known to be induced under hypoxic conditions via the hypoxia-inducing factor 1 alpha (HIF1α), thus also in the stem cells niche. Since these cells have the potential to repopulate the bone marrow after CML treatment discontinuation, eliminating them by means of drug-loaded DY-635-functionalized PLGA nanoparticles deployed as a selective delivery system to LSC is highly relevant to the ongoing search for curative treatment options for CML patients.
Collapse
|
12
|
Himburg HA, Roos M, Fang T, Zhang Y, Termini CM, Schlussel L, Kim M, Pang A, Kan J, Zhao L, Suh H, Sasine JP, Sapparapu G, Bowers PM, Schiller G, Chute JP. Chronic myeloid leukemia stem cells require cell-autonomous pleiotrophin signaling. J Clin Invest 2020; 130:315-328. [PMID: 31613796 DOI: 10.1172/jci129061] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 09/25/2019] [Indexed: 01/11/2023] Open
Abstract
Tyrosine kinase inhibitors (TKIs) induce molecular remission in the majority of patients with chronic myelogenous leukemia (CML), but the persistence of CML stem cells hinders cure and necessitates indefinite TKI therapy. We report that CML stem cells upregulate the expression of pleiotrophin (PTN) and require cell-autonomous PTN signaling for CML pathogenesis in BCR/ABL+ mice. Constitutive PTN deletion substantially reduced the numbers of CML stem cells capable of initiating CML in vivo. Hematopoietic cell-specific deletion of PTN suppressed CML development in BCR/ABL+ mice, suggesting that cell-autonomous PTN signaling was necessary for CML disease evolution. Mechanistically, PTN promoted CML stem cell survival and TKI resistance via induction of Jun and the unfolded protein response. Human CML cells were also dependent on cell-autonomous PTN signaling, and anti-PTN antibody suppressed human CML colony formation and CML repopulation in vivo. Our results suggest that targeted inhibition of PTN has therapeutic potential to eradicate CML stem cells.
Collapse
Affiliation(s)
- Heather A Himburg
- Division of Hematology/Oncology, Department of Medicine, UCLA, Los Angeles, California, USA
| | - Martina Roos
- Division of Hematology/Oncology, Department of Medicine, UCLA, Los Angeles, California, USA.,Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California, USA
| | - Tiancheng Fang
- Division of Hematology/Oncology, Department of Medicine, UCLA, Los Angeles, California, USA.,Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, California, USA
| | - Yurun Zhang
- Molecular Biology Institute, UCLA, Los Angeles, California, USA
| | - Christina M Termini
- Division of Hematology/Oncology, Department of Medicine, UCLA, Los Angeles, California, USA
| | - Lauren Schlussel
- Division of Hematology/Oncology, Department of Medicine, UCLA, Los Angeles, California, USA
| | - Mindy Kim
- Division of Hematology/Oncology, Department of Medicine, UCLA, Los Angeles, California, USA
| | - Amara Pang
- Division of Hematology/Oncology, Department of Medicine, UCLA, Los Angeles, California, USA
| | - Jenny Kan
- Division of Hematology/Oncology, Department of Medicine, UCLA, Los Angeles, California, USA
| | - Liman Zhao
- Division of Hematology/Oncology, Department of Medicine, UCLA, Los Angeles, California, USA
| | - Hyung Suh
- Division of Hematology/Oncology, Department of Medicine, UCLA, Los Angeles, California, USA
| | - Joshua P Sasine
- Division of Hematology/Oncology, Department of Medicine, UCLA, Los Angeles, California, USA.,Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California, USA
| | - Gopal Sapparapu
- UCLA Clinical and Translational Science Institute, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Peter M Bowers
- UCLA Clinical and Translational Science Institute, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Gary Schiller
- Division of Hematology/Oncology, Department of Medicine, UCLA, Los Angeles, California, USA.,Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California, USA
| | - John P Chute
- Division of Hematology/Oncology, Department of Medicine, UCLA, Los Angeles, California, USA.,Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California, USA.,Eli and Edythe Broad Center for Stem Cell Research and Regenerative Medicine, UCLA, Los Angeles, California, USA
| |
Collapse
|
13
|
Koschade SE, Brandts CH. Selective Autophagy in Normal and Malignant Hematopoiesis. J Mol Biol 2020; 432:261-282. [DOI: 10.1016/j.jmb.2019.06.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/18/2019] [Accepted: 06/18/2019] [Indexed: 12/16/2022]
|
14
|
Brennan L, Narendran A. Cancer Stem Cells in the Development of Novel Therapeutics for Refractory Pediatric Leukemia. Stem Cells Dev 2019; 28:1277-1287. [PMID: 31364487 DOI: 10.1089/scd.2019.0035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Although treatment strategies for pediatric leukemia have improved overall survival rates in the recent past, relapse rates in certain subgroups such as infant leukemia remain unacceptably high. Despite undergoing extensive chemotherapy designed to target the rapidly proliferating leukemia cells, many of these children experience relapse. In refractory leukemia, the existence of cell populations with stemness characteristics, termed leukemia stem cells (LSCs), which remain quiescent and subsequently replenish the blast population, has been described. A significant body of evidence exists, derived largely from xenograft models of adult acute myeloid leukemia, to support the idea that LSCs may play a fundamental role in refractory disease. In addition, clinical studies have also linked LSCs with increased minimal residual disease, higher relapse rate, and decreased survival rates in these patients. Recently, a number of reports have addressed effective ways to utilize new-generation genomic sequencing and transcriptomic analyses to identify targeted therapeutic agents aimed at LSCs, while sparing normal hematopoietic stem cells. These data underscore the value of timely translation of knowledge from adult studies to the unique molecular and physiological characteristics seen in pediatric leukemia. We aim to summarize this article in the rapidly expanding field of stem cell biology in hematopoietic malignancies, focusing particularly on relevant preclinical models and novel targeted therapeutics, and their applicability to childhood leukemia.
Collapse
Affiliation(s)
| | - Aru Narendran
- Division of Pediatric Hematology, Oncology and Transplant, POETIC Laboratory for Novel Therapeutics Discovery in Pediatric Oncology, Alberta Children's Hospital, Calgary, Canada
| |
Collapse
|
15
|
De Angelis ML, Francescangeli F, La Torre F, Zeuner A. Stem Cell Plasticity and Dormancy in the Development of Cancer Therapy Resistance. Front Oncol 2019; 9:626. [PMID: 31355143 PMCID: PMC6636659 DOI: 10.3389/fonc.2019.00626] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 06/24/2019] [Indexed: 12/11/2022] Open
Abstract
Cancer treatment with either standard chemotherapy or targeted agents often results in the emergence of drug-refractory cell populations, ultimately leading to therapy failure. The biological features of drug resistant cells are largely overlapping with those of cancer stem cells and include heterogeneity, plasticity, self-renewal ability, and tumor-initiating capacity. Moreover, drug resistance is usually characterized by a suppression of proliferation that can manifest as quiescence, dormancy, senescence, or proliferative slowdown. Alterations in key cellular pathways such as autophagy, unfolded protein response or redox signaling, as well as metabolic adaptations also contribute to the establishment of drug resistance, thus representing attractive therapeutic targets. Moreover, a complex interplay of drug resistant cells with the micro/macroenvironment and with the immune system plays a key role in dictating and maintaining the resistant phenotype. Recent studies have challenged traditional views of cancer drug resistance providing innovative perspectives, establishing new connections between drug resistant cells and their environment and indicating unexpected therapeutic strategies. In this review we discuss recent advancements in understanding the mechanisms underlying drug resistance and we report novel targeting agents able to overcome the drug resistant status, with particular focus on strategies directed against dormant cells. Research on drug resistant cancer cells will take us one step forward toward the development of novel treatment approaches and the improvement of relapse-free survival in solid and hematological cancer patients.
Collapse
Affiliation(s)
- Maria Laura De Angelis
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | | | - Filippo La Torre
- Department of Surgical Sciences Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Ann Zeuner
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
16
|
Leukemia Stem Cells in the Pathogenesis, Progression, and Treatment of Acute Myeloid Leukemia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1143:95-128. [DOI: 10.1007/978-981-13-7342-8_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
17
|
Restricted cell cycle is essential for clonal evolution and therapeutic resistance of pre-leukemic stem cells. Nat Commun 2018; 9:3535. [PMID: 30166543 PMCID: PMC6117297 DOI: 10.1038/s41467-018-06021-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 08/02/2018] [Indexed: 01/02/2023] Open
Abstract
Pre-leukemic stem cells (pre-LSCs) give rise to leukemic stem cells through acquisition of additional gene mutations and are an important source of relapse following chemotherapy. We postulated that cell-cycle kinetics of pre-LSCs may be an important determinant of clonal evolution and therapeutic resistance. Using a doxycycline-inducible H2B-GFP transgene in a mouse model of T-cell acute lymphoblastic leukemia to study cell cycle in vivo, we show that self-renewal, clonal evolution and therapeutic resistance are limited to a rare population of pre-LSCs with restricted cell cycle. We show that proliferative pre-LSCs are unable to return to a cell cycle-restricted state. Cell cycle-restricted pre-LSCs have activation of p53 and its downstream cell-cycle inhibitor p21. Furthermore, absence of p21 leads to proliferation of pre-LSCs, with clonal extinction through loss of asymmetric cell division and terminal differentiation. Thus, inducing proliferation of pre-LSCs represents a promising strategy to increase cure rates for acute leukemia.
Collapse
|
18
|
Chorzalska A, Ahsan N, Rao RSP, Roder K, Yu X, Morgan J, Tepper A, Hines S, Zhang P, Treaba DO, Zhao TC, Olszewski AJ, Reagan JL, Liang O, Gruppuso PA, Dubielecka PM. Overexpression of Tpl2 is linked to imatinib resistance and activation of MEK-ERK and NF-κB pathways in a model of chronic myeloid leukemia. Mol Oncol 2018; 12:630-647. [PMID: 29485707 PMCID: PMC5928369 DOI: 10.1002/1878-0261.12186] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 01/15/2018] [Accepted: 01/24/2018] [Indexed: 12/12/2022] Open
Abstract
The introduction of tyrosine kinase inhibitors (TKI) has transformed chronic myeloid leukemia (CML) into a chronic disease with long-term survival exceeding 85%. However, resistance of CML stem cells to TKI may contribute to the 50% relapse rate observed after TKI discontinuation in molecular remission. We previously described a model of resistance to imatinib mesylate (IM), in which K562 cells cultured in high concentrations of imatinib mesylate showed reduced Bcr-Abl1 protein and activity levels while maintaining proliferative potential. Using quantitative phosphoproteomic analysis of these IM-resistant cells, we have now identified significant upregulation of tumor progression locus (Tpl2), also known as cancer Osaka thyroid (COT1) kinase or Map3k8. Overexpression of Tpl2 in IM-resistant cells was accompanied by elevated activities of Src family kinases (SFKs) and NF-κB, MEK-ERK signaling. CD34+ cells isolated from the bone marrow of patients with CML and exposed to IMin vitro showed increased MAP3K8 transcript levels. Dasatinib (SFK inhibitor), U0126 (MEK inhibitor), and PS-1145 (IκB kinase (IKK) inhibitor) used in combination resulted in elimination of 65% of IM-resistant cells and reduction in the colony-forming capacity of CML CD34+ cells in methylcellulose assays by 80%. In addition, CML CD34+ cells cultured with the combination of inhibitors showed reduced MAP3K8 transcript levels. Overall, our data indicate that elevated Tpl2 protein and transcript levels are associated with resistance to IM and that combined inhibition of SFK, MEK, and NF-κB signaling attenuates the survival of IM-resistant CML cells and CML CD34+ cells. Therefore, combination of SFK, MEK, and NF-κB inhibitors may offer a new therapeutic approach to overcome TKI resistance in CML patients.
Collapse
Affiliation(s)
- Anna Chorzalska
- Signal Transduction Lab, Division of Hematology/Oncology, Rhode Island Hospital, Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Nagib Ahsan
- Division of Biology and Medicine, COBRE CCRD Proteomics Core Facility, Rhode Island Hospital, Brown University, Providence, RI, USA
| | - R Shyama Prasad Rao
- Division of Biostatistics and Bioinformatics, Yenepoya Research Center, Yenepoya University, Mangalore, India
| | - Karim Roder
- Cardiovascular Research Center, Rhode Island Hospital, Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Xiaoqing Yu
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | - John Morgan
- Flow Cytometry and Cell Sorting Core Facility, Roger Williams Medical Center, Providence, RI, USA
| | - Alexander Tepper
- Signal Transduction Lab, Division of Hematology/Oncology, Rhode Island Hospital, Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Steven Hines
- Signal Transduction Lab, Division of Hematology/Oncology, Rhode Island Hospital, Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Peng Zhang
- Cardiovascular Research Center, Rhode Island Hospital, Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Diana O Treaba
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital, Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Ting C Zhao
- Cardiovascular Lab, Department of Surgery, Roger Williams Medical Center, Boston University School of Medicine, Providence, RI, USA
| | - Adam J Olszewski
- Division of Hematology/Oncology, Rhode Island Hospital, Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - John L Reagan
- Division of Hematology/Oncology, Rhode Island Hospital, Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Olin Liang
- Division of Hematology/Oncology, Rhode Island Hospital, Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Philip A Gruppuso
- Department of Pediatrics, Rhode Island Hospital, Brown University, Providence, RI, USA
| | - Patrycja M Dubielecka
- Signal Transduction Lab, Division of Hematology/Oncology, Rhode Island Hospital, Warren Alpert Medical School, Brown University, Providence, RI, USA
| |
Collapse
|
19
|
Increased phosphorylation of eIF2α in chronic myeloid leukemia cells stimulates secretion of matrix modifying enzymes. Oncotarget 2018; 7:79706-79721. [PMID: 27802179 PMCID: PMC5346746 DOI: 10.18632/oncotarget.12941] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 10/17/2016] [Indexed: 12/14/2022] Open
Abstract
Recent studies underscore the role of the microenvironment in therapy resistance of chronic myeloid leukemia (CML) cells and leukemia progression. We previously showed that sustained mild activation of endoplasmic reticulum (ER) stress in CML cells supports their survival and resistance to chemotherapy. We now demonstrate, using dominant negative non-phosphorylable mutant of eukaryotic initiation factor 2 α subunit (eIF2α), that phosphorylation of eIF2α (eIF2α-P), which is a hallmark of ER stress in CML cells, substantially enhances their invasive potential and modifies their ability to secrete extracellular components, including the matrix-modifying enzymes cathepsins and matrix metalloproteinases. These changes are dependent on the induction of activating transcription factor-4 (ATF4) and facilitate extracellular matrix degradation by CML cells. Conditioned media from CML cells with constitutive activation of the eIF2α-P/ATF4 pathway induces invasiveness of bone marrow stromal fibroblasts, suggesting that eIF2α-P may be important for extracellular matrix remodeling and thus leukemia cells-stroma interactions. Our data show that activation of stress response in CML cells may contribute to the disruption of bone marrow niche components by cancer cells and in this way support CML progression.
Collapse
|
20
|
Carter BZ, Mak PY, Mu H, Zhou H, Mak DH, Schober W, Leverson JD, Zhang B, Bhatia R, Huang X, Cortes J, Kantarjian H, Konopleva M, Andreeff M. Combined targeting of BCL-2 and BCR-ABL tyrosine kinase eradicates chronic myeloid leukemia stem cells. Sci Transl Med 2017; 8:355ra117. [PMID: 27605552 DOI: 10.1126/scitranslmed.aag1180] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 08/01/2016] [Indexed: 12/11/2022]
Abstract
BCR-ABL tyrosine kinase inhibitors (TKIs) are effective against chronic myeloid leukemia (CML), but they rarely eliminate CML stem cells. Disease relapse is common upon therapy cessation, even in patients with complete molecular responses. Furthermore, once CML progresses to blast crisis (BC), treatment outcomes are dismal. We hypothesized that concomitant targeting of BCL-2 and BCR-ABL tyrosine kinase could overcome these limitations. We demonstrate increased BCL-2 expression at the protein level in bone marrow cells, particularly in Lin(-)Sca-1(+)cKit(+) cells of inducible CML in mice, as determined by CyTOF mass cytometry. Further, selective inhibition of BCL-2, aided by TKI-mediated MCL-1 and BCL-XL inhibition, markedly decreased leukemic Lin(-)Sca-1(+)cKit(+) cell numbers and long-term stem cell frequency and prolonged survival in a murine CML model. Additionally, this combination effectively eradicated CD34(+)CD38(-), CD34(+)CD38(+), and quiescent stem/progenitor CD34(+) cells from BC CML patient samples. Our results suggest that BCL-2 is a key survival factor for CML stem/progenitor cells and that combined inhibition of BCL-2 and BCR-ABL tyrosine kinase has the potential to significantly improve depth of response and cure rates of chronic-phase and BC CML.
Collapse
Affiliation(s)
- Bing Z Carter
- Section of Molecular Hematology and Therapy, Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Po Yee Mak
- Section of Molecular Hematology and Therapy, Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hong Mu
- Section of Molecular Hematology and Therapy, Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hongsheng Zhou
- Section of Molecular Hematology and Therapy, Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Duncan H Mak
- Section of Molecular Hematology and Therapy, Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Wendy Schober
- Section of Molecular Hematology and Therapy, Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Joel D Leverson
- Department of Oncology Development, AbbVie Inc., North Chicago, IL 60064, USA
| | - Bin Zhang
- Division of Hematopoietic Stem Cell and Leukemia Research, Beckman Research Institute, City of Hope Cancer Center, Duarte, CA 91010, USA
| | - Ravi Bhatia
- Division of Hematology and Oncology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Xuelin Huang
- Department of Biostatistics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jorge Cortes
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hagop Kantarjian
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Marina Konopleva
- Section of Molecular Hematology and Therapy, Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Michael Andreeff
- Section of Molecular Hematology and Therapy, Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
21
|
Amey CL, Karnoub AE. Targeting Cancer Stem Cells-A Renewed Therapeutic Paradigm. ONCOLOGY & HEMATOLOGY REVIEW 2017; 13:45-55. [PMID: 33959299 PMCID: PMC8098671 DOI: 10.17925/ohr.2017.13.01.45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Metastasis is often accompanied by radio- and chemotherapeutic resistance to anticancer treatments and is the major cause of death in cancer patients. Better understanding of how cancer cells circumvent therapeutic insults and how disseminated cancer clones generate life-threatening metastases would therefore be paramount to the development of effective therapeutic approaches for clinical management of malignant disease. Mounting reports over the past two decades have provided evidence for the existence of a minor population of highly malignant cells within liquid and solid tumors, which are capable of self-renewing and of regenerating secondary growths with the heterogeneity of the primary tumors from which they derive. These cells, called tumor-initiating cells or cancer stem cells (CSCs) exhibit increased resistance to standard radio- and chemotherapies and appear to have mechanisms that enable them to evade immune surveillance. CSCs are therefore considered to be responsible for systemic residual disease after cancer therapy, as well as for disease relapse. How CSCs develop, the nature of the interactions they establish with their microenvironment, their phenotypic and functional characteristics, as well as their molecular dependencies have all taken center stage in cancer therapy. Indeed, improved understanding of CSC biology is critical to the development of important CSC-based anti-neoplastic approaches that have the potential to radically improve cancer management. Here, we summarize some of the most pertinent elements regarding CSC development and properties, and highlight some of the clinical modalities in current development as anti-CSC therapeutics.
Collapse
Affiliation(s)
| | - Antoine E Karnoub
- Department of Pathology, Beth Israel Deaconess Cancer Center and Harvard Medical School, Boston, Massachusetts, US; Harvard Stem Cell Institute, Cambridge, Massachusetts, US; Broad Institute of MIT and Harvard, Cambridge, Massachusetts, US
| |
Collapse
|
22
|
Chorzalska A, Kim JF, Roder K, Tepper A, Ahsan N, Rao RSP, Olszewski AJ, Yu X, Terentyev D, Morgan J, Treaba DO, Zhao TC, Liang O, Gruppuso PA, Dubielecka PM. Long-Term Exposure to Imatinib Mesylate Downregulates Hippo Pathway and Activates YAP in a Model of Chronic Myelogenous Leukemia. Stem Cells Dev 2017; 26:656-677. [PMID: 28103766 DOI: 10.1089/scd.2016.0262] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Despite the success of tyrosine kinase inhibitor (TKI) therapy in chronic myelogenous leukemia (CML), leukemic stem/progenitor cells remain detectable even in the state of deep molecular remission. Mechanisms that allow them to persist despite continued kinase inhibition remain unclear. We have previously shown that prolonged exposure to imatinib mesylate (IM) results in dysregulation of Akt/Erk 1/2 signaling, upregulation of miR-181a, enhanced adhesiveness, and resistance to high IM. To characterize the molecular basis and reversibility of those effects, we applied gene and protein expression analysis, quantitative phosphoproteomics, and direct miR-181a inhibition to our cellular model of CML cells subjected to prolonged exposure to IM. Those cells demonstrated upregulation of pluripotency markers (SOX2, SALL4) and adhesion receptors (CD44, VLA-4, CXCR4), as well as downregulation of Hippo signaling and upregulation of transcription coactivator YAP. Furthermore, inhibition of miR-181a using a microRNA sponge inhibitor resulted in decreased transcription of SOX2 and SALL4, decreased activation of YAP, and increased sensitivity to IM. Our findings indicate that long-term exposure to IM results in dysregulation of stem cell renewal-regulatory Hippo/YAP signaling, acquisition of expression of stem cell markers and that experimental interference with YAP activity may help to restore chemosensitivity to TKI.
Collapse
Affiliation(s)
- Anna Chorzalska
- 1 Signal Transduction Laboratory, Division of Hematology/Oncology, Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School, Brown University , Providence, Rhode Island
| | - Javier Flores Kim
- 1 Signal Transduction Laboratory, Division of Hematology/Oncology, Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School, Brown University , Providence, Rhode Island
| | - Karim Roder
- 2 Division of Cardiology, Rhode Island Hospital, Warren Alpert Medical School, Brown University , Providence, Rhode Island
| | - Alexander Tepper
- 1 Signal Transduction Laboratory, Division of Hematology/Oncology, Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School, Brown University , Providence, Rhode Island
| | - Nagib Ahsan
- 3 Division of Biology and Medicine, Brown University , Center for Cancer Research and Development Proteomics Core Facility, Rhode Island Hospital, Providence, Rhode Island
| | - R Shyama Prasad Rao
- 4 Division of Biostatistics and Bioinformatics Division, Yenepoya Research Center, Yenepoya University , Mangalore, India
| | - Adam J Olszewski
- 5 Division of Hematology/Oncology, Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School, Brown University , Providence, Rhode Island
| | - Xiaoqing Yu
- 6 Department of Biostatistics, Yale School of Public Health , New Haven, Connecticut
| | - Dmitry Terentyev
- 2 Division of Cardiology, Rhode Island Hospital, Warren Alpert Medical School, Brown University , Providence, Rhode Island
| | - John Morgan
- 7 Flow Cytometry and Cell Sorting Core Facility, Roger Williams Medical Center , Providence, Rhode Island
| | - Diana O Treaba
- 8 Department of Pathology and Laboratory Medicine, Rhode Island Hospital, Warren Alpert Medical School, Brown University , Providence, Rhode Island
| | - Ting C Zhao
- 9 Cardiovascular Laboratory, Department of Surgery, Roger Williams Medical Center, Boston University School of Medicine , Providence, Rhode Island
| | - Olin Liang
- 5 Division of Hematology/Oncology, Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School, Brown University , Providence, Rhode Island.,10 Department of Orthopedics, Warren Alpert Medical School, Brown University , Providence, Rhode Island
| | - Philip A Gruppuso
- 11 Department of Pediatrics, Brown University , Rhode Island Hospital, Providence, Rhode Island
| | - Patrycja M Dubielecka
- 1 Signal Transduction Laboratory, Division of Hematology/Oncology, Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School, Brown University , Providence, Rhode Island
| |
Collapse
|
23
|
Suknuntha K, Thita T, Togarrati PP, Ratanachamnong P, Wongtrakoongate P, Srihirun S, Slukvin I, Hongeng S. Wnt signaling inhibitor FH535 selectively inhibits cell proliferation and potentiates imatinib-induced apoptosis in myeloid leukemia cell lines. Int J Hematol 2016; 105:196-205. [PMID: 27766528 DOI: 10.1007/s12185-016-2116-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 10/18/2016] [Accepted: 10/18/2016] [Indexed: 10/20/2022]
Abstract
Wnt signaling pathway plays a major role in leukemogenesis of myeloid leukemia. Aberrancy in its regulation results in hyperactivity of the pathway contributing to leukemia propagation and maintenance. To investigate effects of Wnt pathway inhibition in leukemia, we used human leukemia cell lines (i.e., K562, HL60, THP1, and Jurkat) and several Wnt inhibitors, including XAV939, IWP2 and FH535. Our results showed that leukemia cell lines (>95 % cells) had increased endogenous levels of β-catenin as compared to mononuclear cells from healthy donors (0 %). Among the tested inhibitors, FH535 demonstrated a markedly suppressive effect (IC50 = 358 nM) on mRNA levels of β-catenin target genes (LEF1, CCND1, and cMYC). In addition, FH535 significantly potentiated imatinib-induced apoptosis. Evaluation of erythrocyte and megakaryocyte lineage using flow cytometry demonstrated that the potentiation mechanism is independent of the developmental stage, and is more likely due to crosstalk between other pathways and β-catenin. FH535 also displayed antiproliferative properties in other cell lines used in this study. In summary, FH535 showed significantly high antiproliferative effects at submicromolar dosages, and additionally enhanced imatinib-induced apoptosis in human leukemia cell lines. Our results highlight its potential antileukemic promise when used in conjunction with other conventional therapeutic regimens.
Collapse
Affiliation(s)
- Kran Suknuntha
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.
| | - Thanyatip Thita
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | | | - Piyanee Ratanachamnong
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | | | - Sirada Srihirun
- Department of Pharmacology, Faculty of Dentistry, Mahidol University, Bangkok, 10400, Thailand
| | - Igor Slukvin
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI, 53792, USA.,Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI, 53715, USA
| | - Suradej Hongeng
- Department of Pediatrics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| |
Collapse
|
24
|
Carter BZ, Mak PY, Mak DH, Ruvolo VR, Schober W, McQueen T, Cortes J, Kantarjian HM, Champlin RE, Konopleva M, Andreeff M. Synergistic effects of p53 activation via MDM2 inhibition in combination with inhibition of Bcl-2 or Bcr-Abl in CD34+ proliferating and quiescent chronic myeloid leukemia blast crisis cells. Oncotarget 2016; 6:30487-99. [PMID: 26431162 PMCID: PMC4741546 DOI: 10.18632/oncotarget.5890] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 09/04/2015] [Indexed: 01/08/2023] Open
Abstract
The Bcr-Abl tyrosine kinase regulates several Bcl-2 family proteins that confer resistance to apoptosis in chronic myeloid leukemia (CML) cells. Given p53's ability to modulate the expression and activity of Bcl-2 family members, we hypothesized that targeting Bcr-Abl, Bcl-2, and p53 concomitantly could have therapeutic benefits in blast crisis (BC) CML and in quiescent CML CD34+ cells that are insensitive to tyrosine kinase inhibitors (TKI). We examined the effects of the MDM2 inhibitor nutlin3a and its combination with the dual Bcl-2 and Bcl-xL inhibitor ABT-737, and the Bcr-Abl inhibitor nilotinib on BC CML patient samples. We found that in quiescent CD34+ progenitors, p53 expression is significantly lower, and MDM2 is higher, compared to their proliferating counterparts. Treatment with nutlin3a induced apoptosis in bulk and CD34+CD38- cells, and in both proliferating and quiescent CD34+ progenitor CML cells. Nutlin3a synergized with ABT-737 and nilotinib, in part by inducing pro-apoptotic, and suppressing anti-apoptotic, Bcl-2 proteins. Nilotinib inhibited the expression of Bcl-xL and Mcl-1 in BC CML cells. These results demonstrate that p53 activation by MDM2 blockade can sensitize BC CML cells, including quiescent CD34+ cells, to Bcl-2 inhibitor- and TKI-induced apoptosis. This novel strategy could be useful in the therapy of BC CML.
Collapse
Affiliation(s)
- Bing Z Carter
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Po Yee Mak
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Duncan H Mak
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Vivian R Ruvolo
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Wendy Schober
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Teresa McQueen
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jorge Cortes
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hagop M Kantarjian
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Richard E Champlin
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Marina Konopleva
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Michael Andreeff
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
25
|
Tabarestani S, Movafagh A. New Developments in Chronic Myeloid Leukemia: Implications for Therapy. IRANIAN JOURNAL OF CANCER PREVENTION 2016; 9:e3961. [PMID: 27366312 PMCID: PMC4922205 DOI: 10.17795/ijcp-3961] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 01/21/2016] [Indexed: 12/31/2022]
Abstract
Context: Chronic myeloid leukemia (CML) is a myeloproliferative disorder characterized by overproduction of immature and matured myeloid cells in the peripheral blood, bone marrow and spleen. Evidence Acquisition: A hallmark of CML is the presence of (9; 22) (q34; q11) reciprocal translocation, which is cytogenetically visible as Philadelphia chromosome (Ph) and results in the formation of BCR-ABL1 fusion protein. This fusion protein is a constitutively active tyrosine kinase which is necessary and sufficient for malignant transformation. The introduction of imatinib, a BCR-ABL1- targeting tyrosine kinase inhibitor (TKI) has revolutionized CML therapy. Subsequently, two other TKIs with increased activity against BCR-ABL1, dasatinib and nilotinib, were developed and approved for CML patients. Nevertheless, CML therapy faces major challenges. Results: The first is the development of resistance to BCR-ABL1 inhibitors in some patients, which can be due to BCR-ABL1 overexpression, differences in cellular drug influx and efflux, activation of alternative signaling pathways, or emergence of BCR-ABL1 kinase domain mutations during TKI treatment. The second is the limited efficiency of BCR-ABL1-TKIs in blast crisis (BC) CML. The third is the insensitivity of CML stem cells to BCR-ABL1 inhibitors. Conventional chemotherapeutics and BCR-ABL1 inhibitors which act by inhibiting cell proliferation and inducing apoptosis, are ineffective against quiescent CML stem cells. Conclusions: A better understanding of the mechanisms that underlie TKI resistance, progression to BC, genomic instability and stem cell quiescence is essential to develop curative strategies for patients with CML.
Collapse
Affiliation(s)
- Sanaz Tabarestani
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
| | - Abolfazl Movafagh
- Medical Genetics Department, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
| |
Collapse
|
26
|
Deregulated hedgehog pathway signaling is inhibited by the smoothened antagonist LDE225 (Sonidegib) in chronic phase chronic myeloid leukaemia. Sci Rep 2016; 6:25476. [PMID: 27157927 PMCID: PMC4860619 DOI: 10.1038/srep25476] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 04/18/2016] [Indexed: 02/06/2023] Open
Abstract
Targeting the Hedgehog (Hh) pathway represents a potential leukaemia stem cell (LSC)-directed therapy which may compliment tyrosine kinase inhibitors (TKIs) to eradicate LSC in chronic phase (CP) chronic myeloid leukaemia (CML). We set out to elucidate the role of Hh signaling in CP-CML and determine if inhibition of Hh signaling, through inhibition of smoothened (SMO), was an effective strategy to target CP-CML LSC. Assessment of Hh pathway gene and protein expression demonstrated that the Hh pathway is activated in CD34+ CP-CML stem/progenitor cells. LDE225 (Sonidegib), a small molecule, clinically investigated SMO inhibitor, used alone and in combination with nilotinib, inhibited the Hh pathway in CD34+ CP-CML cells, reducing the number and self-renewal capacity of CML LSC in vitro. The combination had no effect on normal haemopoietic stem cells. When combined, LDE225 + nilotinib reduced CD34+ CP-CML cell engraftment in NSG mice and, upon administration to EGFP+ /SCLtTA/TRE-BCR-ABL mice, the combination enhanced survival with reduced leukaemia development in secondary transplant recipients. In conclusion, the Hh pathway is deregulated in CML stem and progenitor cells. We identify Hh pathway inhibition, in combination with nilotinib, as a potentially effective therapeutic strategy to improve responses in CP-CML by targeting both stem and progenitor cells.
Collapse
|
27
|
Kuo YH, Qi J, Cook GJ. Regain control of p53: Targeting leukemia stem cells by isoform-specific HDAC inhibition. Exp Hematol 2016; 44:315-21. [PMID: 26923266 DOI: 10.1016/j.exphem.2016.02.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 02/15/2016] [Indexed: 12/24/2022]
Abstract
Leukemia stem cells (LSCs) are self-renewable, leukemia-initiating populations that are often resistant to traditional chemotherapy and tyrosine kinase inhibitors currently used for treatment of acute or chronic myeloid leukemia. The persistence and continued acquisition of mutations in resistant LSCs represent a major cause of refractory disease and/or relapse after remission. Understanding the mechanisms regulating LSC growth and survival is critical in devising effective therapies that will improve treatment response and outcome. Several recent studies indicate that the p53 tumor suppressor pathway is often inactivated in de novo myeloid leukemia through oncogenic-specific mechanisms, which converge on aberrant p53 protein deacetylation. Here, we summarize our current understanding of the various mechanisms underlying deregulation of histone deacetylases (HDACs), which could be exploited to restore p53 activity and enhance targeting of LSCs in molecularly defined patient subsets.
Collapse
Affiliation(s)
- Ya-Huei Kuo
- Division of Hematopoietic Stem Cell and Leukemia Research, Beckman Research Institute, Norbert Gehr and Family Leukemia Center, City of Hope Medical Center, Duarte, CA.
| | - Jing Qi
- Division of Hematopoietic Stem Cell and Leukemia Research, Beckman Research Institute, Norbert Gehr and Family Leukemia Center, City of Hope Medical Center, Duarte, CA
| | - Guerry J Cook
- Division of Hematopoietic Stem Cell and Leukemia Research, Beckman Research Institute, Norbert Gehr and Family Leukemia Center, City of Hope Medical Center, Duarte, CA
| |
Collapse
|
28
|
Garza-Treviño EN, Said-Fernández SL, Martínez-Rodríguez HG. Understanding the colon cancer stem cells and perspectives on treatment. Cancer Cell Int 2015; 15:2. [PMID: 25685060 PMCID: PMC4328053 DOI: 10.1186/s12935-015-0163-7] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Accepted: 01/14/2015] [Indexed: 02/07/2023] Open
Abstract
An area of research that has been recently gaining attention is the relationship between cancer stem cell (CSC) biology and chemo-resistance in colon cancer patients. It is well recognized that tumor initiation, growth, invasion and metastasis are promoted by CSCs. An important reason for the widespread interest in the CSC model is that it can comprehensibly explain essential and poorly understood clinical events, such as therapy resistance, minimal residual disease, and tumor recurrence. This review discusses the recent advances in colon cancer stem cell research, the genes responsible for CSC chemoresistance, and new therapies against CSCs.
Collapse
Affiliation(s)
- Elsa N Garza-Treviño
- Laboratorio de Terapia Celular, Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, León, Mexico
| | - Salvador L Said-Fernández
- Laboratorio de Terapia Celular, Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, León, Mexico
| | - Herminia G Martínez-Rodríguez
- Laboratorio de Terapia Celular, Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, León, Mexico
| |
Collapse
|
29
|
Ichim CV. Kinase-independent mechanisms of resistance of leukemia stem cells to tyrosine kinase inhibitors. Stem Cells Transl Med 2014; 3:405-15. [PMID: 24598782 DOI: 10.5966/sctm.2012-0159] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Tyrosine kinase inhibitors such as imatinib mesylate have changed the clinical course of chronic myeloid leukemia; however, the observation that these inhibitors do not target the leukemia stem cell implies that patients need to maintain lifelong therapy. The mechanism of this phenomenon is unclear: the question of whether tyrosine kinase inhibitors are inactive inside leukemia stem cells or whether leukemia stem cells do not require breakpoint cluster region (Bcr)-Abl signaling is currently under debate. Herein, I propose an alternative model: perhaps the leukemia stem cell requires Bcr-Abl, but is dependent on its kinase-independent functions. Kinases such as epidermal growth factor receptor and Janus kinase 2 possess kinase-independent roles in regulation of gene expression; it is worth investigating whether Bcr-Abl has similar functions. Mechanistically, Bcr-Abl is able to activate the Ras, phosphatidylinositol 3-kinase/Akt, and/or the Src-kinase Hck/Stat5 pathways in a scaffolding-dependent manner. Whereas the scaffolding activity of Bcr-Abl with Grb2 is dependent on autophosphorylation, kinases such as Hck can use Bcr-Abl as substrate, inducing phosphorylation of Y177 to enable scaffolding ability in the absence of Bcr-Abl catalytic activity. It is worth investigating whether leukemia stem cells exclusively express kinases that are able to use Bcr-Abl as substrate. A kinase-independent role for Bcr-Abl in leukemia stem cells would imply that drugs that target Bcr-Abl's scaffolding ability or its DNA-binding ability should be used in conjunction with current therapeutic regimens to increase their efficacy and eradicate the stem cells of chronic myeloid leukemia.
Collapse
MESH Headings
- Animals
- Drug Resistance, Neoplasm
- Gene Expression Regulation, Leukemic/drug effects
- Gene Expression Regulation, Leukemic/genetics
- Humans
- Leukemia
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/enzymology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Neoplasm Proteins/antagonists & inhibitors
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Neoplastic Stem Cells/enzymology
- Neoplastic Stem Cells/pathology
- Phosphatidylinositol 3-Kinases/genetics
- Phosphatidylinositol 3-Kinases/metabolism
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- Protein-Tyrosine Kinases/antagonists & inhibitors
- Protein-Tyrosine Kinases/genetics
- Protein-Tyrosine Kinases/metabolism
- Signal Transduction/drug effects
- Signal Transduction/genetics
Collapse
Affiliation(s)
- Christine Victoria Ichim
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; Discipline of Molecular and Cellular Biology, Sunnybrook Research Institute, Toronto, Ontario, Canada
| |
Collapse
|
30
|
Cichoń T, Smolarczyk R, Matuszczak S, Barczyk M, Jarosz M, Szala S. D-K6L 9 peptide combination with IL-12 inhibits the recurrence of tumors in mice. Arch Immunol Ther Exp (Warsz) 2014; 62:341-51. [PMID: 24487722 PMCID: PMC4092230 DOI: 10.1007/s00005-014-0268-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 10/11/2013] [Indexed: 01/01/2023]
Abstract
D-K6L9 peptide is bound by phosphatidylserine and induces necrosis in cancer cells. In our therapeutic experience, this peptide, when administered directly into B16-F10 murine melanoma tumors, inhibited their growth. Cessation of therapy results, however, in tumor relapse. We aimed at developing a combined therapy involving D-K6L9 and additional factors that would yield complete elimination of tumor cells in experimental animals. To this purpose, we employed glycyrrhizin, an inhibitor of HMGB1 protein, BP1 peptide and interleukin (IL)-12. Glycyrrhizin or BP1, when combined with D-K6L9, inhibits growth of primary tumors only during the period of their administration. A long-term tumor growth inhibitory effect was obtained only in combining D-K6L9 with IL-12. At 2 months following therapy cessation, 60 % of animals were alive. Prolonged survival was noted in mice bearing B16-F10 tumors as well as in mice bearing C26 colon carcinoma tumors.
Collapse
Affiliation(s)
- Tomasz Cichoń
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-101, Gliwice, Poland,
| | | | | | | | | | | |
Collapse
|
31
|
Neviani P, Harb JG, Oaks JJ, Santhanam R, Walker CJ, Ellis JJ, Ferenchak G, Dorrance AM, Paisie CA, Eiring AM, Ma Y, Mao HC, Zhang B, Wunderlich M, May PC, Sun C, Saddoughi SA, Bielawski J, Blum W, Klisovic RB, Solt JA, Byrd JC, Volinia S, Cortes J, Huettner CS, Koschmieder S, Holyoake TL, Devine S, Caligiuri MA, Croce CM, Garzon R, Ogretmen B, Arlinghaus RB, Chen CS, Bittman R, Hokland P, Roy DC, Milojkovic D, Apperley J, Goldman JM, Reid A, Mulloy JC, Bhatia R, Marcucci G, Perrotti D. PP2A-activating drugs selectively eradicate TKI-resistant chronic myeloid leukemic stem cells. J Clin Invest 2013; 123:4144-57. [PMID: 23999433 DOI: 10.1172/jci68951] [Citation(s) in RCA: 175] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 07/03/2013] [Indexed: 12/26/2022] Open
Abstract
The success of tyrosine kinase inhibitors (TKIs) in treating chronic myeloid leukemia (CML) depends on the requirement for BCR-ABL1 kinase activity in CML progenitors. However, CML quiescent HSCs are TKI resistant and represent a BCR-ABL1 kinase-independent disease reservoir. Here we have shown that persistence of leukemic HSCs in BM requires inhibition of the tumor suppressor protein phosphatase 2A (PP2A) and expression--but not activity--of the BCR-ABL1 oncogene. Examination of HSCs from CML patients and healthy individuals revealed that PP2A activity was suppressed in CML compared with normal HSCs. TKI-resistant CML quiescent HSCs showed increased levels of BCR-ABL1, but very low kinase activity. BCR-ABL1 expression, but not kinase function, was required for recruitment of JAK2, activation of a JAK2/β-catenin survival/self-renewal pathway, and inhibition of PP2A. PP2A-activating drugs (PADs) markedly reduced survival and self-renewal of CML quiescent HSCs, but not normal quiescent HSCs, through BCR-ABL1 kinase-independent and PP2A-mediated inhibition of JAK2 and β-catenin. This led to suppression of human leukemic, but not normal, HSC/progenitor survival in BM xenografts and interference with long-term maintenance of BCR-ABL1-positive HSCs in serial transplantation assays. Targeting the JAK2/PP2A/β-catenin network in quiescent HSCs with PADs (e.g., FTY720) has the potential to treat TKI-refractory CML and relieve lifelong patient dependence on TKIs.
Collapse
|
32
|
Xu XH, Gan YC, Xu GB, Chen T, Zhou H, Tang JF, Gu Y, Xu F, Xie YY, Zhao XY, Xu RZ. Tetrandrine citrate eliminates imatinib-resistant chronic myeloid leukemia cells in vitro and in vivo by inhibiting Bcr-Abl/β-catenin axis. J Zhejiang Univ Sci B 2013; 13:867-74. [PMID: 23125079 DOI: 10.1631/jzus.b1200021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE To evaluate the effects of tetrandrine citrate, a novel tetrandrine salt with high water solubility, on the growth of imatinib (IM)-resistant chronic myeloid leukemia (CML) in vitro and in vivo, and reveal action molecular mechanisms. METHODS Cell viability in vitro was measured using methyl thiazolyl tetrazolium (MTT) assay. CML cell growth in vivo was assessed using a xenograft model in nude mice. Bcr-Abl and β-catenin protein levels were determined using Western blotting. Bcr-Abl messenger RNA (mRNA) was measured by reverse transcription polymerase chain reaction (RT-PCR). Flow cytometry (FCM) was used to determine cell cycle status. RESULTS Tetrandrine citrate inhibited the growth of IM-resistant K562 cells, primary leukemia cells, and primitive CD34(+) leukemia cells, and their inhibition concentration that inhibited 50% of target cells (IC(50)) ranged from 1.20 to 2.97 μg/ml. In contrast, tetrandrine citrate did not affect normal blood cells under the same conditions, and IC(50) values were about 10.12-13.11 μg/ml. Oral administration of tetrandrine citrate caused complete regression of IM-resistant K562 xenografts in nude mice without overt toxicity. Western blot results revealed that treatment of IM-resistant K562 cells with tetrandrine citrate resulted in a significant decrease of both p210(Bcr-Abl) and β-catenin proteins, but IM did not affect the Bcr-Abl protein levels. Proteasome inhibitor, MG132, did not prevent tetrandrine-mediated decrease of the p210(Bcr-Abl) protein. RT-PCR results showed that tetrandrine treatment caused a decrease of Bcr-Abl mRNA. FCM analysis indicated that tetrandrine induced gap 1 (G(1)) arrest in CML cells. CONCLUSIONS Tetrandrine citrate is a novel orally active tetrandrine salt with potent anti-tumor activity against IM-resistant K562 cells and CML cells. Tetrandrine citrate-induced growth inhibition of leukemia cells may be involved in the depletion of p210(Bcr-Abl) mRNA and β-catenin protein.
Collapse
Affiliation(s)
- Xiao-hua Xu
- Department of Hematology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Barteneva NS, Ketman K, Fasler-Kan E, Potashnikova D, Vorobjev IA. Cell sorting in cancer research--diminishing degree of cell heterogeneity. Biochim Biophys Acta Rev Cancer 2013; 1836:105-22. [PMID: 23481260 DOI: 10.1016/j.bbcan.2013.02.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 02/06/2013] [Accepted: 02/08/2013] [Indexed: 12/18/2022]
Abstract
Increasing evidence of intratumor heterogeneity and its augmentation due to selective pressure of microenvironment and recent achievements in cancer therapeutics lead to the need to investigate and track the tumor subclonal structure. Cell sorting of heterogeneous subpopulations of tumor and tumor-associated cells has been a long established strategy in cancer research. Advancement in lasers, computer technology and optics has led to a new generation of flow cytometers and cell sorters capable of high-speed processing of single cell suspensions. Over the last several years cell sorting was used in combination with molecular biological methods, imaging and proteomics to characterize primary and metastatic cancer cell populations, minimal residual disease and single tumor cells. It was the principal method for identification and characterization of cancer stem cells. Analysis of single cancer cells may improve early detection of tumors, monitoring of circulating tumor cells, evaluation of intratumor heterogeneity and chemotherapeutic treatments. The aim of this review is to provide an overview of major cell sorting applications and approaches with new prospective developments such as microfluidics and microchip technologies.
Collapse
Affiliation(s)
- Natasha S Barteneva
- Program in Cellular and Molecular Medicine, Children's Hospital Boston, Harvard Medical School, Boston, MA, USA.
| | | | | | | | | |
Collapse
|
34
|
SPARC expression in CML is associated to imatinib treatment and to inhibition of leukemia cell proliferation. BMC Cancer 2013; 13:60. [PMID: 23383963 PMCID: PMC3570354 DOI: 10.1186/1471-2407-13-60] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 01/16/2013] [Indexed: 11/23/2022] Open
Abstract
Background SPARC is a matricellular glycoprotein with growth-inhibitory and antiangiogenic activity in some cell types. The study of this protein in hematopoietic malignancies led to conflicting reports about its role as a tumor suppressor or promoter, depending on its different functions in the tumor microenvironment. In this study we investigated the variations in SPARC production by peripheral blood cells from chronic myeloid leukemia (CML) patients at diagnosis and after treatment and we identified the subpopulation of cells that are the prevalent source of SPARC. Methods We evaluated SPARC expression using real-time PCR and western blotting. SPARC serum levels were detected by ELISA assay. Finally we analyzed the interaction between exogenous SPARC and imatinib (IM), in vitro, using ATP-lite and cell cycle analysis. Results Our study shows that the CML cells of patients at diagnosis have a low mRNA and protein expression of SPARC. Low serum levels of this protein are also recorded in CML patients at diagnosis. However, after IM treatment we observed an increase of SPARC mRNA, protein, and serum level in the peripheral blood of these patients that had already started at 3 months and was maintained for at least the 18 months of observation. This SPARC increase was predominantly due to monocyte production. In addition, exogenous SPARC protein reduced the growth of K562 cell line and synergized in vitro with IM by inhibiting cell cycle progression from G1 to S phase. Conclusion Our results suggest that low endogenous SPARC expression is a constant feature of BCR/ABL positive cells and that IM treatment induces SPARC overproduction by normal cells. This exogenous SPARC may inhibit CML cell proliferation and may synergize with IM activity against CML.
Collapse
|
35
|
Ntziachristos P, Mullenders J, Trimarchi T, Aifantis I. Mechanisms of epigenetic regulation of leukemia onset and progression. Adv Immunol 2013; 117:1-38. [PMID: 23611284 DOI: 10.1016/b978-0-12-410524-9.00001-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Over the past decade, it has become clear that both genetics and epigenetics play pivotal roles in cancer onset and progression. The importance of epigenetic regulation in proper maintenance of cellular state is highlighted by the frequent mutation of chromatin modulating factors across cancer subtypes. Identification of these mutations has created an interest in designing drugs that target enzymes involved in DNA methylation and posttranslational modification of histones. In this review, we discuss recurrent genetic alterations to epigenetic modulators in both myeloid and lymphoid leukemias. Furthermore, we review how these perturbations contribute to leukemogenesis and impact disease outcome and treatment efficacy. Finally, we discuss how the recent advances in our understanding of chromatin biology may impact treatment of leukemia.
Collapse
|
36
|
Ng AP. Hematopoietic stem cells, progenitor cells and leukemic stem cells in adult myeloproliferative neoplasms. Leuk Lymphoma 2012; 54:922-33. [PMID: 23013358 DOI: 10.3109/10428194.2012.734615] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The understanding of myeloproliferative neoplasms has changed dramatically since Dameshek proposed his classification over 50 years ago. Our knowledge of the types of cells which constitute the hematopoietic system and of how they are regulated has also appreciated significantly over this time. This review relates what is currently known about the acquired genetic mutations associated with adult myeloproliferative neoplasms to how they lead to the hematopoietic perturbations of myeloproliferative disease. There is a particular focus on how stem and progenitor cell compartments are affected by BCR-ABL1 and JAK2V617F mutations, and the particular issue of resistance of leukemic stem cells to conventional and targeted therapies.
Collapse
Affiliation(s)
- Ashley P Ng
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.
| |
Collapse
|
37
|
Ribatti D, Ranieri G, Basile A, Azzariti A, Paradiso A, Vacca A. Tumor endothelial markers as a target in cancer. Expert Opin Ther Targets 2012; 16:1215-25. [PMID: 22978444 DOI: 10.1517/14728222.2012.725047] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Several anti-angiogenic agents have been developed and some of them have been clinically applied in the tumor therapy. Anti-angiogenic therapy faces some hurdles: inherent or acquired resistance, increased invasiveness, and lack of biomarkers. Characterization of tumor endothelial markers may help to target endothelium and to identify potential predictive factors of response to anti-angiogenic therapies. Numerous surrogates, angiogenic and endothelium markers have emerged from recent pre-clinical studies, including physiological and soluble molecules in plasma and from platelets, circulating cells, tumor tissue factors and imaging markers. However, no wholly validated biomarkers currently exist to predict the success or the failure of the anti-angiogenic therapy of cancer. Therefore, the research of suitable and validate biomarkers is currently ongoing. AREAS COVERED This review provides an overview of the status of our knowledge concerning tumor endothelial markers, therapeutics targeting, possible resistance mechanisms and predictive value of these biomarkers and discuss future strategies to use and identify them in the anti-angiogenic therapy. EXPERT OPINION Anti-angiogenesis is a milestone to improve the treatment of several types of cancer and predictive biomarkers for a response to anti-endothelium therapy are one of the most important challenges for anti-angiogenesis research.
Collapse
Affiliation(s)
- Domenico Ribatti
- University of Bari Medical School, Department of Basic Medical Sciences, Section of Human Anatomy and Histology, Piazza Giulio Cesare, 11, Bari, Italy.
| | | | | | | | | | | |
Collapse
|
38
|
Seke Etet PF, Vecchio L, Nwabo Kamdje AH. Signaling pathways in chronic myeloid leukemia and leukemic stem cell maintenance: key role of stromal microenvironment. Cell Signal 2012; 24:1883-1888. [PMID: 22659137 DOI: 10.1016/j.cellsig.2012.05.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 05/15/2012] [Accepted: 05/24/2012] [Indexed: 12/11/2022]
Abstract
Chronic myeloid leukemia (CML) is caused by the malignant transformation of hematopoietic stem cells in leukemic stem cells. From the introduction of the anti-cancer drug imatinib, the therapy of CML has been positively transformed. However, following treatment most patients display a residual CML disease attributed to the presence of quiescent leukemic stem cells intrinsically resistant to imatinib. Considering that the later cancer cells lose their chemoresistance in vitro, it appears that the stromal microenvironment plays a crucial role in CML-affected cell chemoresistance. In the present review, we summarize and discuss the recent findings on signaling pathways through which stromal cells sustain CML leukemogenesis, as well as leukemic stem cell maintenance and chemoresistance.
Collapse
Affiliation(s)
- P F Seke Etet
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, 51452 Al-Qaseem, Saudi Arabia
| | | | | |
Collapse
|
39
|
Crews LA, Jamieson CHM. Selective elimination of leukemia stem cells: hitting a moving target. Cancer Lett 2012; 338:15-22. [PMID: 22906415 DOI: 10.1016/j.canlet.2012.08.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 07/27/2012] [Accepted: 08/07/2012] [Indexed: 01/02/2023]
Abstract
Despite the widespread use of chemotherapeutic cytotoxic agents that eradicate proliferating cell populations, patients suffering from a wide variety of malignancies continue to relapse as a consequence of resistance to standard therapies. In hematologic malignancies, leukemia stem cells (LSCs) represent a malignant reservoir of disease that is believed to drive relapse and resistance to chemotherapy and tyrosine kinase inhibitor (TKIs). Major research efforts in recent years have been aimed at identifying and characterizing the LSC population in leukemias, such as chronic myeloid leukemia (CML), which represents an important paradigm for understanding the molecular evolution of cancer. However, the precise molecular mechanisms that promote LSC-mediated therapeutic recalcitrance have remained elusive. It has become clear that the LSC population evolves during disease progression, thus presenting a serious challenge for development of effective therapeutic strategies. Multiple reports have demonstrated that LSC initiation and propagation occurs as a result of aberrant activation of pro-survival and self-renewal pathways regulated by stem-cell related signaling molecules including β-catenin and Sonic Hedgehog (Shh). Enhanced survival in LSC protective microenvironments, such as the bone marrow niche, as well as acquired dormancy of cells in these niches, also contributes to LSC persistence. Key components of these cell-intrinsic and cell-extrinsic pathways provide novel potential targets for therapies aimed at eradicating this dynamic and therapeutically recalcitrant LSC population. Furthermore, combination strategies that exploit LSC have the potential to dramatically improve the quality and quantity of life for patients that are resistant to current therapies.
Collapse
Affiliation(s)
- Leslie A Crews
- Department of Medicine, Stem Cell Program and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | | |
Collapse
|
40
|
Perrotti D. Where are we going with CML research? Leuk Suppl 2012; 1:S51-3. [PMID: 27175251 DOI: 10.1038/leusup.2012.26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The introduction of Abl tyrosine kinase inhibitors (TKI; that is, imatinib, dasatinib and nilotinib) as front-line therapy completely changed the course of chronic myelogenous leukemia (CML) to the point that most of the TKI-responsive newly diagnosed CML patients can be considered 'clinically' cured and their progression into blast crisis (BC) a rare event. However, a therapy for those patients who transform is still lacking, and TKIs do not eradicate CML at the stem cell level, therefore leaving a reservoir of cancer stem cells in a dormant stage. Thus, it is not surprising that the focus of CML research has shifted significantly toward the dissection of the mechanisms regulating the survival and self-renewal of TKI-resistant Philadelphia-positive leukemic chronic phase and BC stem cells, with the ultimate goal of developing small molecules capable of selectively killing leukemic but not normal hematopoietic stem cells, thereby achieving a 'biological' cure for this disease.
Collapse
Affiliation(s)
- D Perrotti
- Department of Microbiology, Immunology and Medical Genetics, Comprehensive Cancer Center, The Ohio State University , Columbus, OH, USA
| |
Collapse
|
41
|
Karvela M, Helgason GV, Holyoake TL. Mechanisms and novel approaches in overriding tyrosine kinase inhibitor resistance in chronic myeloid leukemia. Expert Rev Anticancer Ther 2012; 12:381-92. [PMID: 22369329 DOI: 10.1586/era.12.10] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Chronic myeloid leukemia is a stem cell-initiated but progenitor-driven disease induced by the BCR-ABL oncogene. Tyrosine kinase inhibitors (TKIs) were introduced in the late 1990s and have revolutionized the management of chronic myeloid leukemia in chronic phase. The majority of patients can now expect to live a normal life as long as they continue to comply with TKI treatment. However, in a significant proportion of cases TKI resistance develops over time, requiring a switch of therapy. The most frequent mechanism for drug resistance is the development of kinase domain mutations that reduce or completely ablate drug efficacy. Fortunately, the last 10 years have seen an impressive array of new drugs, some modeled on the mechanism of action of imatinib, others employing more novel approaches, for these patients.
Collapse
Affiliation(s)
- Maria Karvela
- Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 OYN, UK
| | | | | |
Collapse
|
42
|
Fadeev RS, Chekanov AV, Dolgikh NV, Akatov VS. Increase in resistance of A431 cancer cells to TRAIL-induced apoptosis in confluent cultures. Biophysics (Nagoya-shi) 2012. [DOI: 10.1134/s0006350912040045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
43
|
Role of stromal microenvironment in nonpharmacological resistance of CML to imatinib through Lyn/CXCR4 interactions in lipid rafts. Leukemia 2012; 26:883-92. [PMID: 22005789 DOI: 10.1038/leu.2011.291] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We and others have previously demonstrated that p210 Bcr-Abl tyrosine kinase inhibits stromal cell-derived factor-1α/CXCR4 chemokine receptor signaling, contributing to the deficient adhesion of chronic myeloid leukemia (CML) cells to bone marrow stroma. Conversely, exposure of CML cells to a tyrosine kinase inhibitor (TKI) enhances migration of CML cells towards stromal cell layers and promotes non-pharmacological resistance to imatinib. Src-related kinase Lyn is known to interact with CXCL12/CXCR4 signaling and is directly activated by p210 Bcr-Abl. In this study, we demonstrate that TKI treatment promoted CXCR4 redistribution into the lipid raft fraction, in which it co-localized with active phosphorylated form of Lyn (LynTyr396) in CML cells. Lyn inhibition or cholesterol depletion abrogated imatinib-induced migration, and dual Src/Abl kinase inhibitor dasatinib induced fewer CML cells to migrate to the stroma. These findings demonstrate the novel mechanism of microenvironment-mediated resistance through lipid raft modulation, which involves compartmental changes of the multivalent CXCR4 and Lyn complex. We propose that pharmacological targeting of lipid rafts may eliminate bone marrow-resident CML cells through interference with microenvironment-mediated resistance.
Collapse
|
44
|
Quintás-Cardama A, Qiu YH, Post SM, Zhang Y, Creighton CJ, Cortes J, Kornblau SM. Reverse phase protein array profiling reveals distinct proteomic signatures associated with chronic myeloid leukemia progression and with chronic phase in the CD34-positive compartment. Cancer 2012; 118:5283-92. [PMID: 22517119 DOI: 10.1002/cncr.27568] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Revised: 02/23/2012] [Accepted: 02/29/2012] [Indexed: 12/19/2022]
Abstract
BACKGROUND Chronic myeloid leukemia (CML) is a clonal stem cell malignancy whose pathogenesis is driven by constitutive activation of the breakpoint cluster region-v-abl Abelson murine leukemia viral oncogene homolog 1 (BCR-ABL1) kinase. Although BCR-ABL1 activation is present in all patients with CML, patients can present in 3 different phases characterized by an increasingly worse prognosis and diminished responsiveness to tyrosine kinase inhibitors: chronic phase, accelerated phase, or blastic phase. The biologic basis for progression from chronic phase to blastic phase and for regulating the homeostasis of tyrosine kinase inhibitor-resistant CML stem cells is not entirely understood. METHODS To shed some light into these aspects of CML biology, the authors used reverse phase protein arrays probed with 112 individual monoclonal antibodies to compare protein expression patterns in 40 samples of leukemia-enriched fractions from patients with CML (25 in chronic phase, 5 in accelerated phase, and 10 in phase). RESULTS An analysis of variance (significance cutoff, P < .01) unveiled a set of proteins that were overexpressed in blastic phase, including heat-shock protein 90 (hsp90); retinoblastoma (Rb); apoptosis-inducing factor (AIF); serine/threonine-protein phosphatase 2A (PP2A); B-cell leukemia 2 (Bcl-2); X-linked inhibitor of apoptosis protein (Xiap); human homolog of Drosophila Mad (mothers against decapentaplegic) and related Caenorhabditis elegans gene Sma, family member 1 (Smad1); single-stranded DNA binding protein 2 alpha (SSBP2α); poly(adenosine diphosphate-ribose) polymerase (PARP); GRB2-associated binding protein 2 (Gab2); and tripartite motif containing 24 (Trim24). It is noteworthy that several of these proteins also were overexpressed in the CD34-positive compartment, which putatively contains the CML stem cell population. CONCLUSIONS The results from this study indicated that reverse phase protein array analysis can unveil differentially expressed proteins in advanced phase CML that can be exploited therapeutically with targeted approaches.
Collapse
Affiliation(s)
- Alfonso Quintás-Cardama
- Department of Leukemia, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77005, USA.
| | | | | | | | | | | | | |
Collapse
|
45
|
Ribatti D. Cancer stem cells and tumor angiogenesis. Cancer Lett 2012; 321:13-7. [PMID: 22388173 DOI: 10.1016/j.canlet.2012.02.024] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 02/17/2012] [Accepted: 02/20/2012] [Indexed: 12/23/2022]
Abstract
Cancer stem cells (CSCs) have been identified in several human solid and hematological tumors. They are able to initiate tumor formation and metastasis and express specific cell surface markers. CSC tend to be more resistant to chemotherapeutic agents and radiation therapy than more mature cell types from the same tissue because of increased expression of antiapoptotic proteins. In this context, the development of agents that eliminate or control CSC may be an effective strategy for cancer prevention.
Collapse
Affiliation(s)
- Domenico Ribatti
- Department of Basic Medical Sciences, Section of Human Anatomy and Histology, University of Bari Medical School, Bari, Italy.
| |
Collapse
|
46
|
Li L, Wang L, Li L, Wang Z, Ho Y, McDonald T, Holyoake TL, Chen W, Bhatia R. Activation of p53 by SIRT1 inhibition enhances elimination of CML leukemia stem cells in combination with imatinib. Cancer Cell 2012; 21:266-81. [PMID: 22340598 PMCID: PMC3285436 DOI: 10.1016/j.ccr.2011.12.020] [Citation(s) in RCA: 330] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 11/01/2011] [Accepted: 12/20/2011] [Indexed: 12/28/2022]
Abstract
BCR-ABL tyrosine kinase inhibitors (TKI) fail to eliminate quiescent leukemia stem cells (LSC) in chronic myelogenous leukemia (CML). Thus, strategies targeting LSC are required to achieve cure. We show that the NAD(+)-dependent deacetylase SIRT1 is overexpressed in human CML LSC. Pharmacological inhibition of SIRT1 or SIRT1 knockdown increased apoptosis in LSC of chronic phase and blast crisis CML and reduced their growth in vitro and in vivo. SIRT1 effects were enhanced in combination with the BCR-ABL TKI imatinib. SIRT1 inhibition increased p53 acetylation and transcriptional activity in CML progenitors, and the inhibitory effects of SIRT1 targeting on CML cells depended on p53 expression and acetylation. Activation of p53 via SIRT1 inhibition represents a potential approach to target CML LSC.
Collapse
Affiliation(s)
- Ling Li
- Division of Hematopoietic Stem cell and Leukemia Research, City of Hope National Medical Center, Duarte CA
| | - Lisheng Wang
- Division of Hematopoietic Stem cell and Leukemia Research, City of Hope National Medical Center, Duarte CA
| | - Liang Li
- Division of Hematopoietic Stem cell and Leukemia Research, City of Hope National Medical Center, Duarte CA
| | - Zhiqiang Wang
- Department of Cancer Biology, City of Hope National Medical Center, Duarte CA
| | - Yinwei Ho
- Division of Hematopoietic Stem cell and Leukemia Research, City of Hope National Medical Center, Duarte CA
| | - Tinisha McDonald
- Division of Hematopoietic Stem cell and Leukemia Research, City of Hope National Medical Center, Duarte CA
| | - Tessa L. Holyoake
- Section of Experimental Haematology, Institute of Cancer Sciences, University of Glasgow, Scotland, UK
| | - WenYong Chen
- Department of Cancer Biology, City of Hope National Medical Center, Duarte CA
| | - Ravi Bhatia
- Division of Hematopoietic Stem cell and Leukemia Research, City of Hope National Medical Center, Duarte CA
| |
Collapse
|
47
|
Low BCR-ABL expression levels in hematopoietic precursor cells enable persistence of chronic myeloid leukemia under imatinib. Blood 2011; 119:530-9. [PMID: 22101898 DOI: 10.1182/blood-2010-08-303495] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
BCR-ABL overexpression and stem cell quiescence supposedly contribute to the failure of imatinib mesylate (IM) to eradicate chronic myeloid leukemia (CML). However, BCR-ABL expression levels of persisting precursors and the impact of long-term IM therapy on the clearance of CML from primitive and mature bone marrow compartments are unclear. Here, we have shown that the number of BCR-ABL-positive precursors decreases significantly in all bone marrow compartments during major molecular remission (MMR). More importantly, we were able to demonstrate substantially lower BCR-ABL expression levels in persisting MMR colony-forming units (CFUs) compared with CML CFUs from diagnosis. Critically, lower BCR-ABL levels may indeed cause IM insensitivity, because primary murine bone marrow cells engineered to express low amounts of BCR-ABL were substantially less sensitive to IM than BCR-ABL-overexpressing cells. BCR-ABL overexpression in turn catalyzed the de novo development of point mutations to a greater extent than chemical mutagenesis. Thus, MMR is characterized by the persistence of CML clones with low BCR-ABL expression that may explain their insensitivity to IM and their low propensity to develop IM resistance through kinase point mutations. These findings may have implications for future treatment strategies of residual disease in CML.
Collapse
|
48
|
Activation of apoptosis signaling eliminates CD34+ progenitor cells in blast crisis CML independent of response to tyrosine kinase inhibitors. Leukemia 2011; 26:788-94. [PMID: 22033489 DOI: 10.1038/leu.2011.285] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Despite being highly effective for newly diagnosed chronic myeloid leukemia (CML), imatinib not only is inactive against quiescent CML stem cells, but also has limited activity against blast crisis (BC) CML. The relative activity of Bcr-Abl and the expression levels of antiapoptotic proteins in proliferating and quiescent CD34(+) BC CML progenitor cells and the effects of targeting antiapoptotic proteins in these cells are unknown. Here we report higher levels of p-CrkL in quiescent than in proliferating CD34(+) progenitor cells and comparable expression levels of Bcl-2, Bcl-xL, Mcl-1 and XIAP in the two populations in BC CML. Inhibition of Bcl-2/Bcl-xL by ABT-737 in cells from patients with tyrosine kinase inhibitor (TKI)-resistant BC CML promoted apoptosis in quiescent CD34(+) progenitor cells with an efficacy similar to that in proliferating cells. Combination of ABT-737 with imatinib (which decreases Mcl-1 levels) or triptolide (which decreases Mcl-1 and XIAP) synergistically induced death of both proliferating and quiescent CD34(+) progenitor cells obtained from TKI-resistant BC CML patients. These results suggest that antiapoptotic proteins are critical targets in BC CML and that activation of apoptosis signaling can eliminate both proliferating and quiescent CD34(+) progenitor cells in BC CML, independent of response to TKIs.
Collapse
|
49
|
Buss EC, Ho AD. Leukemia stem cells. Int J Cancer 2011; 129:2328-36. [PMID: 21796620 DOI: 10.1002/ijc.26318] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Accepted: 07/12/2011] [Indexed: 12/18/2022]
Abstract
Leukemia stem cells (LSCs) might originate from malignant transformation of normal hematopoietic stem cells (HSCs), or alternatively, of progenitors in which the acquired mutations have re-installed a dysregulated self-renewal program. LSCs are on top of a hierarchy and generate leukemia cells with more differentiated characteristics. While most leukemia cells are initially sensitive to chemo- and radiotherapy, LSCs are resistant and are considered to be the basis for disease relapse after initial response. Albeit important knowledge on LSC biology has been gained from xenogeneic transplantation models introducing human leukemia cells into immune deficient mouse models, the prospective identification and isolation of human LSC candidates has remained elusive and their prognostic and therapeutic significance controversial. This review focuses on the identification, enrichment and characterization of human LSC derived from patients with acute myeloid leukemia (AML). Experimental data demonstrating the clinical significance of estimating LSC burden and strategies to eliminate LSC will be summarized. For long-term cure of AML, it is of importance to define LSC candidates and to understand their tumor biology compared to normal HSCs. Such comparative studies might provide novel markers for the identification of LSC and for the development of treatment strategies that might be able to eradicate them.
Collapse
Affiliation(s)
- Eike C Buss
- Department of Internal Medicine V, Heidelberg University Medical Center, Im Neuenheimer Feld 410, Heidelberg, Germany
| | | |
Collapse
|
50
|
Therapeutic approaches to target cancer stem cells. Cancers (Basel) 2011; 3:3331-52. [PMID: 24212957 PMCID: PMC3759198 DOI: 10.3390/cancers3033331] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2011] [Revised: 07/27/2011] [Accepted: 08/07/2011] [Indexed: 12/18/2022] Open
Abstract
The clinical relevance of cancer stem cells (CSC) remains a major challenge for current cancer therapies, but preliminary findings indicate that specific targeting may be possible. Recent studies have shown that these tumor subpopulations promote tumor angiogenesis through the increased production of VEGF, whereas the VEGF neutralizing antibody bevacizumab specifically inhibits CSC growth. Moreover, nimotuzumab, a monoclonal antibody against the epidermal growth factor receptor (EGFR) with a potent antiangiogenic activity, has been shown by our group to reduce the frequency of CSC-like subpopulations in mouse models of brain tumors when combined with ionizing radiation. These studies and subsequent reports from other groups support the relevance of approaches based on molecular-targeted therapies to selectively attack CSC. This review discusses the relevance of targeting both the EGFR and angiogenic pathways as valid approaches to this aim. We discuss the relevance of identifying better molecular markers to develop drug screening strategies that selectively target CSC.
Collapse
|