1
|
Wu Q, Zhang R, Fu Y, Zhang J, Chen K, Li J. External quality assessment for PML-RARα detection in acute promyelocytic leukemia: Findings and summary. J Clin Lab Anal 2019; 33:e22894. [PMID: 31131502 PMCID: PMC6642306 DOI: 10.1002/jcla.22894] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 12/02/2018] [Accepted: 12/21/2018] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The confirmation of clinical diagnosis, molecular remission, and sequential minimal residual disease monitoring required PML-RARα detection in acute promyelocytic leukemia (APL). The current status of PML-RARα detection in various laboratories remains unknown. METHODS In 2018, external quality assessment (EQA) for PML-RARα detection was carried out in China. Three EQA sample panels for PML-RARα isoform L/S/V were prepared by different mock leukocyte samples. The performances of PML-RARα detection, including admission screening, and qualitative and quantitative detection by real-time quantitative reverse transcription PCR (RT-qPCR), were assessed based on APL simulated clinical case. RESULTS The mock leukocyte samples met the requirements of a clinically qualified sample for PML-RARα EQA panel. Among the laboratories, 13/50 (26.0%) were "competent," 21/50 (42%) classified as "acceptable," and 16/50 (32.0%) classified as "improvable." One (1/50, 2.0%) laboratory reported one screening mistake. Twenty-six (26/50, 52.0%) laboratories reported 29 false-positive and 19 false-negative results. Twenty-three (23/50, 46.0%) laboratories reported 42 quantitative incorrect results. CONCLUSION Significant differences were not found in PML-RARα detection performance among laboratories that used different extraction methods. The performances of qualitative and quantitative RT-qPCR detection were worse accurate for PML-RARα isoform V. Quantitative variation was higher for low-level samples. Further continuous external assessment and education are needed in the management of PML-RARα detection.
Collapse
Affiliation(s)
- Qisheng Wu
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Beijing, China.,Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.,Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
| | - Rui Zhang
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Beijing, China.,Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
| | - Yu Fu
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Beijing, China.,Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.,Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
| | - Jiawei Zhang
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Beijing, China.,Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.,Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
| | - Kun Chen
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Beijing, China.,Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.,Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
| | - Jinming Li
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Beijing, China.,Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.,Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
| |
Collapse
|
2
|
Albano F, Zagaria A, Anelli L, Coccaro N, Tota G, Brunetti C, Minervini CF, Impera L, Minervini A, Cellamare A, Orsini P, Cumbo C, Casieri P, Specchia G. Absolute quantification of the pretreatment PML-RARA transcript defines the relapse risk in acute promyelocytic leukemia. Oncotarget 2016; 6:13269-77. [PMID: 25944686 PMCID: PMC4537013 DOI: 10.18632/oncotarget.3773] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 04/06/2015] [Indexed: 12/05/2022] Open
Abstract
In this study we performed absolute quantification of the PML-RARA transcript by droplet digital polymerase chain reaction (ddPCR) in 76 newly diagnosed acute promyelocytic leukemia (APL) cases to verify the prognostic impact of the PML-RARA initial molecular burden. ddPCR analysis revealed that the amount of PML-RARA transcript at diagnosis in the group of patients who relapsed was higher than in that with continuous complete remission (CCR) (272 vs 89.2 PML-RARA copies/ng, p = 0.0004, respectively). Receiver operating characteristic analysis detected the optimal PML-RARA concentration threshold as 209.6 PML-RARA/ng (AUC 0.78; p < 0.0001) for discriminating between outcomes (CCR versus relapse). Among the 67 APL cases who achieved complete remission after the induction treatment, those with >209.6 PML-RARA/ng had a worse relapse-free survival (p = 0.0006). At 5-year follow-up, patients with >209.6 PML-RARA/ng had a cumulative incidence of relapse of 50.3% whereas 7.5% of the patients with suffered a relapse (p < 0.0001). Multivariate analysis identified the amount of PML-RARA before induction treatment as the sole independent prognostic factor for APL relapse. Our results show that the pretreatment PML-RARA molecular burden could therefore be used to improve risk stratification in order to develop more individualized treatment regimens for high-risk APL cases.
Collapse
Affiliation(s)
- Francesco Albano
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, 70124, Bari, Italy
| | - Antonella Zagaria
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, 70124, Bari, Italy
| | - Luisa Anelli
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, 70124, Bari, Italy
| | - Nicoletta Coccaro
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, 70124, Bari, Italy
| | - Giuseppina Tota
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, 70124, Bari, Italy
| | - Claudia Brunetti
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, 70124, Bari, Italy
| | - Crescenzio Francesco Minervini
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, 70124, Bari, Italy
| | - Luciana Impera
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, 70124, Bari, Italy
| | - Angela Minervini
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, 70124, Bari, Italy
| | - Angelo Cellamare
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, 70124, Bari, Italy
| | - Paola Orsini
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, 70124, Bari, Italy
| | - Cosimo Cumbo
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, 70124, Bari, Italy
| | - Paola Casieri
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, 70124, Bari, Italy
| | - Giorgina Specchia
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, 70124, Bari, Italy
| |
Collapse
|
3
|
Pagnano KBB, Rego EM, Rohr S, de Lourdes Chauffaille M, Jacomo RH, Bittencourt R, Firmato AB, Fagundes EM, Moraes Melo RA, Bernardo W. Guidelines on the diagnosis and treatment for acute promyelocytic leukemia: Associação Brasileira de Hematologia, Hemoterapia e Terapia Celular Guidelines Project: Associação Médica Brasileira - 2013. Rev Bras Hematol Hemoter 2014; 36:71-92. [PMID: 24624041 PMCID: PMC3948671 DOI: 10.5581/1516-8484.20140018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2013] [Indexed: 12/15/2022] Open
Affiliation(s)
| | | | - Sandra Rohr
- Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | | | | | - Rosane Bittencourt
- Universidade Federal do Rio Grande do Sul (UFGRS), Porto Alegre, RS, Brazil
| | | | | | | | | |
Collapse
|
4
|
Long-term efficacy and safety of all-trans retinoic acid/arsenic trioxide-based therapy in newly diagnosed acute promyelocytic leukemia. Proc Natl Acad Sci U S A 2009; 106:3342-7. [PMID: 19225113 DOI: 10.1073/pnas.0813280106] [Citation(s) in RCA: 334] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
All-trans retinoic acid (ATRA)/arsenic trioxide (ATO) combination-based therapy has benefitted newly diagnosed acute promyelocytic leukemia (APL) in short-term studies, but the long-term efficacy and safety remained unclear. From April 2001, we have followed 85 patients administrated ATRA/ATO with a median follow-up of 70 months. Eighty patients (94.1%) entered complete remission (CR). Kaplan-Meier estimates of the 5-year event-free survival (EFS) and overall survival (OS) for all patients were 89.2% +/- 3.4% and 91.7% +/- 3.0%, respectively, and the 5-year relapse-free survival (RFS) and OS for patients who achieved CR (n = 80) were 94.8% +/- 2.5% and 97.4% +/- 1.8%, respectively. Upon ATRA/ATO, prognosis was not influenced by initial white blood cell count, distinct PML-RARalpha types, or FLT3 mutations. The toxicity profile was mild and reversible. No secondary carcinoma was observed, and 24 months after the last dose of ATRA/ATO, patients had urine arsenic concentrations well below the safety limit. These results demonstrate the high efficacy and minimal toxicity of ATRA/ATO treatment for newly diagnosed APL in long-term follow-up, suggesting a potential frontline therapy for de novo APL.
Collapse
|
5
|
Abstract
Acute promyelocytic leukemia (APL) is a distinct subtype of acute myeloid leukemia. Morphologically, it is identified as the M3 subtype of acute myeloid leukemia by the French-American-British classification and cytogenetically is characterized by a balanced reciprocal translocation between chromosomes 15 and 17, which results in the fusion between promyelocytic leukemia (PML) gene and retinoic acid receptor alpha (RARalpha). It seems that the disease is the most malignant form of acute leukemia with a severe bleeding tendency and a fatal course of only weeks. Chemotherapy (CT; daunorubicin, idarubicin and cytosine arabinoside) was the front-line treatment of APL with a complete remission (CR) rate of 75% to 80% in newly diagnosed patients. Despite all these progresses, the median duration of remission ranged from 11 to 25 months and only 35% to 45% of the patients could be cured by CT. Since the introduction of all-trans retinoic acid (ATRA) in the treatment and optimization of the ATRA-based regimens, the CR rate was raised up to 90% to 95% and 5-year disease free survival (DFS) to 74%. The use of arsenic trioxide (ATO) since early 1990s further improved the clinical outcome of refractory or relapsed as well as newly diagnosed APL. In this article, we review the history of introduction of ATRA and ATO into clinical use and the mechanistic studies in understanding this model of cancer targeted therapy.
Collapse
|
6
|
Zhou GB, Li G, Chen SJ, Chen Z. From dissection of disease pathogenesis to elucidation of mechanisms of targeted therapies: leukemia research in the genomic era. Acta Pharmacol Sin 2007; 28:1434-49. [PMID: 17723177 DOI: 10.1111/j.1745-7254.2007.00684.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Leukemia is a group of heterozygous diseases of hematopoietic stem/progenitor cells that involves dynamic change in the genome. Dissection of genetic abnormalities critical to leukemia initiation provides insights into the elusive leukemogenesis, identifies distinct subsets of leukemia and predicts prognosis individually, and can also provide rational therapeutic targets for curative approaches. The past three decades have seen tremendous advances in the analysis of genotype-phenotype connection of leukemia, and in the identification of molecular biomarkers for leukemia subtypes. Intriguingly, differentiation therapy, targeted therapy and chemotherapy have turned several subtypes of leukemia from highly fatal to highly curable. The use of all-trans retinoic acid and arsenic trioxide, which trigger degradation of PML-RARalpha, the causative fusion protein generated by t (15;17) translocation in acute promyelocytic leukemia (APL), has led to a dramatic improvement of APL clinical outcome. Imatinib mesylate/ Gleevec/STI571, which inhibits the tyrosine kinase activity of BCR-ABL oncoprotein, has now become the new gold standard for the treatment of chronic myeloid leukemia. Optimal use of chemotherapeutic agents together with a stringent application of prognostic factors for risk-directed therapy in clinical trials has resulted in a steady improvement in the treatment outcome of acute lymphoblastic leukemia. Hence, the pace of progress extrapolates to a prediction of leukemia control in the twenty-first century.
Collapse
Affiliation(s)
- Guang-biao Zhou
- State Key Laboratory of Medical Genomics and Shanghai Institute of Hematology, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | | | | | | |
Collapse
|
7
|
Abstract
Acute promyelocytic leukemia (APL), characterized by a translocation between the promyelocytic leukemia gene (PML) on chromosome 15 and the retinoic acid receptor-alpha (RARalpha) gene on chromosome 17, has become a model for targeted treatment of cancer. Advances in our understanding of the fundamental biology of this disease have led to the development of tools for diagnosis, monitoring of minimal residual disease, and detection of early relapse. Differentiation therapy with all-trans retinoic acid in combination with chemotherapy has significantly improved survival in patients with APL. Moreover, arsenic trioxide, which induces differentiation and apoptosis of APL cells, has become standard treatment for relapsed disease, and its role in the treatment of newly diagnosed APL is under active investigation. The lessons learned from APL have broad applications to other forms of leukemia and to cancer in general, whereby molecularly targeted therapy is directed to specifically defined subgroups.
Collapse
Affiliation(s)
- Joseph G Jurcic
- Leukemia Service, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA.
| | | | | |
Collapse
|