1
|
Liu G, Lin W, Zhang K, Chen K, Niu G, Zhu Y, Liu Y, Li P, Li Z, An Y. Elucidating the prognostic and therapeutic significance of TOP2A in various malignancies. Cancer Genet 2024; 288-289:68-81. [PMID: 39454521 DOI: 10.1016/j.cancergen.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/26/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024]
Abstract
Topoisomerase IIα (TOP2A) is a crucial enzyme that plays a vital role in DNA replication and transcription mechanisms. Dysregulated expression of TOP2A has been associated with various malignancies, including hepatocellular carcinoma, prostate cancer, colon cancer, lung cancer and breast cancer. In this review, we summarized the prognostic relevances of TOP2A in various types of cancer. The increased expression of TOP2A has been linked to resistance to therapy and reduced survival rates. Therefore, evaluating TOP2A levels could assist in identifying patients who may derive advantages from molecular targeted therapy. The amplification of TOP2A has been linked to a positive response to chemotherapy regimens that contain anthracycline. Nevertheless, the overexpression of TOP2A also indicates a heightened likelihood of disease recurrence and unfavorable prognosis. The prognostic significance of TOP2A has been extensively studied in various types of cancer. The increased expression of TOP2A is associated with poor clinical outcomes, indicating its potential as a valuable biomarker for assessing risk and stratifying treatment in these malignancies. However, further investigation is needed to elucidate the underlying mechanisms by which TOP2A influences cancer progression and to explore its potential as a therapeutic target.
Collapse
Affiliation(s)
- Guangchao Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; School of Stomatology, Henan University, Kaifeng, 475004, China
| | - Wenlong Lin
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; School of Stomatology, Henan University, Kaifeng, 475004, China
| | - Kaifeng Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; School of Stomatology, Henan University, Kaifeng, 475004, China
| | - Kangxu Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; School of Stomatology, Henan University, Kaifeng, 475004, China
| | - Guanglin Niu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; School of Stomatology, Henan University, Kaifeng, 475004, China
| | - Yonghao Zhu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; School of Stomatology, Henan University, Kaifeng, 475004, China
| | - Yixuan Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key laboratory of cell signal transduction, Henan University, Kaifeng, 475004, China
| | - Pengkun Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key laboratory of cell signal transduction, Henan University, Kaifeng, 475004, China
| | - Zhihao Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key laboratory of cell signal transduction, Henan University, Kaifeng, 475004, China
| | - Yang An
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key laboratory of cell signal transduction, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
2
|
Maleki EH, Bahrami AR, Matin MM. Cancer cell cycle heterogeneity as a critical determinant of therapeutic resistance. Genes Dis 2024; 11:189-204. [PMID: 37588236 PMCID: PMC10425754 DOI: 10.1016/j.gendis.2022.11.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 10/20/2022] [Accepted: 11/16/2022] [Indexed: 01/15/2023] Open
Abstract
Intra-tumor heterogeneity is now arguably one of the most-studied topics in tumor biology, as it represents a major obstacle to effective cancer treatment. Since tumor cells are highly diverse at genetic, epigenetic, and phenotypic levels, intra-tumor heterogeneity can be assumed as an important contributing factor to the nullification of chemotherapeutic effects, and recurrence of the tumor. Based on the role of heterogeneous subpopulations of cancer cells with varying cell-cycle dynamics and behavior during cancer progression and treatment; herein, we aim to establish a comprehensive definition for adaptation of neoplastic cells against therapy. We discuss two parallel and yet distinct subpopulations of tumor cells that play pivotal roles in reducing the effects of chemotherapy: "resistant" and "tolerant" populations. Furthermore, this review also highlights the impact of the quiescent phase of the cell cycle as a survival mechanism for cancer cells. Beyond understanding the mechanisms underlying the quiescence, it provides an insightful perspective on cancer stem cells (CSCs) and their dual and intertwined functions based on their cell cycle state in response to treatment. Moreover, CSCs, epithelial-mesenchymal transformed cells, circulating tumor cells (CTCs), and disseminated tumor cells (DTCs), which are mostly in a quiescent state of the cell cycle are proved to have multiple biological links and can be implicated in our viewpoint of cell cycle heterogeneity in tumors. Overall, increasing our knowledge of cell cycle heterogeneity is a key to identifying new therapeutic solutions, and this emerging concept may provide us with new opportunities to prevent the dreadful cancer recurrence.
Collapse
Affiliation(s)
- Ebrahim H. Maleki
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, 9177948974 Mashhad, Iran
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 31-007 Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, 30-348 Krakow, Poland
| | - Ahmad Reza Bahrami
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, 9177948974 Mashhad, Iran
- Industrial Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, 9177948974 Mashhad, Iran
| | - Maryam M. Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, 9177948974 Mashhad, Iran
- Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, 9177948974 Mashhad, Iran
- Stem Cell and Regenerative Medicine Research Group, Iranian Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, 917751376 Mashhad, Iran
| |
Collapse
|
3
|
Davies MR, Greenberg Z, van Vuurden DG, Cross CB, Zannettino ACW, Bardy C, Wardill HR. More than a small adult brain: Lessons from chemotherapy-induced cognitive impairment for modelling paediatric brain disorders. Brain Behav Immun 2024; 115:229-247. [PMID: 37858741 DOI: 10.1016/j.bbi.2023.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 10/10/2023] [Accepted: 10/14/2023] [Indexed: 10/21/2023] Open
Abstract
Childhood is recognised as a period of immense physical and emotional development, and this, in part, is driven by underlying neurophysiological transformations. These neurodevelopmental processes are unique to the paediatric brain and are facilitated by augmented rates of neuroplasticity and expanded neural stem cell populations within neurogenic niches. However, given the immaturity of the developing central nervous system, innate protective mechanisms such as neuroimmune and antioxidant responses are functionally naïve which results in periods of heightened sensitivity to neurotoxic insult. This is highly relevant in the context of paediatric cancer, and in particular, the neurocognitive symptoms associated with treatment, such as surgery, radio- and chemotherapy. The vulnerability of the developing brain may increase susceptibility to damage and persistent symptomology, aligning with reports of more severe neurocognitive dysfunction in children compared to adults. It is therefore surprising, given this intensified neurocognitive burden, that most of the pre-clinical, mechanistic research focuses exclusively on adult populations and extrapolates findings to paediatric cohorts. Given this dearth of age-specific research, throughout this review we will draw comparisons with neurodevelopmental disorders which share comparable pathways to cancer treatment related side-effects. Furthermore, we will examine the unique nuances of the paediatric brain along with the somatic systems which influence neurological function. In doing so, we will highlight the importance of developing in vitro and in vivo paediatric disease models to produce age-specific discovery and clinically translatable research.
Collapse
Affiliation(s)
- Maya R Davies
- School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia; Supportive Oncology Research Group, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia.
| | - Zarina Greenberg
- South Australian Health and Medical Research Institute (SAHMRI), Laboratory of Human Neurophysiology and Genetics, Adelaide, SA, Australia
| | - Dannis G van Vuurden
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the weNetherlands
| | - Courtney B Cross
- Supportive Oncology Research Group, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
| | - Andrew C W Zannettino
- School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Cedric Bardy
- South Australian Health and Medical Research Institute (SAHMRI), Laboratory of Human Neurophysiology and Genetics, Adelaide, SA, Australia; Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Hannah R Wardill
- School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia; Supportive Oncology Research Group, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
| |
Collapse
|
4
|
Selective protection of normal cells from chemotherapy, while killing drug-resistant cancer cells. Oncotarget 2023; 14:193-206. [PMID: 36913303 PMCID: PMC10010629 DOI: 10.18632/oncotarget.28382] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023] Open
Abstract
Cancer therapy is limited by toxicity in normal cells and drug-resistance in cancer cells. Paradoxically, cancer resistance to certain therapies can be exploited for protection of normal cells, simultaneously enabling the selective killing of resistant cancer cells by using antagonistic drug combinations, which include cytotoxic and protective drugs. Depending on the mechanisms of drug-resistance in cancer cells, the protection of normal cells can be achieved with inhibitors of CDK4/6, caspases, Mdm2, mTOR, and mitogenic kinases. When normal cells are protected, the selectivity and potency of multi-drug combinations can be further enhanced by adding synergistic drugs, in theory, eliminating the deadliest cancer clones with minimal side effects. I also discuss how the recent success of Trilaciclib may foster similar approaches into clinical practice, how to mitigate systemic side effects of chemotherapy in patients with brain tumors and how to ensure that protective drugs would only protect normal cells (not cancer cells) in a particular patient.
Collapse
|
5
|
Rosenkranz AA, Slastnikova TA, Durymanov MO, Georgiev GP, Sobolev AS. Exploiting active nuclear import for efficient delivery of Auger electron emitters into the cell nucleus. Int J Radiat Biol 2023; 99:28-38. [PMID: 32856963 DOI: 10.1080/09553002.2020.1815889] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND The most attractive features of Auger electrons (AEs) in cancer therapy are their extremely short range and sufficiently high linear energy transfer (LET) for a majority of them. The cytotoxic effects of AE emitters can be realized only in close vicinity to sensitive cellular targets and they are negligible if the emitters are located outside the cell. The nucleus is considered the compartment most sensitive to high LET particles. Therefore, the use of AE emitters could be most useful in specific recognition of a cancer cell and delivery of AE emitters into its nucleus. PURPOSE This review describes the studies aimed at developing effective anticancer agents for the delivery of AE emitters to the nuclei of target cancer cells. The use of peptide-based conjugates, nanoparticles, recombinant proteins, and other constructs for AE emitter targeted intranuclear delivery as well as their advantages and limitations are discussed. CONCLUSION Transport from the cytoplasm to the nucleus along with binding to the cancer cell is one of the key stages in the delivery of AE emitters; therefore, several constructs for exploitation of this transport have been developed. The transport is carried out through a nuclear pore complex (NPC) with the use of specific amino acid nuclear localization sequences (NLS) and carrier proteins named importins, which are located in the cytosol. Therefore, the effectiveness of NLS-containing delivery constructs designed to provide energy-dependent transport of AE emitter into the nuclei of cancer cells also depends on their efficient entry into the cytosol of the target cell.
Collapse
Affiliation(s)
- Andrey A Rosenkranz
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia.,Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | | | | | | | - Alexander S Sobolev
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia.,Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
6
|
Katheeja MN, Das SP, Das R, Laha S. BRCA1 interactors, RAD50 and BRIP1, as prognostic markers for triple-negative breast cancer severity. Front Genet 2023; 14:1035052. [PMID: 36873936 PMCID: PMC9978165 DOI: 10.3389/fgene.2023.1035052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 01/30/2023] [Indexed: 02/18/2023] Open
Abstract
Introduction: BRIP1 (BRCA1-interacting protein 1) is one of the major interacting partners of BRCA1, which plays an important role in repair by homologous recombination (HR). This gene is mutated in around 4% of cases of breast cancer; however, its mechanism of action is unclear. In this study, we presented the fundamental role of BRCA1 interactors BRIP1 and RAD50 in the development of differential severity in triple-negative breast cancer (TNBC) among various affected individuals. Methods: We have analyzed the expression of DNA repair-related genes in different BC cells using Real-time PCR and western blotting analysis and assessed changes in stemness property and proliferation through Immunophenotyping. We have performed cell cycle analysis to see the defect in checkpoints and also immunofluorescence assay to confirm the accumulation of gamma-H2AX and BRCA1 foci and subsequent incidence. We have performed a severity analysis using TCGA data sets for comparing the expression in MDA-MB-468 MDA-MB-231 and MCF7 cell line. Results: We showed that in some TNBC cell lines such as MDA-MB-231, the functioning of both BRCA1/TP53 is compromised. Furthermore, the sensing of DNA damage is affected. Due to less damage-sensing capability and low availability of BRCA1 at the damage sites, the repair by HR becomes inefficient, leading to more damage. Accumulation of damage sends a signal for over activation of NHEJ repair pathways. Over expressed NHEJ molecules with compromised HR and checkpoint conditions lead to higher proliferation and error-prone repair, which increases the mutation rate and corresponding tumour severity. The in-silico analysis of the TCGA datasets with gene expression in the deceased population showed a significant correlation of BRCA1 expression with overall survival (OS) in TNBCs (0.0272). The association of BRCA1 with OS became stronger with the addition of BRIP1 expression (0.000876**). Conclusion: The severity phenotypes were more in cells having compromised BRCA1-BRIP1 functioning. Since the OS is directly proportional to the extent of severity, the data analysis hints at the role of BRIP1 in controlling the severity of TNBC.
Collapse
Affiliation(s)
- Muhseena N Katheeja
- Yenepoya Research Centre, Yenepoya (Deemed to be) University, Mangalore, Karnataka, India
| | - Shankar Prasad Das
- Yenepoya Research Centre, Yenepoya (Deemed to be) University, Mangalore, Karnataka, India
| | - Ranajit Das
- Yenepoya Research Centre, Yenepoya (Deemed to be) University, Mangalore, Karnataka, India
| | - Suparna Laha
- Yenepoya Research Centre, Yenepoya (Deemed to be) University, Mangalore, Karnataka, India
| |
Collapse
|
7
|
Hirai T, Kono K, Kusakawa S, Yasuda S, Sawada R, Morishita A, Hata S, Wakita A, Kageyama T, Takahashi R, Watanabe S, Shiraishi N, Sato Y. Evaluation of the reproducibility and positive controls of cellular immortality test for the detection of immortalized cellular impurities in human cell-processed therapeutic products. Regen Ther 2022; 21:540-546. [PMID: 36382135 PMCID: PMC9634468 DOI: 10.1016/j.reth.2022.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/14/2022] [Accepted: 10/20/2022] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Contamination of human cell-processed therapeutic products (hCTPs) with tumorigenic/immortalized cellular impurities is a major concern in the manufacturing and quality control of hCTPs. The cellular immortality test based on cell growth analysis is a method for detecting tumorigenic/immortalized cellular impurities in hCTPs. However, the performance of the cellular immortality test has not yet been well characterized. In this study, we examined the reproducibility of the cellular immortality test in detecting HeLa cells as a model of tumorigenic cellular impurities, as well as the applicability of other models of cellular impurities with different tumorigenicity to the cellular immortality test. METHODS Using HeLa cells as a model for cellular impurities, we measured the growth rate of human mesenchymal stem cells (hMSCs) supplemented with HeLa cells at concentrations ranging from 0.01 to 0.0001% at each passage in three laboratories and evaluated the reproducibility of the detection of immortalized cellular impurities. In addition, HEK293 cells (another immortalized cell line) and MRC-5 cells (a non-immortalized cell line) were employed as cellular impurity models that exhibit different growth characteristics from HeLa cells, and the ability of the cellular immortality test to detect these different impurities when mixed with hMSCs was examined. RESULTS In the multisite study, the growth rate of hMSCs supplemented with 1 and 10 HeLa cells (0.0001% and 0.001%) significantly increased and reached a plateau in all three laboratories, whereas those of hMSCs alone eventually decreased. Moreover, when hMSCs were supplemented with 10 and 100 HEK293 and MRC-5 cells (0.001% and 0.01%), the growth rate significantly increased. The growth rate of hMSCs supplemented with HEK293 cells increased with passage and remained high, whereas that of hMSCs supplemented with MRC-5 cells eventually decreased, as in the case of hMSCs alone. CONCLUSIONS These results indicate that the cellular immortality test is reproducible and can detect immortalized (i.e., potentially tumorigenic) cells such as HEK293 cells with a lower growth rate than HeLa cells by discriminating against normal cells, which could contribute to ensuring the safety and quality of hCTPs.
Collapse
Affiliation(s)
- Takamasa Hirai
- Division of Cell-Based Therapeutic Products, National Institute of Health Sciences, Kanagawa, Japan
| | - Ken Kono
- Division of Cell-Based Therapeutic Products, National Institute of Health Sciences, Kanagawa, Japan
| | - Shinji Kusakawa
- Division of Cell-Based Therapeutic Products, National Institute of Health Sciences, Kanagawa, Japan
| | - Satoshi Yasuda
- Division of Cell-Based Therapeutic Products, National Institute of Health Sciences, Kanagawa, Japan,Department of Quality Assurance Science for Pharmaceuticals, Graduate School of Pharmaceutical Sciences, Nagoya City University, Aichi, Japan
| | - Rumi Sawada
- Division of Cell-Based Therapeutic Products, National Institute of Health Sciences, Kanagawa, Japan
| | | | | | - Atsushi Wakita
- Clinical Pathology Division, Tsukuba Research Institute, BoZo Research Center Inc., Ibaraki, Japan
| | - Takayasu Kageyama
- Clinical Pathology Division, Tsukuba Research Institute, BoZo Research Center Inc., Ibaraki, Japan
| | - Ryo Takahashi
- Clinical Pathology Division, Tsukuba Research Institute, BoZo Research Center Inc., Ibaraki, Japan
| | - Sono Watanabe
- Analytical Research Group, Research Division, HEALIOS K.K., Hyogo, Japan
| | - Norihiko Shiraishi
- New Healthcare Solutions, Corporate Strategy Department, Strategy Division, Kyowakirin Co., Ltd., Tokyo, Japan
| | - Yoji Sato
- Division of Cell-Based Therapeutic Products, National Institute of Health Sciences, Kanagawa, Japan,Next Generation Life Science Technology Development Project, Kanagawa Institute of Industrial Science and Technology, Kanagawa, Japan,Department of Cellular and Gene Therapy Products, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan,Corresponding author. Division of Cell-Based Therapeutic Products, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki Ward, Kawasaki City, Kanagawa 210-9501, Japan. Fax: +81-44-270-6526.
| |
Collapse
|
8
|
Mestrum SGC, Vanblarcum RBY, Drent RJM, Boonen BT, van Hemert WLW, Ramaekers FCS, Hopman AHN, Leers MPG. Proliferative and anti‐apoptotic fractions in maturing hematopoietic cell lineages and their role in homeostasis of normal bone marrow. Cytometry A 2022; 101:552-563. [PMID: 35429122 PMCID: PMC9540078 DOI: 10.1002/cyto.a.24558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 02/04/2022] [Accepted: 04/06/2022] [Indexed: 11/17/2022]
Abstract
Recent developments in clinical flow cytometry allow the simultaneous assessment of proliferative and anti‐apoptotic activity in the different hematopoietic cell lineages and during their maturation process. This can further advance the flow cytometric diagnosis of myeloid malignancies. In this study we established indicative reference values for the Ki‐67 proliferation index and Bcl‐2 anti‐apoptotic index in blast cells, as well as maturing erythroid, myeloid, and monocytic cells from normal bone marrow (BM). Furthermore, the cell fractions co‐expressing both proliferation and anti‐apoptotic markers were quantified. Fifty BM aspirates from femoral heads of patients undergoing hip replacement were included in this study. Ten‐color/twelve‐parameter flow cytometry in combination with a software‐based maturation tool was used for immunophenotypic analysis of Ki‐67 and Bcl‐2 positive fractions during the erythro‐, myelo‐, and monopoiesis. Indicative reference values for the Ki‐67 and Bcl‐2 positive fractions were established for different relevant hematopoietic cell populations in healthy BM. Ki‐67 and Bcl‐2 were equally expressed in the total CD34 positive blast cell compartment and 30% of Ki‐67 positive blast cells also showed Bcl‐2 positivity. The Ki‐67 and Bcl‐2 positive fractions were highest in the more immature erythroid, myeloid and monocytic cells. Both fractions then gradually declined during the subsequent maturation phases of these cell lineages. We present a novel application of an earlier developed assay that allows the simultaneous determination of the Ki‐67 proliferative and Bcl‐2 anti‐apoptotic indices in maturing hematopoietic cell populations of the BM. Their differential expression levels during the maturation process were in accordance with the demand and lifespan of these cell populations. The indicative reference values established in this study can act as a baseline for further cell biological and biomedical studies involving hematological malignancies.
Collapse
Affiliation(s)
- Stefan G. C. Mestrum
- Department of Molecular Cell Biology, GROW‐School for Oncology and Developmental Biology Maastricht University Medical Center Maastricht The Netherlands
- Department of Clinical Chemistry & Hematology Zuyderland Medical Center Sittard‐Geleen The Netherlands
| | - Roanalis B. Y. Vanblarcum
- Department of Clinical Chemistry & Hematology Zuyderland Medical Center Sittard‐Geleen The Netherlands
| | - Roosmarie J. M. Drent
- Department of Clinical Chemistry & Hematology Zuyderland Medical Center Sittard‐Geleen The Netherlands
| | - Bert T. Boonen
- Department of Orthopedic Surgery Zuyderland Medical Center Heerlen The Netherlands
| | | | - Frans C. S. Ramaekers
- Department of Molecular Cell Biology, GROW‐School for Oncology and Developmental Biology Maastricht University Medical Center Maastricht The Netherlands
- Nordic‐MUbio, Susteren The Netherlands
| | - Anton H. N. Hopman
- Department of Molecular Cell Biology, GROW‐School for Oncology and Developmental Biology Maastricht University Medical Center Maastricht The Netherlands
| | - Math P. G. Leers
- Department of Clinical Chemistry & Hematology Zuyderland Medical Center Sittard‐Geleen The Netherlands
| |
Collapse
|
9
|
Oalđe Pavlović M, Kolarević S, Đorđević J, Jovanović Marić J, Lunić T, Mandić M, Kračun Kolarević M, Živković J, Alimpić Aradski A, Marin PD, Šavikin K, Vuković-Gačić B, Božić Nedeljković B, Duletić-Laušević S. A Study of Phytochemistry, Genoprotective Activity, and Antitumor Effects of Extracts of the Selected Lamiaceae Species. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112306. [PMID: 34834669 PMCID: PMC8623784 DOI: 10.3390/plants10112306] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/14/2021] [Accepted: 10/21/2021] [Indexed: 05/03/2023]
Abstract
This study was designed to evaluate the genoprotective, antigenotoxic, as well as antitumor potential of methanolic, ethanolic, and aqueous extracts of Melissa officinalis, Mentha × piperita, Ocimum basilicum, Rosmarinus officinalis, Salvia officinalis, and Satureja montana (Lamiaceae), in different model systems. The polyphenols in these extracts were quantified both spectrophotometrically and using HPLC-DAD technique, while DPPH assay was used to assess the antioxidant activity. The genoprotective potential was tested on pUC19 Escherichia coli XL1-blue, and the antigenotoxicity on Salmonella typhimurium TA1535/pSK1002 and human lung fibroblasts, while the antitumor activity was assessed on colorectal cancer cells. Rosmarinic acid, quercetin, rutin, and luteolin-7-O-glucoside were among the identified compounds. Methanolic extracts had the best DPPH-scavenging and SOS-inducing activities, while ethanolic extracts exhibited the highest antigenotoxicity. Additionally, all extracts exhibited genoprotective potential on plasmid DNA. The antitumor effect was mediated by modulation of reactive oxygen species (ROS), nitric oxide (NO) production, and exhibition of genotoxic effects on tumor cells, especially with O. basilicum ethanolic extract. Generally, the investigated extracts were able to provide antioxidant protection for the acellular, prokaryotic, and normal human DNA, while also modulating the production of ROS and NO in tumor cells, leading to genotoxicity toward these cells and their decrease in proliferation.
Collapse
Affiliation(s)
- Mariana Oalđe Pavlović
- Department of Plant Morphology and Systematics, Faculty of Biology, Institute of Botany and Botanical Garden “Jevremovac”, University of Belgrade, Studentski trg 16, 11070 Belgrade, Serbia; (A.A.A.); (P.D.M.); (S.D.-L.)
- Correspondence: ; Tel.: +381-11-3244-498
| | - Stoimir Kolarević
- Centre for Genotoxicology and Ecogenotoxicology, Department of Microbiology, Faculty of Biology, Institute of Botany and Botanical Garden “Jevremovac”, University of Belgrade, Studentski trg 16, 11070 Belgrade, Serbia; (S.K.); (J.Đ.); (J.J.M.); (B.V.-G.)
- Department of Hydroecology and Water Protection, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11070 Belgrade, Serbia;
| | - Jelena Đorđević
- Centre for Genotoxicology and Ecogenotoxicology, Department of Microbiology, Faculty of Biology, Institute of Botany and Botanical Garden “Jevremovac”, University of Belgrade, Studentski trg 16, 11070 Belgrade, Serbia; (S.K.); (J.Đ.); (J.J.M.); (B.V.-G.)
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11070 Belgrade, Serbia
| | - Jovana Jovanović Marić
- Centre for Genotoxicology and Ecogenotoxicology, Department of Microbiology, Faculty of Biology, Institute of Botany and Botanical Garden “Jevremovac”, University of Belgrade, Studentski trg 16, 11070 Belgrade, Serbia; (S.K.); (J.Đ.); (J.J.M.); (B.V.-G.)
- Department of Hydroecology and Water Protection, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11070 Belgrade, Serbia;
| | - Tanja Lunić
- Faculty of Biology, Institute of Physiology and Biochemistry “Ivan Djaja”, University of Belgrade, Studentski trg 16, 11070 Belgrade, Serbia; (T.L.); (M.M.); (B.B.N.)
| | - Marija Mandić
- Faculty of Biology, Institute of Physiology and Biochemistry “Ivan Djaja”, University of Belgrade, Studentski trg 16, 11070 Belgrade, Serbia; (T.L.); (M.M.); (B.B.N.)
| | - Margareta Kračun Kolarević
- Department of Hydroecology and Water Protection, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11070 Belgrade, Serbia;
| | - Jelena Živković
- Institute for Medicinal Plants Research “Dr. Josif Pančić”, Tadeuša Košćuška 1,11070 Belgrade, Serbia; (J.Ž.); (K.Š.)
| | - Ana Alimpić Aradski
- Department of Plant Morphology and Systematics, Faculty of Biology, Institute of Botany and Botanical Garden “Jevremovac”, University of Belgrade, Studentski trg 16, 11070 Belgrade, Serbia; (A.A.A.); (P.D.M.); (S.D.-L.)
| | - Petar D. Marin
- Department of Plant Morphology and Systematics, Faculty of Biology, Institute of Botany and Botanical Garden “Jevremovac”, University of Belgrade, Studentski trg 16, 11070 Belgrade, Serbia; (A.A.A.); (P.D.M.); (S.D.-L.)
| | - Katarina Šavikin
- Institute for Medicinal Plants Research “Dr. Josif Pančić”, Tadeuša Košćuška 1,11070 Belgrade, Serbia; (J.Ž.); (K.Š.)
| | - Branka Vuković-Gačić
- Centre for Genotoxicology and Ecogenotoxicology, Department of Microbiology, Faculty of Biology, Institute of Botany and Botanical Garden “Jevremovac”, University of Belgrade, Studentski trg 16, 11070 Belgrade, Serbia; (S.K.); (J.Đ.); (J.J.M.); (B.V.-G.)
| | - Biljana Božić Nedeljković
- Faculty of Biology, Institute of Physiology and Biochemistry “Ivan Djaja”, University of Belgrade, Studentski trg 16, 11070 Belgrade, Serbia; (T.L.); (M.M.); (B.B.N.)
| | - Sonja Duletić-Laušević
- Department of Plant Morphology and Systematics, Faculty of Biology, Institute of Botany and Botanical Garden “Jevremovac”, University of Belgrade, Studentski trg 16, 11070 Belgrade, Serbia; (A.A.A.); (P.D.M.); (S.D.-L.)
| |
Collapse
|
10
|
La T, Chen S, Guo T, Zhao XH, Teng L, Li D, Carnell M, Zhang YY, Feng YC, Cole N, Brown AC, Zhang D, Dong Q, Wang JY, Cao H, Liu T, Thorne RF, Shao FM, Zhang XD, Jin L. Visualization of endogenous p27 and Ki67 reveals the importance of a c-Myc-driven metabolic switch in promoting survival of quiescent cancer cells. Am J Cancer Res 2021; 11:9605-9622. [PMID: 34646389 PMCID: PMC8490506 DOI: 10.7150/thno.63763] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/07/2021] [Indexed: 12/11/2022] Open
Abstract
Rationale: Recurrent and metastatic cancers often undergo a period of dormancy, which is closely associated with cellular quiescence, a state whereby cells exit the cell cycle and are reversibly arrested in G0 phase. Curative cancer treatment thus requires therapies that either sustain the dormant state of quiescent cancer cells, or preferentially, eliminate them. However, the mechanisms responsible for the survival of quiescent cancer cells remain obscure. Methods: Dual genome-editing was carried out using a CRISPR/Cas9-based system to label endogenous p27 and Ki67 with the green and red fluorescent proteins EGFP and mCherry, respectively, in melanoma cells. Analysis of transcriptomes of isolated EGFP-p27highmCherry-Ki67low quiescent cells was conducted at bulk and single cell levels using RNA-sequencing. The extracellular acidification rate and oxygen consumption rate were measured to define metabolic phenotypes. SiRNA and inducible shRNA knockdown, chromatin immunoprecipitation and luciferase reporter assays were employed to elucidate mechanisms of the metabolic switch in quiescent cells. Results: Dual labelling of endogenous p27 and Ki67 with differentiable fluorescent probes allowed for visualization, isolation, and analysis of viable p27highKi67low quiescent cells. Paradoxically, the proto-oncoprotein c-Myc, which commonly drives malignant cell cycle progression, was expressed at relatively high levels in p27highKi67low quiescent cells and supported their survival through promoting mitochondrial oxidative phosphorylation (OXPHOS). In this context, c-Myc selectively transactivated genes encoding OXPHOS enzymes, including subunits of isocitric dehydrogenase 3 (IDH3), whereas its binding to cell cycle progression gene promoters was decreased in quiescent cells. Silencing of c-Myc or the catalytic subunit of IDH3, IDH3α, preferentially killed quiescent cells, recapitulating the effect of treatment with OXPHOS inhibitors. Conclusion: These results establish a rigorous experimental system for investigating cellular quiescence, uncover the high selectivity of c-Myc in activating OXPHOS genes in quiescent cells, and propose OXPHOS targeting as a potential therapeutic avenue to counter cancer cells in quiescence.
Collapse
|
11
|
Hyaluronic acid-based drug nanocarriers as a novel drug delivery system for cancer chemotherapy: A systematic review. ACTA ACUST UNITED AC 2021; 29:439-447. [PMID: 34499323 DOI: 10.1007/s40199-021-00416-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 08/28/2021] [Indexed: 01/04/2023]
Abstract
Chemotherapy is the most common treatment strategy for cancer patients. Nevertheless, limited drug delivery to cancer cells, intolerable toxicity, and multiple drug resistance are constant challenges of chemotherapy. Novel targeted drug delivery strategies by using nanoparticles have attracted much attention due to reducing side effects and increasing drug efficacy. Therefore, the most important outcome of this study is to answer the question of whether active targeted HA-based drug nanocarriers have a significant effect on improving drug delivery to cancer cells.This study aimed to systematically review studies on the use of hyaluronic acid (HA)-based nanocarriers for chemotherapy drugs. The two databases MagIran and SID from Persian databases as well as international databases PubMed, WoS, Scopus, Science Direct, Embase, as well as Google Scholar were searched for human studies and cell lines and/or xenograft mice published without time limit until 2020. Keywords used to search included Nanoparticle, chemotherapy, HA, Hyaluronic acid, traditional medicine, natural medicine, chemotherapeutic drugs, natural compound, cancer treatment, and cancer. The quality of the studies was assessed by the STROBE checklist. Finally, studies consistent with inclusion criteria and with medium- to high-quality were included in the systematic review.According to the findings of studies, active targeted HA-based drug nanocarriers showed a significant effect on improving drug delivery to cancer cells. Also, the use of lipid nanoparticles with a suitable coating of HA have been introduced as biocompatible drug carriers with high potential for targeted drug delivery to the target tissue without affecting other tissues and reducing side effects. Enhanced drug delivery, increased therapeutic efficacy, increased cytotoxicity and significant inhibition of tumor growth, as well as high potential for targeted chemotherapy are also reported to be benefits of using HA-based nanocarriers for tumors with increased expression of CD44 receptor.
Collapse
|
12
|
Yang Z, Zhang C, Che N, Feng Y, Li C, Xuan Y. Su(var)3-9, Enhancer of Zeste, and Trithorax Domain-Containing 5 Facilitates Tumor Growth and Pulmonary Metastasis through Up-Regulation of AKT1 Signaling in Breast Cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 191:180-193. [PMID: 33129761 DOI: 10.1016/j.ajpath.2020.10.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 09/11/2020] [Accepted: 10/06/2020] [Indexed: 12/20/2022]
Abstract
Several studies have confirmed the function of Su(var)3-9, Enhancer of zeste, and Trithorax (SET) domain-containing 5 (SETD5) in post-translational modifications of nonhistone proteins. Mutation of the SETD5 gene has been implicated in the progression of many human cancers, such as breast cancer (BC), but its functional role in BC progression is still unknown. The current article investigates the clinical significance and the functional role of SETD5 in BC. Our studies show that SETD5 expression in BC was related to poor clinical outcomes, including lymph node metastasis and advanced clinical stage. SETD5 expression positively correlated with tumor-associated macrophages. SETD5 was an independent predictor of poor overall survival in BC. Furthermore, these studies show that down-regulation of SETD5 significantly decreased BC cell proliferation, metastasis, and angiogenesis, and increased apoptosis of BC cells. The mechanistic analysis showed that SETD5 contributes BC progression by interacting with AKT1 pathway. Also, in vivo experiments show that blocking of SETD5 expression significantly inhibited tumor growth and pulmonary metastasis of BC cells. These findings indicate that SETD5 is a potential prognosis marker and facilitates tumor progression of BC.
Collapse
Affiliation(s)
- Zhaoting Yang
- Department of Pathology, Yanbian University Medicine College, Yanji, China; Institute for Regenerative Medicine, Yanbian University Medicine College, Yanji, China
| | - Chengye Zhang
- Institute for Regenerative Medicine, Yanbian University Medicine College, Yanji, China; Air Force Medical Center of the Chinese People's Liberation Army, Beijing, China
| | - Nan Che
- Department of Pathology, Yanbian University Medicine College, Yanji, China; Institute for Regenerative Medicine, Yanbian University Medicine College, Yanji, China
| | - Ying Feng
- Department of Pathology, Yanbian University Medicine College, Yanji, China; Institute for Regenerative Medicine, Yanbian University Medicine College, Yanji, China
| | - Chao Li
- Institute for Regenerative Medicine, Yanbian University Medicine College, Yanji, China
| | - Yanhua Xuan
- Department of Pathology, Yanbian University Medicine College, Yanji, China; Institute for Regenerative Medicine, Yanbian University Medicine College, Yanji, China.
| |
Collapse
|
13
|
Liu B, Shen Y, Huang H, Croce KD, Wu M, Fan Y, Liu Y, Xu J, Yao G. Curcumin derivative C212 inhibits Hsp90 and eliminates both growing and quiescent leukemia cells in deep dormancy. Cell Commun Signal 2020; 18:159. [PMID: 32993709 PMCID: PMC7523331 DOI: 10.1186/s12964-020-00652-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 08/26/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Relapsed leukemia following initial therapeutic response and remission is difficult to treat and causes high patient mortality. Leukemia relapse is due to residual quiescent leukemia cells that escape conventional therapies and later reemerge. Eliminating not only growing but quiescent leukemia cells is critical to effectively treating leukemia and preventing its recurrence. Such dual targeting therapeutic agents, however, are lacking in the clinic. To start tackling this problem, encouraged by the promising anticancer effects of a set of curcumin derivatives in our earlier studies, we examined in this work the effects of a 4-arylmethyl curcumin derivative (C212) in eliminating both growing and quiescent leukemia cells. METHODS We analyzed the effects of C212 on the growth and viability of growing and quiescent leukemia cells using MTS, apoptosis, cell cycle and cell tracking assays. The effects of C212 on the quiescence depth of leukemia cells were measured using EdU incorporation assay upon growth stimulation. The mechanisms of C212-induced apoptosis and deep dormancy, particularly associated with its inhibition of Hsp90 activity, were studied using molecular docking, protein aggregation assay, and Western blot of client proteins. RESULTS C212, on the one hand, inhibits growing leukemia cells at a higher efficacy than curcumin by inducing apoptosis and G2/M accumulation; it, on the other hand, eliminates quiescent leukemia cells that are resistant to conventional treatments. Furthermore, C212 drives leukemia cells into and kills them at deep quiescence. Lastly, we show that C212 induces apoptosis and drives cells into deep dormancy at least partially by binding to and inhibiting Hsp90, leading to client protein degradation and protein aggregation. CONCLUSION C212 effectively eliminates both growing and quiescent leukemia cells by inhibiting Hsp90. The property of C212 to kill quiescent leukemia cells in deep dormancy avoids the risk associated with awaking therapy-resistant subpopulation of quiescent leukemia cells during treatments, which may lead to the development of novel therapies against leukemia relapse. Video abstract.
Collapse
Affiliation(s)
- Bi Liu
- School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University, Fuzhou, 350122 China
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721 USA
| | - Yunzhu Shen
- School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University, Fuzhou, 350122 China
- The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000 Fujian China
| | - Huafang Huang
- School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University, Fuzhou, 350122 China
| | - Kimiko Della Croce
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721 USA
| | - Min Wu
- School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University, Fuzhou, 350122 China
| | - Yingjuan Fan
- School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University, Fuzhou, 350122 China
| | - Yang Liu
- School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University, Fuzhou, 350122 China
| | - Jianhua Xu
- School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University, Fuzhou, 350122 China
| | - Guang Yao
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721 USA
- Arizona Cancer Center, University of Arizona, Tucson, AZ 85719 USA
| |
Collapse
|
14
|
Zhang YN, Wang SB, Song SS, Hu PY, Zhou YC, Mou YP, Mou XZ. Recent advances in targeting cancer stem cells using oncolytic viruses. Biotechnol Lett 2020; 42:865-874. [DOI: 10.1007/s10529-020-02857-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 02/27/2020] [Indexed: 12/22/2022]
|
15
|
Miyake K, Kawaguchi K, Kiyuna T, Miyake M, Igarashi K, Zhang Z, Murakami T, Li Y, Nelson SD, Elliott I, Russell T, Singh A, Hiroshima Y, Momiyama M, Matsuyama R, Chishima T, Endo I, Eilber FC, Hoffman RM. Regorafenib regresses an imatinib-resistant recurrent gastrointestinal stromal tumor (GIST) with a mutation in exons 11 and 17 of c-kit in a patient-derived orthotopic xenograft (PDOX) nude mouse model. Cell Cycle 2019; 17:722-727. [PMID: 29334307 DOI: 10.1080/15384101.2017.1423223] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Gastrointestinal stromal tumor (GIST) with a mutation in exons 11 and 17 of c-kit is a rare type of sarcoma. The aim of this study was to determine drug sensitivity for a regionally-recurrent case of GIST using a patient-derived orthotopic xenograft (PDOX) model. The PDOX model was established in the anterior wall of the stomach. GIST PDOX models were randomized into 5 groups of 6 mice each when the tumor volume reached 60 mm3: G1, control group; G2, imatinib group (oral administration (p.o.), daily, for 3 weeks); G3, sunitinib group (p.o., daily, for 3 weeks); G4, regorafenib (p.o., daily, for 3 weeks); G5, pazopanib (p.o., daily, for 3 weeks). All mice were sacrificed on day 22. Tumor volume was evaluated on day 0 and day 22 by laparotomy. Body weight were measured 2 times per week. Though regorafenib is third-line therapy for GIST, it was the most effective drug and regressed the tumor significantly (p < 0.001). Sunitinib suppressed tumor growth compared to the control group (p = 0.002). Imatinib, first-line therapy for GIST, and pazopanib did not have significant efficacy compared to the control group (p = 0.886, p = 0.766). The implications of this result is discussed for GIST patients.
Collapse
Affiliation(s)
- Kentaro Miyake
- a AntiCancer Inc. , San Diego , CA.,b Department of Surgery , University of California , San Diego , CA.,c Department of Gastroenterological Surgery , Yokohama City University Graduate School of Medicine , Yokohama , Japan
| | - Kei Kawaguchi
- a AntiCancer Inc. , San Diego , CA.,b Department of Surgery , University of California , San Diego , CA
| | - Tasuku Kiyuna
- a AntiCancer Inc. , San Diego , CA.,b Department of Surgery , University of California , San Diego , CA
| | - Masuyo Miyake
- a AntiCancer Inc. , San Diego , CA.,b Department of Surgery , University of California , San Diego , CA.,c Department of Gastroenterological Surgery , Yokohama City University Graduate School of Medicine , Yokohama , Japan
| | - Kentaro Igarashi
- a AntiCancer Inc. , San Diego , CA.,b Department of Surgery , University of California , San Diego , CA
| | - Zhiying Zhang
- a AntiCancer Inc. , San Diego , CA.,b Department of Surgery , University of California , San Diego , CA
| | - Takashi Murakami
- a AntiCancer Inc. , San Diego , CA.,b Department of Surgery , University of California , San Diego , CA.,c Department of Gastroenterological Surgery , Yokohama City University Graduate School of Medicine , Yokohama , Japan
| | - Yunfeng Li
- e Deparment of Pathology , University of California , Los Angeles , CA
| | - Scott D Nelson
- e Deparment of Pathology , University of California , Los Angeles , CA
| | - Irmina Elliott
- f Division of Surgical Oncology , University of California , Los Angeles , CA
| | - Tara Russell
- f Division of Surgical Oncology , University of California , Los Angeles , CA
| | - Arun Singh
- d Division of Hematology-Oncology , University of California , Los Angeles , CA
| | - Yukihiko Hiroshima
- c Department of Gastroenterological Surgery , Yokohama City University Graduate School of Medicine , Yokohama , Japan
| | - Masashi Momiyama
- c Department of Gastroenterological Surgery , Yokohama City University Graduate School of Medicine , Yokohama , Japan
| | - Ryusei Matsuyama
- c Department of Gastroenterological Surgery , Yokohama City University Graduate School of Medicine , Yokohama , Japan
| | - Takashi Chishima
- c Department of Gastroenterological Surgery , Yokohama City University Graduate School of Medicine , Yokohama , Japan
| | - Itaru Endo
- c Department of Gastroenterological Surgery , Yokohama City University Graduate School of Medicine , Yokohama , Japan
| | - Fritz C Eilber
- f Division of Surgical Oncology , University of California , Los Angeles , CA
| | - Robert M Hoffman
- a AntiCancer Inc. , San Diego , CA.,b Department of Surgery , University of California , San Diego , CA
| |
Collapse
|
16
|
Farid RM, Sammour SAE, Shehab ElDin ZA, Salman MI, Omran TI. Expression of CD133 and CD24 and their different phenotypes in urinary bladder carcinoma. Cancer Manag Res 2019; 11:4677-4690. [PMID: 31213893 PMCID: PMC6536712 DOI: 10.2147/cmar.s198348] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 04/23/2019] [Indexed: 12/12/2022] Open
Abstract
Introduction: Several lines of evidence suggest the contribution of cancer stem cells (CSCs) to the tumorigenicity of bladder cancer. Although CD133 and CD24 CSC biomarkers are associated with survival disadvantages in some cancers, the biological attributes of a specific tumor alters the expression of these markers and any associated phenotypic characteristics. Aim: To analyze CD133 and CD24 expression and their different phenotypes in urinary bladder carcinoma. Material and methods: Expression of CD133 and CD24 and their divergent phenotypes were analyzed in patients with urinary bladder carcinoma (n=60) and correlated with clinicopathological parameters. Results: CD133+ and CD24+ tumor cells were more frequent in high grade, less differentiated carcinomas (18/22, and 15/17, p=0.022 and 0.01, respectively), muscle invasive tumors (20/22, p=0.017 and 17/17, p=0.001, respectively), and tumors with advanced stage (p=0.001 and 0.007, respectively). The expression of CD24 slightly correlated with lymphovascular invasion (p=0.04), whereas CD133 was associated with distant metastasis. The CD133+ CD24+ phenotype exhibited more aggressive tumorigenic behavior than other phenotypes. Conclusion: CD133+ and CD24+ cells correlated with determinants of aggressive behavior and may be involved in tumor progression and distant metastasis. The CD133+ subpopulation is likely to have a more potent tumorigenic capacity. Although divergent, the strong correlation between the two populations may support phenotypic plasticity among them. Compared to the CD133+ CD24− and CD133− CD24+ phenotypes, the CD133+ CD24+ phenotype is the most aggressive. These putative biomarkers can potentially aid in the selection of high-risk patients for more aggressive targeted therapy.
Collapse
Affiliation(s)
- Rola M Farid
- Department of Pathology, Ain Shams University, Cairo, Egypt
| | | | | | | | | |
Collapse
|
17
|
Torén W, Ansari D, Andersson R. Immunohistochemical investigation of prognostic biomarkers in resected colorectal liver metastases: a systematic review and meta-analysis. Cancer Cell Int 2018; 18:217. [PMID: 30602942 PMCID: PMC6307223 DOI: 10.1186/s12935-018-0715-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 12/18/2018] [Indexed: 02/07/2023] Open
Abstract
Background Many studies have investigated the prognostic role of biomarkers in colorectal liver metastases (CRLM). However, no biomarker has been established in routine clinical practice. The aim of this study was to scrutinize the current literature for biomarkers evaluated by immunohistochemistry as prognostic markers in patients with resected CRLM. Methods A systematic review was performed according to the PRISMA guidelines. Articles were identified in the PubMed database with selected search terms and by cross-references search. The REMARK quality criteria were applied. Markers were included if they reported the prognostic impact of immunohistochemical markers in a multivariable setting in relation to overall survival (OS). A meta-analysis was conducted when more than one original article provided survival data of a marker. Results In total, 26 biomarkers were identified as independent significant markers for OS in resected CRLM. These biomarkers were found to be involved in multiple oncogenic signalling pathways that control cell growth, apoptosis, angiogenesis and evasion of immune detection. Among these biomarker candidates were Ki-67, EGFR, p53, hTERT, CD34, TSP-1, KISS1, Aurora kinase A and CDX2. CD34 and TSP-1 were reported as significantly associated with survival by more than one study and where therefore pooled in a meta-analysis. Conclusion A number of independent prognostic biomarkers for resected CRLM were identified. However, most markers were evaluated in a retrospective setting with small patient cohorts, without external validation. Large, prospective, multicentre studies with standardised methods are needed before biomarkers can translated into the clinic.
Collapse
Affiliation(s)
- William Torén
- Department of Surgery, Clinical Sciences Lund, Lund University and Skåne University Hospital, SE-221 85 Lund, Sweden
| | - Daniel Ansari
- Department of Surgery, Clinical Sciences Lund, Lund University and Skåne University Hospital, SE-221 85 Lund, Sweden
| | - Roland Andersson
- Department of Surgery, Clinical Sciences Lund, Lund University and Skåne University Hospital, SE-221 85 Lund, Sweden
| |
Collapse
|
18
|
Kawaguchi K, Miyake K, Zhao M, Kiyuna T, Igarashi K, Miyake M, Higuchi T, Oshiro H, Bouvet M, Unno M, Hoffman RM. Tumor targeting Salmonella typhimurium A1-R in combination with gemcitabine (GEM) regresses partially GEM-resistant pancreatic cancer patient-derived orthotopic xenograft (PDOX) nude mouse models. Cell Cycle 2018; 17:2019-2026. [PMID: 29963961 DOI: 10.1080/15384101.2018.1480223] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Gemcitabine (GEM) is first-line therapy for pancreatic cancer but has limited efficacy in most cases. Nanoparticle-albumin bound (nab)-paclitaxel is becoming first-line therapy for pancreatic cancer, but also has limited efficacy for pancreatic cancer. Our goal was to improve the treatment outcome in patient-like models of pancreatic cancer. We previously established patient-derived orthotopic xenografts (PDOX) pancreatic cancers from two patients. The pancreatic tumor was implanted orthotopically in the pancreatic tail of nude mice to establish the PDOX models. Five weeks after implantation, 50 PDOX mouse models were randomized into five groups of 10 mice for each pancreatic cancer PDOX: untreated control; GEM (100 mg/kg, i.p., once a week for 2 weeks); GEM + nab-PTX (GEM: 100 mg/kg, i.p., once a week for 2 weeks, nab-PTX: 10 mg/kg, i.v., twice a week for 2 weeks); S. typhimurium A1-R (5 × 107 CFU/100 μl, i.v., once a week for 2 weeks); GEM + S. typhimurium A1-R (GEM: 100 mg/kg, i.p., once a week for 2 weeks, S. typhimurium A1-R; 5 × 107 CFU/100 μl, i.v., once a week for 2 weeks). GEM + nab-PTX was significantly more effective than GEM alone in one PDOX model (p = 0.0004), but there was no significant difference in the other PDOX model. The combination of GEM + S. typhimurium A1-R regressed both PDOX models. These results show S. typhimurium A1-R can overcome the ineffectiveness or partial effectiveness of GEM in patient-like models of pancreatic cancer and demonstrate clinical potential for this combination.
Collapse
Affiliation(s)
- Kei Kawaguchi
- a AntiCancer, Inc ., San Diego , CA , USA.,b Department of Surgery , University of California , San Diego , CA , USA.,c Department of Surgery, Graduate School of Medicine , Tohoku University , Sendai , Japan
| | - Kentaro Miyake
- a AntiCancer, Inc ., San Diego , CA , USA.,b Department of Surgery , University of California , San Diego , CA , USA
| | - Ming Zhao
- a AntiCancer, Inc ., San Diego , CA , USA
| | - Tasuku Kiyuna
- a AntiCancer, Inc ., San Diego , CA , USA.,b Department of Surgery , University of California , San Diego , CA , USA
| | - Kentaro Igarashi
- a AntiCancer, Inc ., San Diego , CA , USA.,b Department of Surgery , University of California , San Diego , CA , USA
| | - Masuyo Miyake
- a AntiCancer, Inc ., San Diego , CA , USA.,b Department of Surgery , University of California , San Diego , CA , USA
| | - Takashi Higuchi
- a AntiCancer, Inc ., San Diego , CA , USA.,b Department of Surgery , University of California , San Diego , CA , USA
| | - Hiromichi Oshiro
- a AntiCancer, Inc ., San Diego , CA , USA.,b Department of Surgery , University of California , San Diego , CA , USA
| | - Michael Bouvet
- b Department of Surgery , University of California , San Diego , CA , USA
| | - Michiaki Unno
- c Department of Surgery, Graduate School of Medicine , Tohoku University , Sendai , Japan
| | - Robert M Hoffman
- a AntiCancer, Inc ., San Diego , CA , USA.,b Department of Surgery , University of California , San Diego , CA , USA
| |
Collapse
|
19
|
Kawaguchi K, Miyake K, Han Q, Li S, Tan Y, Igarashi K, Lwin TM, Higuchi T, Kiyuna T, Miyake M, Oshiro H, Bouvet M, Unno M, Hoffman RM. Targeting altered cancer methionine metabolism with recombinant methioninase (rMETase) overcomes partial gemcitabine-resistance and regresses a patient-derived orthotopic xenograft (PDOX) nude mouse model of pancreatic cancer. Cell Cycle 2018; 17:868-873. [PMID: 29623758 PMCID: PMC6056209 DOI: 10.1080/15384101.2018.1445907] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 02/20/2018] [Indexed: 10/17/2022] Open
Abstract
Pancreatic cancer is a recalcitrant disease. Gemcitabine (GEM) is the most widely-used first-line therapy for pancreatic cancer, but most patients eventually fail. Transformative therapy is necessary to significantly improve the outcome of pancreatic cancer patients. Tumors have an elevated requirement for methionine and are susceptible to methionine restriction. The present study used a patient-derived orthotopic xenograft (PDOX) nude mouse model of pancreatic cancer to determine the efficacy of recombinant methioninase (rMETase) to effect methionine restriction and thereby overcome GEM-resistance. A pancreatic cancer obtained from a patient was grown orthotopically in the pancreatic tail of nude mice to establish the PDOX model. Five weeks after implantation, 40 pancreatic cancer PDOX mouse models were randomized into four groups of 10 mice each: untreated control (n = 10); GEM (100 mg/kg, i.p., once a week for 5 weeks, n = 10); rMETase (100 units, i.p., 14 consecutive days, n = 10); GEM+rMETase (GEM: 100 mg/kg, i.p., once a week for 5 weeks, rMETase: 100 units, i.p., 14 consecutive days, n = 10). Although GEM partially inhibited PDOX tumor growth, combination therapy (GEM+rMETase) was significantly more effective than mono therapy (GEM: p = 0.0025, rMETase: p = 0.0010). The present study is the first demonstrating the efficacy of rMETase combination therapy in a pancreatic cancer PDOX model to overcome first-line therapy resistance in this recalcitrant disease.
Collapse
Affiliation(s)
- Kei Kawaguchi
- AntiCancer, Inc., San Diego, CA
- Department of Surgery, University of California, San Diego, CA
- Department of Surgery, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Kentaro Miyake
- AntiCancer, Inc., San Diego, CA
- Department of Surgery, University of California, San Diego, CA
| | | | | | | | - Kentaro Igarashi
- AntiCancer, Inc., San Diego, CA
- Department of Surgery, University of California, San Diego, CA
| | | | - Takashi Higuchi
- AntiCancer, Inc., San Diego, CA
- Department of Surgery, University of California, San Diego, CA
| | - Tasuku Kiyuna
- AntiCancer, Inc., San Diego, CA
- Department of Surgery, University of California, San Diego, CA
| | - Masuyo Miyake
- AntiCancer, Inc., San Diego, CA
- Department of Surgery, University of California, San Diego, CA
| | - Hiromichi Oshiro
- AntiCancer, Inc., San Diego, CA
- Department of Surgery, University of California, San Diego, CA
| | - Michael Bouvet
- Department of Surgery, University of California, San Diego, CA
| | - Michiaki Unno
- Department of Surgery, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Robert M. Hoffman
- AntiCancer, Inc., San Diego, CA
- Department of Surgery, University of California, San Diego, CA
| |
Collapse
|
20
|
Shim IK, Yi HJ, Yi HG, Lee CM, Lee YN, Choi YJ, Jeong SY, Jun E, Hoffman RM, Cho DW, Kim SC. Locally-applied 5-fluorouracil-loaded slow-release patch prevents pancreatic cancer growth in an orthotopic mouse model. Oncotarget 2018; 8:40140-40151. [PMID: 28498800 PMCID: PMC5522260 DOI: 10.18632/oncotarget.17370] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 04/10/2017] [Indexed: 12/24/2022] Open
Abstract
To obtain improved efficacy against pancreatic cancer, we investigated the efficacy and safety of a locally-applied 5-fluorouracil (5-FU)-loaded polymeric patch on pancreatic tumors in an orthotopic nude-mouse model. The 5-FU-releasing polymeric patch was produced by 3D printing. After application of the patch, it released the drug slowly for 4 weeks, and suppressed BxPC-3 pancreas cancer growth. Luciferase imaging of BxPC3-Luc cells implanted in the pancreas was performed longitudinally. The drug patch delivered a 30.2 times higher level of 5-FU than an intra-peritoneal (i.p.) bolus injection on day-1. High 5-FU levels were accumulated within one week by the patch. Four groups were compared for efficacy of 5-FU. Drug-free patch as a negative control (Group I); 30% 5-FU-loaded patch (4.8 mg) (Group II); 5-FU i.p. once (4.8 mg) (Group III); 5-FU i.p. once a week (1.2 mg), three times (Group IV). The tumor growth rate was significantly faster in Group I than Group II, III, IV (p=0.047 at day-8, p=0.022 at day-12, p=0.002 at day-18 and p=0.034 at day-21). All mice in Group III died of drug toxicity within two weeks after injection. Group II showed more effective suppression of tumor growth than Group IV (p=0.018 at day-12 and p=0.017 at day-21). Histological analysis showed extensive apoptosis in the TUNEL assay and by Ki -67 staining. Western blotting confirmed strong expression of cleaved caspase-3 in Group II. No significant changes were found hematologically and histologically in the liver, kidney and spleen in Groups I, II, IV but were found in Group III.
Collapse
Affiliation(s)
- In Kyong Shim
- Asan Institute for Life Science, University of Ulsan College of Medicine and Asan Medical Center, Seoul, South Korea
| | - Hye-Jin Yi
- Asan Institute for Life Science, University of Ulsan College of Medicine and Asan Medical Center, Seoul, South Korea
| | - Hee-Gyeong Yi
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, Kyungbuk, Korea
| | - Chan Mi Lee
- Asan Institute for Life Science, University of Ulsan College of Medicine and Asan Medical Center, Seoul, South Korea
| | - Yu Na Lee
- Asan Institute for Life Science, University of Ulsan College of Medicine and Asan Medical Center, Seoul, South Korea
| | - Yeong-Jin Choi
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Kyungbuk, Korea
| | - Seong-Yun Jeong
- Asan Institute for Life Science, University of Ulsan College of Medicine and Asan Medical Center, Seoul, South Korea
| | - Eunsung Jun
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul, South Korea.,Department of Surgery, University of Ulsan College of Medicine & Asan Medical Center, Seoul, South Korea
| | - Robert M Hoffman
- Department of Surgery, University of California, San Diego, CA, USA.,AntiCancer Inc., San Diego, CA, USA
| | - Dong-Woo Cho
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, Kyungbuk, Korea
| | - Song Cheol Kim
- Department of Surgery, University of Ulsan College of Medicine & Asan Medical Center, Seoul, South Korea
| |
Collapse
|
21
|
Kawaguchi K, Igarashi K, Murakami T, Kiyuna T, Lwin TM, Hwang HK, Delong JC, Clary BM, Bouvet M, Unno M, Hoffman RM. MEK inhibitors cobimetinib and trametinib, regressed a gemcitabine-resistant pancreatic-cancer patient-derived orthotopic xenograft (PDOX). Oncotarget 2018; 8:47490-47496. [PMID: 28537897 PMCID: PMC5564580 DOI: 10.18632/oncotarget.17667] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Accepted: 04/20/2017] [Indexed: 12/24/2022] Open
Abstract
A pancreatic ductal adenocarcinoma (PDAC), obtained from a patient, was grown orthotopically in the pancreatic tail of nude mice to establish a patient-derived orthotopic (PDOX) model. Seven weeks after implantation, PDOX nude mice were divided into the following groups: untreated control (n = 7); gemcitabine (100 mg/kg, i.p., once a week for 2 weeks, n = 7); cobimetinib (5 mg/kg, p.o., 14 consecutive days, n = 7); trametinib (0.3 mg/kg, p.o., 14 consecutive days, n = 7); trabectedin (0.15 mg/kg, i.v., once a week for 2 weeks, n = 7); temozolomide (25 mg/kg, p.o., 14 consecutive days, n = 7); carfilzomib (2 mg/kg, i.v., twice a week for 2 weeks, n = 7); bortezomib (1 mg/kg, i.v., twice a week for 2 weeks, n = 7); MK-1775 (20 mg/kg, p.o., 14 consecutive days, n = 7); BEZ-235 (45 mg/kg, p.o., 14 consecutive days, n = 7); vorinostat (50 mg/kg, i.p., 14 consecutive days, n = 7). Only the MEK inhibitors, cobimetinib and trametinib, regressed tumor growth, and they were more significantly effective than other therapies (p < 0.0001, respectively), thereby demonstrating the precision of the PDOX models of PDAC and its potential for individualizing pancreatic-cancer therapy.
Collapse
Affiliation(s)
- Kei Kawaguchi
- AntiCancer, Inc., San Diego, CA, USA.,Department of Surgery, University of California, San Diego, CA, USA.,Department of Surgery, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Kentaro Igarashi
- AntiCancer, Inc., San Diego, CA, USA.,Department of Surgery, University of California, San Diego, CA, USA
| | - Takashi Murakami
- AntiCancer, Inc., San Diego, CA, USA.,Department of Surgery, University of California, San Diego, CA, USA
| | - Tasuku Kiyuna
- AntiCancer, Inc., San Diego, CA, USA.,Department of Surgery, University of California, San Diego, CA, USA
| | - Thinzar M Lwin
- Department of Surgery, University of California, San Diego, CA, USA
| | - Ho Kyoung Hwang
- AntiCancer, Inc., San Diego, CA, USA.,Department of Surgery, University of California, San Diego, CA, USA
| | | | - Bryan M Clary
- Department of Surgery, University of California, San Diego, CA, USA
| | - Michael Bouvet
- Department of Surgery, University of California, San Diego, CA, USA
| | - Michiaki Unno
- Department of Surgery, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Robert M Hoffman
- AntiCancer, Inc., San Diego, CA, USA.,Department of Surgery, University of California, San Diego, CA, USA
| |
Collapse
|
22
|
Chaurasiya S, Chen NG, Warner SG. Oncolytic Virotherapy versus Cancer Stem Cells: A Review of Approaches and Mechanisms. Cancers (Basel) 2018; 10:E124. [PMID: 29671772 PMCID: PMC5923379 DOI: 10.3390/cancers10040124] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 04/11/2018] [Accepted: 04/14/2018] [Indexed: 12/26/2022] Open
Abstract
A growing body of evidence suggests that a subset of cells within tumors are resistant to conventional treatment modalities and may be responsible for disease recurrence. These cells are called cancer stem cells (CSC), which share properties with normal stem cells including self-renewal, pluripotency, drug resistance, and the ability to maintain quiescence. While most conventional therapies can efficiently destroy rapidly dividing cancer cells comprising the bulk of a tumor, they often fail to kill the less abundant and quiescent CSCs. Furthermore, killing of only differentiated cells in the tumor may actually allow for enrichment of CSCs and thereby portend a bad prognosis. Therefore, targeting of CSCs is important to achieve long-term success in cancer therapy. Oncolytic viruses represent a completely different class of therapeutics that can kill cancer cells in a variety of ways, which differ from those of conventional therapies. Hence, CSCs that are inherently resistant to conventional therapies may be susceptible to oncolytic virus-mediated killing. Recent studies have shown that oncolytic viruses can efficiently kill CSCs in many types of cancer. Here, we discuss the mechanism through which CSCs can escape conventional therapies and how they may still be susceptible to different classes of oncolytic viruses. Furthermore, we provide a summary of recent studies that have tested oncolytic viruses on CSCs of different origins and discuss possible future directions for this fascinating subset of oncolytic virus research.
Collapse
Affiliation(s)
- Shyambabu Chaurasiya
- Department of Surgery, Division of Surgical Oncology, City of Hope National Medical Center, Duarte, CA 91010, USA.
| | - Nanhai G Chen
- Department of Surgery, Division of Surgical Oncology, City of Hope National Medical Center, Duarte, CA 91010, USA.
- Center for Gene Therapy, Department of Hematologic and Hematopoietic Cell Transplantation, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA.
- Gene Editing and Viral Vector Core, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA.
| | - Susanne G Warner
- Department of Surgery, Division of Surgical Oncology, City of Hope National Medical Center, Duarte, CA 91010, USA.
| |
Collapse
|
23
|
Igarashi K, Kawaguchi K, Li S, Han Q, Tan Y, Gainor E, Kiyuna T, Miyake K, Miyake M, Higuchi T, Oshiro H, Singh AS, Eckardt MA, Nelson SD, Russell TA, Dry SM, Li Y, Yamamoto N, Hayashi K, Kimura H, Miwa S, Tsuchiya H, Eilber FC, Hoffman RM. Recombinant methioninase combined with doxorubicin (DOX) regresses a DOX-resistant synovial sarcoma in a patient-derived orthotopic xenograft (PDOX) mouse model. Oncotarget 2018; 9:19263-19272. [PMID: 29721200 PMCID: PMC5922394 DOI: 10.18632/oncotarget.24996] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 03/15/2018] [Indexed: 01/09/2023] Open
Abstract
Synovial sarcoma (SS) is a recalcitrant subgroup of soft tissue sarcoma (STS). A tumor from a patient with high grade SS from a lower extremity was grown orthotopically in the right biceps femoris muscle of nude mice to establish a patient-derived orthotopic xenograft (PDOX) mouse model. The PDOX mice were randomized into the following groups when tumor volume reached approximately 100 mm3: G1, control without treatment; G2, doxorubicin (DOX) (3 mg/kg, intraperitoneal [i.p.] injection, weekly, for 2 weeks; G3, rMETase (100 unit/mouse, i.p., daily, for 2 weeks); G4 DOX (3mg/kg), i.p. weekly, for 2 weeks) combined with rMETase (100 unit/mouse, i.p., daily, for 2 weeks). On day 14 after treatment initiation, all therapies significantly inhibited tumor growth compared to untreated control, except DOX: (DOX: p = 0.48; rMETase: p < 0.005; DOX combined with rMETase < 0.0001). DOX combined with rMETase was significantly more effective than both DOX alone (p < 0.001) and rMETase alone (p < 0.05). The relative body weight on day 14 compared with day 0 did not significantly differ between any treatment group or untreated control. The results indicate that r-METase can overcome DOX-resistance in this recalcitrant disease.
Collapse
Affiliation(s)
- Kentaro Igarashi
- AntiCancer, Inc., San Diego, California, USA.,Department of Surgery, University of California, San Diego, California, USA.,Department of Orthopaedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Kei Kawaguchi
- AntiCancer, Inc., San Diego, California, USA.,Department of Surgery, University of California, San Diego, California, USA
| | - Shukuan Li
- AntiCancer, Inc., San Diego, California, USA
| | | | - Yuying Tan
- AntiCancer, Inc., San Diego, California, USA
| | | | - Tasuku Kiyuna
- AntiCancer, Inc., San Diego, California, USA.,Department of Surgery, University of California, San Diego, California, USA
| | - Kentaro Miyake
- AntiCancer, Inc., San Diego, California, USA.,Department of Surgery, University of California, San Diego, California, USA
| | - Masuyo Miyake
- AntiCancer, Inc., San Diego, California, USA.,Department of Surgery, University of California, San Diego, California, USA
| | - Takashi Higuchi
- AntiCancer, Inc., San Diego, California, USA.,Department of Surgery, University of California, San Diego, California, USA
| | - Hiromichi Oshiro
- AntiCancer, Inc., San Diego, California, USA.,Department of Surgery, University of California, San Diego, California, USA
| | - Arun S Singh
- Division of Hematology-Oncology, University of California, Los Angeles, CA, USA
| | - Mark A Eckardt
- Department of Surgery, Yale School of Medicine, New Haven, Connecticut, USA
| | - Scott D Nelson
- Department of Pathology, University of California, Los Angeles, CA, USA
| | - Tara A Russell
- Division of Surgical Oncology, University of California, Los Angeles, CA, USA
| | - Sarah M Dry
- Department of Pathology, University of California, Los Angeles, CA, USA
| | - Yunfeng Li
- Department of Pathology, University of California, Los Angeles, CA, USA
| | - Norio Yamamoto
- Department of Orthopaedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Katsuhiro Hayashi
- Department of Orthopaedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Hiroaki Kimura
- Department of Orthopaedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Shinji Miwa
- Department of Orthopaedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Hiroyuki Tsuchiya
- Department of Orthopaedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Fritz C Eilber
- Division of Surgical Oncology, University of California, Los Angeles, CA, USA
| | - Robert M Hoffman
- AntiCancer, Inc., San Diego, California, USA.,Department of Surgery, University of California, San Diego, California, USA
| |
Collapse
|
24
|
Igarashi K, Kawaguchi K, Kiyuna T, Miyake K, Miyake M, Li S, Han Q, Tan Y, Zhao M, Li Y, Nelson SD, Dry SM, Singh AS, Elliott IA, Russell TA, Eckardt MA, Yamamoto N, Hayashi K, Kimura H, Miwa S, Tsuchiya H, Eilber FC, Hoffman RM. Tumor-targeting Salmonella typhimurium A1-R combined with recombinant methioninase and cisplatinum eradicates an osteosarcoma cisplatinum-resistant lung metastasis in a patient-derived orthotopic xenograft (PDOX) mouse model: decoy, trap and kill chemotherapy moves toward the clinic. Cell Cycle 2018; 17:801-809. [PMID: 29374999 DOI: 10.1080/15384101.2018.1431596] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In the present study, a patient-derived orthotopic xenograft (PDOX) model of recurrent cisplatinum (CDDP)-resistant metastatic osteosarcoma was treated with Salmonella typhimurium A1-R (S. typhimurium A1-R), which decoys chemoresistant quiescent cancer cells to cycle, and recombinant methioninase (rMETase), which selectively traps cancer cells in late S/G2, and chemotherapy. The PDOX models were randomized into the following groups 14 days after implantation: G1, control without treatment; G2, CDDP (6 mg/kg, intraperitoneal (i.p.) injection, weekly, for 2 weeks); G3, rMETase (100 unit/mouse, i.p., daily, for 2 weeks). G4, S. typhimurium A1-R (5 × 107 CFU/100 μl, i.v., weekly, for 2 weeks); G5, S. typhimurium A1-R (5 × 107 CFU/100 μl, i.v., weekly, for 2 weeks) combined with rMETase (100 unit/mouse, i.p., daily, for 2 weeks); G6, S. typhimurium A1-R (5 × 107 CFU/100 μl, i.v., weekly, for 2 weeks) combined with rMETase (100 unit/mouse, i.p., daily, for 2 weeks) and CDDP (6 mg/kg, i.p. injection, weekly, for 2 weeks). On day 14 after initiation, all treatments except CDDP alone, significantly inhibited tumor growth compared to untreated control: (CDDP: p = 0.586; rMETase: p = 0.002; S. typhimurium A1-R: p = 0.002; S. typhimurium A1-R combined with rMETase: p = 0.0004; rMETase combined with both S. typhimurium A1-R and CDDP: p = 0.0001). The decoy, trap and kill combination of S. typhimurium A1-R, rMETase and CDDP was the most effective of all therapies and was able to eradicate the metastatic osteosarcoma PDOX.
Collapse
Affiliation(s)
- Kentaro Igarashi
- a AntiCancer, Inc. , San Diego , CA, USA.,b Department of Surgery , University of California , San Diego , CA, USA.,c Department of Orthopaedic Surgery , Kanazawa University , Kanazawa , Japan
| | - Kei Kawaguchi
- a AntiCancer, Inc. , San Diego , CA, USA.,b Department of Surgery , University of California , San Diego , CA, USA
| | - Tasuku Kiyuna
- a AntiCancer, Inc. , San Diego , CA, USA.,b Department of Surgery , University of California , San Diego , CA, USA
| | - Kentaro Miyake
- a AntiCancer, Inc. , San Diego , CA, USA.,b Department of Surgery , University of California , San Diego , CA, USA
| | - Masuyo Miyake
- a AntiCancer, Inc. , San Diego , CA, USA.,b Department of Surgery , University of California , San Diego , CA, USA
| | - Shukuan Li
- a AntiCancer, Inc. , San Diego , CA, USA
| | | | - Yuying Tan
- a AntiCancer, Inc. , San Diego , CA, USA
| | - Ming Zhao
- a AntiCancer, Inc. , San Diego , CA, USA
| | - Yunfeng Li
- d Dept. of Pathology , University of California , Los Angeles , CA , USA
| | - Scott D Nelson
- d Dept. of Pathology , University of California , Los Angeles , CA , USA
| | - Sarah M Dry
- d Dept. of Pathology , University of California , Los Angeles , CA , USA
| | - Arun S Singh
- e Division of Hematology-Oncology , University of California , Los Angeles , CA , USA
| | - Irmina A Elliott
- f Division of Surgical Oncology , University of California , Los Angeles , CA , USA
| | - Tara A Russell
- f Division of Surgical Oncology , University of California , Los Angeles , CA , USA
| | - Mark A Eckardt
- g Department of Surgery, Yale School of Medicine , New Haven , CT, USA
| | - Norio Yamamoto
- c Department of Orthopaedic Surgery , Kanazawa University , Kanazawa , Japan
| | - Katsuhiro Hayashi
- c Department of Orthopaedic Surgery , Kanazawa University , Kanazawa , Japan
| | - Hiroaki Kimura
- c Department of Orthopaedic Surgery , Kanazawa University , Kanazawa , Japan
| | - Shinji Miwa
- c Department of Orthopaedic Surgery , Kanazawa University , Kanazawa , Japan
| | - Hiroyuki Tsuchiya
- c Department of Orthopaedic Surgery , Kanazawa University , Kanazawa , Japan
| | - Fritz C Eilber
- f Division of Surgical Oncology , University of California , Los Angeles , CA , USA
| | - Robert M Hoffman
- a AntiCancer, Inc. , San Diego , CA, USA.,b Department of Surgery , University of California , San Diego , CA, USA
| |
Collapse
|
25
|
Kawaguchi K, Igarashi K, Kiyuna T, Miyake K, Miyake M, Murakami T, Chmielowski B, Nelson SD, Russell TA, Dry SM, Li Y, Singh AS, Unno M, Eilber FC, Hoffman RM. Individualized doxorubicin sensitivity testing of undifferentiated soft tissue sarcoma (USTS) in a patient-derived orthotopic xenograft (PDOX) model demonstrates large differences between patients. Cell Cycle 2018; 17:627-633. [PMID: 29384032 DOI: 10.1080/15384101.2017.1421876] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Doxorubicin (DOX) is often first-line treatment of undifferentiated/unclassified soft tissue sarcoma (USTS). However, the DOX response rate for USTS patients is low. Individualized precision-medicine technology that could identify DOX responders as well as non-responders would be of high value to cancer patients. In the present study, we established 5 patient-derived orthotopic xenograft (PDOX) nude mouse models from 5 USTS patients and evaluated the efficacy of DOX in each PDOX model. USTS's were grown orthotopically in the right thigh of nude mice to establish the PDOX models. Two weeks after implantation, the mouse models were randomized into two groups of 8 mice each: untreated control; and DOX (3 mg/kg, i.p., once a week for 2 weeks). DOX showed significant growth inhibition in only 2 USTS PDOX models out of 5 (p = 0.0054, p = 0.0055, respectively) on day 14 after initiation. DOX was ineffective in the other 3 PDOX models. However, even in the DOX-sensitive cases, DOX could not regress the PDOX tumors responding to treatment. The present study has important implications since this is the first in vivo study to compare the DOX sensitivity for USTS on multiple patient tumors. We showed that only two of five USTS were responsive to DOX, despite DOX being first line chemotherapy for USTS. The 3 resistant cases should not be treated with DOX clinically, in order to spare the patients' unnecessary toxicity. This PDOX model is useful for precise individualized drug sensitivity testing, especially for rare heterogeneous recalcitrant sarcomas such as USTS.
Collapse
Affiliation(s)
- Kei Kawaguchi
- a AntiCancer, Inc. , San Diego , CA , USA.,b Department of Surgery , University of California , San Diego , CA , USA.,c Department of Surgery, Graduate School of Medicine , Tohoku University , Sendai , Japan
| | - Kentaro Igarashi
- a AntiCancer, Inc. , San Diego , CA , USA.,b Department of Surgery , University of California , San Diego , CA , USA
| | - Tasuku Kiyuna
- a AntiCancer, Inc. , San Diego , CA , USA.,b Department of Surgery , University of California , San Diego , CA , USA
| | - Kentaro Miyake
- a AntiCancer, Inc. , San Diego , CA , USA.,b Department of Surgery , University of California , San Diego , CA , USA
| | - Masuyo Miyake
- a AntiCancer, Inc. , San Diego , CA , USA.,b Department of Surgery , University of California , San Diego , CA , USA
| | - Takashi Murakami
- a AntiCancer, Inc. , San Diego , CA , USA.,b Department of Surgery , University of California , San Diego , CA , USA
| | - Bartosz Chmielowski
- d Division of Hematology-Oncology , University of California , Los Angeles , CA , USA
| | - Scott D Nelson
- e Dep artmen t of Pathology , University of California , Los Angeles , CA , USA
| | - Tara A Russell
- f Division of Surgical Oncology , University of California , Los Angeles , CA , USA
| | - Sarah M Dry
- e Dep artmen t of Pathology , University of California , Los Angeles , CA , USA
| | - Yunfeng Li
- e Dep artmen t of Pathology , University of California , Los Angeles , CA , USA
| | - Arun S Singh
- d Division of Hematology-Oncology , University of California , Los Angeles , CA , USA
| | - Michiaki Unno
- c Department of Surgery, Graduate School of Medicine , Tohoku University , Sendai , Japan
| | - Fritz C Eilber
- f Division of Surgical Oncology , University of California , Los Angeles , CA , USA
| | - Robert M Hoffman
- a AntiCancer, Inc. , San Diego , CA , USA.,b Department of Surgery , University of California , San Diego , CA , USA
| |
Collapse
|
26
|
Recombinant methioninase effectively targets a Ewing's sarcoma in a patient-derived orthotopic xenograft (PDOX) nude-mouse model. Oncotarget 2018; 8:35630-35638. [PMID: 28404944 PMCID: PMC5482604 DOI: 10.18632/oncotarget.15823] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 01/11/2017] [Indexed: 01/08/2023] Open
Abstract
Methionine dependence is due to the overuse of methionine for aberrant transmethylation reactions in cancer. Methionine dependence may be the only general metabolic defect in cancer. In order to exploit methionine dependence for therapy, our laboratory previously cloned L-methionine α-deamino-γ-mercaptomethane lyase [EC 4.4.1.11]). The cloned methioninase, termed recombinant methioninase, or rMETase, has been tested in mouse models of human cancer cell lines. Ewing's sarcoma is recalcitrant disease even though development of multimodal therapy has improved patients'outcome. Here we report efficacy of rMETase against Ewing's sarcoma in a patient-derived orthotopic xenograft (PDOX) model. The Ewing's sarcoma was implanted in the right chest wall of nude mice to establish a PDOX model. Eight Ewing's sarcoma PDOX mice were randomized into untreated control group (n = 4) and rMETase treatment group (n = 4). rMETase (100 units) was injected intraperitoneally (i.p.) every 24 hours for 14 consecutive days. All mice were sacrificed on day-15, 24 hours after the last rMETase administration. rMETase effectively reduced tumor growth compared to untreated control. The methionine level both of plasma and supernatants derived from sonicated tumors was lower in the rMETase group. Body weight did not significantly differ at any time points between the 2 groups. The present study is the first demonstrating rMETase efficacy in a PDOX model, suggesting potential clinical development, especially in recalcitrant cancers such as Ewing's sarcoma.
Collapse
|
27
|
Kawaguchi K, Han Q, Li S, Tan Y, Igarashi K, Kiyuna T, Miyake K, Miyake M, Chmielowski B, Nelson SD, Russell TA, Dry SM, Li Y, Singh AS, Eckardt MA, Unno M, Eilber FC, Hoffman RM. Targeting methionine with oral recombinant methioninase (o-rMETase) arrests a patient-derived orthotopic xenograft (PDOX) model of BRAF-V600E mutant melanoma: implications for chronic clinical cancer therapy and prevention. Cell Cycle 2018; 17:356-361. [PMID: 29187018 DOI: 10.1080/15384101.2017.1405195] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The elevated methionine (MET) use by cancer cells is termed MET dependence and may be the only known general metabolic defect in cancer. Targeting MET by recombinant methioninase (rMETase) can arrest the growth of cancer cells in vitro and in vivo. We previously reported that rMETase, administrated by intra-peritoneal injection (ip-rMETase), could inhibit tumor growth in a patient-derived orthotopic xenograft (PDOX) model of a BRAF-V600E mutant melanoma. In the present study, we compared ip-rMETase and oral rMETase (o-rMETase) for efficacy on the melanoma PDOX. Melanoma PDOX nude mice were randomized into four groups of 5 mice each: untreated control; ip-rMETase (100 units, i.p., 14 consecutive days); o-rMETase (100 units, p.o., 14 consecutive days); o-rMETase+ip-rMETase (100 units, p.o.+100 units, i.p., 14 consecutive days). All treatments inhibited tumor growth on day 14 after treatment initiation, compared to untreated control (ip-rMETase, p<0.0001; o-rMETase, p<0.0001; o-rMETase+ip-rMETase, p<0.0001). o-rMETase was significantly more effective than ip-rMETase (p = 0.0086). o-rMETase+ip-rMETase was significantly more effective than either mono-therapy: ip-rMETase, p = 0.0005; or o-rMETase, p = 0.0367. The present study is the first demonstrating that o-rMETase is effective as an anticancer agent. The results of the present study indicate the potential of clinical development of o-rMETase as an agent for chronic cancer therapy and for cancer prevention and possibly for life extension since dietary MET reduction extends life span in many animal models.
Collapse
Affiliation(s)
- Kei Kawaguchi
- a AntiCancer , Inc. , San Diego , CA , USA.,b Dept. of Surgery , University of California , San Diego , CA , USA.,c Dept. of Surgery, Graduate School of Medicine , Tohoku University , Sendai , Japan
| | | | - Shukuan Li
- a AntiCancer , Inc. , San Diego , CA , USA
| | - Yuying Tan
- a AntiCancer , Inc. , San Diego , CA , USA
| | - Kentaro Igarashi
- a AntiCancer , Inc. , San Diego , CA , USA.,b Dept. of Surgery , University of California , San Diego , CA , USA
| | - Tasuku Kiyuna
- a AntiCancer , Inc. , San Diego , CA , USA.,b Dept. of Surgery , University of California , San Diego , CA , USA
| | - Kentaro Miyake
- a AntiCancer , Inc. , San Diego , CA , USA.,b Dept. of Surgery , University of California , San Diego , CA , USA
| | - Masuyo Miyake
- a AntiCancer , Inc. , San Diego , CA , USA.,b Dept. of Surgery , University of California , San Diego , CA , USA
| | - Bartosz Chmielowski
- d Div. of Hematology-Oncology , University of California , Los Angeles , CA , USA
| | - Scott D Nelson
- e Dept. of Pathology , University of California , Los Angeles , CA , USA
| | - Tara A Russell
- f Div. of Surgical Oncology , University of California , Los Angeles , CA , USA
| | - Sarah M Dry
- e Dept. of Pathology , University of California , Los Angeles , CA , USA
| | - Yunfeng Li
- e Dept. of Pathology , University of California , Los Angeles , CA , USA
| | - Arun S Singh
- d Div. of Hematology-Oncology , University of California , Los Angeles , CA , USA
| | - Mark A Eckardt
- g Department of Surgery, Yale School of Medicine , New Haven , CT , USA
| | - Michiaki Unno
- c Dept. of Surgery, Graduate School of Medicine , Tohoku University , Sendai , Japan
| | - Fritz C Eilber
- f Div. of Surgical Oncology , University of California , Los Angeles , CA , USA
| | - Robert M Hoffman
- a AntiCancer , Inc. , San Diego , CA , USA.,b Dept. of Surgery , University of California , San Diego , CA , USA.,g Department of Surgery, Yale School of Medicine , New Haven , CT , USA
| |
Collapse
|
28
|
Huang R, Rofstad EK. Cancer stem cells (CSCs), cervical CSCs and targeted therapies. Oncotarget 2018; 8:35351-35367. [PMID: 27343550 PMCID: PMC5471060 DOI: 10.18632/oncotarget.10169] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 06/12/2016] [Indexed: 12/12/2022] Open
Abstract
Accumulating evidence has shown that cancer stem cells (CSCs) have a tumour-initiating capacity and play crucial roles in tumour metastasis, relapse and chemo/radio-resistance. As tumour propagation initiators, CSCs are considered to be promising targets for obtaining a better therapeutic outcome. Cervical carcinoma is the most common gynaecological malignancy and has a high cancer mortality rate among females. As a result, the investigation of cervical cancer stem cells (CCSCs) is of great value. However, the numbers of cancer cells and corresponding CSCs in malignancy are dynamically balanced, and CSCs may reside in the CSC niche, about which little is known to date. Therefore, due to their complicated molecular phenotypes and biological behaviours, it remains challenging to obtain “purified” CSCs and continuously culture CSCs for further in vitro studies without the cells losing their stem properties. At present, CSC-related markers and functional assays are used to purify, identify and therapeutically target CSCs both in vitro and in vivo. Nevertheless, CSC-related markers are not universal to all tumour types, although some markers may be valid in multiple tumour types. Additionally, functional identifications based on CSC-specific properties are usually limited in in vivo studies. Furthermore, an optimal method for identifying potential CCSCs in CCSC studies has not been previously published, and these techniques are currently of great importance. This article updates our knowledge on CSCs and CCSCs, reviews potential stem cell markers and functional assays for identifying CCSCs, and describes the potential of targeting CCSCs in the treatment of cervical carcinoma.
Collapse
Affiliation(s)
- Ruixia Huang
- Department of Radiation Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Einar K Rofstad
- Department of Radiation Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
29
|
Tumor-targeting Salmonella typhimurium A1-R regresses an osteosarcoma in a patient-derived xenograft model resistant to a molecular-targeting drug. Oncotarget 2018; 8:8035-8042. [PMID: 28030831 PMCID: PMC5352380 DOI: 10.18632/oncotarget.14040] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 11/16/2016] [Indexed: 01/09/2023] Open
Abstract
Osteosarcoma occurs mostly in children and young adults, who are treated with multiple agents in combination with limb-salvage surgery. However, the overall 5-year survival rate for patients with recurrent or metastatic osteosarcoma is 20-30% which has not improved significantly over 30 years. Refractory patients would benefit from precise individualized therapy. We report here that a patient-derived osteosarcoma growing in a subcutaneous nude-mouse model was regressed by tumor-targeting Salmonella typhimurium A1-R (S. typhimurium A1-R, p<0.001 compared to untreated control). The osteosarcoma was only partially sensitive to the molecular-targeting drug sorafenib, which did not arrest its growth. S. typhimurium A1-R was significantly more effective than sorafenib (P <0.001). S. typhimurium grew in the treated tumors and caused extensive necrosis of the tumor tissue. These data show that S. typhimurium A1-R is powerful therapy for an osteosarcoma patient-derived xenograft model.
Collapse
|
30
|
Yano S, Takehara K, Miwa S, Kishimoto H, Tazawa H, Urata Y, Kagawa S, Bouvet M, Fujiwara T, Hoffman RM. Fluorescence-guided surgery of a highly-metastatic variant of human triple-negative breast cancer targeted with a cancer-specific GFP adenovirus prevents recurrence. Oncotarget 2018; 7:75635-75647. [PMID: 27689331 PMCID: PMC5342766 DOI: 10.18632/oncotarget.12314] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 09/06/2016] [Indexed: 12/26/2022] Open
Abstract
We have previously developed a genetically-engineered GFP-expressing telomerase-dependent adenovirus, OBP-401, which can selectively illuminate cancer cells. In the present report, we demonstrate that targeting a triple-negative high-invasive human breast cancer, orthotopically-growing in nude mice, with OBP-401 enables curative fluorescence-guided surgery (FGS). OBP-401 enabled complete resection and prevented local recurrence and greatly inhibited lymph-node metastasis due to the ability of the virus to selectively label and subsequently kill cancer cells. In contrast, residual breast cancer cells become more aggressive after bright (white)-light surgery (BLS). OBP-401-based FGS also improved the overall survival compared with conventional BLS. Thus, metastasis from a highly-aggressive triple-negative breast cancer can be prevented by FGS in a clinically-relevant mouse model.
Collapse
Affiliation(s)
- Shuya Yano
- AntiCancer, Inc., San Diego, CA, USA.,Department of Surgery, University of California San Diego, CA, USA.,Department of Gastroenterological Surgery, Okayama University, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kiyoto Takehara
- AntiCancer, Inc., San Diego, CA, USA.,Department of Surgery, University of California San Diego, CA, USA.,Department of Gastroenterological Surgery, Okayama University, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shinji Miwa
- AntiCancer, Inc., San Diego, CA, USA.,Department of Surgery, University of California San Diego, CA, USA
| | - Hiroyuki Kishimoto
- Department of Gastroenterological Surgery, Okayama University, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hiroshi Tazawa
- Center for Innovative Clinical Medicine, Okayama University Hospital, Okayama, Japan
| | | | - Shunsuke Kagawa
- Department of Gastroenterological Surgery, Okayama University, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Michael Bouvet
- Department of Surgery, University of California San Diego, CA, USA
| | - Toshiyoshi Fujiwara
- Department of Gastroenterological Surgery, Okayama University, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Robert M Hoffman
- AntiCancer, Inc., San Diego, CA, USA.,Department of Surgery, University of California San Diego, CA, USA
| |
Collapse
|
31
|
Yano S, Takehara K, Kishimoto H, Tazawa H, Urata Y, Kagawa S, Bouvet M, Fujiwara T, Hoffman RM. Tumor-targeting adenovirus OBP-401 inhibits primary and metastatic tumor growth of triple-negative breast cancer in orthotopic nude-mouse models. Oncotarget 2018; 7:85273-85282. [PMID: 27863373 PMCID: PMC5356735 DOI: 10.18632/oncotarget.13296] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 10/24/2016] [Indexed: 11/26/2022] Open
Abstract
Our laboratory previously developed a highly-invasive, triple-negative breast cancer (TNBC) variant using serial orthotopic implantation of the human MDA-MB-231 cell line in nude mice. The isolated variant was highly-invasive in the mammary gland and lymphatic channels and metastasized to lymph nodes in 10 of 12 mice compared to 2 of 12 of the parental cell line. In the present study, the tumor-selective telomerase dependent OBP-401 adenovirus was injected intratumorally (i.t.) (1 × 108 PFU) when the high-metastatic MDA-MB-231 primary tumor expressing red fluorescent protein (MDA-MB-231-RFP) reached approximately 500 mm3 (diameter; 10 mm). The mock-infected orthotopic primary tumor grew rapidly. After i.t. OBP-401 injection, the growth of the orthotopic tumors was arrested. Six weeks after implantation, the fluorescent area and fluorescence intensity showed no increase from the beginning of treatment. OBP-401 was then injected into high-metastatic MDA-MB-231-RFP primary orthotopic tumor growing in mice which already had developed metastasis within lymphatic ducts. All 7 of 7 control mice subsequently developed lymph node metastasis. In contrast, none of 7 mice which received OBP-401 had lymph node metastasis. Seven of 7 control mice also had gross lung metastasis. In contrast, none of the 7 mice which received OBP-401 had gross lung metastasis. Confocal laser microscopy imaging demonstrated that all control mice had diffuse lung metastases. In contrast, all 7 mice which received OBP-401 only had a few metastatic cells in the lung. OBP-401 treatment significantly extended survival of the treated mice.
Collapse
Affiliation(s)
- Shuya Yano
- AntiCancer, Inc., San Diego, CA, USA.,Department of Surgery, University of California San Diego, CA, USA.,Department of Gastroenterological Surgery, Okayama University, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kiyoto Takehara
- AntiCancer, Inc., San Diego, CA, USA.,Department of Surgery, University of California San Diego, CA, USA.,Department of Gastroenterological Surgery, Okayama University, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hiroyuki Kishimoto
- Department of Gastroenterological Surgery, Okayama University, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hiroshi Tazawa
- Center for Innovative Clinical Medicine, Okayama University Hospital, Okayama, Japan
| | | | - Shunsuke Kagawa
- Department of Gastroenterological Surgery, Okayama University, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Michael Bouvet
- Department of Surgery, University of California San Diego, CA, USA
| | - Toshiyoshi Fujiwara
- Department of Gastroenterological Surgery, Okayama University, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Robert M Hoffman
- AntiCancer, Inc., San Diego, CA, USA.,Department of Surgery, University of California San Diego, CA, USA
| |
Collapse
|
32
|
A novel method for RNA extraction from FFPE samples reveals significant differences in biomarker expression between orthotopic and subcutaneous pancreatic cancer patient-derived xenografts. Oncotarget 2018; 8:5885-5894. [PMID: 27602776 PMCID: PMC5351598 DOI: 10.18632/oncotarget.11809] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 08/01/2016] [Indexed: 12/29/2022] Open
Abstract
Next-generation sequencing (NGS) can identify and validate new biomarkers of cancer onset, progression and therapy resistance. Substantial archives of formalin-fixed, paraffin-embedded (FFPE) cancer samples from patients represent a rich resource for linking molecular signatures to clinical data. However, performing NGS on FFPE samples is limited by poor RNA purification methods. To address this hurdle, we developed an improved methodology for extracting high-quality RNA from FFPE samples. By briefly integrating a newly-designed micro-homogenizing (mH) tool with commercially available FFPE RNA extraction protocols, RNA recovery is increased by approximately 3-fold while maintaining standard A260/A280 ratios and RNA quality index (RQI) values. Furthermore, we demonstrate that the mH-purified FFPE RNAs are longer and of higher integrity. Previous studies have suggested that pancreatic ductal adenocarcinoma (PDAC) gene expression signatures vary significantly under in vitro versus in vivo and in vivo subcutaneous versus orthotopic conditions. By using our improved mH-based method, we were able to preserve established expression patterns of KRas-dependency genes within these three unique microenvironments. Finally, expression analysis of novel biomarkers in KRas mutant PDAC samples revealed that PEAK1 decreases and MST1R increases by over 100-fold in orthotopic versus subcutaneous microenvironments. Interestingly, however, only PEAK1 levels remain elevated in orthotopically grown KRas wild-type PDAC cells. These results demonstrate the critical nature of the orthotopic tumor microenvironment when evaluating the clinical relevance of new biomarkers in cells or patient-derived samples. Furthermore, this new mH-based FFPE RNA extraction method has the potential to enhance and expand future FFPE-RNA-NGS cancer biomarker studies.
Collapse
|
33
|
Tome Y, Kimura H, Sugimoto N, Tsuchiya H, Kanaya F, Bouvet M, Hoffman RM. The disintegrin echistatin in combination with doxorubicin targets high-metastatic human osteosarcoma overexpressing ανβ3 integrin in chick embryo and nude mouse models. Oncotarget 2018; 7:87031-87036. [PMID: 27894082 PMCID: PMC5349968 DOI: 10.18632/oncotarget.13497] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 10/27/2016] [Indexed: 11/25/2022] Open
Abstract
Echistatin, a cyclic RGD peptide, which is an antagonist of αvβ3 integrin (disintegrin), inhibited human osteosarcoma in the chick chorioallontoic membrane (CAM) model and tumor growth and pulmonary metastases in a nude mouse orthotopic model. A high-metastatic variant of human osteosarcoma, 143B-LM4, overexpressing αvβ3 integrin was used. Tumor angiogenesis by high-metastatic variant 143B-LM4 cells in the CAM was significantly inhibited by echistatin (P<0.05) as was overall growth. A doxorubicin (DOX)-echistatin combination inhibited orthotopic tumor growth compared to untreated control (P<0.01) or DOX alone (P<0.05) in nude mice. Tumor-bearing mice treated with the DOX-echistatin combination survived longer than those treated with DOX alone or control PBS (P<0.01 and P<0.01, respectively). Echistatin also inhibited experimental lung metastasis of 143B-LM4 cells in nude mice. These results suggest that DOX in combination with a disintegrin has potential to treat osteosarcoma and that αvβ3 integrin may be a target for osteosarcoma.
Collapse
Affiliation(s)
- Yasunori Tome
- AntiCancer, Inc., San Diego, CA 92111, USA.,Department of Surgery, University of California, San Diego, CA 92103, USA.,Department of Orthopedic Surgery, Graduate School of Medicine, University of the Ryukyus, Okinawa, 903-0125 Japan
| | - Hiroaki Kimura
- AntiCancer, Inc., San Diego, CA 92111, USA.,Department of Orthopaedic Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, 920-8641 Japan
| | - Naotoshi Sugimoto
- Department of Physiology, Graduate School of Medical Science, Kanazawa University, Kanazawa, 920-8641 Japan
| | - Hiroyuki Tsuchiya
- Department of Orthopaedic Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, 920-8641 Japan
| | - Fuminori Kanaya
- Department of Orthopedic Surgery, Graduate School of Medicine, University of the Ryukyus, Okinawa, 903-0125 Japan
| | - Michael Bouvet
- Department of Surgery, University of California, San Diego, CA 92103, USA
| | - Robert M Hoffman
- AntiCancer, Inc., San Diego, CA 92111, USA.,Department of Surgery, University of California, San Diego, CA 92103, USA
| |
Collapse
|
34
|
Kawaguchi K, Igarashi K, Murakami T, Chmielowski B, Kiyuna T, Zhao M, Zhang Y, Singh A, Unno M, Nelson SD, Russell TA, Dry SM, Li Y, Eilber FC, Hoffman RM. Tumor-targeting Salmonella typhimurium A1-R combined with temozolomide regresses malignant melanoma with a BRAF-V600E mutation in a patient-derived orthotopic xenograft (PDOX) model. Oncotarget 2018; 7:85929-85936. [PMID: 27835903 PMCID: PMC5349886 DOI: 10.18632/oncotarget.13231] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 10/27/2016] [Indexed: 01/08/2023] Open
Abstract
Melanoma is a recalcitrant disease in need of transformative therapuetics. The present study used a patient-derived orthotopic xenograft (PDOX) nude-mouse model of melanoma with a BRAF-V600E mutation to determine the efficacy of temozolomide (TEM) combined with tumor-targeting Salmonella typhimurium A1-R. A melanoma obtained from the right chest wall of a patient was grown orthotopically in the right chest wall of nude mice to establish a PDOX model. Two weeks after implantation, 40 PDOX nude mice were divided into 4 groups: G1, control without treatment (n = 10); G2, TEM (25 mg/kg, administrated orally daily for 14 consecutive days, n = 10); G3, S. typhimurium A1-R (5 × 107 CFU/100 μl, i.v., once a week for 2 weeks, n = 10); G4, TEM combined with S. typhimurium A1-R (25 mg/kg, administrated orally daily for 14 consecutive days and 5 × 107 CFU/100 μl, i.v., once a week for 2 weeks, respectively, n = 10). Tumor sizes were measured with calipers twice a week. On day 14 from initiation of treatment, all treatments significantly inhibited tumor growth compared to untreated control (TEM: p < 0.0001; S. typhimurium A1-R: p < 0.0001; TEM combined with S. typhimurium A1-R: p < 0.0001). TEM combined with S. typhimurium A1-R was significantly more effective than either S. typhimurium A1-R (p = 0.0004) alone or TEM alone (p = 0.0017). TEM combined with S. typhimurium A1-R could regress the melanoma in the PDOX model and has important future clinical potential for melanoma patients.
Collapse
Affiliation(s)
- Kei Kawaguchi
- AntiCancer, Inc., San Diego, CA, USA.,Department of Surgery, University of California, San Diego, CA, USA.,Department of Surgery, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Kentaro Igarashi
- AntiCancer, Inc., San Diego, CA, USA.,Department of Surgery, University of California, San Diego, CA, USA
| | - Takashi Murakami
- AntiCancer, Inc., San Diego, CA, USA.,Department of Surgery, University of California, San Diego, CA, USA
| | - Bartosz Chmielowski
- Division of Hematology-Oncology, University of California, Los Angeles, CA, USA
| | - Tasuku Kiyuna
- AntiCancer, Inc., San Diego, CA, USA.,Department of Surgery, University of California, San Diego, CA, USA
| | - Ming Zhao
- AntiCancer, Inc., San Diego, CA, USA
| | | | - Arun Singh
- Division of Hematology-Oncology, University of California, Los Angeles, CA, USA
| | - Michiaki Unno
- Department of Surgery, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Scott D Nelson
- Department of Pathology, University of California, Los Angeles, CA, USA
| | - Tara A Russell
- Division of Surgical Oncology, University of California, Los Angeles, CA, USA
| | - Sarah M Dry
- Department of Pathology, University of California, Los Angeles, CA, USA
| | - Yunfeng Li
- Department of Pathology, University of California, Los Angeles, CA, USA
| | - Fritz C Eilber
- Division of Surgical Oncology, University of California, Los Angeles, CA, USA
| | - Robert M Hoffman
- AntiCancer, Inc., San Diego, CA, USA.,Department of Surgery, University of California, San Diego, CA, USA
| |
Collapse
|
35
|
Lee YJ, Wu CC, Li JW, Ou CC, Hsu SC, Tseng HH, Kao MC, Liu JY. A rational approach for cancer stem-like cell isolation and characterization using CD44 and prominin-1(CD133) as selection markers. Oncotarget 2018; 7:78499-78515. [PMID: 27655682 PMCID: PMC5346656 DOI: 10.18632/oncotarget.12100] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 09/12/2016] [Indexed: 12/18/2022] Open
Abstract
The availability of adequate cancer stem cells or cancer stem-like cell (CSC) is important in cancer study. From ovarian cancer cell lines, SKOV3 and OVCAR3, we induced peritoneal ascites tumors in immunodeficient mice. Among the cells (SKOV3.PX1 and OVCAR3.PX1) from those tumors, we sorted both CD44 and CD133 positive cells (SKOV3.PX1_133+44+, OVCAR3.PX1_133+44+), which manifest the characteristics of self-renewal, multi-lineage differentiation, chemoresistance and tumorigenicity, those of cancer stem-like cells (CSLC). Intraperitoneal transplantation of these CD44 and CD133 positive cells resulted in poorer survival in the engrafted animals. Clinically, increased CD133 expression was found in moderately and poorly differentiated (grade II and III) ovarian serous cystadenocarcinomas. The ascites tumor cells from human ovarian cancers demonstrated more CD133 and CD44 expressions than those from primary ovarian or metastatic tumors and confer tumorigenicity in immunodeficient mice. Compared to their parental cells, the SKOV3.PX1_133+44+ and OVCAR3.PX1_133+44+ cells uniquely expressed 5 CD markers (CD97, CD104, CD107a, CD121a, and CD125). Among these markers, CD97, CD104, CD107a, and CD121a are significantly more expressed in the CD133+ and CD44+ double positive cells of human ovarian ascites tumor cells (Ascites_133+44+) than those from primary ovarian or metastatic tumors. The cancer stem-like cells were enriched from 3% to more than 70% after this manipulation. This intraperitoneal enrichment of cancer stem-like cells, from ovarian cancer cell lines or primary ovarian tumor, potentially provides an adequate amount of ovarian cancer stem-like cells for the ovarian cancer study and possibly benefits cancer therapy.
Collapse
Affiliation(s)
- Yi-Jen Lee
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Chang-Cheng Wu
- Chief of Obstetrics and Gynecology, Tri-Service General Hospital Penghu Branch, Penghu, Taiwan
| | - Jhy-Wei Li
- Chief of Pathology, Da-Chien General Hospital, Miaoli, Taiwan.,Department of Rehabilitation science, Jente Junior College of Medicine, Nursing and Management, Miaoli, Taiwan
| | - Chien-Chih Ou
- Obstetrics and Gynecology, Tri-Service General Hospital, Taipei, Taiwan
| | - Shih-Chung Hsu
- Medical Care and Management, Kang-Ning Junior College, Taipei, Taiwan
| | - Hsiu-Hsueh Tseng
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Ming-Ching Kao
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan.,Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan
| | - Jah-Yao Liu
- Department of Obstetrics and Gynecology, National Defense Medical Center, Taipei, Taiwan.,Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
36
|
Yang X, Wang H, Jiao B. Mammary gland stem cells and their application in breast cancer. Oncotarget 2018; 8:10675-10691. [PMID: 27793013 PMCID: PMC5354691 DOI: 10.18632/oncotarget.12893] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 10/14/2016] [Indexed: 12/30/2022] Open
Abstract
The mammary gland is an organ comprising two primary lineages, specifically the inner luminal and the outer myoepithelial cell layers. Mammary gland stem cells (MaSCs) are highly dynamic and self-renewing, and can give rise to these mammary gland lineages. The lineages are responsible for gland generation during puberty as well as expansion during pregnancy. In recent years, researchers have focused on understanding how MaSCs are regulated during mammary gland development and transformation of breast cancer. Here, we summarize the identification of MaSCs, and how they are regulated by the signaling transduction pathways, mammary gland microenvironment, and non-coding RNAs (ncRNAs). Moreover, we debate the evidence for their serving as the origin of breast cancer, and discuss the therapeutic perspectives of targeting breast cancer stem cells (BCSCs). In conclusion, a better understanding of the key regulators of MaSCs is crucial for the clinical treatment of breast cancer.
Collapse
Affiliation(s)
- Xing Yang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Hui Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Baowei Jiao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| |
Collapse
|
37
|
Vemurafenib-resistant BRAF-V600E-mutated melanoma is regressed by MEK-targeting drug trametinib, but not cobimetinib in a patient-derived orthotopic xenograft (PDOX) mouse model. Oncotarget 2018; 7:71737-71743. [PMID: 27690220 PMCID: PMC5342117 DOI: 10.18632/oncotarget.12328] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 09/20/2016] [Indexed: 01/09/2023] Open
Abstract
Melanoma is a recalcitrant disease. The present study used a patient-derived orthotopic xenograft (PDOX) model of melanoma to test sensitivity to three molecularly-targeted drugs and one standard chemotherapeutic. A BRAF-V600E-mutant melanoma obtained from the right chest wall of a patient was grown orthotopically in the right chest wall of nude mice to establish a PDOX model. Two weeks after implantation, 50 PDOX nude mice were divided into 5 groups: G1, control without treatment; G2, vemurafenib (VEM) (30 mg/kg); G3; temozolomide (TEM) (25 mg/kg); G4, trametinib (TRA) (0.3 mg/kg); and G5, cobimetinib (COB) (5 mg/kg). Each drug was administered orally, daily for 14 consecutive days. Tumor sizes were measured with calipers twice a week. On day 14 from initiation of treatment, TRA, an MEK inhibitor, was the only agent of the 4 tested that caused tumor regression (P < 0.001 at day 14). In contrast, another MEK inhibitor, COB, could slow but not arrest growth or cause regression of the melanoma. First-line therapy TEM could slow but not arrest tumor growth or cause regression. The patient in this study had a BRAF-V600E-mutant melanoma and would be considered to be a strong candidate for VEM as first-line therapy, since VEM targets this mutation. However, VEM was not effective. The PDOX model thus helped identify the very-high efficacy of TRA against the melanoma PDOX and is a promising drug for this patient. These results demonstrate the powerful precision of the PDOX model for cancer therapy, not achievable by genomic analysis alone.
Collapse
|
38
|
Patient-derived mouse models of cancer need to be orthotopic in order to evaluate targeted anti-metastatic therapy. Oncotarget 2018; 7:71696-71702. [PMID: 27765934 PMCID: PMC5342112 DOI: 10.18632/oncotarget.12322] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 09/22/2016] [Indexed: 01/09/2023] Open
Abstract
Patient-derived xenograft (PDX) mouse models of cancer are emerging as an important component of personalized precision cancer therapy. However, most models currently offered to patients have their tumors subcutaneously-transplanted in immunodeficient mice, which rarely metastasize. In contrast, orthotopic-transplant patient-derived models, termed patient-derived orthotopic xenografts (PDOX), usually metastasize as in the patient. We demonstrate in the present report why orthotopic models are so important for the patient, since primary and metastatic tumors developed in an orthotopic model can have differential chemosensitivity, not detectable in standard subcutaneous tumor models. A subcutaneous nude mouse model of HER-2 expressing cervical carcinoma was not sensitive to entinostat (a benzamide histone deactylase inhibitor), which also did not inhibit primary tumor growth in a PDOX model of the same tumor. However, in the PDOX model, entinostat alone significantly reduced the metastatic tumor burden, compared to the control. Thus, only the PDOX model could be used to discover the anti-metastatic activity of entinostat for this patient. The results of the present report indicate the importance of using mouse models that can recapitulate metastatic cancer for precisely individualizing cancer therapy.
Collapse
|
39
|
High efficacy of tumor-targeting Salmonella typhimurium A1-R on a doxorubicin- and dactolisib-resistant follicular dendritic-cell sarcoma in a patient-derived orthotopic xenograft PDOX nude mouse model. Oncotarget 2018; 7:33046-54. [PMID: 27105519 PMCID: PMC5078074 DOI: 10.18632/oncotarget.8848] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 03/31/2016] [Indexed: 12/29/2022] Open
Abstract
Follicular dendritic-cell sarcoma (FDCS) is a rare and recalcitrant disease. In the present study, a patient-derived orthotopic xenograft (PDOX) mouse model of FDCS was established in the biceps muscle of nude mice. The FDCS PDOX was resistant to both doxorubicin (DOX) and NVP-BEZ235, dactolisib (BEZ) an experimental agent which is a dual pan-phosphoinositide 3-kinase-mammalian target of rapamycin inhibitor. However, in contrast to DOX and BEZ, the FDCS PDOX was sensitive to the tumor-targeting bacterial strain, Salmonella typhimurium A1-R (S. typhimurium A1-R). The combination of S. typhimurium A1-R and either DOX or BEZ did not increase the antitumor efficacy of S. typhimurium A1-R, indicating that DOX and BEZ were not active in this PDOX model. The efficacy of S. typhimurium A1-R in this recalcitrant FDCS gives strong impetus to move bacterial therapy to clinical trials for this disease. The findings of the present study are of particular importance since it demonstrates that S. typhimurium A1-R is effective in a PDOX model of FDCS established from a patient who failed DOX therapy.
Collapse
|
40
|
Autophagy mediates glucose starvation-induced glioblastoma cell quiescence and chemoresistance through coordinating cell metabolism, cell cycle, and survival. Cell Death Dis 2018; 9:213. [PMID: 29434213 PMCID: PMC5833690 DOI: 10.1038/s41419-017-0242-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 11/16/2017] [Accepted: 12/12/2017] [Indexed: 02/07/2023]
Abstract
Metabolic reprogramming is pivotal to sustain cancer growth and progression. As such dietary restriction therapy represents a promising approach to starve and treat cancers. Nonetheless, tumors are dynamic and heterogeneous populations of cells with metabolic activities modulated by spatial and temporal contexts. Autophagy is a major pathway controlling cell metabolism. It can downregulate cell metabolism, leading to cancer cell quiescence, survival, and chemoresistance. To understand treatment dynamics and provide rationales for better future therapeutic strategies, we investigated whether and how autophagy is involved in the chemo-cytotoxicity and -resistance using two commonly used human glioblastoma (GBM) cell lines U87 and U251 together with primary cancer cells from the GBM patients. Our results suggest that autophagy mediates chemoresistance through reprogramming cancer cell metabolism and promoting quiescence and survival. Further unbiased transcriptome profiling identified a number of clinically relevant pathways and genes, strongly correlated with TCGA data. Our analyses have not only reported many well-known tumor players, but also uncovered a number of genes that were not previously implicated in cancers and/or GBM. The known functions of these genes are highly suggestive. It would be of high interest to investigate their potential involvement in GBM tumorigenesis, progression, and/or drug resistance. Taken together, our results suggest that autophagy inhibition could be a viable approach to aid GBM chemotherapy and combat drug resistance.
Collapse
|
41
|
Shimozaki S, Yamamoto N, Domoto T, Nishida H, Hayashi K, Kimura H, Takeuchi A, Miwa S, Igarashi K, Kato T, Aoki Y, Higuchi T, Hirose M, Hoffman RM, Minamoto T, Tsuchiya H. Efficacy of glycogen synthase kinase-3β targeting against osteosarcoma via activation of β-catenin. Oncotarget 2018; 7:77038-77051. [PMID: 27780915 PMCID: PMC5363568 DOI: 10.18632/oncotarget.12781] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 10/05/2016] [Indexed: 12/31/2022] Open
Abstract
Development of innovative more effective therapy is required for refractory osteosarcoma patients. We previously established that glycogen synthase kinase-3β (GSK- 3β) is a therapeutic target in various cancer types. In the present study, we explored the therapeutic efficacy of GSK-3β inhibition against osteosarcoma and the underlying molecular mechanisms in an orthotopic mouse model. Expression and phosphorylation of GSK-3β in osteosarcoma and normal osteoblast cell lines was examined, together with efficacy of GSK-3β inhibition on cell survival, proliferation and apoptosis and on the growth of orthotopically-transplanted human osteosarcoma in nude mice. We also investigated changes in expression, phosphorylation and co-transcriptional activity of β-catenin in osteosarcoma cells following GSK-3β inhibition. Expression of the active form of GSK- 3β (tyrosine 216-phosphorylated) was higher in osteosarcoma than osteoblast cells. Inhibition of GSK-3β activity by pharmacological inhibitors or of its expression by RNA interference suppressed proliferation of osteosarcoma cells and induced apoptosis. Treatment with GSK-3β-specific inhibitors attenuated the growth of orthotopic osteosaroma in mice. Inhibition of GSK-3β reduced phosphorylation at GSK- 3β-phospho-acceptor sites in β-catenin and increased β-catenin expression, nuclear localization and co-transcriptional activity. These results suggest the efficacy of GSK-3β inhibitors is associated with activation of β-catenin, a putative tumor suppressor in bone and soft tissue sarcoma and an important component of osteogenesis. Our study thereby demonstrates a critical role for GSK-3β in sustaining survival and proliferation of osteosarcoma cells, and identifies this kinase as a potential therapeutic target against osteosarcoma.
Collapse
Affiliation(s)
- Shingo Shimozaki
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan.,Division of Translational and Clinical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Norio Yamamoto
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Takahiro Domoto
- Division of Translational and Clinical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Hideji Nishida
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Katsuhiro Hayashi
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Hiroaki Kimura
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Akihiko Takeuchi
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Shinji Miwa
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan.,AntiCancer Incorporated, San Diego, CA, U.S.A.,Division of Translational and Clinical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Kentaro Igarashi
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Takashi Kato
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Yu Aoki
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Takashi Higuchi
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Mayumi Hirose
- Division of Translational and Clinical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Robert M Hoffman
- Department of Surgery, University of California, San Diego, CA, U.S.A.,AntiCancer Incorporated, San Diego, CA, U.S.A
| | - Toshinari Minamoto
- Division of Translational and Clinical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Hiroyuki Tsuchiya
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
42
|
Murakami T, Singh AS, Kiyuna T, Dry SM, Li Y, James AW, Igarashi K, Kawaguchi K, DeLong JC, Zhang Y, Hiroshima Y, Russell T, Eckardt MA, Yanagawa J, Federman N, Matsuyama R, Chishima T, Tanaka K, Bouvet M, Endo I, Eilber FC, Hoffman RM. Effective molecular targeting of CDK4/6 and IGF-1R in a rare FUS-ERG fusion CDKN2A-deletion doxorubicin-resistant Ewing's sarcoma patient-derived orthotopic xenograft (PDOX) nude-mouse model. Oncotarget 2018; 7:47556-47564. [PMID: 27286459 PMCID: PMC5216960 DOI: 10.18632/oncotarget.9879] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 05/22/2016] [Indexed: 11/25/2022] Open
Abstract
Ewing's sarcoma is a rare and aggressive malignancy. In the present study, tumor from a patient with a Ewing's sarcoma with cyclin-dependent kinase inhibitor 2A/B (CDKN2A/B) loss and FUS-ERG fusion was implanted in the right chest wall of nude mice to establish a patient-derived orthotopic xenograft (PDOX) model. The aim of the present study was to determine efficacy of cyclin-dependent kinase 4/6 (CDK4/6) and insulin-like growth factor-1 receptor (IGF-1R) inhibitors on the Ewing's sarcoma PDOX. The PDOX models were randomized into the following groups when tumor volume reached 50 mm3: G1, untreated control; G2, doxorubicin (DOX) (intraperitoneal (i.p.) injection, weekly, for 2 weeks); G3, CDK4/6 inhibitor (palbociclib, PD0332991, per oral (p.o.), daily, for 14 days); G4, IGF-1R inhibitor (linsitinib, OSI-906, p.o., daily, for 14 days). Tumor growth was significantly suppressed both in G3 (palbociclib) and in G4 (linsitinib) compared to G1 (untreated control) at all measured time points. In contrast, DOX did not inhibit tumor growth at any time point, which is consistent with the failure of DOX to control tumor growth in the patient. The results of the present study demonstrate the power of the PDOX model to identify effective targeted molecular therapy of a recalcitrant DOX-resistant Ewing's sarcoma with specific genetic alterations. The results of this study suggest the potential of PDOX models for individually-tailored, effective targeted therapy for recalcitrant cancer.
Collapse
Affiliation(s)
- Takashi Murakami
- AntiCancer, Inc., San Diego, CA, USA.,Department of Surgery, University of California, San Diego, CA, USA.,Department of Gastroenterological Surgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Arun S Singh
- Division of Hematology-Oncology, University of California, Los Angeles, CA, USA
| | | | - Sarah M Dry
- Department of Pathology, University of California, Los Angeles, CA, USA
| | - Yunfeng Li
- Department of Pathology, University of California, Los Angeles, CA, USA
| | - Aaron W James
- Department of Pathology, University of California, Los Angeles, CA, USA
| | | | | | | | | | - Yukihiko Hiroshima
- Department of Gastroenterological Surgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Tara Russell
- Division of Surgical Oncology, University of California, Los Angeles, CA, USA
| | - Mark A Eckardt
- Division of Surgical Oncology, University of California, Los Angeles, CA, USA.,Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
| | - Jane Yanagawa
- Division of Surgical Oncology, University of California, Los Angeles, CA, USA
| | - Noah Federman
- Department of Pediatrics and Department of Orthopaedics, University of California, Los Angeles, CA, USA
| | - Ryusei Matsuyama
- Department of Gastroenterological Surgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Takashi Chishima
- Department of Gastroenterological Surgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Kuniya Tanaka
- Department of Gastroenterological Surgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Michael Bouvet
- Department of Surgery, University of California, San Diego, CA, USA
| | - Itaru Endo
- Department of Gastroenterological Surgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Fritz C Eilber
- Division of Surgical Oncology, University of California, Los Angeles, CA, USA.,UCLA Sarcoma Program, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA
| | - Robert M Hoffman
- AntiCancer, Inc., San Diego, CA, USA.,Department of Surgery, University of California, San Diego, CA, USA.,UCLA Sarcoma Program, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA.,PDOX Inc., San Diego, CA, USA
| |
Collapse
|
43
|
Igarashi K, Kawaguchi K, Kiyuna T, Miyake K, Miyake M, Li Y, Nelson SD, Dry SM, Singh AS, Elliott IA, Russell TA, Eckardt MA, Yamamoto N, Hayashi K, Kimura H, Miwa S, Tsuchiya H, Eilber FC, Hoffman RM. Temozolomide combined with irinotecan regresses a cisplatinum-resistant relapsed osteosarcoma in a patient-derived orthotopic xenograft (PDOX) precision-oncology mouse model. Oncotarget 2018; 9:7774-7781. [PMID: 29487690 PMCID: PMC5814257 DOI: 10.18632/oncotarget.22892] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 11/10/2017] [Indexed: 12/13/2022] Open
Abstract
Relapsed osteosarcoma is a recalcitrant tumor. A patient's cisplatinum (CDDP)-resistant relapsed osteosarcoma lung metastasis was previously established orthotopically in the distal femur of mice to establish a patient-derived orthotopic xenograft (PDOX) model. In the present study, the PDOX models were randomized into the following groups when tumor volume reached 100 mm3: G1, control without treatment; G2, CDDP (6 mg/kg, intraperitoneal (i.p.) injection, weekly, for 2 weeks); gemcitabine (GEM) (100 mg/kg, i.p., weekly, for 2 weeks) combined with docetaxel (DOC) (20 mg/kg, i.p., once); temozolomide (TEM) (25 mg/kg, p.o., daily, for 2 weeks) combined with irinotecan (IRN) (4 mg/kg i.p., daily for 2 weeks). Tumor size and body weight were measured with calipers and a digital balance twice a week. After 2 weeks, all treatments significantly inhibited tumor growth except CDDP compared to the untreated control: CDDP: p = 0.093; GEM+DOC: p = 0.0002, TEM+IRN: p < 0.0001. TEM combined with IRN was significantly more effective than either CDDP (p = 0.0001) or GEM combined with DOC (p = 0.0003) and significantly regressed the tumor volume compared to day 0 (p = 0.003). Thus the PDOX model precisely identified the combination of TEM-IRN that could regress the CDDP-resistant relapsed metastatic osteosarcoma PDOX.
Collapse
Affiliation(s)
- Kentaro Igarashi
- AntiCancer, Inc., San Diego, California, USA
- Department of Surgery, University of California, San Diego, California, USA
- Department of Orthopaedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Kei Kawaguchi
- AntiCancer, Inc., San Diego, California, USA
- Department of Surgery, University of California, San Diego, California, USA
| | - Tasuku Kiyuna
- AntiCancer, Inc., San Diego, California, USA
- Department of Surgery, University of California, San Diego, California, USA
| | - Kentaro Miyake
- AntiCancer, Inc., San Diego, California, USA
- Department of Surgery, University of California, San Diego, California, USA
| | - Masuyo Miyake
- AntiCancer, Inc., San Diego, California, USA
- Department of Surgery, University of California, San Diego, California, USA
| | - Yunfeng Li
- Department of Pathology, University of California, Los Angeles, California, USA
| | - Scott D. Nelson
- Department of Pathology, University of California, Los Angeles, California, USA
| | - Sarah M. Dry
- Department of Pathology, University of California, Los Angeles, California, USA
| | - Arun S. Singh
- Division of Hematology-Oncology, University of California, Los Angeles, California, USA
| | - Irmina A. Elliott
- Division of Surgical Oncology, University of California, Los Angeles, California, USA
| | - Tara A. Russell
- Division of Surgical Oncology, University of California, Los Angeles, California, USA
| | - Mark A. Eckardt
- Department of Surgery, Yale School of Medicine, New Haven, Connecticut, USA
| | - Norio Yamamoto
- Department of Orthopaedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Katsuhiro Hayashi
- Department of Orthopaedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Hiroaki Kimura
- Department of Orthopaedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Shinji Miwa
- Department of Orthopaedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Hiroyuki Tsuchiya
- Department of Orthopaedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Fritz C. Eilber
- Division of Surgical Oncology, University of California, Los Angeles, California, USA
| | - Robert M. Hoffman
- AntiCancer, Inc., San Diego, California, USA
- Department of Surgery, University of California, San Diego, California, USA
| |
Collapse
|
44
|
Kawaguchi K, Han Q, Li S, Tan Y, Igarashi K, Miyake K, Kiyuna T, Miyake M, Chemielwski B, Nelson SD, Russell TA, Dry SM, Li Y, Singh AS, Eckardt MA, Unno M, Eilber FC, Hoffman RM. Intra-tumor L-methionine level highly correlates with tumor size in both pancreatic cancer and melanoma patient-derived orthotopic xenograft (PDOX) nude-mouse models. Oncotarget 2018. [PMID: 29541401 PMCID: PMC5834286 DOI: 10.18632/oncotarget.24264] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
An excessive requirement for methionine (MET) for growth, termed MET dependence, appears to be a general metabolic defect in cancer. We have previously shown that cancer-cell growth can be selectively arrested by MET restriction such as with recombinant methioninase (rMETase). In the present study, we utilized patient-derived orthotopic xenograft (PDOX) nude mouse models with pancreatic cancer or melanoma to determine the relationship between intra-tumor MET level and tumor size. After the tumors grew to 100 mm3, the PDOX nude mice were divided into two groups: untreated control and treated with rMETase (100 units, i.p., 14 consecutive days). On day 14 from initiation of treatment, intra-tumor MET levels were measured and found to highly correlate with tumor volume, both in the pancreatic cancer PDOX (p<0.0001, R2=0.89016) and melanoma PDOX (p<0.0001, R2=0.88114). Tumors with low concentration of MET were smaller. The present results demonstrates that patient tumors are highly dependent on MET for growth and that rMETase effectively lowers tumor MET.
Collapse
Affiliation(s)
- Kei Kawaguchi
- AntiCancer, Inc., San Diego, CA, USA.,Department of Surgery, University of California, San Diego, CA, USA.,Department of Surgery, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | | | | | | | - Kentaro Igarashi
- AntiCancer, Inc., San Diego, CA, USA.,Department of Surgery, University of California, San Diego, CA, USA
| | - Kentaro Miyake
- AntiCancer, Inc., San Diego, CA, USA.,Department of Surgery, University of California, San Diego, CA, USA
| | - Tasuku Kiyuna
- AntiCancer, Inc., San Diego, CA, USA.,Department of Surgery, University of California, San Diego, CA, USA
| | - Masuyo Miyake
- AntiCancer, Inc., San Diego, CA, USA.,Department of Surgery, University of California, San Diego, CA, USA
| | - Bartosz Chemielwski
- Division of Hematology-Oncology, University of California, Los Angeles, CA, USA
| | - Scott D Nelson
- Department of Pathology, University of California, Los Angeles, CA, USA
| | - Tara A Russell
- Division of Surgical Oncology, University of California, Los Angeles, CA, USA
| | - Sarah M Dry
- Department of Pathology, University of California, Los Angeles, CA, USA
| | - Yunfeng Li
- Department of Pathology, University of California, Los Angeles, CA, USA
| | - Arun S Singh
- Division of Hematology-Oncology, University of California, Los Angeles, CA, USA
| | - Mark A Eckardt
- Department of Surgery, Yale School of Medicine, New Haven, CT, USA
| | - Michiaki Unno
- Department of Surgery, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Fritz C Eilber
- Division of Surgical Oncology, University of California, Los Angeles, CA, USA
| | - Robert M Hoffman
- AntiCancer, Inc., San Diego, CA, USA.,Department of Surgery, University of California, San Diego, CA, USA
| |
Collapse
|
45
|
Chen JF, Luo X, Xiang LS, Li HT, Zha L, Li N, He JM, Xie GF, Xie X, Liang HJ. EZH2 promotes colorectal cancer stem-like cell expansion by activating p21cip1-Wnt/β-catenin signaling. Oncotarget 2018; 7:41540-41558. [PMID: 27172794 PMCID: PMC5173077 DOI: 10.18632/oncotarget.9236] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 04/24/2016] [Indexed: 02/05/2023] Open
Abstract
Because colorectal cancer (CRC) stem-like cells (CCS-like cells) contribute to poor patient prognosis, these cells are a potential target for CRC therapy. However, the mechanism underlying the maintenance of CCS-like cell properties remains unclear. Here, we found that patients with advanced stage CRC expressed high levels of polycomb group protein enhancer of zeste homologue 2 (EZH2). High expression of EZH2 in tumor tissues correlated with poor patient prognosis. Conversely, silencing EZH2 reduced CRC cell proliferation. Surprisingly, EZH2 was more highly expressed in the CCS-like cell subpopulation than in the non-CCS-like cell subpopulation. EZH2 knockdown significantly reduced the CD133+/CD44+ subpopulation, suppressed mammosphere formation, and decreased the expression of self-renewal-related genes and strongly impaired tumor-initiating capacity in a re-implantation mouse model. Gene expression data from 433 human CRC specimens from TCGA database and in vitro results revealed that EZH2 helped maintain CCS-like cell properties by activating the Wnt/β-catenin pathway. We further revealed that p21cip1–mediated arrest of the cell cycle at G1/S phase is required for EZH2 activation of the Wnt/β-catenin pathway. Moreover, the specific EZH2 inhibitor EPZ-6438, a clinical trial drug, prevented CRC progression. Collectively, these findings revealed EZH2 maintaining CCS-like cell characteristics by arresting the cell cycle at the G1/S phase. These results indicate a new approach to CRC therapy.
Collapse
Affiliation(s)
- Jian-Fang Chen
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xi Luo
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Li-Sha Xiang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Sichuan, China
| | - Hong-Tao Li
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Lin Zha
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Ni Li
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jian-Ming He
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Gan-Feng Xie
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xiong Xie
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Hou-Jie Liang
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
46
|
Kawaguchi K, Igarashi K, Li S, Han Q, Tan Y, Miyake K, Kiyuna T, Miyake M, Murakami T, Chmielowski B, Nelson SD, Russell TA, Dry SM, Li Y, Unno M, Eilber FC, Hoffman RM. Recombinant methioninase (rMETase) is an effective therapeutic for BRAF-V600E-negative as well as -positive melanoma in patient-derived orthotopic xenograft (PDOX) mouse models. Oncotarget 2018; 9:915-923. [PMID: 29416666 PMCID: PMC5787523 DOI: 10.18632/oncotarget.23185] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 11/19/2017] [Indexed: 12/31/2022] Open
Abstract
Melanoma is a recalcitrant disease. Melanoma patients with the BRAF-V600E mutation have been treated with the drug vemurafenib (VEM) which targets this mutation. However, we previously showed that VEM is not very effective against a BRAF-V600E melanoma mutant in a patient-derived orthotopic xenograft (PDOX) model. In contrast, we demonstrated that recombinant methioninase (rMETase) which targets the general metabolic defect in cancer of methionine dependence, was effective against the BRAF-V600E mutant melanoma PDOX model. In the present study, we demonstrate that rMETase is effective against a BRAF-V600E-negative melanoma PDOX which we established. Forty BRAF-V600E-negative melanoma PDOX mouse models were randomized into four groups of 10 mice each: untreated control (n = 10); temozolomide (TEM) (25 mg/kg, p.o., 14 consecutive days, n = 10); rMETase (100 units, i.p., 14 consecutive days, n = 10); TEM + rMETase (TEM: 25 mg/kg, p.o., rMETase: 100 units, i.p., 14 consecutive days, n = 10). All treatments inhibited tumor growth compared to untreated control (TEM: p = 0.0003, rMETase: p = 0.0006, TEM/rMETase: p = 0.0002) on day 14 after initiation. Combination therapy of TEM and rMETase was significantly more effective than either mono-therapy (TEM: p = 0.0113, rMETase: p = 0.0173). The present study shows that TEM combined with rMETase is effective for BRAF-V600E-negative melanoma PDOX similar to the BRAF-V600E-positive mutation melanoma. These results suggest rMETase in combination with first-line chemotherapy can be highly effective in both BRAF-V600E-negative as well as BRAF-V600E-positive melanoma and has clinical potential for this recalcitrant disease.
Collapse
Affiliation(s)
- Kei Kawaguchi
- AntiCancer, Inc., San Diego, CA, USA
- Department of Surgery, University of California, San Diego, CA, USA
- Department of Surgery, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Kentaro Igarashi
- AntiCancer, Inc., San Diego, CA, USA
- Department of Surgery, University of California, San Diego, CA, USA
| | | | | | | | - Kentaro Miyake
- AntiCancer, Inc., San Diego, CA, USA
- Department of Surgery, University of California, San Diego, CA, USA
| | - Tasuku Kiyuna
- AntiCancer, Inc., San Diego, CA, USA
- Department of Surgery, University of California, San Diego, CA, USA
| | - Masuyo Miyake
- AntiCancer, Inc., San Diego, CA, USA
- Department of Surgery, University of California, San Diego, CA, USA
| | - Takashi Murakami
- AntiCancer, Inc., San Diego, CA, USA
- Department of Surgery, University of California, San Diego, CA, USA
| | - Bartosz Chmielowski
- Division of Hematology-Oncology, University of California, Los Angeles, CA, USA
| | - Scott D. Nelson
- Department of Pathology, University of California, Los Angeles, CA, USA
| | - Tara A. Russell
- Division of Surgical Oncology, University of California, Los Angeles, CA, USA
| | - Sarah M. Dry
- Department of Pathology, University of California, Los Angeles, CA, USA
| | - Yunfeng Li
- Department of Pathology, University of California, Los Angeles, CA, USA
| | - Michiaki Unno
- Department of Surgery, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Fritz C. Eilber
- Division of Surgical Oncology, University of California, Los Angeles, CA, USA
| | - Robert M. Hoffman
- AntiCancer, Inc., San Diego, CA, USA
- Department of Surgery, University of California, San Diego, CA, USA
| |
Collapse
|
47
|
Abstract
Cancer is a daunting global problem confronting the world's population. The most frequent therapeutic approaches include surgery, chemotherapy, radiotherapy, and more recently immunotherapy. In the case of chemotherapy, patients ultimately develop resistance to both single and multiple chemotherapeutic agents, which can culminate in metastatic disease which is a major cause of patient death from solid tumors. Chemoresistance, a primary cause of treatment failure, is attributed to multiple factors including decreased drug accumulation, reduced drug-target interactions, increased populations of cancer stem cells, enhanced autophagy activity, and reduced apoptosis in cancer cells. Reprogramming tumor cells to undergo drug-induced apoptosis provides a promising and powerful strategy for treating resistant and recurrent neoplastic diseases. This can be achieved by downregulating dysregulated antiapoptotic factors or activation of proapoptotic factors in tumor cells. A major target of dysregulation in cancer cells that can occur during chemoresistance involves altered expression of Bcl-2 family members. Bcl-2 antiapoptotic molecules (Bcl-2, Bcl-xL, and Mcl-1) are frequently upregulated in acquired chemoresistant cancer cells, which block drug-induced apoptosis. We presently overview the potential role of Bcl-2 antiapoptotic proteins in the development of cancer chemoresistance and overview the clinical approaches that use Bcl-2 inhibitors to restore cell death in chemoresistant and recurrent tumors.
Collapse
|
48
|
Jun E, Hong SM, Yoo HJ, Kim MB, Won JS, An S, Shim IK, Chang S, Hoffman RM, Kim SC. Genetic and metabolic comparison of orthotopic and heterotopic patient-derived pancreatic-cancer xenografts to the original patient tumors. Oncotarget 2017; 9:7867-7881. [PMID: 29487698 PMCID: PMC5814265 DOI: 10.18632/oncotarget.23567] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 10/13/2017] [Indexed: 11/25/2022] Open
Abstract
Tumors from 25 patients with pancreatic cancer were used to establish two patient-derived xenograft (PDX) models: orthotopic PDX (PDOX) and heterotopic (subcutaneous) PDX (PDHX). We compared gene expression by immunohistochemistry, single-nucleotide polymorphism (SNP), DNA methylation, and metabolite levels. The 4 cases, of the total of 13 in which simultaneous PDHX & PDOX models were established, were randomly selected. The molecular-genetic characteristics of the patient's tumor were well maintained in the two PDX models. SNP analysis demonstrated that both groups were more than 90% identical to the original patient's tumor, and there was little difference between the two models. DNA methylation of most genes was similar among the two models and the original patients tumor, but some gene sets were hypermethylated the in PDOX model and hypomethylated in the PDHX model. Most of the metabolites had a similar pattern to those of the original patient tumor in both PDX tumor models, but some metabolites were more prominent in the PDOX and PDHX models. This is the first simultaneous molecular-genetic and metabolite comparison of patient tumors and their tumors established in PDOX and PDHX models. The results indicate high fidelity of these critical properties of the patient tumors in the two models.
Collapse
Affiliation(s)
- Eunsung Jun
- Division of Hepato-Biliary and Pancreatic Surgery, Department of Surgery, University of Ulsan College of Medicine and Asan Medical Center, Seoul, South Korea.,Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul, South Korea
| | - Seung-Mo Hong
- Department of Pathology, University of Ulsan College of Medicine and Asan Medical Center, Seoul, South Korea
| | - Hyun Ju Yoo
- Department of Convergence Medicine, Asan Institute for Life Sciences, University of Ulsan College of Medicine and Asan Medical Center, Seoul, South Korea
| | - Moon-Bo Kim
- MetaBio Inc., Gangdong-Gu, Seoul, South Korea
| | - Ji Sun Won
- Division of Hepato-Biliary and Pancreatic Surgery, Department of Surgery, University of Ulsan College of Medicine and Asan Medical Center, Seoul, South Korea
| | - Soyeon An
- Department of Pathology, University of Ulsan College of Medicine and Asan Medical Center, Seoul, South Korea
| | - In Kyong Shim
- Asan Institute for Life Science, University of Ulsan College of Medicine and Asan Medical Center, Seoul, South Korea
| | - Suhwan Chang
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul, South Korea
| | - Robert M Hoffman
- Department of Surgery, University of California, San Diego, CA, USA.,AntiCancer Inc., San Diego, CA, USA
| | - Song Cheol Kim
- Division of Hepato-Biliary and Pancreatic Surgery, Department of Surgery, University of Ulsan College of Medicine and Asan Medical Center, Seoul, South Korea
| |
Collapse
|
49
|
Friedman R. Drug resistance in cancer: molecular evolution and compensatory proliferation. Oncotarget 2017; 7:11746-55. [PMID: 26909596 PMCID: PMC4914245 DOI: 10.18632/oncotarget.7459] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 02/08/2016] [Indexed: 01/31/2023] Open
Abstract
Targeted therapies have revolutionized cancer treatment. Unfortunately, their success is limited due to the development of drug resistance within the tumor, which is an evolutionary process. Understanding how drug resistance evolves is a prerequisite to a better success of targeted therapies. Resistance is usually explained as a response to evolutionary pressure imposed by treatment. Thus, evolutionary understanding can and should be used in the design and treatment of cancer. In this article, drug-resistance to targeted therapies is reviewed from an evolutionary standpoint. The concept of apoptosis-induced compensatory proliferation (AICP) is developed. It is shown that AICP helps to explain some of the phenomena that are observed experimentally in cancers. Finally, potential drug targets are suggested in light of AICP.
Collapse
Affiliation(s)
- Ran Friedman
- Department of Chemistry and Biomedical Sciences, Linnæus University, Kalmar, Sweden
| |
Collapse
|
50
|
Zhang Y, Zhou N, Yu X, Zhang X, Li S, Lei Z, Hu R, Li H, Mao Y, Wang X, Zhang J, Li Y, Guo H, Irwin DM, Niu G, Tan H. Tumacrophage: macrophages transformed into tumor stem-like cells by virulent genetic material from tumor cells. Oncotarget 2017; 8:82326-82343. [PMID: 29137267 PMCID: PMC5669893 DOI: 10.18632/oncotarget.19320] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 06/20/2017] [Indexed: 02/06/2023] Open
Abstract
Tumor-associated macrophages are regarded as tumor-enhancers as they have key roles in the subversion of adaptive immunity and in inflammatory circuits that promote tumor progression. Here, we show that cancer cells can subvert macrophages yielding cells that have gained pro-tumor functions. When macrophages isolated from mice or humans are co-cultured with dead cancer cell line cells, induced to undergo apoptosis to mimic chemotherapy, up-regulation of pro-tumor gene expression was identified. Phagocytosis of apoptotic cancer cells by macrophages resulted in their transformation into tumor stem (initiating)-like cells, as indicated by the expression of epithelial markers (e.g., cytokeratin) and stem cell markers (e.g., Oct4) and their capability to differentiate in vitro and self-renew in serum-free media. Moreover, we identified a subset of monocytes/macrophages cells in the blood of cancer (breast, ovarian and colorectal) patients undergoing chemotherapy that harbor tumor transcripts. Our findings uncover a new role for macrophages in tumor development, where they can be transformed into tumor-like cells, potentially by horizontal gene transfer of tumor-derived genes, thus, by taking advantage of chemotherapy, these transformed macrophages promote tumor metastasis by escaping immune surveillance.
Collapse
Affiliation(s)
- Yizhuang Zhang
- Department of Pharmacology, Peking University, Beijing, China
| | - Na Zhou
- Department of Pharmacology, Peking University, Beijing, China
| | - Xiuyan Yu
- Department of Pharmacology, Peking University, Beijing, China
| | - Xuehui Zhang
- Department of Pharmacology, Peking University, Beijing, China
| | - Shanxin Li
- Department of Pharmacology, Peking University, Beijing, China
| | - Zhen Lei
- N & N Genetech Company, Ltd., Beijing, China
| | - Ruobi Hu
- Department of Pharmacology, Peking University, Beijing, China
| | - Hui Li
- Department of Pharmacology, Peking University, Beijing, China
| | - Yiqing Mao
- Department of Pharmacology, Peking University, Beijing, China
| | - Xi Wang
- Department of Pharmacology, Peking University, Beijing, China
| | - Jinshu Zhang
- Department of Clinical Laboratory, The 305 Hospital of People’s Liberation Army, Beijing, China
| | - Yuan Li
- Department of Gynaecology and Obstetrics, Peking University Third Hospital, Beijing, China
| | - Hongyan Guo
- Department of Gynaecology and Obstetrics, Peking University Third Hospital, Beijing, China
| | - David M. Irwin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Gang Niu
- N & N Genetech Company, Ltd., Beijing, China
| | - Huanran Tan
- Department of Pharmacology, Peking University, Beijing, China
| |
Collapse
|